EP3840889B1 - Laborschwingmühle - Google Patents

Laborschwingmühle Download PDF

Info

Publication number
EP3840889B1
EP3840889B1 EP20771226.6A EP20771226A EP3840889B1 EP 3840889 B1 EP3840889 B1 EP 3840889B1 EP 20771226 A EP20771226 A EP 20771226A EP 3840889 B1 EP3840889 B1 EP 3840889B1
Authority
EP
European Patent Office
Prior art keywords
grinding
grinding bowl
heat transfer
tempering
transfer element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20771226.6A
Other languages
English (en)
French (fr)
Other versions
EP3840889A1 (de
Inventor
Zilan ORHAN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Retsch GmbH
Original Assignee
Retsch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Retsch GmbH filed Critical Retsch GmbH
Publication of EP3840889A1 publication Critical patent/EP3840889A1/de
Application granted granted Critical
Publication of EP3840889B1 publication Critical patent/EP3840889B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/18Details
    • B02C17/1815Cooling or heating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/14Mills in which the charge to be ground is turned over by movements of the container other than by rotating, e.g. by swinging, vibrating, tilting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/18Details
    • B02C17/1805Monitoring devices for tumbling mills

Definitions

  • the invention relates to a laboratory vibratory mill with at least one vibratory mounted grinding jar holder for at least one grinding jar and with a temperature control device for temperature control, ie cooling and / or heating, of the grinding jar by supplying and / or discharging a liquid or gaseous temperature control medium via at least one temperature control line to or from the grinding jar holder.
  • liquid nitrogen is fed into the rotating union via a nitrogen line and a switching valve as well as via a connection and leaves the rotating union via a supply line connected to the connection.
  • the nitrogen flow is then led to the grinding jar holder and from there back to the movable part of the rotating union and finally reaches a collecting vessel via the stationary part of the rotating union and a return line connected to it.
  • the switching valve is closed. After so much nitrogen has evaporated that the sensor is no longer wetted with nitrogen, the switching valve is opened again. This ensures the supply of liquid nitrogen at all times during the grinding process.
  • the grinding jar holder is flooded with nitrogen and the grinding jar located therein is flushed with liquid nitrogen. As a result, there is direct contact between the temperature control medium and the grinding jar. In addition, the grinding jar is always maximally cooled by the flooding in liquid nitrogen.
  • the object of the present invention is to provide a laboratory vibrating mill with the features mentioned at the beginning which allows the temperature of the grinding bowl or a sample received in a grinding chamber of the grinding bowl using different temperature control media in a structurally simple manner, with direct contact of the grinding bowl does not take place with the temperature control medium during a grinding process.
  • the grinding jar holder has at least one heat transfer element connected to the temperature control line, the heat transfer element has at least one media channel for conducting the temperature control medium and wherein the temperature control of a grinding jar held on and / or in the grinding jar holder takes place by heat transfer between the temperature control medium guided in the media channel and the grinding jar via a wall of the heat transfer element.
  • the invention is based on the basic idea of providing a separate component of the grinding jar holder and / or, in the simplest case, a section and / or an area of the grinding jar holder for the heat transfer between the temperature control medium and the grinding jar.
  • the temperature control medium is guided in a media channel, which is preferably formed in the heat transfer element and is hermetically sealed with respect to the grinding jar, in particular with respect to the environment.
  • the heat transfer element is flushed through with a liquid or gaseous medium for removing energy from the grinding jar or for supplying energy to the grinding jar.
  • the cooling media can be, for example, water, thermal oils or liquid nitrogen. Liquid helium can also be used as a cooling medium.
  • the cooling concept according to the invention can be implemented with any liquid or gaseous cooling media.
  • the amount of energy supplied or removed during temperature control can be easily adapted to the actual requirement of the sample.
  • the temperature control line is connected to a temperature control device which is designed to provide a possibly cooled or heated temperature control medium and to forward the temperature control medium to a grinding jar holder and to divert the temperature control medium from the grinding jar holder and, if necessary, dispose of the temperature control medium.
  • the heat transfer element can be connected to at least two temperature control lines for supplying the temperature control medium to the heat transfer element and for discharging the temperature control medium from the heat transfer element.
  • a media duct that is closed to the environment is preferably provided via the temperature control lines and the media channel in the heat transfer element.
  • the temperature control takes place by heat transfer between the temperature control medium and the grinding jar via contact surfaces of the heat transfer element and the grinding jar that are preferably in direct contact with one another.
  • the heat is preferably transferred via metallic contact surfaces. This ensures good heat transfer.
  • the contact surfaces can be ground or finely milled and have a low roughness in order to improve the heat transfer.
  • a heat transfer medium for example a heat-conducting paste, a heat-conducting pad or a metallic foil, is arranged between the heat transfer element and the grinding jar in order to improve the heat transfer.
  • An embodiment is particularly preferred in which the heat transfer element and the grinding bowl abut one another essentially over their entire surface in the area of the contact surfaces. This is also done for the purpose of improving the heat transfer between the heat transfer element and the grinding jar.
  • the heat transfer between the heat transfer element and the grinding jar can essentially take place exclusively by heat conduction via the contact surfaces of the heat transfer element and the grinding jar. Nevertheless, an embodiment can be implemented in which a liquid heat transfer medium, such as a thermal oil, is arranged between the heat transfer element and the grinding jar, so that convective heat transfer between the heat transfer element and grinding jar is not fundamentally excluded.
  • a liquid heat transfer medium such as a thermal oil
  • a heat transfer element designed as a flat temperature control plate is provided, the grinding jar being able to be set up on the temperature control plate when it is attached to the grinding jar holder is.
  • the heat transfer element thus fulfills a double function. On the one hand, it serves to transfer heat. On the other hand, the temperature control plate ensures a stable and fixed arrangement of the grinding bowl in and / or on the grinding bowl holder.
  • the grinding jar holder can be designed to clamp the grinding jar against the heat transfer element.
  • the grinding jar is forced to be braced against the heat transfer element when the grinding jar is braced in and / or on the grinding jar holder.
  • the grinding jar can be moved in and / or on the grinding jar holder in a first clamping direction when it is clamped, whereby when the grinding jar is moved in the first clamping direction by force deflection, the grinding jar is automatically moved in the second clamping direction and the grinding jar is clamped against the heat transfer element can.
  • the grinding jar holder can have correspondingly designed projections or geometries which act when the grinding jar is clamped against the grinding jar and move it in the second tensioning direction.
  • the first tensioning direction and the second tensioning direction can run orthogonally to each other, whereby, for example, the grinding jar is automatically moved in the horizontal direction when braced in and / or on the grinding jar holder and automatically in the vertical direction by force deflection in order to move the grinding jar against the heat transfer element until the grinding jar rests against the heat transfer element and is braced.
  • the heat transfer element can be formed by two wall parts that are permanently fixed to one another, in particular welded to one another, further preferably flat, plate-shaped wall parts, the media channel being formed between the connected wall parts.
  • the media channel can be formed by milled flow channels in a wall part, the other wall part then only serving to cover the flow channels.
  • the heat transfer element can also have bores introduced as media channels in a one-piece material block or a material plate. It is also possible to produce the heat transfer element by means of 3D printing.
  • the invention also relates to a laboratory oscillating mill with at least one oscillatingly mounted grinding jar holder for at least one grinding jar and a temperature control method for grinding jars in oscillating mills.
  • a measuring, control and / or regulating device for preferably automatic control and / or regulation of the temperature of the grinding jar holder and / or the grinding jar and / or for controlling and / or regulating the temperature in a grinding chamber of the grinding bowl. Regulation in a closed control loop can furthermore preferably be made possible.
  • the temperature measurement is preferably carried out in the immediate vicinity of the grinding vessel with at least one temperature sensor.
  • the control through the local proximity of at least one temperature sensor to the grinding vessel has a lower control inertia, so that the precision and speed of the control increase. Temperatures can particularly preferably be regulated with the aid of a PID controller.
  • At least one temperature measuring element in particular a temperature sensor, is provided on the grinding jar holder and / or in and / or on the grinding jar and / or on and / or in a temperature control line for a temperature control medium.
  • the temperature sensor can also be installed in the grinding chamber in order to enable the temperature of the grinding sample to be monitored in situ. The temperature sensor thus enables the temperature of the grinding vessel to be monitored. The determined temperature can be used as input for a process controller.
  • the temperature control, ie the cooling and / or heating, of the grinding jar can, as described above, be carried out with a temperature control device by supplying and / or discharging a liquid or gaseous temperature control medium, in particular liquid nitrogen, via the temperature control line to the grinding jar holder and / or directly to the Grinding jars.
  • the control and / or regulation of the temperature can take place in particular by changing the volume flow of the temperature control medium fed to the grinding jar holder and / or the grinding jar as a function of a measurement temperature and / or by changing the temperature of the temperature control medium directly by appropriate pre-cooling or preheating of the temperature control medium.
  • this aspect of the invention enables the amounts of energy transferred during temperature control to be adapted to the actual requirement, ie cooling or heating of the temperature control medium adapted to the specific amount of heat released during the grinding of a sample or required in connection with the grinding of the sample.
  • a temperature control and / or temperature regulation is provided which allows a stepless setting and / or regulation of the temperature of the grinding jar holder and / or the grinding jar.
  • the temperature can be controlled by preferably a clocked supply of liquid nitrogen, with a nitrogen stream being guided to the grinding jar holder and / or to the grinding jar and from there being returned via a return line to a collecting vessel.
  • a temperature sensor can be provided on and / or in the collecting vessel in order to detect the fill level of the liquid nitrogen in the collecting vessel via temperature detection. If nitrogen is detected, a switching valve in the supply line can be closed. After so much nitrogen has evaporated that the temperature sensor shows a significant drop in temperature and / or no longer comes into contact with nitrogen, the switching valve can be opened again in order to supply nitrogen again via the feed line to the grinding jar holder and / or the grinding jar. The nitrogen detection is thus carried out via temperature detection. It is not excluded, however, that a sensor is also provided that closes the switching valve when it comes into contact with liquid nitrogen.
  • a temperature on the grinding jar holder and / or in and / or on the grinding jar and / or on and / or in a temperature control line for the temperature control medium is measured and controlled and / or regulated according to the invention.
  • the grinding jar holder having a heat transfer element connected to the temperature control line, at least one temperature sensor can expediently be arranged on and / or in the heat transfer element.
