EP3840116B1 - Rekonfigurierbare antenne mit sendenetz mit monolithischer integration von elementarzellen - Google Patents

Rekonfigurierbare antenne mit sendenetz mit monolithischer integration von elementarzellen Download PDF

Info

Publication number
EP3840116B1
EP3840116B1 EP20213640.4A EP20213640A EP3840116B1 EP 3840116 B1 EP3840116 B1 EP 3840116B1 EP 20213640 A EP20213640 A EP 20213640A EP 3840116 B1 EP3840116 B1 EP 3840116B1
Authority
EP
European Patent Office
Prior art keywords
active components
wafer
antenna
planar
planar antennas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20213640.4A
Other languages
English (en)
French (fr)
Other versions
EP3840116A1 (de
Inventor
José-Luis GONZALEZ JIMENEZ
Antonio Clemente
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP3840116A1 publication Critical patent/EP3840116A1/de
Application granted granted Critical
Publication of EP3840116B1 publication Critical patent/EP3840116B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0087Apparatus or processes specially adapted for manufacturing antenna arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/46Active lenses or reflecting arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0025Modular arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0087Apparatus or processes specially adapted for manufacturing antenna arrays
    • H01Q21/0093Monolithic arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means

Definitions

  • Each elementary cell of the transmitter network is capable of introducing a phase shift to the incident wave emitted by the primary source(s), in order to compensate for each difference in path of the radiation emitted between the primary source(s) and the transmitter network.
  • the elementary cells make it possible to generate the phase law in the radiation aperture in order to form the desired radiation for the antenna.
  • planar antenna we mean a flat electrically conductive surface (classically metallic) capable of emitting/receiving electromagnetic radiation.
  • An example of a planar antenna is the micro-strip patch .
  • elementary cell architectures can also be used, such as multilayer structures based on the concept of frequency-selective surfaces, or on the concept of Fabry-Pérot cavities. Radiating elements such as dipoles, slots, etc. can also be used at the elementary cell level.
  • an elementary cell of a transmitting network can operate in reception or transmission, that is to say that the first planar antenna of the elementary cell can also be a transmission antenna, while the second planar antenna of the elementary cell can also be a receiving antenna.
  • the radio communication system requires high gain. This problem is common at millimeter and sub-THz frequencies from 30 GHz.
  • Transceiver in English
  • the transmitter network is printed on a dielectric substrate (see figure 6.2 a) of D1).
  • the transceiver integrated circuit is formed on a printed circuit board.
  • the transmitter network is formed on the printed circuit board, facing the transceiver, via dielectric pillars supporting the dielectric substrate.
  • the document EP 3392959 A1 discloses a reconfigurable antenna comprising a transmitter network comprising elementary cells.
  • the subject of the invention is a structure for manufacturing integrated circuits intended to provide an electromagnetic lens function for a reconfigurable antenna with a transmitter network according to claim 1.
  • such a structure according to the invention allows monolithic integration of the elementary cells of the transmitter network with the first active components making it possible to control and modify the phase shift introduced into the corresponding elementary cell, so as to be able to obtain a reconfigurable antenna.
  • the dimension (and therefore the periodicity) characteristic of the elementary cells must be less than or equal to the half-wavelength of the electromagnetic waves emitted by the primary source(s). For example, when the operating frequency is 30 GHz, the characteristic dimension of the elementary cells must be less than or equal to 0.5 cm.
  • the structure according to the invention may include one or more of the following characteristics.
  • the set of first active components comprises pairs of switches, each pair of switches being associated with a first planar antenna.
  • switches we mean elements making it possible to authorize or prohibit the circulation of an electric current, for example between two separate radiation surfaces of a planar antenna.
  • an advantage provided is to be able to introduce a phase shift by modifying the effective electrical length of the first planar antenna.
  • the first wafer comprises a first demultiplexer configured to transmit a control signal on the first polarization lines.
  • an advantage provided is to obtain monolithic integration of the first demultiplexer with the elementary cells of the transmitter network and the first active components.
  • the second wafer comprises a set of second active components configured to introduce a phase shift; the structure comprising a second interconnection structure, formed on the second surface of the second board, and electrically connected to the second active components; there second interconnection structure comprising second polarization lines arranged to polarize the second active components; the set of second planar antennas being formed on the second interconnection structure.
  • the set of second planar antennas is formed on the second interconnection structure such that each second planar antenna is electrically connected to the second active components.
  • the set of second planar antennas is formed on the second interconnection structure so that the second planar antennas are electrically isolated from each other, so as not to be short-circuited.
  • an advantage provided is to increase the number of phase states or delays.
  • the set of second active components comprises pairs of switches, each pair of switches being associated with a second planar antenna.
  • an advantage provided is to be able to introduce a phase shift by modifying the effective electrical length of the second planar antenna.
  • the second board comprises a second demultiplexer configured to transmit a control signal on the second polarization lines.
  • an advantage provided is to obtain monolithic integration of the second demultiplexer with the elementary cells of the transmitter network and the second active components.
  • the structure comprises interconnection holes arranged to electrically connect the first planar antennas with the second planar antennas facing them, the interconnection holes being electrically isolated from the ground plane.
  • each first planar antenna comprises first and second separate radiation surfaces; the first surfaces of radiation of the first planar antennas being electrically connected to the vias; the second radiation surfaces of the first planar antennas being electrically connected to the first active components.
  • first and second radiation surfaces are separated from each other by a separation zone so as to be electrically isolated.
  • each second planar antenna comprises first and second separate radiation surfaces; the first radiation surfaces of the second planar antennas being electrically connected to the vias; the second radiation surfaces of the second planar antennas being electrically connected to the second active components.
  • the first active components and/or the second active components are chosen from a diode, a field effect transistor, a bipolar transistor, an electromechanical microsystem.
  • the structure comprises brazing balls arranged to establish a metallic connection between the first and second metallic layers.
  • an advantage provided is to obtain strong adhesion between the first and second metal layers, and to guarantee electrical interconnection.
  • the first and second wafers are made from a semiconductor material, or are made up of a semiconductor material.
  • an advantage provided is to facilitate the monolithic integration of the first and second active components, with a high integration density possible.
  • the invention also relates to an integrated circuit, manufactured by cutting a structure according to the invention, the cutting being carried out so that the integrated circuit comprises a plurality of elementary cells, each comprising a first planar antenna and a second planar antenna facing it, so as to provide an electromagnetic lens function.
  • an advantage provided is to obtain a very compact reconfigurable transmitter array antenna by using the two opposite faces of a printed circuit board to integrate the electromagnetic lens and the control electronics.
  • the integrated circuit is manufactured by cutting a structure according to the invention, and the control electronics are configured to control the second active components of the integrated circuit.
  • the antenna comprises additional planar antennas formed on the first surface of the printed circuit board, and facing the elementary cells of the integrated circuit.
  • an advantage provided is to obtain a transmitter network capable of managing independent beams, for example for multi-user applications.
  • the first W1 plate is notably illustrated on the figure 1 .
  • the first wafer W1 is advantageously made of a semiconductor material, preferably selected from silicon or germanium.
  • the first wafer W1 can therefore be semiconductor.
  • the first wafer W1 can be made from a semiconductor material.
  • the first wafer W1 may be made of a semiconductor material.
  • the first wafer W1 can also be made of a dielectric material such as quartz. It is also possible to consider a first W1 wafer of Semiconductor type on SeOI Insulator (“ Semiconductor On Insulator ” in English), preferably of the Silicon on Insulator SOI ( “ Silicon on Insulator ” in English language).
  • the first active components C1 are advantageously integrated into the first wafer W1 by an initial manufacturing unit FEOL (“ Front-End-Of-Line ” in English), using for example photolithography, etching, diffusion and implantation techniques. dopants, metal deposits, passivation known to those skilled in the art.
  • FEOL Front-End-Of-Line
  • dopants, metal deposits, passivation known to those skilled in the art.
  • the first active components C1 can be integrated into the first wafer W1 by thin layer deposition techniques.
  • Each first planar antenna A1 advantageously comprises first and second disjoint radiation surfaces A10, A11, in the sense that they are separated from each other by a separation zone so as to be electrically isolated from each other.
  • the set of first active components C1 advantageously comprises pairs of switches, each pair of switches being associated with a first planar antenna A1.
  • Each pair of switches belongs to a phase shift circuit, and comprises first and second switches respectively having an on state and a blocked state alternately, the on or blocked states corresponding to a circulation of a current, respectively authorized or blocked, between the first and second radiation surfaces A10, A11 separated from each first planar antenna A1.
  • alternating we mean that the first switch alternates between the on state and the blocked state, while, simultaneously, the second switch alternates between the blocked state and the on state.
  • the first and second switches belonging to the same phase shift circuit have two opposite states, either on/off or off/on. Passing/passing or blocked/blocked states are not allowed.
  • the first active components C1 are advantageously chosen from a diode, a field effect transistor, a bipolar transistor, an electromechanical microsystem.
  • the field effect transistor is preferably a MOS (“ Metal Oxide Semiconductor ”) type transistor.
  • the diode can be a pin type diode, an electro-optical diode, or even a varicap type diode (“ varactor ” in English).
  • Pin type diodes can be made from AlGaAs.
  • the first metal layer M1 is preferably made of copper.
  • the first metal layer M1 can be formed on the first surface W10 of the first wafer W1 by a metallization process.
  • the first interconnection structure 3 is advantageously formed on the second surface W11 of the first wafer W1 by a final manufacturing unit BEOL (“ Back-End-Of-Line ” in English).
  • the first polarization lines 30 are metal tracks, preferably made of copper.
  • the first wafer W1 advantageously comprises a first demultiplexer DMUX1 configured to transmit a control signal on the first polarization lines 30.
  • a first demultiplexer DMUX1 configured to transmit a control signal on the first polarization lines 30.
  • the set of first planar antennas A1 is formed on the first interconnection structure 3 so that each first planar antenna A1 is electrically connected to the first active components C1.
  • the set of first planar antennas A1 is formed on the first interconnection structure 3 so that the first planar antennas A1 are electrically isolated from each other so as not to be short-circuited.
  • each first planar antenna A1 advantageously comprises first and second radiation surfaces A10, A11 which are disjoint, in the sense that they are separated from each other by a separation zone so as to be electrically isolated from each other.
  • a slot is advantageously formed in each first planar antenna A1 to electrically isolate the first and second disjointed radiation surfaces A10, A11.
  • the slot defines the separation zone.
  • the slot is preferably annular, with a rectangular section. Of course, other shapes are possible for the slot, such as an elliptical or circular shape.
  • the electrical insulation of the first and second radiation surfaces of the second planar antenna can be ensured by a dielectric material.
  • the first and second radiation surfaces A10, A11 of the first planar antennas A1 are electrically connected to the first active components C1.
  • the second plate W2 is notably illustrated in figures 2 and 3 .
  • the second wafer W2 is advantageously made of a semiconductor material, preferably selected from silicon or germanium.
  • the second wafer W2 can therefore be semiconductor.
  • the second wafer W2 can be made from a semiconductor material.
  • the second wafer W2 may be made of a semiconductor material.
  • the second wafer W2 can also be made from a dielectric material such as quartz. It is also possible to consider a second W2 wafer of the Semiconductor on Insulator SeOI type (" Semiconductor On Insulator " in English), preferably of the Silicon on Insulator type SOI ( " Silicon on Insulator " in English).
  • the second wafer W2 advantageously comprises a set of second active components C2 configured to introduce a phase shift.
  • the second active components C2 are advantageously integrated into the second wafer W2 by an initial manufacturing unit FEOL (“ Front-End-Of-Line ” in English), using for example photolithography, etching, diffusion and implantation techniques. dopants, metal deposits, passivation known to those skilled in the art.
  • FEOL Front-End-Of-Line ” in English
  • the second active components C2 can be integrated into the second wafer W2 by thin layer deposition techniques.
  • Each second planar antenna A2 advantageously comprises first and second radiation surfaces A20, A21 which are disjoint, in the sense that they are separated from each other by a separation zone so as to be electrically isolated from each other.
  • the set of second active components C2 advantageously comprises pairs of switches, each pair of switches being associated with a second planar antenna A2.
  • Each pair of switches belongs to a phase shift circuit, and comprises first and second switches respectively having an on state and a blocked state alternately, the on or blocked states corresponding to a circulation of a current, respectively authorized or blocked, between the first and second radiation surfaces A20, A21 separated from each second planar antenna A2.
  • alternating we mean that the first switch alternates between the on state and the blocked state, while, simultaneously, the second switch alternates between the blocked state and the on state.
  • the first and second switches belonging to the same phase shift circuit have two opposite states, either on/off or off/on. Passing/passing or blocked/blocked states are not allowed.
  • the second active components C2 are advantageously chosen from a diode, a field effect transistor, a bipolar transistor, an electromechanical microsystem.
  • the field effect transistor is preferably a MOS (“ Metal Oxide Semiconductor ”) type transistor.
  • the diode can be a pin type diode, an electro-optical diode, or even a varicap type diode (“ varactor ” in English).
  • Pin type diodes can be made from AlGaAs.
  • the second metal layer M2 is preferably made of copper.
  • the second metal layer can be formed on the first surface W20 of the second wafer W2 by a metallization process.
  • Structure 1 advantageously comprises a second interconnection structure 4, formed on the second surface W21 of the second wafer W2, and electrically connected to the second active components C2.
  • the second interconnection structure 4 is advantageously formed on the second surface W21 of the second wafer W2 by a final manufacturing unit BEOL ( “ Back-End-Of-Line ” in English).
  • BEOL “ Back-End-Of-Line ” in English.
  • the set of second planar antennas A2 is then formed on the second interconnection structure 4.
  • the second interconnection structure 4 comprises second polarization lines 40 arranged to polarize the second active components C2.
  • the second polarization lines 40 are metal tracks, preferably made of copper.
  • the second wafer W2 advantageously comprises a second demultiplexer DMUX2 configured to transmit a control signal on the second polarization lines 40.
  • a second demultiplexer DMUX2 configured to transmit a control signal on the second polarization lines 40.
  • the set of second planar antennas A2 is formed on the second interconnection structure 4 so that each second planar antenna A2 is electrically connected to the second active components C2.
  • the set of second planar antennas A2 is formed on the second interconnection structure 4 so that the second planar antennas A2 are electrically isolated from each other, so as not to be short-circuited.
  • each second planar antenna A2 advantageously comprises first and second radiation surfaces A20, A21 that are disjoint, in the sense that they are separated from each other by a separation zone so as to be electrically isolated from each other.
  • a slot is advantageously formed in each second planar antenna A2 to electrically isolate the first and second disjointed radiation surfaces A20, A21.
  • the slot defines the separation zone.
  • the slot is preferably annular, with a rectangular section. Of course, other shapes are possible for the slot, such as an elliptical or circular shape.
  • the electrical insulation of the first and second radiation surfaces of the second planar antenna can be ensured by a dielectric material.
  • the first and second radiation surfaces A20, A21 of the second planar antennas A2 are electrically connected to the second active components C2.
  • the ground plane PM can have a thickness of around 17 ⁇ m when the operating frequency of the antenna 2 with the transmitter network is 29 GHz.
  • Structure 1 advantageously comprises brazing balls arranged to establish a metallic connection between the first and second metallic layers M1, M2.
  • the first and second wafers W1, W2 can be assembled via the first and second metal layers M1, M2 by eutectic bonding.
  • the assembly of the first and second plates W1, W2 is carried out so that the assemblies of the first and second planar antennas A1, A2 are aligned.
  • the alignment of the assemblies of the first and second planar antennas A1, A2 can be obtained by an alignment technique known to those skilled in the art, for example using CCD cameras (“ Charge Coupled Device ” in English). .
  • each pattern 10 can be square in shape (D being the dimension of the sides) and can have an area of 20x20 mm 2 when the first and second plates W1, W2 have a diameter of 200 mm.
  • the number of elementary cells CE present in a pattern 10 depends on the operating frequency of the antenna 2, which defines the pitch p (“ pitch ” in English) of the elementary cells CE.
  • a square pattern 10 with an area of 20x20 mm 2 can include 3x3 elementary cells CE.
  • Structure 1 advantageously comprises interconnection holes V arranged to electrically connect the first planar antennas A1 with the second planar antennas A2 facing them, the interconnection holes V being electrically isolated from the ground plane PM.
  • the vias V pass through openings formed in the ground plane PM.
  • the openings formed in the PM ground plane allow both electrical isolation with the V vias and the propagation of electromagnetic waves through the PM ground plane.
  • the interconnection holes V are of the TSV type (“ Through Silicon Via ” in English).
  • the V vias have a diameter of around 150 ⁇ m.
  • the via holes V are preferably connected to the first and second planar antennas A1, A2 by connection points. In general, the position of the connection points varies according to the specific geometry of the planar antennas so as to excite the fundamental mode of resonance.
  • the interconnection holes V advantageously extend along the normal to the surfaces of the first and second planar antennas A1, A2.
  • each first planar antenna A1 comprises first and second disjointed radiation surfaces A10, A11, the first radiation surfaces A10 of the first planar antennas A1 are electrically connected to the via holes V.
  • each second planar antenna A2 comprises first and second disjointed radiation surfaces A20, A21, the first radiation surfaces A20 of the second planar antennas A2 are electrically connected to the via holes V.
  • An object of the invention is an integrated circuit IC, manufactured by cutting a structure 1 according to the invention, the cutting being carried out so that the integrated circuit IC comprises a plurality of elementary cells CE, each comprising a first antenna planar A1 and a second planar antenna A2 facing it, so as to provide an electromagnetic lens function.
  • Cutting can be carried out using a precision circular saw, with a blade with a metal core or a diamond resinoid core.
  • the cutting is carried out following the normal to surfaces W10, W11; W20, W21 of the first and second plates W1, W2.
  • the integrated circuit IC comprises a plurality of elementary cells CE, each comprising a first planar antenna A1 and a second planar antenna A2 facing it, so as to provide an electromagnetic lens function.
  • the printed circuit board 5 is made of a dielectric material.
  • the printed circuit board 5 can be made from a commercial material such as RT/ duroid® 6002.
  • the printed circuit board 5 has a thickness typically between 100 ⁇ m and 1500 ⁇ m for a frequency operating frequency of antenna 2 between 10 GHz and 300 GHz.
  • the printed circuit board 5 can have a thickness of around 254 ⁇ m when the operating frequency of the antenna 2 is 29 GHz.
  • the integrated circuit(s) IC can be formed on the first surface 50 of the printed circuit board 5 by a flip-chip type assembly.
  • the integrated circuits IC can be arranged on the first surface 50 of the printed circuit board 5 in matrix form, as illustrated in figure 8 .
  • the antenna 2 advantageously comprises additional planar antennas A1' formed on the first surface 50 of the printed circuit board 5, and facing the elementary cells CE of the integrated circuit IC.
  • Each transceiver 6 comprises at least one radiant source S arranged to emit electromagnetic waves.
  • the radiating source S can be produced in the form of a planar antenna formed within the printed circuit board 5, extending in a focal plane whose Euclidean distance with the electromagnetic lens defines the focal distance F (illustrated in Figure Figure 7 ).
  • the or each radiant source S is advantageously configured to operate at a frequency above 30 GHz (millimeter and sub-THz frequencies).
  • the antenna 2 can include a plurality of transceivers 6.
  • each transceiver 6 can be dedicated to a zone of the matrix.
  • the plurality of transceivers 6 can be controlled by digital control electronics 60, the output channels of which are electrically connected to the radiating sources S.
  • the control electronics 60 is preferably integrated within an electronic chip mounted on the second surface 51 of the printed circuit board 5.
  • the control electronics 60 is advantageously configured to also control the second active components C2 of the integrated circuit IC.
  • demultiplexers DMUX1, DMUX2 integrated into the first and second wafers W1, W2 demultiplexers can be remote within the control electronics 60.
  • An example of controlling the polarization lines is given in the doctoral thesis “Design of antennas for transmitter arrays with unpointing and/or beamforming”, A. Clemente, October 2012, pages 159-161 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)
  • Semiconductor Integrated Circuits (AREA)

Claims (16)

  1. Struktur (1) zum Fertigen von integrierten Schaltkreisen (IC), die dazu bestimmt sind, eine Funktion einer elektromagnetischen Linse für eine rekonfigurierbare Sende-Array-Antenne (2) zu gewährleisten, wobei die Struktur (1) beinhaltet:
    - einen ersten Wafer (W1), der eine Anordnung von ersten aktiven Bauelementen (C1) umfasst, die dazu ausgestaltet sind, eine Phasenverschiebung einzuführen, und entgegengesetzte erste und zweite Flächen (W10, W11) aufweist;
    - eine erste Metallschicht (M1), die auf der ersten Fläche (W10) des ersten Wafers (W1) gebildet ist;
    - eine erste Kontaktierungsstruktur (3), die auf der zweiten Fläche (W11) des ersten Wafers (W1) gebildet ist und mit den ersten aktiven Bauelementen (C1) elektrisch verbunden ist; wobei die erste Kontaktierungsstruktur (3) erste Polarisationsleitungen (30) umfasst, die dazu eingerichtet sind, die ersten aktiven Bauelemente (C1) zu polarisieren;
    - eine Anordnung von ersten Patchantennen (A1), die auf der ersten Kontaktierungsstruktur (3) so gebildet ist, dass jede erste Patchantenne (A1) mit den ersten aktiven Bauelementen (C1) elektrisch verbunden ist, und so, dass die Patchantennen (A1) untereinander elektrisch isoliert sind;
    - einen zweiten Wafer (W2), der entgegengesetzte erste und zweite Flächen (W20, W21) aufweist;
    - eine zweite Metallschicht (M2), die auf der ersten Fläche (W20) des zweiten Wafers (W2) gebildet ist;
    - eine Anordnung von zweiten Patchantennen (A2), die auf der zweiten Fläche (W21) des zweiten Wafers (W2) so gebildet ist, dass die zweiten Patchantennen (A2) untereinander elektrisch isoliert sind;
    wobei die ersten und zweiten Wafer (W1, W2) über erste und zweite Metallschichten (M1, M2) so montiert sind, dass die Anordnungen der ersten und zweiten Patchantennen (A1, A2) fluchten, wobei die ersten und zweiten Metallschichten (M1, M2) eine Masseebene (PM) bilden.
  2. Struktur (1) nach Anspruch 1, bei der die Anordnung von ersten aktiven Bauelementen (C1) Schalterpaare beinhaltet, wobei jedes Schalterpaar einer ersten Patchantenne (A1) zugeordnet ist.
  3. Struktur (1) nach Anspruch 1 oder 2, bei welcher der erste Wafer (W1) einen ersten Demultiplexer (DMUX1) umfasst, der dazu ausgestaltet ist, ein Steuersignal über die ersten Polarisationsleitungen (30) zu senden.
  4. Struktur (1) nach einem der Ansprüche 1 bis 3, bei welcher der zweite Wafer (W2) eine Anordnung von zweiten aktiven Bauelementen (C2) umfasst, die dazu ausgestaltet sind, eine Phasenverschiebung einzuführen; wobei die Struktur (1) eine zweite Kontaktierungsstruktur (4) beinhaltet, die auf der zweiten Fläche (W21) des zweiten Wafers (W2) gebildet ist und mit den zweiten aktiven Bauelementen (C2) elektrisch verbunden ist; wobei die zweite Kontaktierungsstruktur (4) zweite Polarisationsleitungen (40) umfasst, die dazu eingerichtet sind, die zweiten aktiven Bauelemente (C2) zu polarisieren; wobei die Anordnung von zweiten Patchantennen (A2) auf der zweiten Kontaktierungsstruktur (4) so gebildet ist, dass jede zweite Patchantenne (A2) mit den zweiten aktiven Bauelementen (C2) elektrisch verbunden ist.
  5. Struktur (1) nach Anspruch 4, bei der die Anordnung von zweiten aktiven Bauelementen (C2) Schalterpaare beinhaltet, wobei jedes Schalterpaar einer zweiten Patchantenne (A2) zugeordnet ist, wobei die zweiten aktiven Bauelemente (C2) bevorzugt unter einer Diode, einem Feldeffekttransistor, einem Bipolartransistor, einem mikro-elektro-mechanischen System gewählt sind.
  6. Struktur (1) nach Anspruch 4 oder 5, bei welcher der zweite Wafer (W2) einen zweiten Demultiplexer (DMUX2) umfasst, der dazu ausgestaltet ist, ein Steuersignal über die zweiten Polarisationsleitungen (40) zu senden.
  7. Struktur (1) nach einem der Ansprüche 1 bis 6, die Durchkontaktierungen (V) beinhaltet, die dazu eingerichtet sind, die ersten Patchantennen (A1) mit den ihnen gegenüber liegenden zweiten Patchantennen (A2) elektrisch zu verbinden, wobei die Durchkontaktierungen (V) von der Masseebene (PM) elektrisch isoliert sind.
  8. Struktur (1) nach Anspruch 7, bei der jede erste Patchantenne (A1) getrennte erste und zweite Strahlungsflächen (A10, A11) beinhaltet; wobei die ersten Strahlungsflächen (A10) der ersten Patchantennen (A1) mit den Durchkontaktierungen (V) elektrisch verbunden sind; wobei die zweiten Strahlungsflächen (A11) der ersten Patchantennen (A1) mit den ersten aktiven Bauelementen (C1) elektrisch verbunden sind.
  9. Struktur (1) nach Anspruch 7 oder 8 in Kombination mit Anspruch 4, bei der jede zweite Patchantenne (A2) getrennte erste und zweite Strahlungsflächen (A20, A21) beinhaltet; wobei die ersten Strahlungsflächen (A20) der zweiten Patchantennen (A2) mit den Durchkontaktierungen (V) elektrisch verbunden sind; wobei die zweiten Strahlungsflächen (A21) der zweiten Patchantennen (A2) mit den zweiten aktiven Bauelementen (C2) elektrisch verbunden sind.
  10. Struktur (1) nach einem der Ansprüche 1 bis 9, bei der die ersten aktiven Bauelemente (C1) unter einer Diode, einem Feldeffekttransistor, einem Bipolartransistor, einem mikro-elektro-mechanischen System gewählt sind.
  11. Struktur (1) nach einem der Ansprüche 1 bis 10, die Lotkugeln beinhaltet, die dazu eingerichtet sind, eine metallische Verbindung zwischen den ersten und zweiten Metallschichten (M1, M2) herzustellen.
  12. Struktur (1) nach einem der Ansprüche 1 bis 11, bei der die ersten und zweiten Wafer (W1, W2) auf Basis eines Halbleitermaterials ausgeführt sind oder aus einem Halbleitermaterial bestehen.
  13. Integrierter Schaltkreis (IC), der dazu bestimmt ist, eine Funktion einer elektromagnetischen Linse für eine rekonfigurierbare Sende-Array-Antenne (2) zu gewährleisten, und der durch Schneiden einer Struktur (1) nach einem der Ansprüche 1 bis 12 gefertigt wird, wobei der integrierte Schaltkreis (IC) beinhaltet:
    - einen Abschnitt des ersten Wafers (W1), der erste aktive Bauelemente (C1) umfasst, die dazu ausgestaltet sind, eine Phasenverschiebung einzuführen, und entgegengesetzte erste und zweite Flächen (W10, W11) aufweist;
    - einen Teil der ersten Metallschicht (M1), der auf der ersten Fläche (W10) des Abschnitts des ersten Wafers (W1) gebildet ist;
    - einen Teil der ersten Kontaktierungsstruktur (3), der auf der zweiten Fläche (W11) des Abschnitts des ersten Wafers (W1) gebildet ist und mit den ersten aktiven Bauelementen (C1) elektrisch verbunden ist; wobei der Teil der ersten Kontaktierungsstruktur (3) erste Polarisationsleitungen (30) umfasst, die dazu eingerichtet sind, die ersten aktiven Bauelemente (C1) zu polarisieren;
    - einen Teil der Anordnung von ersten Patchantennen (A1), der auf dem Teil der ersten Kontaktierungsstruktur (3) gebildet ist;
    - einen Abschnitt des zweiten Wafers (W2), der entgegengesetzte erste und zweite Flächen (W20, W21) aufweist;
    - einen Teil der zweiten Metallschicht (M2), der auf der ersten Fläche (W20) des Abschnitts des zweiten Wafers (W2) gebildet ist;
    - einen Teil der Anordnung von zweiten Patchantennen (A2), der auf der zweiten Fläche (W21) des Abschnitts des zweiten Wafers (W2) gebildet ist;
    wobei die Abschnitte der ersten und zweiten Wafer (W1, W2) über Teile der ersten und zweiten Metallschichten (M1, M2) so montiert sind, dass die Teile der Anordnungen der ersten und zweiten Patchantennen (A1, A2) fluchten, wobei die Teile der ersten und zweiten Metallschichten (M1, M2) eine Masseebene (PM) bilden, wobei der integrierte Schaltkreis (IC) eine Mehrzahl von elementaren Zellen (CE) beinhaltet, von denen jede eine erste Patchantenne (A1) und eine ihr gegenüber liegende zweite Patchantenne (A2) umfasst, so dass eine Funktion einer elektromagnetischen Linse gewährleistet wird.
  14. Rekonfigurierbare Sende-Array-Antenne (2), beinhaltend:
    - eine Leiterplatte (5), die entgegengesetzte erste und zweite Flächen (50, 51) aufweist;
    - mindestens einen integrierten Schaltkreis (IC) nach Anspruch 13, der auf der ersten Fläche (50) der Leiterplatte (5) gebildet ist;
    - mindestens einen Sender-Empfänger (6), der dazu eingerichtet ist, eine elektromagnetische Welle zu senden und zu empfangen, die sich in der Leiterplatte (5) ausbreitet;
    - mindestens eine Steuerelektronik (60), die dazu ausgestaltet ist, den Sender-Empfänger (6) und die ersten aktiven Bauelemente (C1) des integrierten Schaltkreises (IC) zu steuern, und auf der zweiten Fläche (51) der Leiterplatte (5) gebildet ist.
  15. Antenne (2) nach Anspruch 14, bei welcher der integrierte Schaltkreis (IC) durch Schneiden einer Struktur (1) nach Anspruch 4 gefertigt ist und die Steuerelektronik (60) dazu ausgestaltet ist, die zweiten aktiven Bauelemente (C2) des integrierten Schaltkreises (IC) zu steuern.
  16. Antenne (2) nach Anspruch 14 oder 15, die zusätzliche Patchantennen (A1') beinhaltet, die auf der ersten Fläche (50) der Leiterplatte (5) gebildet sind und den elementaren Zellen (CE) des integrierten Schaltkreises (IC) gegenüber liegen.
EP20213640.4A 2019-12-18 2020-12-13 Rekonfigurierbare antenne mit sendenetz mit monolithischer integration von elementarzellen Active EP3840116B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1914720A FR3105610B1 (fr) 2019-12-18 2019-12-18 Antenne reconfigurable à réseau transmetteur avec intégration monolithique des cellules élémentaires

Publications (2)

Publication Number Publication Date
EP3840116A1 EP3840116A1 (de) 2021-06-23
EP3840116B1 true EP3840116B1 (de) 2024-02-07

Family

ID=69903479

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20213640.4A Active EP3840116B1 (de) 2019-12-18 2020-12-13 Rekonfigurierbare antenne mit sendenetz mit monolithischer integration von elementarzellen

Country Status (3)

Country Link
US (1) US11296423B2 (de)
EP (1) EP3840116B1 (de)
FR (1) FR3105610B1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3123513B1 (fr) * 2021-06-01 2024-07-19 Commissariat Energie Atomique Empilement pour fabriquer un circuit intégré destiné à assurer une fonction de lentille électromagnétique pour une antenne reconfigurable à réseau transmetteur

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3039711B1 (fr) 2015-07-28 2017-12-29 Commissariat Energie Atomique Cellule elementaire d'un reseau transmetteur pour une antenne reconfigurable.
US9812786B2 (en) * 2015-08-25 2017-11-07 Huawei Technologies Co., Ltd. Metamaterial-based transmitarray for multi-beam antenna array assemblies
FR3065329B1 (fr) * 2017-04-14 2019-07-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Cellule elementaire d'un reseau transmetteur pour une antenne reconfigurable
FR3079075B1 (fr) * 2018-03-14 2020-03-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives Antenne a reseau transmetteur large bande

Also Published As

Publication number Publication date
FR3105610A1 (fr) 2021-06-25
US20210194152A1 (en) 2021-06-24
FR3105610B1 (fr) 2021-12-17
US11296423B2 (en) 2022-04-05
EP3840116A1 (de) 2021-06-23

Similar Documents

Publication Publication Date Title
EP3125362B1 (de) Grundzelle eines übertragungsnetzes für eine rekonfigurierbare antenne
EP3392959B1 (de) Grundzelle eines übertragungsnetzes für eine rekonfigurierbare antenne
EP3057130B1 (de) Rf-übertragungsvorrichtung mit integriertem reflektor von elektromagnetischen wellen
EP2656438B1 (de) Strahlende zelle mit zwei phasenzuständen für ein sendendes netzwerk
EP2532050B1 (de) Bordinterne direktionale flachplattenantenne, fahrzeug mit einer solchen antenne und satellitentelekommunikationssystem mit einem solchen fahrzeug
Kingsley et al. Reconfigurable RF MEMS phased array antenna integrated within a liquid crystal polymer (LCP) system-on-package
EP2808946A1 (de) Vorrichtung zum Verhindern einer Ausbreitung von elektromagnetischen Wellen, und ihr Herstellungsprozess
EP2532046A1 (de) Flachplatten-abtastantenne für landfahrzeuganwendung, fahrzeug mit einer solchen antenne und satellitentelekommunikationssystem mit solch einem fahrzeug
EP2673842B1 (de) Wellenleiterantenne mit ringförmigen schlitzen
EP4099498B1 (de) Stapel zur herstellung einer integrierten schaltung zur bereitstellung einer elektromagnetischen linsenfunktion für eine rekonfigurierbare antenne mit übertragungsnetz
EP3840116B1 (de) Rekonfigurierbare antenne mit sendenetz mit monolithischer integration von elementarzellen
EP3840122B1 (de) Elementarzelle eines gruppenstrahlers
EP3840115A1 (de) Kompakte antenne mit resonanzhohlraum
EP2432072B1 (de) Breitband-Symmetrieüberträger auf mehrlagigem Schaltkreis für eine Netzantenne
CA2808511A1 (fr) Antenne plane pour terminal fonctionnant en double polarisation circulaire, terminal aeroporte et systeme de telecommunication par satellite comportant au moins une telle antenne
FR2724491A1 (fr) Antenne plaquee miniaturisee, a double polarisation, a tres large bande
WO2003019718A1 (fr) Antenne a resonateur dielectrique polarisee circulairement
FR2834131A1 (fr) Panneau dephaseur monolithique a diodes pin en silicium polycristallin et antenne utilisant ce panneau dephaseur
EP4092831A1 (de) Antenne mit lückenhaftem verteilungsnetz
EP3537540A1 (de) Elektromagnetische entkoppelung
FR2847718A1 (fr) Diodes pin en materiaux polycristallins a heterostructures, panneau dephaseur et antenne comportant les diodes pin

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201213

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230919

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020025291

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20240207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240508

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1655966

Country of ref document: AT

Kind code of ref document: T

Effective date: 20240207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240207

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240507

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240507

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240507

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240207

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240207

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240607

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240207

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240508

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240207

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240207

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240207

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240607

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240207

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240607

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240207

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240207

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240207

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIESALTERNATIVES