EP3839652A1 - Ressort spiral pour oscillateur balancier-spiral horloger et son procede de fabrication - Google Patents

Ressort spiral pour oscillateur balancier-spiral horloger et son procede de fabrication Download PDF

Info

Publication number
EP3839652A1
EP3839652A1 EP19217684.0A EP19217684A EP3839652A1 EP 3839652 A1 EP3839652 A1 EP 3839652A1 EP 19217684 A EP19217684 A EP 19217684A EP 3839652 A1 EP3839652 A1 EP 3839652A1
Authority
EP
European Patent Office
Prior art keywords
spiral spring
gold
balance
mass percentage
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19217684.0A
Other languages
German (de)
English (en)
Inventor
Sébastien Jeanneret
Nicolas Golay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atokalpa Succursale De Alle De Sff Composants Horlogers SA
Original Assignee
Atokalpa Succursale De Alle De Sff Composants Horlogers SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atokalpa Succursale De Alle De Sff Composants Horlogers SA filed Critical Atokalpa Succursale De Alle De Sff Composants Horlogers SA
Priority to EP19217684.0A priority Critical patent/EP3839652A1/fr
Publication of EP3839652A1 publication Critical patent/EP3839652A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/22Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
    • G04B17/227Compensation of mechanisms for stabilising frequency for the effect of variations of temperature composition and manufacture of the material used
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/14Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of noble metals or alloys based thereon
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/066Manufacture of the spiral spring

Definitions

  • the present invention relates to the field of watchmaking. It relates more particularly to a spiral spring for a balance-spring oscillator, the thermoelastic coefficient of which is close to zero.
  • the most commonly used kind of clock oscillator today is the balance-spring oscillator.
  • This oscillator is composed of an inertial mass mounted in bearings such that it is capable of pivoting in a back-and-forth rotation under the effect of a spiral spring (typically flat) which provides a torque of reminders.
  • the oscillations are maintained by an escapement, a large number of types of which are well known to those skilled in the art.
  • the oscillation frequency of the balance-spring is not constant and the precision of the rate of the movement. is not guaranteed.
  • thermoelastic coefficient is meant the variation of Young's modulus as a function of temperature, that is to say dE / dT, and, for this reason, this parameter is also called “thermal coefficient of Young's modulus”.
  • Watchmakers are always on the lookout for new materials for balance springs which are not only insensitive to temperature or not at all, but are also non-magnetic, corrosion resistant and from which the making of a balance spring is relatively easy. easy.
  • the aim of the invention is therefore to provide a spiral spring made of a material which fulfills these requirements, as well as its manufacturing process.
  • These alloys are non-magnetic, corrosion resistant, easy to machine, and have a thermoelastic coefficient close to zero, that is to say between -12 Pa.K -1 and +2.8 Pa.K -1 , depending on the composition and any heat treatment carried out.
  • this coefficient can be easily manipulated by varying the mass percentage of gold and / or the heat treatment of the alloy during the manufacture of the spring.
  • the elasticity of the spring therefore varies little or not as a function of the temperature, which makes it possible to make the operation of the oscillator in which it is integrated as close to 0 s / d as possible.
  • thermocompensate the oscillator it is even possible to thermocompensate the oscillator as a whole if the thermoelastic coefficient of the spring is chosen to compensate and therefore to cancel the effect of variations in the inertia of the balance due to changes in temperature.
  • the spring according to the invention is preferably monolithic, that is to say without an outer layer, but can nevertheless include one or more layers on its surface.
  • the mass percentage of gold is between 48% and 55%, preferably between 48% and 52%, more preferably between 49% and 51%, more preferably substantially 50% (i.e. say between 49.5% and 50.5%).
  • These composition ranges provide coefficients thermoelastic even closer to zero (approximately -5 Pa.K -1 to +2.8 Pa.K -1 ).
  • a composition of substantially 50% gold by weight represents a particularly versatile alloy, with which the thermoelastic coefficient can be manipulated between wide limits of -5 Pa.K -1 to +2.8 Pa.K -1 simply by varying heat treatment.
  • the spiral spring according to the invention can be integrated into a sprung balance oscillator comprising a balance rotatably attached to one end of said spiral spring, this oscillator being able to be integrated into a timepiece intended to equip a timepiece such as than a wristwatch.
  • the spiral spring of the invention can thus be manufactured.
  • step b) can be preceded by a heat treatment of said yarn, and / or can be followed by such a heat treatment.
  • These two heat treatments can be identical or different.
  • the heat treatment can include annealing, optionally followed by quenching.
  • said heat treatment can comprise heating to a temperature between 250 ° C and 600 ° C, preferably between 300 ° C and 450 ° C, more preferably between 350 ° C and 450 ° C.
  • This heating can follow the annealing and the aforementioned possible quenching, and makes it possible to precisely manipulate the thermoelastic coefficient of the spiral spring.
  • This heating temperature can be maintained for a period of time lying between 1 hour and 20 hours, preferably between 5 hours and 15 hours, more preferably between 10 hours and 15 hours.
  • the spiral spring 1 is intended to form part of a conventional balance-spring oscillator, as described in the preamble.
  • a spiral spring 1 of conventional shape has been illustrated on figure 4 , but such an oscillator, which is very well known, has not been illustrated here.
  • the spiral spring 1 as well as the balance can take any known shape.
  • the balance comprises a rim linked to an axis by a plurality of arms, the spiral spring 1 being made integral with said axis by means of a ferrule or the like, which may be integral with the spring 1 or may be a separate part to which the spring 1 is attached.
  • spiral spring 1 lies in the material which constitutes it.
  • the material of the spring 1 is a binary palladium-gold alloy, which comprises a mass percentage of gold between 45% and 55%, preferably between 48% and 55%, more preferably between 48% and 52%, more preferably Between 49% and 51%, more preferably substantially 50% (i.e. between 49.5% and 50.5%).
  • the remainder of the alloy consists of palladium.
  • alloys are non-magnetic, corrosion resistant and easy to work with, so they are particularly suitable for the manufacture of spiral springs.
  • thermoelastic coefficient of these alloys is close to zero in these ranges of compositions, and can be handled very easily between approximately -12 Pa.K -1 and +2.8 Pa.K -1 by composition as well as heat treatment, as shown in the graphs of the figures 1 and 2 .
  • figure 1 illustrates the relationship between the composition of the Pd-Au alloy in mass percentage of gold (x axis) and the thermoelastic coefficient of Young's modulus (y axis) for four different heat treatments.
  • Curve A illustrates this ratio for an annealed alloy, having been heated to 1000 ° C. for 1 hour, then cooled at a rate of 300 ° C./h. Other temperatures and annealing times are also possible.
  • Curve B represents the results obtained by carrying out a quenching in water from a temperature of 1000 ° C., the material having been maintained at this temperature for 10 minutes.
  • Curve C represents the results obtained by carrying out a quenching in water from a temperature of 1000 ° C, the material having been maintained at this temperature for 10 minutes, and the quenching having been followed by a heat treatment at 360 ° C for 15 hours.
  • thermoelastic coefficient can be varied at will to obtain a desired value which is close to zero. It should be noted that one does not necessarily wish to obtain a value of zero, since the variation in stiffness of the spring 1 can be chosen to compensate for the variation in the inertia of the balance during changes in temperature, and thus make the oscillator frequency as close as possible to the desired nominal value.
  • a slightly positive thermoelastic coefficient tends to increase the oscillation frequency and can compensate at less partially the effect of the expansion of the balance.
  • a point on the curve C which corresponds to a Pd-50% Au alloy represents the maximum positive thermoelastic coefficient (+2.8 Pa.K -1 ) which is achievable.
  • thermoelastic coefficient In the case of a balance whose inertia decreases when the temperature rises, a negative thermoelastic coefficient will compensate for it.
  • the figure 2 illustrates the variation of the thermoelastic coefficient with respect to the temperature of said heat treatment for binary Pd-Au alloys varying between 45% by mass Au and 55% by mass Au, the heat treatment being carried out for 15 hours.
  • This graph clearly shows that compositions comprising between 49% by mass and 52% by mass of gold make it possible to obtain a thermoelastic coefficient of zero or positive, the heat treatment being carried out at a temperature between 300 ° C and 450 ° C. , depending on the alloy.
  • the Pd-50% Au alloy represents the most versatile alloy for a hairspring 1 according to the invention, its thermoelastic coefficient being able to be varied at will between -4 Pa.K -1 (annealing) and + 2.8 Pa.K -1 (heat treatment at between 350 ° C and 400 ° C) by varying the temperature of said heat treatment.
  • the figure 3 schematically illustrates, in the form of a block diagram, a method of manufacturing a spiral spring 1 according to the invention.
  • optional steps have been represented by dotted blocks.
  • Said wire may be of round, oval, square, rectangular or similar section, its making by drawing or the like being well known to those skilled in the art. It can be shaped by calendering or the like.
  • thermoelastic coefficient of the alloy as delivered is already suitable for the desired purpose, no heat treatment is to be carried out.
  • thermoelastic coefficient it is possible to carry out one or more heat treatments with the wire, before and / or after the shaping of step b).
  • the latter can optionally be carried out by introducing the wire into a jig which defines the final profile of the hairspring 1, the heat treatment step serving to fix the profile of the hairspring.
  • spring 1 in a known manner. The latter may optionally be followed by quenching and / or heating as described above.
  • spiral spring 1 is typically monolithic, that is to say without any layer provided on its surface, it can nevertheless be provided with at least one outer layer of metal, carbon. adamantine (DLC), silicon oxide or the like.
  • DLC adamantine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Springs (AREA)

Abstract

Ressort spiral (1) pour oscillateur balancier-spiral horloger, le matériau dudit ressort (1) comportant un alliage binaire comprenant :- un pourcentage massique d'or entre 45% et 55% ;- des éventuelles impuretés jusqu'à 0.5% en pourcentage massique ;- la balance en palladium.

Description

    Domaine technique
  • La présente invention se rapporte au domaine de l'horlogerie. Elle concerne, plus particulièrement, un ressort spiral pour oscillateur balancier-spiral, dont le coefficient thermoélastique est proche de zéro.
  • Etat de la technique
  • Le genre d'oscillateur horloger le plus communément utilisé de nos jours est l'oscillateur balancier-spiral. Cet oscillateur est composé d'une masse inertielle montée dans des paliers de telle sorte qu'elle est susceptible de pivoter selon une rotation de va-et-vient sous l'effet d'un ressort spiral (typiquement plat) qui fournit un couple de rappels. Les oscillations sont entretenues par un échappement, dont un grand nombre de sortes sont bien connues à l'homme du métier.
  • Si l'élasticité du ressort spiral, c'est-à-dire son module de Young E, varie en fonction de la température, la fréquence d'oscillation du balancier-spiral n'est pas constante et la précision de la marche du mouvement n'est pas garantie.
  • Afin de résoudre ce problème, de nombreux alliages ont été développés, tel que l'Elinvar, dont le coefficient thermoélastique est proche de zéro dans la plage de températures rencontrées dans la pratique (typiquement 0°C à +40°C). Par « coefficient thermoélastique », on entend la variation du module de Young en fonction de la température, c'est-à-dire dE/dT, et, pour cette raison, ce paramètre est également appelé « coefficient thermique du module de Young ».
  • Les horlogers sont toujours à la recherche de nouveaux matériaux pour des spiraux qui sont non seulement peu ou pas sensibles à la température, mais sont également à la fois amagnétiques, résistants à la corrosion et à partir desquels la confection d'un ressort spiral est relativement facile.
  • Le but de l'invention est par conséquent de proposer un ressort spiral fait d'un matériau qui remplit ces exigences, ainsi que son procédé de fabrication.
  • Divulguation de l'invention
  • De façon plus précise, l'invention concerne un ressort spiral pour oscillateur balancier-spiral horloger, comme défini par la revendication 1. Selon l'invention, le matériau dudit ressort comporte (ou même est constitué de) un alliage binaire comprenant :
    • un pourcentage massique d'or entre 45% et 55% ;
    • des éventuelles impuretés jusqu'à 0.5% en pourcentage massique ;
    • la balance en palladium.
  • Ces alliages sont amagnétiques, résistants à la corrosion, faciles à usiner, et présentent un coefficient thermoélastique proche de zéro, c'est-à-dire compris entre -12 Pa.K-1 et +2.8 Pa.K-1, selon la composition et l'éventuel traitement thermique effectué.
  • Pour le surplus, et de manière surprenante, ce coefficient peut être aisément manipulé en variant le pourcentage massique d'or et/ou le traitement thermique de l'alliage lors de la fabrication du ressort. L'élasticité du ressort varie donc peu ou pas en fonction de la température, ce qui permet de rendre la marche de l'oscillateur dans lequel il est intégré aussi proche à 0 s/j que possible. Pour le surplus, il est même possible de thermocompenser l'oscillateur dans son ensemble si le coefficient thermoélastique du ressort est choisi pour compenser et donc pour annuler l'effet de variations de l'inertie du balancier dues à des changements de température.
  • Le ressort selon l'invention est de préférence monolithique, c'est-à-dire dépourvu de couche extérieure, mais peut quand-même comporter une ou plusieurs couches sur sa surface.
  • Avantageusement, le pourcentage massique d'or se situe entre 48% et 55%, de préférence entre 48% et 52%, encore de préférence entre 49% et 51%, encore de préférence substantiellement de 50% (c'est-à-dire entre 49.5% et 50.5%). Ces plages de compositions fournissent des coefficients thermoélastiques encore plus proches de zéro (environ -5 Pa.K-1 à +2.8 Pa.K-1). De manière étonnante, une composition de substantiellement 50% or par poids représente un alliage particulièrement versatile, avec lequel le coefficient thermoélastique peut être manipulé entre des larges bornes de -5 Pa.K-1 à +2.8 Pa.K-1 simplement en variant le traitement thermique.
  • Le ressort spiral selon l'invention peut être intégré dans un oscillateur balancier-spiral comprenant un balancier solidaire en rotation d'une extrémité dudit ressort spiral, cet oscillateur pouvant être intégré dans un mouvement d'horlogerie destiné à équiper une pièce d'horlogerie telle qu'une montre bracelet.
  • L'invention concerne également un procédé de fabrication d'un tel ressort spiral. Ce procédé comporte les étapes suivantes :
    1. a) se munir d'un fil en alliage binaire palladium-or comprenant :
      • un pourcentage massique d'or entre 45% et 55%, de préférence entre 48% et 52%, encore de préférence substantiellement 50% ;
      • des éventuelles impuretés jusqu'à 0.5% en pourcentage massique ;
      • la balance en palladium ;
    2. b) mettre ledit ressort spiral en forme par n'importe quel procédé connu.
  • Le ressort spiral de l'invention peut ainsi être fabriqué.
  • Avantageusement, l'étape b) peut être précédée par un traitement thermique dudit fil, et/ou peut être suivie par un tel traitement thermique. Ces deux traitements thermiques peuvent être identiques ou différents.
  • Avantageusement, le traitement thermique peut comporter un recuit, éventuellement suivi d'une trempe.
  • Avantageusement, ledit traitement thermique peut comprendre un chauffage à une température entre 250°C et 600°C, de préférence entre 300°C et 450°C, encore de préférence entre 350°C et 450°C. Ce chauffage peut suivre le recuit et l'éventuelle trempe susmentionnée, et permet de manipuler précisément le coefficient thermoélastique du ressort spiral.
  • Cette température de chauffage peut être maintenue pendant un laps de temps se situant entre 1 heure et 20 heures, de préférence entre 5 heures et 15 heures, encore de préférence entre 10 heures et 15 heures.
  • Brève description des dessins
  • D'autres détails de l'invention apparaîtront plus clairement à la lecture de la description qui suit, faite en référence aux dessins annexés dans lesquels :
    • Fig. 1 est un graphique illustrant la variation du coefficient thermoélastique du module de Young en fonction de la composition d'un alliage binaire Pd-Au, selon trois traitements thermiques différents ;
    • Fig. 2 est un graphique illustrant l'effet sur le coefficient thermoélastique du module de Young de certains traitements thermiques, pour certaines compositions de l'alliage binaire Pd-Au,
    • Fig. 3 est un diagramme schématique d'un procédé de fabrication d'un ressort spiral selon l'invention ; et
    • Fig. 4 représente en vue isométrique un ressort spiral selon l'invention.
    Mode de réalisation de l'invention
  • Le ressort spiral 1 selon l'invention est destiné à faire partie d'un oscillateur balancier-spiral conventionnel, comme décrit en préambule. Un tel ressort spiral 1 de forme conventionnelle a été illustré sur la figure 4, mais un tel oscillateur, qui est très bien connu, n'a pas été illustré ici. Néanmoins, il est à noter que le ressort spiral 1 ainsi que le balancier peuvent prendre n'importe quelle forme connue. Typiquement, le balancier comporte une serge liée à un axe par une pluralité de bras, le ressort spiral 1 étant rendu solidaire dudit axe par l'intermédiaire d'une virole ou similaire, qui peut être venue de matière avec le ressort 1 ou peut être une pièce distincte à laquelle le ressort 1 est fixé.
  • La particularité du ressort spiral 1 selon l'invention réside dans le matériau qui le constitue.
  • Le matériau du ressort 1 est un alliage binaire palladium-or, qui comporte un pourcentage massique d'or entre 45% et 55%, de préférence entre 48% et 55%, encore de préférence entre 48% et 52%, encore de préférence entre 49% et 51%, encore de préférence substantiellement de 50% (c'est-à-dire entre 49.5% et 50.5%).
  • À l'exception d'un éventuel pourcentage massique d'impuretés qui peut être toléré jusqu'à 0.5%, de préférence jusqu'à 0.3% ou encore mieux jusqu'à 0.1%, le reste de l'alliage est constitué de palladium.
  • Ces alliages sont amagnétiques, résistants à la corrosion et faciles à travailler, donc conviennent particulièrement pour la fabrication de ressorts spiraux.
  • Après de nombreux essais, la demanderesse a constaté que le coefficient thermoélastique de ces alliages est proche de zéro dans ces plages de compositions, et peut être manipulé très aisément entre environ -12 Pa.K-1 et +2.8 Pa.K-1 par le biais de la composition ainsi que du traitement thermique, comme illustrent les graphiques des figures 1 et 2.
  • Plus précisément, la figure 1 illustre le rapport entre la composition de l'alliage Pd-Au en pourcentage massique d'or (axe x) et le coefficient thermoélastique du module de Young (axe y) pour quatre traitements thermiques différents.
  • La courbe A illustre ce rapport pour un alliage recuit, ayant été chauffé jusqu'à 1000°C pendant 1h, puis refroidi à raison de 300°C/h. D'autres températures et temps de recuit sont également possibles.
  • La courbe B représente les résultats obtenus en effectuant une trempe dans l'eau à partir d'une température de 1000°C, le matériau ayant été maintenu à cette température pendant 10 minutes.
  • La courbe C représente les résultats obtenus en effectuant une trempe dans l'eau à partir d'une température de 1000°C, le matériau ayant été maintenu à cette température pendant 10 minutes, et la trempe ayant été suivi d'un traitement thermique à 360°C pendant 15 heures.
  • D'après ce graphique, il apparaît clairement comment le coefficient thermoélastique peut être varié à volonté pour obtenir une valeur souhaitée qui est proche de zéro. Il est noté qu'on ne souhaite pas forcément obtenir une valeur de zéro, puisque la variation de raideur du ressort 1 peut être choisie pour compenser la variation de l'inertie du balancier lors des changements de température, et ainsi rendre la fréquence de l'oscillateur aussi proche que possible de la valeur nominale souhaitée.
  • Par exemple, dans le cas classique d'un balancier dont l'inertie augmente lorsque la température monte, ce qui tend à réduire la fréquence d'oscillation, un coefficient thermoélastique légèrement positif, tend à augmenter la fréquence d'oscillation et peut compenser au moins partiellement l'effet de la dilatation du balancier. Dans un tel cas, un point sur la courbe C qui correspond à un alliage Pd-50%Au représente le coefficient thermoélastique positif maximum (+2.8 Pa.K-1) qui est atteignable.
  • Dans le cas d'un balancier dont l'inertie diminue lorsque la température monte, un coefficient thermoélastique négatif le compensera.
  • La figure 2 illustre la variation du coefficient thermoélastique par rapport à la température dudit traitement thermique pour des alliages binaires Pd-Au variant entre 45% massique Au et 55% massique Au, le traitement thermique étant effectué pendant 15 heures. Ce graphique montre clairement que des compositions, comprenant entre 49% massique et 52% massique d'or, permettent d'obtenir un coefficient thermoélastique de zéro ou positif, le traitement thermique s'effectuant à une température entre 300°C et 450°C, selon l'alliage.
  • Une considération des figures 1 et 2 mène à la conclusion que l'alliage Pd-50%Au représente l'alliage le plus versatile pour un spiral 1 selon l'invention, son coefficient thermoélastique pouvant être varié à volonté entre -4 Pa.K-1 (recuit) et +2.8 Pa.K-1 (traitement thermique à entre 350°C et 400°C) en variant la température dudit traitement thermique.
  • La figure 3 illustre schématiquement, sous forme de diagramme bloc, un procédé de fabrication d'un ressort spiral 1 selon l'invention. Dans cette figure, des étapes facultatives ont été représentées par des blocs en traitillés.
  • Ce procédé comprend, au minimum, les étapes suivantes :
    1. a) se doter d'un fil d'alliage Pd-Au dans un alliage tel que décrit ci-dessus, et
    2. b) mettre en forme ledit fil afin de former ledit ressort 1.
  • Ledit fil peut être de section ronde, ovale, carrée, rectangulaire ou similaire, sa confection par tréfilage ou similaire étant bien connue à l'homme du métier. Sa mise en forme peut être effectuée par calandrage ou similaire.
  • Si le coefficient thermoélastique de l'alliage tel que livré convient déjà pour le but recherché, aucun traitement thermique n'est à effectuer.
  • Cependant, si on veut modifier le coefficient thermoélastique, on peut effectuer un ou plusieurs traitements thermiques au fil, avant et/ou après la mise en forme de l'étape b).
  • Dans les deux cas, le traitement thermique peut comporter l'un ou plusieurs de :
    • un recuit, par exemple à une température supérieure à 300°, de préférence entre 600°C et 1200°C, pendant 5 minutes à 1 heure, suivi par un refroidissement à un taux entre 100°C/h et 400°C/h, ou par une trempe dans de l'eau à partir d'une température entre 600°C et 1200°C ;
    • un chauffage à une température entre 250°C et 600°C, de préférence entre 300°C et 450°C, encore de préférence entre 350°C et 450°C, cette température étant maintenue pendant un laps de temps entre 1 heure et 20 heures, de préférence entre 5 heures et 15 heures, encore de préférence entre 10 heures et 15 heures.
  • Si deux traitements thermiques sont effectués, l'un avant et l'autre après l'étape b), ces derniers peuvent être identiques ou différents.
  • Dans le cas où un traitement thermique est effectué après l'étape b), cette dernière peut éventuellement être effectuée en introduisant le fil dans un gabarit qui définit le profil final du spiral 1, l'étape de traitement thermique servant à fixer le profil du ressort 1 de façon connue. Ce dernier peut facultativement être suivi d'une trempe et/ou d'un chauffage comme décrit ci-dessus.
  • On note par ailleurs que le ressort spiral 1 selon l'invention est typiquement monolithique, c'est-à-dire dépourvu de couche apportée sur sa surface, il peut quand-même être muni d'au moins une couche extérieure en métal, carbone adamantine (DLC), oxyde de silicium ou similaire.
  • Bien que l'invention ait été précédemment décrite en lien avec des modes de réalisations spécifiques, d'autres variantes supplémentaires sont également envisageables sans sortir de la portée de l'invention comme définie par les revendications.

Claims (16)

  1. Ressort spiral (1) pour oscillateur balancier-spiral horloger, le matériau dudit ressort (1) comportant un alliage binaire comprenant :
    - un pourcentage massique d'or entre 45% et 55% ;
    - des éventuelles impuretés jusqu'à 0.5% en pourcentage massique ;
    - la balance en palladium.
  2. Ressort spiral (1) selon la revendication précédente, dans lequel le pourcentage massique d'or est entre 48% et 55%.
  3. Ressort spiral (1) selon la revendication précédente, dans lequel le pourcentage massique d'or est entre 48% et 52%
  4. Ressort spiral (1) selon la revendication précédente, dans lequel le pourcentage massique d'or est entre 49% et 51%, de préférence substantiellement 50%.
  5. Ressort spiral (1) selon l'une des revendications précédentes, dans lequel ledit ressort spiral (1) est monolithique.
  6. Oscillateur balancier-spiral comprenant un balancier solidaire en rotation d'une extrémité d'un ressort spiral (1) selon l'une des revendications précédentes.
  7. Mouvement d'horlogerie comprenant un oscillateur balancier-spiral selon la revendication précédente.
  8. Pièce d'horlogerie comprenant un mouvement selon la revendication précédente.
  9. Procédé de fabrication d'un ressort spiral (1), comprenant les étapes suivantes :
    a) se munir d'un fil en alliage binaire palladium-or comprenant :
    - un pourcentage massique d'or entre 45% et 55%, de préférence entre 48% et 52%, encore de préférence substantiellement 50% ;
    - des éventuelles impuretés jusqu'à 0.5% en pourcentage massique ;
    - la balance en palladium ;
    b) mettre ledit ressort spiral (1) en forme.
  10. Procédé de fabrication selon la revendication 9, comprenant en outre, avant l'étape b), une étape de :
    a1) effectuer un traitement thermique audit fil.
  11. Procédé de fabrication selon l'une des revendications 9 et 10, comprenant en outre, après l'étape b), une étape de :
    b1) effectuer un traitement thermique dudit ressort spiral (1).
  12. Procédé selon l'une des revendications 10 et 11, dans lequel ledit traitement thermique comporte un recuit.
  13. Procédé selon la revendication précédente, dans lequel ledit recuit est suivi d'une trempe.
  14. Procédé selon l'une des revendications 10-13, dans lequel ledit traitement thermique comprend un chauffage à une température entre 250°C et 600°C, de préférence entre 300°C et 450°C, encore de préférence entre 350°C et 450°C.
  15. Procédé selon la revendication précédente, dans lequel ladite température dudit chauffage est maintenue pendant un laps de temps se situant entre 1 heure et 20 heures, de préférence entre 5 heures et 15 heures, encore de préférence entre 10 heures et 15 heures.
  16. Procédé selon l'une des revendications 9 à 15, dans lequel l'étape b) comprend un calandrage dudit fil.
EP19217684.0A 2019-12-18 2019-12-18 Ressort spiral pour oscillateur balancier-spiral horloger et son procede de fabrication Withdrawn EP3839652A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19217684.0A EP3839652A1 (fr) 2019-12-18 2019-12-18 Ressort spiral pour oscillateur balancier-spiral horloger et son procede de fabrication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19217684.0A EP3839652A1 (fr) 2019-12-18 2019-12-18 Ressort spiral pour oscillateur balancier-spiral horloger et son procede de fabrication

Publications (1)

Publication Number Publication Date
EP3839652A1 true EP3839652A1 (fr) 2021-06-23

Family

ID=68965700

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19217684.0A Withdrawn EP3839652A1 (fr) 2019-12-18 2019-12-18 Ressort spiral pour oscillateur balancier-spiral horloger et son procede de fabrication

Country Status (1)

Country Link
EP (1) EP3839652A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570995A (ja) * 1991-09-11 1993-03-23 Seiko Epson Corp 装飾部材
CH701770A2 (fr) * 2009-08-31 2011-03-15 Nivarox Sa Ressort thermocompensé et son procédé de fabrication.
CH711161A2 (fr) * 2015-06-03 2016-12-15 Eta Sa Mft Horlogere Suisse Résonateur à réglage fin par raquetterie.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570995A (ja) * 1991-09-11 1993-03-23 Seiko Epson Corp 装飾部材
CH701770A2 (fr) * 2009-08-31 2011-03-15 Nivarox Sa Ressort thermocompensé et son procédé de fabrication.
CH711161A2 (fr) * 2015-06-03 2016-12-15 Eta Sa Mft Horlogere Suisse Résonateur à réglage fin par raquetterie.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASUMOTO ET AL.: "New Nonmagnetic Elinvar-Type Alloy "Pallagold" in the Pd-Au System", vol. 33, 24 June 1969 (1969-06-24), pages 1410 - 1413

Similar Documents

Publication Publication Date Title
EP3422116B1 (fr) Ressort spiral d'horlogerie
EP3502785B1 (fr) Ressort spiral pour mouvement d'horlogerie et son procédé de fabrication
EP1593004B1 (fr) Spiral de resonateur balancier-spiral et son procede de fabrication
EP2215531B1 (fr) Oscillateur mécanique présentant un coefficient thermoélastique optimisé
EP3502289B1 (fr) Procédé de fabrication d'un ressort spiral pour mouvement d'horlogerie
EP3502288B1 (fr) Procédé de fabrication d'un ressort spiral pour mouvement d'horlogerie
EP1519250B1 (fr) Résonateur balancier-spiral thermocompensé
WO2015189278A2 (fr) Oscillateur pour un ensemble de balancier-spiral d'une pièce d'horlogerie
EP1612627A1 (fr) Spiral autocompensateur bi-matière
EP3781992B1 (fr) Procédé de fabrication d'un ressort horloger à base de silicium
EP2631721A1 (fr) Composants horlogers en titane revêtus de diamant
CH714492A2 (fr) Ressort spiral pour mouvement d'horlogerie et son procédé de fabrication.
EP3839652A1 (fr) Ressort spiral pour oscillateur balancier-spiral horloger et son procede de fabrication
CH716974A2 (fr) Ressort spiral pour oscillateur balancier-spiral horloger et son procédé de fabrication.
EP3422115B1 (fr) Ressort spiralé d'horlogerie
EP3796101A1 (fr) Ressort spiral pour mouvement d'horlogerie
EP3736639A1 (fr) Procede de fabrication d'un ressort spiral pour mouvement d'horlogerie
CH714494B1 (fr) Ressort spiralé d'horlogerie, notamment un ressort de barillet ou un ressort-spiral.
CH714493A2 (fr) Procédé de fabrication d'un ressort spiral pour mouvement d'horlogerie.
EP4060424A1 (fr) Spiral pour mouvement d'horlogerie
EP4060425A1 (fr) Spiral pour un mouvement horloger
EP4019459A1 (fr) Procédé de fabrication d'un ressort spiral thermocompensé
CH718217A2 (fr) Procédé de fabrication d'un ressort spiral thermocompensé.
CH714514A2 (fr) Procédé de fabrication d'un balancier pour pièce d'horlogerie.
WO2021170473A1 (fr) Composant horloger en silicium pour pièce d'horlogerie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211213

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220323

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20221005