  • the temperature sensor preferably engages in a media channel formed in the heat transfer element and, during the temperature measurement, the temperature control medium guided in the media channel flows around it.
  • a specific target temperature can be set or regulated with high accuracy.
  • the temperature sensor enables the temperature of the grinding jar holder to be monitored and thus also of the grinding jar. In principle, however, the temperature can also be recorded directly on the grinding jar and / or in a grinding chamber of the grinding jar. This enables direct temperature monitoring of a sample located in the grinding chamber.
  • the measured temperatures can be used as input values for a process controller of a measurement, control and regulation system. Due to the local proximity of the temperature measurement to the grinding vessel, a lower control inertia can be achieved in the temperature control, so that the precision and the speed of the control increase.
  • the measuring, control and / or regulating device can be designed to control and / or regulate the temperatures on the grinding jar holders and / or in and / or on the grinding jars independently of one another.
  • the temperatures in the grinding jars can thus be regulated independently of one another and the amount of heat to be dissipated from the respective grinding jar or the amount of heat to be supplied to the respective grinding jar can be adapted even more precisely to the actual heat requirement.
  • Fig. 1 shows a plan view of a vibrating mill 1 for two grinding bowls 2, 3 which perform circular arc-shaped vibrations in a horizontal position.
  • a pendulum drive of the vibrating mill 1 is constructed in several parts with an eccentric shaft 4 rotatably mounted about a vertical eccentric axis and with two rocker arms 5, 6, each mounted so as to oscillate about vertical axes and connected to the eccentric shaft 4 by means of coupling. 8 for the grinding jars 2, 3 attached.
  • a motor unit 10 coupled to the eccentric shaft 4 via a V-belt 9 is provided for torque transmission.
  • the eccentric shaft 4 is rotatably mounted on a base plate 11.
  • two bearing bolts 12, 13, around which the rockers 5, 6 are rotatably mounted are attached to the base plate 11.
  • the motor unit 10 is arranged on the base plate 11.
  • the motor unit 10 transmits a torque via the V-belt 9 to the eccentric shaft 4.
  • a rotary movement of the eccentric shaft 4 is via the coupling in an oscillatory movement of the rockers 5, 6 is converted.
  • the oscillation frequency can be between 3 and 50 Hz, preferably up to 35 Hz.
  • the oscillation path (double amplitude deflection) of the grinding bowl can be between 20 and 50 mm, preferably between 20 and 30 mm.
  • Temperature control, i.e. cooling or heating, of the grinding jars 2, 3 is possible via a temperature control device not shown in detail.
  • Each grinding jar holder is used to transport a temperature control medium, which can be liquid or gaseous, from a stationary part 14, 15 of the vibrating mill 1 to a grinding jar holder 7, 8 and to divert the medium from the respective grinding jar holder 7, 8 to the stationary part 14, 15 7, 8 connected to two temperature control lines 16, 17.
  • One of the two temperature control lines 16, 17 is provided for the supply line, the other of the two temperature control lines 16, 17 for the discharge of a gas or liquid temperature control medium, in particular liquid nitrogen, to the respective grinding jar holder 7, 8.
  • the temperature control lines 16, 17 are preferably designed as continuous uninterrupted pipelines.
  • the temperature control lines 16, 17 can consist, for example, of stainless steel or also of plastic or of stainless steel and / or plastic.
  • the structure of the line routing is the same for both grinding jar holders 7, 8, so that only one line routing is described below by way of example.
  • the line arrangement with the temperature control lines 16, 17 of a grinding jar holder 7 is designed mirror-symmetrically to the line routing of the second grinding jar holder 8.
  • each line 16, 17 has a compensating element 18, 19.
  • Each line 16, 17 is designed as a rigid pipeline over its entire length, the compensating element 18, 19 being formed by a pipeline section of the line 16, 17.
  • the relative movements result in an oscillating deformation of the pipe sections forming the compensating elements 18, 19, the pipe sections adjoining the compensating elements 18, 19 the respective line 16, 17 are comparatively less deformed.
  • the compensating elements 18, 19 as rigid pipe sections, it is possible to compensate for relative movements without using pipe parts connected to one another so that they can be rotated and / or pivoted relative to one another.
  • connection and accessory parts known per se from the prior art of assembly technology can be provided.
  • the connection of the temperature control lines as such i.e. decoupled from the compensation of relative movements, can be made via sealing means in order to enable a sealing connection between the respective line 16, 17 and the grinding bowl holder 7, 8 on the one hand and the stationary part 14, 15 on the other.
  • a temperature control device for controlling the temperature of the grinding bowl 2 by supplying and / or discharging a liquid or gaseous temperature control medium via the temperature control lines 16, 17 to the grinding bowl holder 7, 8.
  • the temperature control device has a conveying means for the temperature control medium and a container for receiving a temperature control medium.
  • a closed circulation of the temperature control medium via the temperature control line 16, 17 is also preferably provided.
  • Each grinding jar holder 7, 8 has a heat transfer element 20 connected to the temperature control lines 16, 17, which is plate-shaped in the embodiment shown and has an inner first plate part 21 and an outer second plate part 22 on the connection side of the heat transfer element 20.
  • the temperature control lines 16, 17 are on the outside of the outer plate part 22 is connected to the plate part 22 by means of connecting elements known per se from the prior art.
  • Fig. 5 shows the grinding jar holder 7 from Fig. 4 , wherein the outer plate part 22 is hidden. This clears the view of the inner plate part 21, in which a media channel 23 is formed for the temperature control medium to flow through.
  • the media channel 23 is hermetically sealed from the environment. It is also possible to screw the plate parts 21, 22 together.
  • FIG Fig. 7 the grinding jar holder 8 Fig. 2 after removal of the grinding bowl 3 is shown. How out Fig. 7 results, a flat contact surface 24 is provided on the upper side or the outer side of the plate part 21 facing the grinding bowl 2, which during the grinding process rests essentially over the entire surface against an outer bottom surface of the grinding bowl 2.
  • the heat transfer between the heat transfer element 20 and the grinding bowl 2 takes place exclusively by heat conduction via the contact surface 24 of the plate part 21 and the bottom surface of the grinding bowl 2.
  • the grinding jar holder 7, 8 of the laboratory mill 1 shown has in each case a holding bracket 25 which is firmly connected to a rocker 5, 6 and which is connected to a horizontal adjustable further retaining bracket 26 cooperates.
  • a clamping screw 27 By adjusting the clamping screw 27, the outer retaining bracket 26 can be braced against the inner retaining bracket 25 and thus a grinding jar 2, 3 can be braced horizontally between the retaining brackets 25, 26.
  • Clamping pieces 28 arranged in the corner areas are provided on the outer retaining bracket 26 which, when the grinding bowl 2, 3 is horizontally braced in the grinding bowl holder 7, 8, result in the grinding bowl 2, 3 being automatically deflected downwards against the inner plate part 21 of the heat transfer element 20 is pressed.
  • the clamping pieces 28 can be chamfered on the inside facing the plate part 21 or have a corresponding clamping slope.
  • two temperature sensors 29 for measuring the temperature on the heat transfer element 20 are preferably arranged.
  • the temperature sensors 29 are connected via electrical lines (not shown) to an evaluation unit of a measuring, control and / or regulating device (not shown) for automatically regulating the temperature of the grinding jar holder 6, 7.
  • the temperature sensors 29 can be provided for measuring the temperature of a plate part 21, 22 and / or can also intervene into the area of the media channel 23 via bores in the outer plate part 22 of the heat transfer element 20, so that a measuring sensor of the respective temperature sensor 29 enters the The temperature control medium guided inside the media channel 23 engages or is surrounded by the temperature control medium.
  • a temperature sensor 29 is provided for each heat transfer element 20.
  • the temperature sensors 29 are connected via electrical lines (not shown) to an evaluation unit of a measurement control and / or regulating device 30 (not shown) for automatic regulation of the temperature of the grinding jar holder 6, 7.
  • FIG. 8 and 9 two alternative methods for temperature control of two grinding jars 2, 3 of a laboratory vibrating mill 1, not shown in detail, are shown schematically.
  • a measuring, control and / or regulating device 30 is provided for the automatic regulation of the temperature of two grinding jar holders 7, 8 of the vibrating mill 1.
  • the temperature control takes place with the aid of at least two temperature sensors 29 with which the temperatures of two heat transfer elements 20 of the grinding bowl holders 7, 8 are determined during the operation of the vibrating mill 1 or during a grinding process.
  • the milling cups 2, 3 stand on the heat transfer element 20.
  • the heat is preferably transferred exclusively by conduction via contact surfaces that touch one another.
  • each grinding jar holder 7, 8 is connected to two temperature control lines 16, 17.
  • the temperature control lines 16, 17 of a grinding jar holder 7, 8 are connected to a rotary leadthrough 31 in order to enable the compensation of relative movements between the vibrating grinding jar 2, 3 and a stationary part of the laboratory mill 1.
  • Each rotary leadthrough 31 has a feed line 32 and a discharge line 33 for supplying the temperature control medium from a media container 34, for example a nitrogen tank, or for discharging the temperature control medium after flowing through the heat exchanger element 20 into a disposal device for the temperature control medium, in the present case an expansion pipe 35 connected.
  • Further temperature sensors 36 are provided for measuring the temperature of the medium in the discharge lines 33.
  • the further temperature sensors 36 are used in particular for error handling. With a measured value associated with each derivative 33, leakage can be concluded for each derivative 33 and associated heat transfer element 20 as well as the associated lines 32 and rotary feedthroughs 31. As a result, proper operation can be efficiently monitored using measured values without having to physically check the lines.
  • the line routing to the expansion pipe 35 finally takes place via a throttle 37.
  • the discharge lines 33 are brought together in order to lead them to the expansion pipe 35 via a throttle 37.
  • a temperature measurement with at least one sensor 36 is provided after the merging.
  • the temperature control medium is supplied from the media container 34 via the supply lines 32 to the respective rotary feedthrough 31 with a solenoid valve 38 as an actuator of a closed control circuit depending on the temperatures determined on the grinding jar holders 7, 8 via the temperature sensors 29.
  • the solenoid valve 38 is thus provided in order to effect the clocked addition or feeding of the temperature control medium into the supply lines 32 to the two grinding jar holders 7, 8.
  • the media flow temperature can be determined by means of a further temperature sensor 39.
  • the measuring, control and / or regulating device 30 has an evaluation or computer unit (not shown) with which the measured temperatures are compared with predetermined setpoints, the actuator of the then being based on the setpoint / actual value comparison Control loop is operated.
  • the timing of the solenoid valve 38 is changed accordingly as a function of the setpoint / actual value comparison.
  • Fig. 8 The described process sequence for controlling the temperature of the grinding jars 2, 3 via the temperature control of the grinding jar holders 7, 8 can also be provided in a corresponding manner when using other temperature control media.
  • the control method described also allows the temperature of the grinding bowls 2, 3 to be determined and controlled directly.
  • temperature sensors can be arranged on and / or in the grinding bowls 2, 3.
  • the data transmission between the sensors and an evaluation device of the measuring, control and / or regulating device can take place in a wired or wireless manner, for example via radio.
  • Fig. 9 the process sequence in an alternative process for controlling the temperature of the grinding jars 2, 3 is shown schematically.
  • two solenoid valves 38 are provided to the timing of the respective solenoid valve 38 as a function from the temperature measured on the respective grinding jar holder 7, 8. This makes it possible to cool or heat the grinding bowls 2, 3 to different degrees and to regulate the temperatures in and / or on the grinding bowls independently of one another.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Crushing And Grinding (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Description

  • Die Erfindung betrifft eine Laborschwingmühle mit wenigstens einer schwingfähig gelagerten Mahlbecherhalterung für wenigstens einen Mahlbecher und mit einer Temperiereinrichtung zur Temperierung, d.h. Kühlung und/oder Erwärmung, des Mahlbechers durch Zuleitung und/oder Ableitung eines flüssigen oder gasförmigen Temperiermediums über wenigstens eine Temperierleitung zur bzw. von der Mahlbecherhalterung.
  • Bei Schwingmühlen für den Laborbetrieb ist es bekannt, zur effizienten Zerkleinerung von insbesondere spröden Materialien eine zusätzliche Versprödung des zu zerkleinernden Materials durch Kühlung mit flüssigem Stickstoff herbeizuführen. Die Kühlung erfolgt bei bekannten Verfahren beispielsweise durch Eintauchen des Mahlbechers in flüssigen Stickstoff, mit dem eine Mahlbecherhalterung geflutet wird. Hierzu muss der flüssige Stickstoff kontinuierlich der Mahlbecherhalterung zugeführt und von dieser weggeführt werden. In diesem Zusammenhang ist es bekannt, die Versorgung mit dem flüssigen oder gasförmigen Medium, beispielsweise Stickstoff, mittels entsprechend angeordneter flexibler Schläuche durchzuführen. Hierbei werden die Schläuche direkt an der Mahlbecherhalterung befestigt, wobei dann eine strömungstechnische Verbindung zwischen der Mahlbecherhalterung und dem eingesetzten Mahlbecher besteht.
  • Neben der Stickstoffanwendung nutzen andere Anwendungen das kurzfristige lokale Freisetzen größerer Energiemengen beim Mahlvorgang zur Einleitung chemischer Reaktionen. Je nach den eintretenden Reaktionen muss der Mahlbecher unter Umständen gekühlt oder beheizt werden. Auch dies erfordert dessen kontinuierliche Versorgung mit einem Medium zur Temperierung des Reaktionsraums.
  • Aus der EP 2 391 454 B1 ist eine Labormühle mit Drehdurchführungen für die mit einem Medium zu versorgenden Mahlbecher bekannt. Hier ist es vorgesehen, dass an jedem Mahlbecher zwei Temperierleitungen zur Zufuhr und zur Abfuhr des Mediums angeschlossen und beide Temperierleitungen über die Drehdurchführung geführt sind, wobei an dem stationären Teil der Drehdurchführung zwei externe Anschlüsse für die ortsfesten Temperierleitungen der Labormühle und an dem beweglichen Teil der Drehdurchführung zwei interne Anschlüsse für die zum Mahlbecher führenden Temperierleitungen ausgebildet sind.
  • Gemäß der aus der EP 2 391 454 B1 bekannten Labormühle wird flüssiger Stickstoff über eine Stickstoffleitung und ein Schaltventil sowie über einen Anschluss in die Drehdurchführung geleitet und verlässt die Drehdurchführung über eine an dem Anschluss angeschlossene Zuleitung. Der Stickstoffstrom wird dann zur Mahlbecherhalterung und von dort wieder zurück zum beweglichen Teil der Drehdurchführung geführt und gelangt schließlich über den stationären Teil der Drehdurchführung und eine daran angeschlossene Rückleitung in ein Auffanggefäß. Sobald ein am Auffanggefäß angeordneter Sensor mit flüssigem Stickstoff in Berührung kommt, wird das Schaltventil geschlossen. Nachdem soviel Stickstoff verdampft ist, dass der Sensor nicht mehr mit Stickstoff benetzt ist, wird das Schaltventil wieder geöffnet. Damit wird zu jedem Zeitpunkt eines Mahlvorgangs die Versorgung mit flüssigem Stickstoff gewährleistet.
  • Zur Kühlung der bekannten Labormühle wird die Mahlbecherhalterung mit Stickstoff geflutet und der darin befindliche Mahlbecher mit flüssigem Stickstoff umspült. Es kommt folglich zu einem direkten Kontakt zwischen dem Temperiermedium und dem Mahlbecher. Zudem wird der Mahlbecher durch die Flutung in flüssigem Stickstoff stets maximal gekühlt.
  • Aufgabe der vorliegenden Erfindung ist es, eine Laborschwingmühle mit den eingangs genannten Merkmalen zur Verfügung zu stellen, die die Temperierung des Mahlbechers bzw. einer in einem Mahlraum des Mahlbechers aufgenommenen Probe unter Verwendung unterschiedlicher Temperiermedien in konstruktiv einfacher Weise zulässt, wobei ein direkter Kontakt des Mahlbechers mit dem Temperiermedium während eines Mahlvorgangs nicht stattfindet. Darüber hinaus ist es Aufgabe der vorliegenden Erfindung, die Temperierung derart auszugestalten, dass die bei einer Kühlung des Mahlbechers abgeführte Wärmeenergie und/oder die bei einer Erwärmung des Mahlbechers zugeführte Wärmenergie in einem größtmöglichen Umfang an den tatsächlichen Bedarf angepasst ist.
  • Die vorgenannten Aufgaben werden durch eine Laborschwingmühle mit den Merkmalen von Patentanspruch 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
  • Erfindungsgemäß weist die Mahlbecherhalterung wenigstens ein an die Temperierleitung angeschlossenes Wärmeübertragungselement auf, wobei das Wärmeübertragungselement wenigstens einen Medienkanal zur Durchleitung des Temperiermediums aufweist und wobei die Temperierung eines an und/oder in der Mahlbecherhalterung gehaltenen Mahlbechers durch Wärmeübertragung zwischen dem in dem Medienkanal geführten Temperiermedium und dem Mahlbecher über eine Wandung des Wärmeübertragungselements erfolgt. Der Erfindung liegt der Grundgedanke zugrunde, ein separates Bauteil der Mahlbecherhalterung und/oder im einfachsten Fall einen Abschnitt und/oder einen Bereich der Mahlbecherhalterung für die Wärmeübertragung zwischen dem Temperiermedium und dem Mahlbecher vorzusehen. Dadurch ist eine konstruktive Ausgestaltung der Mahlbecherhalterung möglich, bei der es bei der Temperierung des Mahlbechers zu keinem direkten Kontakt bzw. keiner Berührung des Mahlbechers mit dem Temperiermedium kommt. Zudem werden Medienverluste in die Umgebung verhindert. Das Temperiermedium wird in einem Medienkanal geführt, der vorzugsweise in dem Wärmeübertragungselement ausgebildet und gegenüber dem Mahlbecher, insbesondere gegenüber der Umgebung, hermetisch geschlossen ist. Das Wärmeübertragungselement wird erfindungsgemäß mit einem flüssigen oder gasförmigen Medium für eine Energieabfuhr aus dem Mahlbecher oder für eine Energiezufuhr zum Mahlbecher durchspült.
  • Darüber hinaus eröffnet die Führung des Temperiermediums in dem Medienkanal die Möglichkeit, unterschiedliche gasförmige oder flüssige Temperiermedien zur Temperierung des Mahlbechers einzusetzen. Bei den Kühlmedien kann es sich beispielsweise um Wasser, Thermoöle oder flüssigen Stickstoff handeln. Auch kann als Kühlmedium flüssiges Helium eingesetzt werden. Das erfindungsgemäße Kühlkonzept lässt sich mit beliebigen flüssigen oder gasförmigen Kühlmedien realisieren.
  • Durch Veränderung des Volumenstroms des in dem Medienkanal geführten Temperiermediums und/oder der Temperatur des Temperiermediums kann der Betrag der bei der Temperierung zugeführten oder abgeführten Energiemenge in einfacher Weise an den tatsächlichen Bedarf der Probe angepasst werden.
  • Die Temperierleitung ist mit einer Temperiereinrichtung verbunden, die zur Bereitstellung eines gegebenfalls gekühlten oder erwärmten Temperiermediums und zur Weiterleitung des Temperiermediums zu einer Mahlbecherhalterung und zur Ableitung des Temperiermediums von der Mahlbecherhalterung und gegebenenfalls Entsorgung des Temperiermediums ausgebildet ist.
  • Das Wärmeübertragungselement kann an wenigstens zwei Temperierleitungen zur Zuleitung des Temperiermediums zum Wärmeübertragungselement und zur Ableitung des Temperiermediums vom Wärmeübertragungselement angeschlossen sein. Hierbei ist vorzugsweise eine zur Umgebung hin geschlossene Medienführung über die Temperierleitungen und den Medienkanal im Wärmeübertragungselement vorgesehen.
  • Es ist zweckmäßig, wenn die Temperierung durch Wärmeübertragung zwischen dem Temperiermedium und dem Mahlbecher über vorzugsweise unmittelbar gegeneinander anliegende Kontaktflächen des Wärmeübertragungselements und des Mahlbechers erfolgt. Vorzugsweise erfolgt die Wärmeübertragung über metallische Kontaktflächen. Hierdurch wird ein guter Wärmeübergang sichergestellt. Die Kontaktflächen können geschliffen oder feingefräst sein und eine geringe Rauheit aufweisen, um den Wärmeübergang zu verbessern. Nicht ausgeschlossen ist, dass zwischen dem Wärmeübertragungselement und dem Mahlbecher ein Wärmeübertragungsmedium, beispielsweise eine Wärmeleitpaste, ein Wärmeleitpad oder auch eine metallische Folie, angeordnet ist zur Verbesserung des Wärmedurchgangs.
  • Besonders bevorzugt ist eine Ausführungsform, bei der das Wärmeübertragungselement und der Mahlbecher im Bereich der Kontaktflächen im Wesentlichen vollflächig gegeneinander anliegen. Auch dies erfolgt zu dem Zweck, den Wärmeübergang zwischen dem Wärmeübertragungselement und dem Mahlbecher zu verbessern.
  • Der Wärmeübergang zwischen dem Wärmeübertragungselement und dem Mahlbecher kann im Wesentlichen ausschließlich durch Wärmeleitung über die Kontaktflächen des Wärmeübertragungselements und des Mahlbechers erfolgen. Gleichwohl kann eine Ausführungsform realisiert sein, bei der zwischen dem Wärmeübertragungselement und dem Mahlbecher ein flüssiges Wärmeübertragungsmedium, wie ein Thermoöl, angeordnet ist, so dass auch eine konvektive Wärmeübertragung zwischen Wärmeübertragungselement und Mahlbecher grundsätzlich nicht ausgeschlossen ist.
  • Erfindungsgemäß ist ein als ebene Temperierplatte ausgebildetes Wärmeübertragungselement vorgesehen, wobei der Mahlbecher bei der Befestigung an der Mahlbecherhalterung auf die Temperierplatte aufstellbar ist.
  • Das Wärmeübertragungselement erfüllt damit eine Doppelfunktion. Zum einen dient es der Wärmeübertragung. Zum anderen stellt die Temperierplatte eine stabile und ortsfeste Anordnung des Mahlbechers in und/oder an der Mahlbecherhalterung sicher.
  • Um einen guten Wärmeübergang zwischen der Mahlbecherhalterung und dem Mahlbecher zu gewährleisten, kann die Mahlbecherhalterung zum Verspannen des Mahlbechers gegen das Wärmeübertragungselement ausgebildet sein. Vorzugsweise kommt es zu einer Zwangsverspannung des Mahlbechers gegen das Wärmeübertragungselement beim Verspannen des Mahlbechers in und/oder an der Mahlbecherhalterung. Der Mahlbecher kann beim Verspannen in und/oder an der Mahlbecherhalterung in eine erste Spannrichtung bewegt werden, wobei es beim Bewegen des Mahlbechers in die erste Spannrichtung durch Kraftumlenkung automatisch zu einer Bewegung des Mahlbechers in die zweite Spannrichtung und zum Verspannen des Mahlbechers gegen das Wärmeübertragungselement kommen kann. Hierzu kann die Mahlbecherhalterung entsprechend ausgebildete Vorsprünge oder Geometrien aufweisen, die beim Verspannen des Mahlbechers gegen den Mahlbecher wirken und diesen in die zweite Spannrichtung bewegen. Die erste Spannrichtung und die zweite Spannrichtung können orthogonal zueinander verlaufen, wobei, beispielsweise, der Mahlbecher beim Verspannen in und/oder an der Mahlbecherhalterung in horizontaler Richtung und durch Kraftumlenkung automatisch in vertikaler Richtung bewegt wird, um den Mahlbecher gegen das Wärmeübertragungselement zu bewegen, bis der Mahlbecher gegen das Wärmeübertragungselement anliegt und verspannt ist.
  • Das Wärmeübertragungselement kann durch zwei dauerhaft fest miteinander verbundene, insbesondere miteinander verschweißte, weiter vorzugsweise ebene plattenförmige Wandteile gebildet sein, wobei zwischen den verbundenen Wandteilen der Medienkanal ausgebildet ist. Der Medienkanal kann durch eingefräste Strömungskanäle in einem Wandteil gebildet sein, wobei das andere Wandteil dann lediglich zur Abdeckung der Strömungskanäle dient. Grundsätzlich kann das Wärmeübertragungselement auch in einem einstückigen Materialblock oder einer Materialplatte einbrachte Bohrungen als Medienkanäle aufweisen. Auch eine Herstellung des Wärmeübertragungselements durch 3D-Druck ist möglich.
  • Die Erfindung betrifft gemäß einer alternativen Ausführungsform auch eine Laborschwingmühle mit wenigstens einer schwingfähig gelagerten Mahlbecherhalterung für wenigstens einen Mahlbecher und ein Temperierverfahren für Mahlbecher in Schwingmühlen.
  • Zur Lösung der eingangs genannten Aufgabe ist bei dieser alternativen Ausführungsform eine Mess-, Steuer- und/oder Regelungseinrichtung zur vorzugsweise automatischen Steuerung und/oder Regelung der Temperatur der Mahlbecherhalterung und/oder des Mahlbechers und/oder zur Steuerung und/oder Regelung der Temperatur in einem Mahlraum des Mahlbechers vorgesehen. Weiter vorzugsweise kann eine Regelung im geschlossenen Regelkreis ermöglicht werden. Die Temperaturmessung erfolgt vorzugsweise in unmittelbarer Nähe zum Mahlgefäß mit wenigstens einem Temperatursensor. Die Regelung durch die örtliche Nähe von wenigstens einem Temperatursensor zum Mahlgefäß weist eine geringere Regelträgheit auf, so dass Präzision und Geschwindigkeit der Regelung zunehmen. Besonders bevorzugt lassen sich Temperaturen mit Hilfe eines PID-Reglers regeln. In diesem Zusammenhang ist wenigstens ein an der Mahlbecherhalterung und/oder in und/oder an dem Mahlbecher und/oder an und/oder in einer Temperierleitung für ein Temperiermedium angeordnetes Temperaturmesselement, insbesondere ein Temperatursensor, vorgesehen. Der Temperatursensor kann auch im Mahlraum angebracht sein, um eine Temperaturüberwachung der Mahlprobe in situ zu ermöglichen. Damit ermöglicht der Temperatursensor eine Temperaturüberwachung des Mahlgefäßes. Die ermittelte Temperatur kann als Eingabe für einen Prozessregler herangezogen werden.
  • Die Temperierung, d.h. die Kühlung und/oder Erwärmung, des Mahlbechers kann, wie oben beschrieben, mit einer Temperiereinrichtung durch Zuleitung und/oder Ableitung eines flüssigen oder gasförmigen Temperiermediums, insbesondere von flüssigem Stickstoff, über die Temperierleitung zur Mahlbecherhalterung und/oder auch direkt zum Mahlbecher erfolgen. Die Steuerung und/oder Regelung der Temperatur kann insbesondere durch Veränderung des Volumenstroms des der Mahlbecherhalterung und/oder dem Mahlbecher zugeführten Temperiermediums in Abhängigkeit von einer Messtemperatur und/oder durch Veränderung direkt der Temperatur des Temperiermediums durch entsprechende Vorkühlung oder Vorwärmung des Temperiermediums erfolgen. Dieser Aspekt der Erfindung ermöglicht erstmals im Stand der Technik eine Anpassung der bei der Temperierung übertragenen Energiemengen an den tatsächlichen Bedarf, d.h. die Kühlung oder Erwärmung des Temperiermediums angepasst an die konkret bei der Vermahlung einer Probe freigesetzten oder in Zusammenhang mit der Vermahlung der Probe erforderlichen Wärmemengen. Besonders bevorzugt ist eine Temperatursteuerung und/oder Temperaturregelung vorgesehen, die eine stufenlose Einstellung und/oder Regelung der Temperatur der Mahlbecherhalterung und/oder des Mahlbechers zulässt.
  • Die Temperierung kann durch vorzugsweise getaktete Zufuhr von flüssigem Stickstoff erfolgen, wobei ein Stickstoffstrom zur Mahlbecherhalterung und/oder zum Mahlbecher geführt und von dort über eine Rückleitung in ein Auffanggefäß zurückgeleitet wird. Am und/oder im Auffanggefäß kann ein Temperatursensor vorgesehen sein, um über eine Temperaturerfassung den Füllstand des flüssigen Stickstoffs im Auffanggefäß zu detektieren. Wird Stickstoff detektiert, kann ein Schaltventil in der Zuleitung geschlossen werden. Nachdem soviel Stickstoff verdampft ist, dass der Temperatursensor einen deutlichen Temperaturabfall zeigt und/oder nicht mehr mit Stickstoff in Kontakt kommt, kann das Schaltventil wieder geöffnet werden, um erneut Stickstoff über die Zuleitung der Mahlbecherhalterung und/oder dem Mahlbecher zu zuführen. Die Stickstoffdetektion erfolgt somit über eine Temperaturerfassung. Nicht ausgeschlossen ist aber, dass auch ein Sensor vorgesehen ist, der das Schaltventil schließt, wenn er mit flüssigem Stickstoff in Berührung kommt.
  • Zur Temperierung der Mahlbecherhalterung und/oder des Mahlbechers wird erfindungsgemäß eine Temperatur an der Mahlbecherhalterung und/oder in und/oder an dem Mahlbecher und/oder an und/oder in einer Temperierleitung für das Temperiermedium gemessen und gesteuert und/oder geregelt.
  • Bei einer Laborschwingmühle mit den eingangs genannten Merkmalen, wobei die Mahlbecherhalterung ein an die Temperierleitung angeschlossenes Wärmeübertragungselement aufweist, kann in zweckmäßiger Weise wenigstens ein Temperatursensor an und/oder in dem Wärmeübertragungselement angeordnet sein. Vorzugsweise greift der Temperatursensor in einen in dem Wärmeübertragungselement ausgebildeten Medienkanal ein und wird bei der Temperaturmessung von dem im Medienkanal geführten Temperiermedium umströmt. Durch Messung der Temperatur des Temperiermediums im Inneren des Wämeübertragungselements lässt sich mit hoher Genauigkeit eine bestimmte Solltemperatur einstellen bzw. einregeln. Der Temperatursensor ermöglicht die Temperaturüberwachung der Mahlbecherhalterung und damit auch des Mahlbechers. Grundsätzlich kann jedoch auch eine Temperaturerfassung direkt am Mahlbecher und/oder in einem Mahlraum des Mahlbechers erfolgen. Damit ist eine direkte Temperaturüberwachung einer im Mahlraum befindlichen Probe möglich.
  • Die gemessenen Temperaturen können als Eingabewerte für einen Prozessregler eines Mess-, Steuer- und Regelungssystems herangezogen werden. Durch die örtliche Nähe der Temperaturmessung zum Mahlgefäß lässt sich bei der Temperaturregelung eine geringere Regelträgheit erreichen, so dass die Präzision und die Geschwindigkeit der Regelung zunimmt.
  • Bei einer Labormühle, die mehrere Mahlbecherhalterungen aufweist, kann die Mess-, Steuer- und/oder Regelungseinrichtung zur voneinander unabhängigen Steuerung und/oder Regelung der Temperaturen an den Mahlbecherhalterungen und/oder in und/oder an den Mahlbechern ausgebildet sein. Damit lassen sich die Temperaturen in den Mahlbechern unabhängig voneinander regeln und es lässt sich die von dem jeweiligen Mahlbecher abzuführende Wärmemenge bzw. die dem jeweiligen Mahlbecher zuzuführende Wärmemenge noch genauer an den tatsächlichen Wärmebedarf anpassen.
  • In der Zeichnung sind Ausführungsbeispiele der Erfindung wiedergegeben, welche nachstehend beschrieben sind. Es zeigen
  • Fig. 1
    eine perspektivische Ansicht einer erfindungsgemäßen Laborschwingmühle,
    Fig. 2
    eine Draufsicht auf die Labormühle aus Fig. 1,
    Fig. 3
    eine Ansicht der Labormühle aus Fig. 1 von unten,
    Fig. 4
    eine vergrößerte Teilansicht der rechten Mahlbecherhalterung der in Fig. 3 gezeigten Laborschwingmühle,
    Fig. 5
    die perspektivische Ansicht der Mahlbecherhalterung aus Fig. 4, wobei die Mahlbecherhalterung ein zweiteiliges plattenförmiges Wärmeübertragungselement aufweist und ein außenliegender Teil des Wärmeübertragungselements auf der Anschlussseite des Wärmeübertragungselements ausgeblendet ist,
    Fig. 6
    eine perspektivische Einzeldarstellung des zweiteiligen Wärmeübertragungselements der in den Figuren 4 und 5 vergrößert gezeigten Mahlbecherhalterungen,
    Fig. 7
    eine perspektivische Ansicht der in Fig. 2 rechts in einer Draufsicht dargestellten Mahlbecherhalterung, vor dem Einsetzen eines Mahlbechers in die Mahlbecherhalterung,
    Fig. 8
    ein schematisches Verfahrensschaubild einer ersten Ausführungsform eines erfindungsgemäßen Verfahrens zur Temperierung von Mahlbechern in einer Schwingmühle und
    Fig. 9
    ein schematisches Verfahrensschaubild einer alternativen Ausführungsform eines Verfahrens zur Temperierung der Mahlbecher in einer Schwingmühle.
  • Fig. 1 zeigt eine Draufsicht auf eine Schwingmühle 1 für zwei in horizontaler Lage kreisbogenförmige Schwingungen ausführende Mahlbecher 2, 3 auf. Ein Pendelantrieb der Schwingmühle 1 ist mehrteilig ausgebildet mit einer um eine vertikale Exzenterachse drehbar gelagerten Exzenterwelle 4 und mit zwei jeweils um vertikale Schwingachsen schwingfähig gelagerten und über Koppeln mit der Exzenterwelle 4 verbundenen Schwingen 5, 6. An den Schwingen 5, 6 sind Mahlbecherhalterungen 7, 8 für die Mahlbecher 2, 3 befestigt. Im Übrigen ist eine mit der Exzenterwelle 4 über einen Keilriemen 9 gekoppelte Motoreinheit 10 für eine Drehmomentübertragung vorgesehen. Die Exzenterwelle 4 ist an einer Grundplatte 11 drehbar gelagert. An der Grundplatte 11 sind darüber hinaus zwei Lagerbolzen 12, 13 befestigt, um die die Schwingen 5, 6 drehbar gelagert sind. Schließlich ist die Motoreinheit 10 auf der Grundplatte 11 angeordnet. Die Exzenterwelle 4, die Lagerbolzen 12, 13 und die Motoreinheit 10 bilden so zusammen mit der Grundplatte 11 eine Baueinheit, die über Dämpfungselemente auf einen Boden oder Untergrund aufstehen kann.
  • Die Motoreinheit 10 überträgt ein Drehmoment über den Keilriemen 9 an die Exzenterwelle 4. Eine Drehbewegung der Exzenterwelle 4 wird über die Koppeln in eine Schwingungsbewegung der Schwingen 5, 6 umgewandelt. Die Schwingfrequenz kann zwischen 3 bis 50 Hz, vorzugsweise bis 35 Hz, betragen. Der Schwingweg (zweifache Amplitudenauslenkung) des Mahlbechers kann zwischen 20 und 50 mm, vorzugsweise zwischen 20 und 30 mm, betragen.
  • Über eine nicht im Einzelnen gezeigte Temperiereinrichtung ist eine Temperierung, d.h. eine Kühlung oder Erwärmung, der Mahlbecher 2, 3 möglich. Zum Transport eines Temperiermediums, das flüssig oder gasförmig sein kann, von einem stationären Teil 14, 15 der Schwingmühle 1 zu einer Mahlbecherhalterung 7, 8 und zum Ableiten des Mediums von der jeweiligen Mahlbecherhalterung 7, 8 zu dem stationären Teil 14, 15 ist jede Mahlbecherhalterung 7, 8 mit zwei Temperierleitungen 16, 17 verbunden. Jeweils eine der beiden Temperierleitungen 16, 17 ist für die Zuleitung, die andere der beiden Temperierleitungen 16, 17 für die Ableitung eines Gases oder flüssigen Temperiermediums, insbesondere von flüssigem Stickstoff, zu der jeweiligen Mahlbecherhalterung 7, 8 vorgesehen.
  • Die Temperierleitungen 16, 17 sind vorzugsweise als durchgehende unterbrechungslose Rohrleitungen ausgebildet. Die Temperierleitungen 16, 17 können beispielsweise aus Edelstahl oder auch aus Kunststoff bestehen oder Edelstahl und/oder Kunststoff aufweisen.
  • Der Aufbau der Leitungsführung ist bei beiden Mahlbecherhalterungen 7, 8 gleich ausgebildet, so dass nachfolgend lediglich eine Leitungsführung exemplarisch beschrieben wird. Hierbei ist es so, dass die Leitungsanordnung mit den Temperierleitungen 16, 17 einer Mahlbecherhalterung 7 spiegelsymmetrisch zur Leitungsführung der zweiten Mahlbecherhalterung 8 ausgebildet ist.
  • Zum Ausgleich von Relativbewegungen, die zwischen einer Mahlbecherhalterung 7, 8 und dem über die Temperierleitungen 16, 17 zugeordneten stationären Teil 14, 15 beim Betrieb der Schwingmühle 1 auftreten, weist jede Leitung 16, 17 ein Ausgleichselement 18, 19 auf. Jede Leitung 16, 17 ist die gesamte Länge als starre Rohrleitung ausgebildet, wobei das Ausgleichselement 18, 19 durch einen Rohrleitungsabschnitt der Leitung 16, 17 gebildet wird.
  • Beim Betrieb der Schwingmühle 1 kommt es infolge der Relativbewegungen zu einer oszillierenden Verformung der die Ausgleichselemente 18, 19 bildenden Rohrleitungsabschnitte, wobei die an die Ausgleichselemente 18, 19 angrenzenden Leitungsabschnitte der jeweiligen Leitung 16, 17 vergleichsweise weniger verformt werden. Durch die Ausbildung der Ausgleichselemente 18, 19 als starre Rohrleitungsabschnitte wird der Ausgleich von Relativbewegungen ermöglicht, ohne hierzu relativ zueinander drehbar und/oder schwenkbar miteinander verbundene Leitungsteile einzusetzen. Insbesondere ist es nicht erforderlich, die aus dem Stand der Technik bekannten Drehdurchführungen zum Ausgleich von Relativbewegungen einzusetzen, so dass eine hermetisch geschlossene, unterbrechungsfreie Verbindung und ein dauerhaft leckagefreier Transport des Temperiermediums zwischen den Mahlbecherhalterungen 7, 8 und den stationären Teilen 14, 15 in einfacher Weise gewährleistet ist. Insbesondere ist es nicht wie bei Drehdurchführungen erforderlich, zum Ausgleich von Relativbewegungen Dichtungselemente einzusetzen.
  • Zum Anschluss der Temperierleitungen 16, 17 an die Mahlbecherhalterungen 7, 8 einerseits und zum Anschluss an die stationären Teile 14, 15 andererseits können an sich aus dem Stand der Technik bekannte Verbindungs- und Zubehörteile der Montagetechnik vorgesehen sein. Der Anschluss der Temperierleitungen als solcher, also entkoppelt von dem Ausgleich von Relativbewegungen, kann über Dichtmittel erfolgen, um eine dichtende Verbindung zwischen der jeweiligen Leitung 16, 17 und der Mahlbecherhalterung 7, 8 einerseits sowie dem stationären Teil 14, 15 andererseits zu ermöglichen.
  • In den Figuren 4 und 5 ist die Mahlbecherhalterung 7 in der Ansicht gemäß Fig. 3 vergrößert dargestellt. Nicht dargestellt ist, dass eine Temperiereinrichtung zur Temperierung des Mahlbechers 2 durch Zuleitung und/der Ableitung eines flüssigen oder gasförmigen Temperiermediums über die Temperierleitungen 16, 17 zur Mahlbecherhalterung 7, 8 vorgesehen ist. Im einfachsten Fall weist die Temperiereinrichtung ein Fördermittel für das Temperiermedium und einen Behälter zur Aufnahme eines Temperiermediums auf. Weiter vorzugsweise ist eine geschlossene Kreislaufführung des Temperiermediums über die Temperierleitung 16, 17 vorgesehen.
  • Jede Mahlbecherhalterung 7, 8 weist ein an die Temperierleitungen 16, 17 angeschlossenes Wärmeübertragungselement 20 auf, das bei der gezeigten Ausführungsform plattenförmig ausgebildet ist und ein innenliegendes erstes Plattenteil 21 und ein außenliegendes zweites Plattenteil 22 auf der Anschlussseite des Wärmeübertragungselements 20 aufweist. Die Temperierleitungen 16, 17 sind auf der Außenseite des außenliegenden Plattenteils 22 an das Plattenteil 22 mittels an sich aus dem Stand der Technik bekannter Verbindungselemente angeschlossen.
  • Fig. 5 zeigt die Mahlbecherhalterung 7 aus Fig. 4, wobei das außenliegende Plattenteil 22 ausgeblendet ist. Damit wird die Sicht frei auf das innenliegende Plattenteil 21, in dem ein Medienkanal 23 zur Durchströmung von dem Temperiermedium ausgebildet ist. Durch Verbindung der Plattenteile 21, 22, was durch Verschweißen oder Verkleben erfolgen kann, wird der Medienkanal 23 zur Umgebung hin hermetisch abgeschlossen. Auch eine Verschraubung der Plattenteile 21, 22 ist möglich.
  • Bei der Temperierung eines Mahlbechers 2, 3, d.h. bei der Durchleitung eines kalten oder warmen bzw. heißen Temperiermediums durch die Temperierleitungen 16, 17, kommt es zu einer Wärmeübertragung zwischen dem in dem Medienkanal 23 geführten Temperiermedium und dem Mahlbecher 2 über eine Wandung des Wärmeübertragungselements 20, im vorliegenden Fall über das innenliegende Plattenteil 21. Durch die Führung des Temperiermediums in dem Medienkanal 23 ist eine Temperierung des Mahlbechers 2, 3 möglich, bei der dieser nicht mit dem Temperiermedium in Kontakt kommt bzw. bei der jegliche Berührung und damit die Gefahr einer Kontamination des Mahlbechers 2, 3 mit dem Temperiermedium ausgeschlossen ist. Der Medienkanal 23 ist mäanderförmig ausgebildet und mündet in zwei Sacklöchern 23a, 23b. Darüber hinaus sind Ringfräsungen 23c vorgesehen, um die Wärmeübertragung zu verbessern.
  • Die Wärmeübertragung zwischen dem Temperiermedium und dem Mahlbecher 2, 3 erfolgt über gegeneinander anliegende metallische Kontaktflächen des Wärmeübertragungselements 10 und des Mahlbechers 2, wobei in Fig. 7 die Mahlbecherhalterung 8 aus Fig. 2 nach der Entnahme des Mahlbechers 3 gezeigt ist. Wie sich aus Fig. 7 ergibt, ist an der Oberseite bzw. der dem Mahlbecher 2 zugewandten äußeren Seite des Plattenteils 21 eine ebene Kontaktfläche 24 vorgesehen, die beim Mahlvorgang im Wesentlichen vollflächig gegen eine äußere Bodenfläche des Mahlbechers 2 anliegt. Bei der gezeigten Ausführungsform erfolgt die Wärmeübertragung zwischen dem Wärmeübertragungselement 20 und dem Mahlbecher 2 ausschließlich durch Wärmeleitung über die Kontaktfläche 24 des Plattenteils 21 und die Bodenfläche des Mahlbechers 2.
  • Die Mahlbecherhalterung 7, 8 der gezeigten Labormühle 1 weist jeweils einen mit einer Schwinge 5, 6 fest verbundenen Haltebügel 25 auf, der mit einem horizontal verstellbaren weiteren Haltebügel 26 zusammenwirkt. Durch Verstellen der Spannschraube 27 lässt sich der außenliegende Haltebügel 26 gegen den innenliegenden Haltebügel 25 verspannen und damit ein Mahlbecher 2, 3 zwischen den Haltebügeln 25, 26 horizontal verspannen.
  • An dem außenliegenden Haltebügel 26 sind in den Eckbereichen angeordnete Klemmstücke 28 vorgesehen, die beim horizontalen Verspannen des Mahlbechers 2, 3 in der Mahlbecherhalterung 7, 8 dazu führen, dass der Mahlbecher 2, 3 durch Kraftumlenkung automatisch nach unten gegen das innenliegende Plattenteil 21 des Wärmeübertragungselements 20 gedrückt wird. Zu diesem Zweck können die Klemmstücke 28 auf der dem Plattenteil 21 zugewandten Innenseite angefast sein bzw. eine entsprechende Klemmschräge aufweisen.
  • In unmittelbarer Nähe zum Mahlgefäß, nämlich an jedem Wärmeübertragungselement 20, sind vorzugsweise zwei Temperatursensoren 29 zur Messung von Temperatur am Wärmeübertragungselement 20 angeordnet. Die Temperatursensoren 29 sind über nicht dargestellte elektrischen Leitungen mit einer Auswerteeinheit einer nicht gezeigten Mess-, Steuer- und/oder Regelungseinrichtung zur automatischen Regelung der Temperatur der Mahlbecherhalterung 6, 7 verbunden. Die Temperatursensoren 29 können hierbei zur Messung der Temperatur eines Plattenteils 21, 22 vorgesehen sein und/oder über Bohrungen in dem außenliegenden Plattenteil 22 des Wärmeübertragungselements 20 auch bis in den Bereich des Medienkanals 23 eingreifen, so dass ein Messfühler des jeweiligen Temperatursensors 29 in das im Inneren des Medienkanals 23 geführte Temperiermedium eingreift bzw. vom Temperiermedium umspült wird. Dadurch ist es möglich, auch direkt die Temperatur des Temperiermediums im Bereich der Mahlbecherhalterung 6, 7 zu messen. Durch die Anordnung der Temperatursensoren 29 in örtlicher Nähe zu dem Mahlbecher 2, 3 ist eine Temperaturregelung der Temperaturen an und/oder in den Mahlbechern 2, 3 bei geringer Regelträgheit möglich, so dass eine hohe Präzision und hohe Geschwindigkeit der Temperaturregelung erreicht werden kann.
  • In einer nicht dargestellten Ausführungsform einer Schwingmühle 1 ist ein Temperatursensor 29 je Wärmeübertragungselement 20 vorgesehen. Die Temperatursensoren 29 sind über nicht dargestellte elektrische Leitungen mit eine Auswerteeinheit einer nicht gezeigten Mess-Steuer- und/oder Regelungseinrichtung 30 zur automatischen Regelung der Temperatur der Mahlbecherhalterung 6, 7 verbunden.
  • In den Figuren 8 und 9 sind schematisch zwei alternative Verfahren zur Temperierung von zwei Mahlbechern 2, 3 einer nicht im Einzelnen gezeigten Laborschwingmühle 1 dargestellt. Zur automatischen Regelung der Temperatur von zwei Mahlbecherhalterungen 7, 8 der Schwingmühle 1 ist eine Mess-, Steuer- und/oder Regelungseinrichtung 30 vorgesehen. Die Temperaturregelung erfolgt mit Hilfe von wenigstens zwei Temperatursensoren 29, mit denen die Temperaturen von zwei Wärmeübertragungselementen 20 der Mahlbecherhalterungen 7, 8 während des Betriebs der Schwingmühle 1 bzw. während eines Mahlvorgangs ermittelt werden. Beim Mahlvorgang stehen die Mahlbecher 2, 3 auf dem Wärmeübertragungselement 20 auf. Die Wärmeübertragung erfolgt vorzugsweise ausschließlich durch Wärmeleitung über sich berührende Kontaktflächen.
  • Zur Zuleitung und Ableitung eines flüssigen oder gasförmigen Temperiermediums, bei den Ausführungsbeispielen von flüssigem Stickstoff, zu den Wärmeübertragungselementen 20 bzw. zu der jeweiligen Mahlbecherhalterung 7, 8 ist jede Mahlbecherhalterung 7, 8 mit zwei Temperierleitungen 16, 17 verbunden. Die Temperierleitungen 16, 17 einer Mahlbecherhalterung 7, 8 sind mit einer Drehdurchführung 31 verbunden, um den Ausgleich von Relativbewegungen zwischen dem schwingenden Mahlbecher 2, 3 und einem stationären Teil der Labormühle 1 zu ermöglichen.
  • Jede Drehdurchführung 31 ist mit einer Zuleitung 32 und mit einer Ableitung 33 zur Zufuhr des Temperiermediums aus einem Medienbehälter 34, beispielsweise einem Stickstofftank, bzw. zur Ableitung des Temperiermediums nach dem Durchströmen des Wärmetauscherelements 20 in eine Entsorgungseinrichtung für das Temperiermedium, im vorliegenden Fall ein Entspannungsrohr 35, verbunden. Zur Temperaturmessung der Medientemperatur in den Ableitungen 33 sind weitere Temperatursensoren 36 vorgesehen. Die weiteren Temperatursensoren 36 dienen insbesondere zur Fehlerbehandlung. Mit einem zu jeder Ableitung 33 zugehörigen Messwert kann je Ableitung 33 und zugehörigem Wärmeübertragungselement 20 sowie den zugehörigen Leitungen 32 und Drehdurchführungen 31 auf Leckage geschlossen werden. Hierdurch kann ein ordnungsgemäßer Betrieb effizient über Messwerte überwacht werden, ohne die Leitungen physisch überprüfen zu müssen. Die Leitungsführung zum Entspannungsrohr 35 erfolgt schließlich über eine Drossel 37.
  • In einer nicht dargestellten und bevorzugten Ausführungsform ist vorgesehen, die Ableitungen 33 zusammenzuführen, um sie über eine Drossel 37 zum Entspannungsrohr 35 zu führen. Bei dieser Ausführungsform ist eine Temperaturmessung mit wenigstens einem Sensor 36 nach der Zusammenführung vorgesehen.
  • Die Zufuhr des Temperiermediums aus dem Medienbehälter 34 über die Zuleitungen 32 zu der jeweiligen Drehdurchführung 31 erfolgt mit einem Magnetventil 38 als Stellglied eines geschlossenen Regelkreises in Abhängigkeit von den an den Mahlbecherhalterungen 7, 8 über die Temperatursensoren 29 ermittelten Temperaturen. Das Magnetventil 38 ist somit vorgesehen, um die getaktete Zugabe bzw. Einspeisung des Temperiermediums in die Zuleitungen 32 zu den beiden Mahlbecherhalterungen 7, 8 zu bewirken. Mittels eines weiteren Temperatursensors 39 kann die Medienvorlauftemperatur bestimmt werden.
  • Im Übrigen weist die Mess-, Steuer- und/oder Regelungseinrichtung 30 eine nicht gezeigte Auswerte- bzw. Rechnereinheit auf, mit der ein Vergleich der gemessenen Temperaturen mit vorgegebenen Sollwerten erfolgt, wobei auf der Grundlage des Sollwert-Istwert-Vergleichs anschließend das Stellglied des Regelkreises betätigt wird. Bei dem gezeigten Ausführungsbeispiel wird die Taktung des Magnetventils 38 in Abhängigkeit von dem Sollwert-Istwert-Vergleich entsprechend verändert.
  • Es versteht sich, dass der anhand von Fig. 8 beschriebene Verfahrensablauf zur Temperierung der Mahlbecher 2, 3 über die Temperierung der Mahlbecherhalterungen 7, 8 in entsprechender Weise auch bei Verwendung anderer Temperiermedien vorgesehen sein kann. Darüber hinaus lässt es das beschriebene Regelungsverfahren auch zu, die Temperatur der Mahlbecher 2, 3 direkt zu ermitteln und zu regeln. Zu diesem Zweck können Temperatursensoren an und/oder in den Mahlbechern 2, 3 angeordnet sein.
  • Die Datenübertragung zwischen den Sensoren und einer Auswertungseinrichtung der Mess-, Steuer- und/oder Regelungseinrichtung kann drahtgebunden oder drahtlos, beispielsweise über Funk, erfolgen.
  • In Fig. 9 ist schematisch der Verfahrensablauf bei einem alternativen Verfahren zur Temperierung der Mahlbecher 2, 3 gezeigt. Im Unterschied zu dem in Fig. 8 gezeigten und oben beschriebenen Verfahrensablauf sind gemäß Fig. 9 zwei Magnetventile 38 vorgesehen, um die Taktung des jeweiligen Magnetventils 38 in Abhängigkeit von der an der jeweiligen Mahlbecherhalterung 7, 8 gemessenen Temperatur einzustellen. Dies ermöglicht es, die Mahlbecher 2, 3 unterschiedlich stark zu kühlen oder zu erwärmen und die Temperaturen in und/oder an den Mahlbechern unabhängig voneinander zu regeln. Bezugszeichenliste:
    1 Schwingmühle 31 Drehdurchführung
    2 Mahlbecher 32 Zuleitung
    3 Mahlbecher 33 Ableitung
    4 Exzenterwelle 34 Medienbehälter
    5 Schwinge 35 Entspannungsrohr
    6 Schwinge 36 Sensor
    7 Mahlbecherhalterung 37 Drossel
    8 Mahlbecherhalterung 38 Magnetventil
    9 Keilriemen 39 Sensor
    10 Motoreinheit
    11 Grundplatte
    12 Lagerbolzen
    13 Lagerbolzen
    14 stationärer Teil
    15 stationärer Teil
    16 Temperierleitung
    17 Temperierleitung
    18 Ausgleichselement
    19 Ausgleichselement
    20 Wärmeübertragungselement
    21 Plattenteil
    22 Plattenteil
    23 Medienkanal
    23a Sackloch
    23b Sackloch
    23c Ringfräsung
    24 Kontaktfläche
    25 Haltebügel
    26 Haltebügel
    27 Spannschraube
    28 Klemmstück
    29 Sensor
    30 Mess-, Steuer- und/oder Regelungseinrichtung

Claims (9)

  1. Laborschwingmühle (1) mit wenigstens einer schwingfähig gelagerten Mahlbecherhalterung (7, 8) für wenigstens einen Mahlbecher (2, 3) und mit einer Temperiereinrichtung zur Temperierung des Mahlbechers (2, 3) durch Zuleitung und/oder Ableitung eines flüssigen oder gasförmigen Temperiermediums über wenigstens eine Temperierleitung (16, 17) zur Mahlbecherhalterung (7, 8), dadurch gekennzeichnet, dass die Mahlbecherhalterung (7, 8) wenigstens ein an die Temperierleitung (16, 17) angeschlossenes Wärmeübertragungselement (20) aufweist, wobei das Wärmeübertragungselement (20) wenigstens einen Medienkanal (23) zur Durchleitung des Temperiermediums aufweist und wobei die Temperierung eines an und/oder in der Mahlbecherhalterung (7, 8) gehaltenen Mahlbechers (2, 3) durch Wärmeübertragung zwischen dem in dem Medienkanal (23) geführten Temperiermedium und dem Mahlbecher (2, 3) über eine Wandung des Wärmeübertragungselements (20) erfolgt und dass das Wärmeübertragungselement (20) als ebene Temperierplatte ausgebildet ist, wobei der Mahlbecher (2, 3) mit einer Bodenfläche auf die Temperierplatte aufstellbar ist.
  2. Laborschwingmühle (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Mahlbecherhalterung (7, 8) ausgebildet ist zur Temperierung des Mahlbechers (2, 3) berührungsfrei mit dem Temperiermedium.
  3. Laborschwingmühle (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die die Temperierung durch Wärmeübertragung zwischen dem Temperiermedium und dem Mahlbecher (2, 3) über vorzugsweise unmittelbar gegeneinander anliegende Kontaktflächen (24) des Wärmeübertragungselements (20) und des Mahlbechers (2, 3) erfolgt.
  4. Laborschwingmühle (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Wärmeübertragungselement (20) und der Mahlbecher (2, 3) im Bereich ihrer Kontaktflächen (24) im Wesentlichen vollflächig gegeneinander anliegen.
  5. Laborschwingmühle (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Wärmeübertragung zwischen dem Wärmeübertragungselement (20) und dem Mahlbecher (2, 3) im Wesentlichen ausschließlich durch Wärmeleitung über die Kontaktflächen (24) des Wärmeübertragungselements (20) und des Mahlbechers (2, 3) erfolgt.
  6. Laborschwingmühle (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Mahlbecherhalterung (7, 8) zum Verspannen des Mahlbechers (2, 3) gegen das Wärmeübertragungselement (20) ausgebildet ist.
  7. Laborschwingmühle (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Mess-, Steuer- und/oder Regelungseinrichtung zur vorzugsweise automatischen Steuerung und/oder Regelung der Temperatur der Mahlbecherhalterung (7, 8) und/oder des Mahlbechers (2, 3) und/oder der Temperatur in einem Mahlraum des Mahlbechers (2, 3) vorgesehen ist.
  8. Laborschwingmühle nach Anspruch 7, dadurch gekennzeichnet, dass wenigstens zwei Mahlbecherhalterungen (7, 8) vorgesehen sind und dass die Mess-, Steuer- und/oder Regelungseinrichtung zur voneinander unabhängigen Steuerung und/oder Regelung der Temperaturen an den Mahlbecherhalterungen (7, 8) und/oder in und/oder an den Mahlbechern (2, 3) ausgebildet ist.
  9. Verfahren zur Temperierung eines Mahlbechers (2, 3) während eines Mahlvorgangs in einer Laborschwingmühle (1) nach einem der vorhergehenden Ansprüche, wobei wenigstens eine Temperatur an der Mahlbecherhalterung (7, 8) und/oder in und/oder an dem Mahlbecher (2, 3) und/oder an und/oder in einer Temperierleitung (16, 17) für ein Temperiermedium zur Temperierung der Mahlbecherhalterung (7, 8) und/oder des Mahlbechers (2, 3) gemessen und gesteuert und/oder geregelt wird.
EP20771226.6A 2019-09-06 2020-09-03 Laborschwingmühle Active EP3840889B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE202019104933 2019-09-06
DE102019124894 2019-09-16
DE102019133975 2019-12-11
DE102020101523.2A DE102020101523A1 (de) 2019-09-06 2020-01-23 Laborschwingmühle
PCT/EP2020/074515 WO2021043854A1 (de) 2019-09-06 2020-09-03 Laborschwingmühle

Publications (2)

Publication Number Publication Date
EP3840889A1 EP3840889A1 (de) 2021-06-30
EP3840889B1 true EP3840889B1 (de) 2021-11-17

Family

ID=74644637

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20771226.6A Active EP3840889B1 (de) 2019-09-06 2020-09-03 Laborschwingmühle

Country Status (5)

Country Link
US (1) US20220347692A1 (de)
EP (1) EP3840889B1 (de)
CN (1) CN217431844U (de)
DE (1) DE102020101523A1 (de)
WO (1) WO2021043854A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022108580A1 (de) 2022-01-21 2023-07-27 Retsch Gmbh Labormühle und Probenhalter für eine Labormühle
DE202022101916U1 (de) 2022-01-21 2023-04-24 Retsch Gmbh Labormühle und Probenhalter für eine Labormühle
WO2023139208A1 (de) 2022-01-21 2023-07-27 Retsch Gmbh Labormühle und probenhalter für eine labormühle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3307323A1 (de) * 1983-03-02 1984-09-06 F. Kurt Retsch GmbH & Co KG, 5657 Haan Feinzerkleinerungsvorrichtung fuer laboratoriumszwecke
RU2501607C2 (ru) 2009-01-28 2013-12-20 Реч Гмбх Лабораторная мельница с вращающимися узлами ввода для подлежащих обеспечению средой размольных стаканов
WO2013186372A1 (de) * 2012-06-15 2013-12-19 Retsch Gmbh Kugelmühle mit räumlicher unwuchtkompensation

Also Published As

Publication number Publication date
DE102020101523A1 (de) 2021-03-11
WO2021043854A1 (de) 2021-03-11
CN217431844U (zh) 2022-09-16
EP3840889A1 (de) 2021-06-30
US20220347692A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
EP3840889B1 (de) Laborschwingmühle
EP2424724B1 (de) Ultraschallsiegelvorrichtung und verfahren zum versiegeln von materialbahnen
EP1607165B1 (de) Vorrichtung zum Verbinden von Werkstücken nach der Methode des Reibrührschweissens mit einem Werkzeug bestehend aus zwei gegensinnig rotierbar ausgeführten Schultern
EP1354028B1 (de) Klimatisierter lagerschrank
DE102005013410B4 (de) Vorrichtung und Verfahren zum Kristallisieren von Nichteisenmetallen
DE3238535A1 (de) Verfahren und apparat zum gesteuerten kuehlen eines produktes
EP1607166A1 (de) Vorrichtung zum Verbinden von Werkstücken nach der Methode des Reibrührschweissens
EP1155765A1 (de) Verfahren zum kraftschlüssigen Einspannen eines Werkzeuges
DE102011119174A1 (de) Vapor Chamber
DE1629192B2 (de) Verfahren und Vorrichtung zum Verbinden von zumindest teilweise thermoplastischen Materialien mittels einer Ultraschallsonotrode
DE102012219874A1 (de) Vorrichtung und Verfahren zur Handhabung von Werkstücken
DE202020100336U1 (de) Laborschwingmühle
WO2005025801A1 (de) Werkzeugmaschine mit einer eine rippe und eine thermovorrichtung aufweisenden stellvorrichtung zwischen zwei maschinenteilen
EP2490837A2 (de) Temperiertes werkzeug
WO2014094704A1 (de) Vorrichtung und verfahren zum erzeugen einer sicheren bruchlinie für das industrielle ablängen von glasscheiben
DE10232727A1 (de) Verfahren zum Fügen von Kunststoffbauteilen mittels Laserstrahlung
DE10049833B4 (de) Temperiervorrichtung, insbesondere für eine Werkstoffprüfvorrichtung sowie Werkstoffprüfverfahren
EP1507707B1 (de) Vorrichtung zur versiegelung von schalen- oder becherförmigen behältnissen
EP3243060B1 (de) Temperieranordnung für messgeräte
DE4401699C2 (de) Vorrichtung zum Härten von Rohren
DE102018104309A1 (de) Dilatometer zur automatisierten Untersuchung von Proben sowie Verfahren zur automatisierten dilatometrischen Untersuchung von Proben
DE10013450A1 (de) Vorrichtung zur Erzeugung monodisperser Tropfen aus Flüssigkeiten hoher Temperatur
DE202022101916U1 (de) Labormühle und Probenhalter für eine Labormühle
DE102022108580A1 (de) Labormühle und Probenhalter für eine Labormühle
EP4237153A1 (de) Labormühle und probenhalter für eine labormühle

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210325

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210705

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020000359

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1447605

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211215

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220317

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220317

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220217

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020000359

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230928

Year of fee payment: 4

Ref country code: DE

Payment date: 20230920

Year of fee payment: 4

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL