EP3830485A1 - Chambre de combustion pour une turbine a gaz destinee a la production d'energie notamment d'energie electrique, comprenant des trous de dilution asymetriques dans un tube a flamme - Google Patents

Chambre de combustion pour une turbine a gaz destinee a la production d'energie notamment d'energie electrique, comprenant des trous de dilution asymetriques dans un tube a flamme

Info

Publication number
EP3830485A1
EP3830485A1 EP19734803.0A EP19734803A EP3830485A1 EP 3830485 A1 EP3830485 A1 EP 3830485A1 EP 19734803 A EP19734803 A EP 19734803A EP 3830485 A1 EP3830485 A1 EP 3830485A1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
flame tube
plane
dilution
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19734803.0A
Other languages
German (de)
English (en)
Inventor
Jean-Baptiste Michel
Julien Thiriot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP3830485A1 publication Critical patent/EP3830485A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube

Definitions

  • the present invention relates to a combustion chamber of a gas turbine, in particular a gas turbine with thermodynamic cycle with recuperator, for the production of energy, in particular electrical energy.
  • It relates more particularly to a microturbine with recuperator for the production of electricity from a liquid or gaseous fuel.
  • microturbine is understood to mean a gas turbine of small power usually less than 200KW.
  • a gas turbine with recuperator generally comprises at least one compression stage with at least one compressor, a combustion chamber (or burner), at least one expansion stage with at least one expansion turbine, a heat exchange device (or recuperator) between the compressor and the combustion chamber making it possible to heat the gases compressed by the compressor to send them with a high temperature to the combustion chamber, this exchange device being traversed by the hot gases coming from the turbine of relaxation.
  • the combustion chamber comprises a housing through which circulates the hot compressed air coming from the recuperator and a flame tube, located inside this box, in which combustion takes place.
  • the flame tube comprises a primary zone which receives part of the total hot compressed air flow and in which combustion takes place thanks in particular to ignition electrodes, and a dilution zone where the mixing takes place between the burnt gases. from the primary zone and hot compressed gases from dilution holes provided on the flame tube.
  • the primary zone also includes a perforated diffuser allowing the passage of hot compressed air as well as fuel coming from a fuel injection system (liquid or gaseous) placed upstream of the diffuser.
  • the flame tube carries a flame stabilizer comprising the perforated diffuser, at least one flue gas recirculation passage and a mixing tube.
  • the compressed air from the compressor enters through a tube located above the housing and is distributed in the combustion chamber in two flows.
  • a first air flow is directed indirectly to the primary zone where combustion takes place and for this purpose it passes through the perforated diffuser described above.
  • a second flow will enter directly into the dilution zone of the flame tube via the dilution holes (or openings) distributed over one or more rows and of identical diameter to obtain, at the outlet of the combustion chamber, a homogeneous mixture in temperature. and composition.
  • This combustion chamber although satisfactory, nevertheless presents significant drawbacks linked in particular to an asymmetry of the flow in the flame tube of the combustion chamber, that is to say in the primary zone and in the zone dilution.
  • the asymmetry in the dilution zone is linked to the fact that the flow rate of the second air flow entering the dilution zone through the dilution openings is greater at the bottom of the flame tube than at the top of it, causing asymmetry in the dilution zone.
  • the presence of electrodes in the path of the first flow modifies the flow around the flame catch and the recirculations, so that the rate of dilution by the gases burned is different between the upper and lower parts of the dilution zone.
  • the flow enters with a non-homogeneous speed and flow in the primary zone. This is caused by a movement of preferential flows in the room.
  • the incoming compressed air surrounds the flame tube and generates a greater air flow at the bottom than at the top. This results in a flow towards the primary zone more important in the lower part. The result is a higher preferential inlet flow from the bottom of the perforated diffuser, producing an asymmetry.
  • the objective of the present invention is to compensate for the asymmetry in order to standardize the flows entering the flame tube by limiting in particular the differences in upper and lower flows, and this in order to improve the localization of the hot zones, to have better durability of the parts as well as a better homogeneity of the temperature leaving the combustion chamber, having a design at a lower cost and allowing more dilute combustions and a further reduction in CO and HC emissions.
  • a first aspect of the invention relates to a combustion chamber of a gas turbine, in particular of a gas turbine with thermodynamic cycle with recuperator, for the production of energy, in particular electrical energy, comprising a housing with means for injecting at least one fuel and an inlet for hot compressed air, said housing housing a flame tube and the invention is characterized in that the flame tube comprises at least one circumferential row d radial dilution holes and the passage surface of the radial dilution holes lying above a plane P is greater than the passage surface of the radial dilution holes lying below the plane P, said plane P is a plan which cuts the flame tube in the length, which passes through the center of it and oriented so that the radial dilution orifices located above the plane P are opposite the hot compressed air intake.
  • said plane P is substantially parallel to a theoretical plane PT which is the plane formed by an opening created in the case for the admission of hot compressed air.
  • said flame tube comprises a perforated diffuser for the passage of hot compressed air and fuel
  • said perforated diffuser comprises axial diffusion holes distributed circularly and the total surface of the axial holes lying above the plane P is greater than the total area of the axial holes lying below the plane P.
  • the flame tube comprises a primary zone (ZP) and a dilution zone (ZD) and the circumferential row of radial dilution orifices is positioned at the start of the dilution zone (ZD).
  • the flame tube comprises a narrowing zone which is positioned upstream of said circumferential rows of radial dilution orifices.
  • the narrowing zone of the section of said flame tube comprises an obstacle of symmetry of revolution.
  • the obstacle of symmetry of revolution comprises a ring positioned in the flame tube.
  • the narrowing zone includes a change in diameter of the flame tube upstream of the dilution zone (ZD).
  • the combustion chamber comprises an air deflector disposed opposite the intake of hot compressed air.
  • a second aspect of the invention comprises a gas turbine, in particular a gas turbine with thermodynamic cycle with recuperator, for the production of energy, in particular electrical energy, comprising at least one compression stage with at least a gas compressor, a heat exchanger, a combustion chamber, and at least one expansion stage with at least one expansion turbine, and the gas turbine is characterized in that it comprises a combustion chamber as described previously.
  • FIG. 1 is a diagram illustrating a microturbine with a combustion chamber according to the invention for the production of energy, in particular electrical energy;
  • FIG. 2 is a perspective view of a flame tube according to the invention.
  • FIG. 3 is a sectional view in a plane P1 of a perforated diffuser according to the invention.
  • FIG. 4 is an axial sectional view of an embodiment of a combustion chamber.
  • a microturbine 10 comprises at least one compression stage 12 with at least one gas compressor 14, a heat exchanger 16 (or recuperator), a combustion chamber 18 (or burner) supplied with fuel by at least one tank 20, at least one expansion stage 22 with at least one expansion turbine 24 connected by a shaft 26 to the compressor 14.
  • This turbine also comprises a means of producing energy , here electric, which includes an electric generator 28 advantageously placed on the shaft 26.
  • the electric generator 28 is placed between the compressor and the turbine.
  • this electric generator 28 can be alternately connected to the expansion turbine 24 or to the compressor 14 by a shaft other than that connecting the turbine and the compressor 14.
  • the heat exchanger 16 can be a cross-flow exchanger, for example of the shell-tube or alternating plate type with two inlets and two outlets.
  • the compressor 14 comprises an inlet 30 for fresh gas containing oxygen, here outside air generally at room temperature, and an outlet for compressed air 32 leading to an inlet for compressed air 34 of the exchanger 16 by a line 36.
  • the hot compressed air outlet 38 of this exchanger is connected by a line 40 to a hot compressed air inlet 42 of the burner 18.
  • the superheated gas outlet 44 of the burner is connected by a line 45 to the 'inlet 46 of the turbine, the outlet 48 of which is connected to another inlet 50 of the exchanger by a line of expanded superheated gases 52.
  • the exchanger 16 also includes an outlet of cooled gases 54 to be directed to all means of evacuation and treatment, such as a chimney (not shown).
  • the invention relates generally and initially of dilution orifices (also called holes or openings) positioned on the flame tube 122 which are of different diameters unlike the state of the art described above where the dilution orifices are all of identical diameter. Dilution orifices of different diameters make it possible to limit the differences between the upper and lower flows and make it possible to standardize the flows entering the flame tube 122.
  • the flame tube 122 generally comprises a primary zone ZP in which combustion takes place, and a dilution zone ZD in which the mixing takes place between the burnt gases from the primary zone and the compressed air. hot.
  • the invention will consist in particular in reducing or increasing the diameter of said dilution holes as a function of the orientation of the flows entering the flame tube 122 and in particular in the dilution zone (ZD).
  • the increase in the diameter of the dilution orifices is done on the side where the hot compressed air opens onto the flame tube 122 and the reduction in the diameter of the dilution orifices is done on the opposite side where the hot compressed air opens on the flame tube.
  • FIG. 2 represents, without limitation, a flame tube 122 in a first embodiment contained in a combustion chamber 18.
  • the flame tube 122 comprises a circumferential row of radial dilution orifices 166 which allow the passage of hot compressed air into the dilution zone ZD.
  • These radial dilution orifices 166 are of different diameters.
  • this comprises several circumferential rows of radial dilution orifices 166 which are also of different diameter.
  • the invention also relates, as a second step, to holes (also called orifices or openings) for axial diffusion 158 of a perforated diffuser 156.
  • holes also called orifices or openings
  • FIG. 3 in a nonlimiting manner, which represents a perforated diffuser 156 according to a view in a plane P1 visible in FIG. 4, electrodes 500 are placed near and above said perforated diffuser 156. As explained previously, they disturb the flow which passes through the perforated diffuser 156.
  • This perforated diffuser 156 includes axial diffusion holes 158 of different diameter in order to compensate for the asymmetry of the flow.
  • the combustion chamber 18 illustrated without limitation in Figure 4, it comprises a housing 112 of cylindrical shape with a tubular wall 1 14 of substantially circular section. This box is closed at one end by a bulkhead injector 1 16 and at the other of its ends by an annular partition 1 18 with a substantially circular opening 120.
  • This combustion chamber also comprises a flame tube 122, also of substantially cylindrical shape, housed coaxially in the housing being of diameter smaller than the housing but of diameter identical to that of the opening 120 of the annular partition.
  • This tube comprises a wall 124 of substantially circular section, one end closed by a diffusion partition 126 facing and at a distance from the injector partition 11 16, and an open end 128 which passes through the annular partition by cooperating with sealing with the internal diameter of this annular partition to form the outlet 130 of this combustion chamber.
  • the housing 1 12 carries on its peripheral wall 1 14, a hot compressed air intake 132.
  • a hot compressed air intake 132 In the embodiment shown in Figure 4 it is positioned substantially at equal distance between the injector bulkhead and the annular bulkhead .
  • the hot compressed air inlet 132 can be placed at any location on the peripheral wall 114 of the housing 1 12. Likewise, this may have any orientation and is not necessarily orthogonal to the housing 1 12.
  • the passage surface of the radial dilution holes 166 facing the inlet of hot compressed air 132 is greater than the passage surface of the radial dilution holes 166 located at the opposite of the hot compressed air inlet 132.
  • the radial dilution holes 166 facing the inlet of hot compressed air 132 are located above a plane P and the radial dilution holes 166 being opposite the inlet of hot compressed air 132 is located below plane P.
  • the plane P is defined as the plane which cuts the flame tube 122 lengthwise and which passes through the center of it. As visible in FIG. 4, this plane P is also a plane of axial symmetry of the combustion chamber and it is horizontal in the embodiment described. To enable the limit of the radial dilution holes 166 lying below or above to be defined, this plane P is substantially parallel to a theoretical plane PT.
  • This theoretical plane PT is the plane formed by an opening 600 created in the housing 12 for the admission of hot compressed air 132. In the case where the housing is cylindrical, the plane PT is tangent to the opening at the level of the lowest points of the opening 600 formed.
  • the passage surface is 20% greater at the top of the plane P relative to the bottom of the plane P.
  • an air deflector 134 is placed between the two walls 1 14 and 124 and opposite this air intake to circulate this hot air in one axial direction from this admission.
  • this deflector 134 comprises a tube 136 open at each of its ends 138, 140.
  • This tube comprises a tubular fixing portion 142 and a tubular air diversion portion 144, of different section, connected together by a junction portion 146, here of frustoconical shape.
  • the section of the tubular portion of larger section 142 which corresponds to the tubular fixing portion, has an outside diameter substantially equal to that of the inside diameter of the housing 1 12 while the section of the tubular portion of smaller section 144, which corresponds to the tubular air diversion portion, has an outside diameter which is larger than the outside diameter of the wall 124 of the flame tube 122 and smaller than that of the inside diameter of the wall 1 14 of the housing 1 12.
  • This deflector 134 is housed in the combustion chamber 18 in such a way that the tubular fixing portion 142 is housed between the injector bulkhead 11 16 and the diffusion bulkhead 126 while being fixed by any known means (soldering, welding , ..) to the wall of the housing 1 12, that the tubular air bypass portion 144 is located substantially opposite the air intake 132 and that the frustoconical portion 146 is placed near this intake.
  • the diameter of the tubular air bypass portion is such that it is equivalent to the average of the diameters of the housing 12 and of the flame tube 122. This makes it possible to create circulation passages for the compressed air of same radial height R between this portion and respectively the housing (passage 148) and the flame tube (passage 150).
  • the open end 140 of the tubular air bypass portion 144 is located at a distance from the annular partition 11 so that the distance between this open end and the partition creates a connecting passage 151 of which the axial dimension D is at least equal to the radial height R.
  • the injector-carrying partition carries a means for injecting at least one fuel 152, here in the form of an injector coaxial with the flame tube 122, opposite a stabilizer flame 154 which is placed on the diffusion wall 126.
  • This stabilizer 154 comprises the perforated diffuser 156 of FIG. 3 housed in the diffusion wall 126 and comprising a multiplicity of axial holes 158 regularly distributed circumferentially on the sole and a central axial orifice 160.
  • the surface of the axial holes 158 lying above the plane P is greater than the surface of the axial holes 158 lying below the plane P. In this way the asymmetry of the flows is compensated.
  • the circumferential rows of radial dilution orifices 166 are placed at a distance from the diffusion partition and close to the annular partition of the housing 1 12, being regularly distributed advantageously on either side of the free end region of the portion 144.
  • the flame tube 122 also includes an obstacle of symmetry of revolution. This obstacle can in particular be a ring 200 inserted in the flame tube 122 and of symmetry of revolution.
  • This ring 200 has a diameter less than the diameter of the flame tube 122.
  • the thickness of the ring is between a few millimeters and a few centimeters.
  • the combustion chamber 18 thus formed comprises an injection / mixing zone ZM where the hot compressed air is mixed with the fuel and the start of combustion, a primary zone ZP in which combustion takes place, and a dilution zone ZD where the mixing takes place between the burnt gases coming from the primary zone ZP and the hot compressed air coming from the dilution holes 166.
  • the ring 200 is positioned between the primary zone ZP and the dilution zone ZD. This ring 200 is positioned with respect to the dilution holes 166 so as to block the counter-current flows in the primary zone ZP, that is to the left of the dilution holes 166 in FIG. 3.
  • the flame tube 122 has a particular geometry which consists in having a narrowing zone or a sudden change takes place diameter of the flame tube 122.
  • This narrowing zone is positioned upstream of the dilution zone ZD and before the dilution holes 166 so as to block the countercurrent flows in the primary zone ZP, that is to say to the left of the dilution holes 166 in Figure 4.
  • the fuel here in liquid form, is injected by the injector 152 in the direction of the diffusion wall 126 to pass through the central orifice 160.
  • the hot compressed air coming from the inlet 132 is deflected by the deflector 134 according to arrow F1 in the first place by the frustoconical portion 146 to end up in the passage 148.
  • This air circulates in an axial direction starting from the admission 132 and throughout this passage 148 according to a single direction of circulation, here from left to right considering arrow F2 to arrive at the end passage 151. Arrived at this passage, the air has a direction of radial circulation according to arrow F3 then circulates in passage 150, in an axial direction opposite to that of passage 148 according to arrow F4.
  • the flow of air from the intake is directed towards the side opposite to the mixing zone before returning to this mixing zone by surrounding the tubular air bypass portion 144.
  • the velocities of arrival of the air in the space located in the tubular air bypass portion 144 are low and more symmetrical (symmetry of revolution) with respect to the central axis of the tubular bypass portion of air, which improves the efficiency of the dilution. Indeed, in each of the different rows of dilution holes 166, the air entry velocities in the dilution zone are close for all the holes;
  • the velocities of arrival in the zone located between diffusion partition 126 and the box 1 12 are very low due to the large section of the mixing zone ZM and the relatively low flow (part of the total flow leaves in the zone of ZD broadcast).
  • This zone behaves like a collector making it possible to have entry speeds into the main zone ZP via the diffusion wall which are normal to the wall and which are identical for each concentric row of holes. In this, the flame then generated in the primary zone ZP is located well around the axis of the tubular air bypass portion.
  • the flame tube 122 does not include a ring 200.
  • the latter does not include a deflector 134.
  • the modification according to the invention thus makes it possible to effectively re-center the flame, all this while modifying only very little the combustion chamber 18.

Abstract

La présente invention concerne une chambre de combustion (18) d'une turbine à gaz, notamment d'une turbine à gaz à cycle thermodynamique avec récupérateur, pour la production d'énergie, en particulier d'énergie électrique comportant un boîtier (112) et un tube à flamme (122). Selon l'invention, le tube à flamme (122) comprend au moins une rangée circonférentielle d'orifices de dilution radiaux (166) et la surface de passage des orifices de dilution radiaux (166) se trouvant au-dessus d'un plan P est supérieure à la surface de passage des trous de dilution radiaux (166) se trouvant en dessous du plan P, ledit plan P est le plan qui coupe le tube à flamme (122) dans la longueur et qui passe par le centre de celui-ci.

Description

CHAMBRE DE COMBUSTION POUR UNE TURBINE A GAZ DESTINEE A LA PRODUCTION D'ENERGIE NOTAMMENT D'ENERGIE ELECTRIQUE, COMPRENANT DES TROUS DE DILUTION ASYMETRIQUES DANS UN TUBE A FLAMME
La présente invention se rapporte à une chambre de combustion d'une turbine à gaz, notamment d'une turbine à gaz à cycle thermodynamique avec récupérateur, pour la production d'énergie, notamment d'énergie électrique.
Elle concerne plus particulièrement une microturbine avec récupérateur pour la production d'électricité à partir d'un combustible liquide ou gazeux.
Généralement, il est entendu par microturbine une turbine à gaz de petite puissance usuellement inférieure à 200KW.
Une turbine à gaz avec récupérateur comprend généralement au moins un étage de compression avec au moins un compresseur, une chambre de combustion (ou brûleur), au moins un étage de détente avec au moins une turbine de détente, un dispositif d'échange de chaleur (ou récupérateur) entre le compresseur et la chambre de combustion permettant de chauffer les gaz comprimés par le compresseur pour les envoyer avec une température élevée à la chambre de combustion, ce dispositif d'échange étant parcouru par les gaz chauds provenant de la turbine de détente.
Tel que cela est décrit dans les demandes de brevet français N° 3041742 et 3049044 du demandeur, la chambre de combustion comprend un boîtier au travers duquel circule l’air comprimé chaud provenant du récupérateur et un tube à flamme, situé à l’intérieur de ce boîtier, au sein duquel a lieu la combustion.
Le tube à flamme comprend une zone primaire qui reçoit une partie du débit d’air comprimé chaud total et dans laquelle se produit la combustion grâce notamment à des électrodes d’allumage, et une zone de dilution où a lieu le mélange entre les gaz brûlés issus de la zone primaire et des gaz comprimés chauds provenant de trous de dilution prévus sur le tube à flamme. La zone primaire comprend en outre un diffuseur perforé permettant le passage de l’air comprimé chaud ainsi que du combustible provenant d'un système d’injection de combustible (liquide ou gazeux) placé en amont du diffuseur.
Comme mieux décrit dans les demandes précitées, le tube à flamme porte un stabilisateur de flamme comprenant le diffuseur perforé, au moins un passage de recirculation de gaz de combustion et un tube de mélange.
L’air comprimé issu du compresseur (et éventuellement du récupérateur) entre par un tube situé au-dessus du boîtier et est distribué dans la chambre de combustion en deux flux. Un premier flux d'air est dirigé indirectement vers la zone primaire où a lieu la combustion et à cet effet il passe à travers le diffuseur perforé décrit ci-dessus. Un deuxième flux va entrer directement dans la zone de dilution du tube à flamme via les trous (ou ouvertures) de dilution répartis sur une ou plusieurs rangées et de diamètre identique pour obtenir, en sortie de la chambre de combustion, un mélange homogène en température et composition.
Cette chambre de combustion, bien que donnant satisfaction présente néanmoins des inconvénients non négligeables liés notamment à une dissymétrie de l’écoulement dans le tube à flamme de la chambre de combustion, c’est-à-dire dans la zone primaire et dans la zone de dilution.
Les inconvénients du non centrage de la flamme sont notamment :
- La formation de polluants (CO et HC notamment) en cas de contact des zones réactives avec les parois ou encore les électrodes ;
- La diminution de la stabilité de la combustion, pouvant conduire à des soufflages, notamment sur les transitoires ;
- La dégradation mécanique de la chambre et des électrodes, en cas de contact des zones les plus chaudes avec ces éléments ;
- Une moindre efficacité de la dilution avec des écarts de température importants dans le plan de sortie, pouvant conduire à une dégradation de la turbine à gaz. La dissymétrie dans la zone de dilution est liée au fait que le débit du deuxième flux d’air entrant dans la zone de dilution par les ouvertures de dilution est plus important en bas du tube à flamme qu’en haut de celui-ci, provoquant une dissymétrie dans la zone de dilution.
Dans la zone primaire, il a été remarqué d’une part que la présence d’électrodes dans le parcours du premier flux, modifie l’écoulement autour de l’accroche flamme et les recirculations, si bien que le taux de dilution par les gaz brûlés est différent entre les parties supérieures et inférieures de la zone de dilution. D’autre part l’écoulement entre avec une vitesse et un débit non homogènes dans la zone primaire. Ceci est causé par un mouvement de flux préférentiels dans la chambre. L’air comprimé entrant entoure le tube à flamme et génère un flux d’air en bas plus important qu’en haut. Il en résulte un écoulement se dirigeant vers la zone primaire plus important dans la partie inférieure. Le résultat est un débit d’entrée préférentiel par le bas du diffuseur perforé plus important, produisant une dissymétrie.
L’objectif de la présente invention est de compenser la dissymétrie afin d’uniformiser les flux entrant dans le tube à flamme en limitant notamment les différences de flux supérieures et inférieures, et ceci pour améliorer la localisation des zones chaudes, avoir une meilleure durabilité des pièces ainsi qu’une meilleure homogénéité de la température en sortie de la chambre de combustion, avoir une conception à moindre coût et permettre des combustions plus diluées et une baisse supplémentaire des émissions de CO et HC.
Pour ce faire un premier aspect de l’invention concerne une chambre de combustion d'une turbine à gaz, notamment d'une turbine à gaz à cycle thermodynamique avec récupérateur, pour la production d'énergie, en particulier d'énergie électrique, comportant un boîtier avec un moyen d'injection d'au moins un combustible et une admission d'air comprimé chaud, ledit boîtier logeant un tube à flamme et l’invention se caractérise en ce que le tube à flamme comprend au moins une rangée circonférentielle d'orifices de dilution radiaux et la surface de passage des orifices de dilution radiaux se trouvant au-dessus d’un plan P est supérieure à la surface de passage des trous de dilution radiaux se trouvant en dessous du plan P, ledit plan P est un plan qui coupe le tube à flamme dans la longueur, qui passe par le centre de celui-ci et orienté de telle sorte que les orifices de dilution radiaux se trouvant au-dessus du plan P se trouvent en vis-à- vis de l’admission d'air comprimé chaud.
Selon une caractéristique, ledit plan P est sensiblement parallèle à un plan théorique PT qui est le plan formé par une ouverture créée dans le boitier pour l’admission d'air comprimé chaud.
Selon une caractéristique, ledit tube à flamme comprend un diffuseur perforé pour le passage de l’air comprimé chaud et du carburant, ledit diffuseur perforé comprend des trous de diffusion axiaux répartis circulairement et la surface totale des trous axiaux se situant au-dessus du plan P est supérieure à la surface totale des trous axiaux se situant en dessous du plan P.
Selon une caractéristique, le tube à flamme comprend une zone primaire (ZP) et une zone de dilution (ZD) et la rangée circonférentielle d'orifices de dilution radiaux est positionnée au début de la zone de dilution (ZD).
Selon une caractéristique, le tube à flamme comporte une zone de rétrécissement qui est positionnée en amont desdites rangées circonférentielles d'orifices de dilution radiaux.
Selon une caractéristique, la zone de rétrécissement de la section dudit tube à flamme comprend un obstacle de symétrie de révolution.
Selon une caractéristique, l’obstacle de symétrie de révolution comprend un anneau positionné dans le tube à flamme.
Selon une variante, la zone de rétrécissement comprend un changement de diamètre du tube à flamme en amont de la zone de dilution (ZD).
Selon une caractéristique, la chambre de combustion comprend un déflecteur d'air disposé en regard de l'admission d'air comprimé chaud. Un deuxième aspect de l’invention comprend une turbine à gaz, notamment d'une turbine à gaz à cycle thermodynamique avec récupérateur, pour la production d'énergie, en particulier d'énergie électrique, comprenant au moins un étage de compression avec au moins un compresseur de gaz, un échangeur de chaleur, une chambre de combustion, et au moins un étage de détente avec au moins une turbine de détente, et la turbine à gaz se caractérise en ce qu'elle comprend une chambre de combustion telle que décrite précédemment.
D'autres caractéristiques et avantages du système selon l'invention, apparaîtront à la lecture de la description ci-après d'exemples non limitatifs de réalisation, en se référant aux figures annexées et décrites ci-après dans lesquelles :
- La figure 1 est un schéma illustrant une microturbine avec une chambre de combustion selon l'invention pour la production d'énergie, notamment d'énergie électrique ;
- La figure 2 est une vue en perspective d’un tube à flamme selon l’invention ;
- La figure 3 est une vue en coupe dans un plan P1 d’un diffuseur perforé selon l’invention ;
- La figure 4 est un une vue en coupe axiale d’un mode de réalisation d’une chambre de combustion.
Description détaillée de l'invention
D’une manière générale et non limitative et comme visible à la figure 1 , une microturbine 10 comprend au moins un étage de compression 12 avec au moins un compresseur de gaz 14, un échangeur de chaleur 16 (ou récupérateur), une chambre de combustion 18 (ou brûleur) alimentée en combustible par au moins un réservoir 20, au moins un étage de détente 22 avec au moins une turbine de détente 24 reliée par un arbre 26 au compresseur 14. Cette turbine comprend également un moyen de production d'énergie, ici électrique, qui comprend une génératrice électrique 28 placée avantageusement sur l'arbre 26. Dans un mode de réalisation d’une microturbine 10 visible sur la figure 1 , la génératrice électrique 28 est placée entre le compresseur et la turbine.
Bien entendu, cette génératrice électrique 28 peut être alternativement reliée à la turbine de détente 24 ou au compresseur 14 par un arbre autre que celui reliant la turbine et le compresseur 14.
De manière préférentielle, l'échangeur de chaleur 16 peut être un échangeur à flux croisés, par exemple de type tubes-calandre ou à plaques alternées avec deux entrées et deux sorties.
Le compresseur 14 comprend une entrée 30 de gaz frais contenant de l'oxygène, ici de l'air extérieur généralement à température ambiante, et une sortie d'air comprimé 32 aboutissant à une entrée d'air comprimé 34 de l'échangeur 16 par une ligne 36. La sortie d'air comprimé chaud 38 de cet échangeur est reliée par une ligne 40 à une admission d'air comprimé chaud 42 du brûleur 18. La sortie de gaz surchauffés 44 du brûleur est connectée par une ligne 45 à l'entrée 46 de la turbine dont la sortie 48 est reliée à une autre entrée 50 de l'échangeur par une ligne de gaz surchauffés détendus 52. L'échangeur 16 comprend également une sortie de gaz refroidis 54 pour être dirigés vers tous moyens d'évacuation et de traitement, comme une cheminée (non représentée).
L’invention concerne d’une manière générale et dans un premier temps des orifices (également appelés trous ou ouvertures) de dilution positionnés sur le tube à flamme 122 qui sont de diamètres différents contrairement à l’état de l’art décrit précédemment où les orifices de dilution sont tous de diamètre identique. Des orifices de dilution de diamètre différent permettent de limiter les différences entre les flux supérieures et inférieures et permettent d’uniformiser les flux entrant dans le tube à flamme 122.
En effet, en augmentant par exemple la surface de passage de l’air comprimé chaud dans une certaine partie du tube à flamme 122, on peut corriger l’asymétrie de l’écoulement en la compensant. A cet effet le tube à flamme 122 comprend d’une manière générale une zone primaire ZP dans laquelle se produit la combustion, et une zone de dilution ZD où a lieu le mélange entre les gaz brûlés issus de la zone primaire et l'air comprimé chaud. L’invention va consister notamment à diminuer ou à augmenter le diamètre desdits trous de dilution en fonction de l’orientation des flux entrant dans le tube à flamme 122 et notamment dans la zone de dilution (ZD). Généralement l’augmentation du diamètre des orifices de dilution se fait du côté où l’air chaud comprimé débouche sur le tube à flamme 122 et la diminution du diamètre des orifices de dilution se fait du côté opposé où l’air chaud comprimé débouche sur le tube à flamme.
La figure 2 représente de manière non limitative, un tube à flamme 122 dans un premier mode de réalisation contenu dans une chambre de combustion 18. Comme visible à la figure 2, le tube à flamme 122 comprend une rangée circonférentielle d'orifices de dilution radiaux 166 qui permettent le passage de l'air comprimé chaud dans la zone de dilution ZD. Ces orifices de dilution radiaux 166 sont de diamètre différent.
Dans un deuxième mode de réalisation du tube à flamme 122, visible à la figure 4, celui-ci comporte plusieurs rangées circonférentielle d'orifices de dilution radiaux 166 qui sont également de diamètre différent.
D’une manière générale l’invention concerne également et dans un second temps, des trous (également appelés orifices ou ouvertures) de diffusion axiaux 158 d’un diffuseur perforé 156. Comme visible sur la figure 3, de manière non limitative, qui représente un diffuseur perforé 156 selon une vue dans un plan P1 visible sur la figure 4, des électrodes 500 sont placées à proximité et au-dessus dudit diffuseur perforé 156. Comme expliqué précédemment, elles perturbent le flux qui traverse le diffuseur perforé 156.
Ce diffuseur perforé 156 comprend des trous de diffusion axiaux 158 de diamètre différent afin de compenser la dissymétrie du flux.
Dans un premier mode de réalisation de la chambre de combustion 18 illustrée de manière non limitative sur la figure 4, celle-ci comprend un boîtier 112 de forme cylindrique avec une paroi tubulaire 1 14 de section sensiblement circulaire. Ce boîtier est fermé à l'une de ses extrémités par une cloison porte- injecteur 1 16 et à l'autre de ses extrémités par une cloison annulaire 1 18 avec une ouverture 120 sensiblement circulaire.
Cette chambre de combustion comprend également un tube à flamme 122, également de forme sensiblement cylindrique, logé coaxialement dans le boîtier en étant de diamètre inférieur au boîtier mais de diamètre identique à celui de l'ouverture 120 de la cloison annulaire. Ce tube comprend une paroi 124 de section sensiblement circulaire, une extrémité fermée par une cloison de diffusion 126 en regard et à distance de la cloison porte-injecteur 1 16, et une extrémité ouverte 128 qui traverse la cloison annulaire en coopérant à étanchéité avec le diamètre intérieur de cette cloison annulaire pour former la sortie 130 de cette chambre de combustion.
Le boîtier 1 12 porte sur sa paroi périphérique 1 14, une admission d'air comprimé chaud 132. Dans le mode de réalisation présenté sur la figure 4 celle-ci est positionnée sensiblement à égale distance entre la cloison porte-injecteur et la cloison annulaire. Dans d’autres modes de réalisation non représentés mais néanmoins tout aussi fonctionnels, l’admission d'air comprimé chaud 132 peut être placé à n’importe quel endroit sur la paroi périphérique 114 du boîtier 1 12. De même celle-ci peut avoir n’importe quelle orientation et n’est pas forcément orthogonale au boîtier 1 12.
Dans ce mode de réalisation spécifique de la figure 4, la surface de passage des trous de dilution radiaux 166 faisant face à l’admission d'air comprimé chaud 132 est supérieure à la surface de passage des trous de dilution radiaux 166 se trouvant à l’opposé de l’admission d'air comprimé chaud 132.
Plus précisément, les trous de dilution radiaux 166 faisant face à l’admission d'air comprimé chaud 132 se trouvent au-dessus d’un plan P et les trous de dilution radiaux 166 se trouvant à l’opposé de l’admission d'air comprimé chaud 132 se trouvent en dessous du plan P.
Le plan P est défini comme le plan qui coupe le tube à flamme 122 dans la longueur et qui passe par le centre de celui-ci. Comme visible à la figure 4, ce plan P est également un plan de symétrie axiale de la chambre de combustion et il est horizontal dans le mode de réalisation décrit. Pour permettre de définir la limite des trous de dilution radiaux 166 se trouvant en dessous ou au-dessus, ce plan P est sensiblement parallèle à un plan théorique PT. Ce plan théorique PT est le plan formé par une ouverture 600 créée dans le boîtier 1 12 pour l’admission d'air comprimé chaud 132. Dans le cas où le boîtier serait cylindrique, le plan PT est tangent à l’ouverture au niveau des points les plus bas de l’ouverture 600 formée.
Dans un mode de réalisation préférentiel des trous de dilution radiaux 166, la surface de passage est 20% supérieure en haut du plan P par rapport au bas du plan P.
Dans le mode de réalisation de la figure 4, un déflecteur d'air 134 est placé entre les deux parois 1 14 et 124 et en regard de cette admission d'air pour faire circuler cet air chaud dans un seul sens axial à partir de cette admission.
Plus particulièrement, ce déflecteur 134 comporte un tube 136 ouvert à chacune de ses extrémités 138, 140. Ce tube comporte une portion tubulaire de fixation 142 et une portion tubulaire de dérivation de l'air 144, de section différente, reliées entre elles par une portion de jonction 146, ici de forme tronconique.
La section de la portion tubulaire de plus grande section 142, qui correspond à la portion tubulaire de fixation, a un diamètre extérieur sensiblement égal à celui du diamètre intérieur du boîtier 1 12 alors que la section de la portion tubulaire de plus petite section 144, qui correspond à la portion tubulaire de dérivation de l'air, a un diamètre extérieur qui est plus grand que le diamètre extérieur de la paroi 124 du tube à flamme 122 et plus petit que celui du diamètre intérieur de la paroi 1 14 du boîtier 1 12.
Ce déflecteur 134 est logé dans la chambre de combustion 18 d'une manière telle que la portion tubulaire de fixation 142 soit logée entre la cloison porte- injecteur 1 16 et la cloison de diffusion 126 en étant fixée par tous moyens connus (brasage, soudage,..) à la paroi du boîtier 1 12, que la portion tubulaire de dérivation de l'air 144 se trouve sensiblement en regard de l'admission d'air 132 et que la portion tronconique 146 soit placée à proximité de cette admission. Avantageusement, le diamètre de la portion tubulaire de dérivation de l'air est tel qu'il équivaut à la moyenne des diamètres du boîtier 1 12 et du tube à flamme 122. Ceci permet de créer des passages de circulation de l'air comprimé de même hauteur radiale R entre cette portion et respectivement le boîtier (passage 148) et le tube à flamme (passage 150).
De même, l'extrémité ouverte 140 de la portion tubulaire de dérivation de l'air 144 est située à distance de la cloison annulaire 1 18 de manière à ce que la distance entre cette extrémité ouverte et la cloison créée un passage de liaison 151 dont la dimension axiale D est au moins égale à la hauteur radiale R.
Ainsi, lors de l'admission de l'air chaud comprimé, ce dernier circule dans des passages sans variation dimensionnelle importante.
Sur le mode de réalisation de la figure 4, la cloison porte-injecteur porte un moyen d'injection d'au moins un combustible 152, ici sous la forme d'un injecteur coaxial au tube à flamme 122, en regard d'un stabilisateur de flamme 154 qui est placé sur la cloison de diffusion 126.
Ce stabilisateur 154 comprend le diffuseur perforé 156 de la figure 3 logé dans la cloison de diffusion 126 et comportant une multiplicité de trous axiaux 158 régulièrement réparties circonférentiellement sur la semelle et un orifice axial central 160.
Cette semelle se poursuit dans une direction axiale et à l'opposé de la cloison par des bras axiaux 162, ici trois bras disposés à 120° les uns des autres, et portant à leurs extrémités un tube mélangeur 164 d'étendue axiale limitée et de diamètre extérieur inférieur au diamètre intérieur du tube à flamme 122.
Dans la cadre de l’invention, la surface des trous axiaux 158 se situant au- dessus du plan P est supérieure à la surface des trous axiaux 158 se situant en dessous du plan P. De cette manière la dissymétrie des flux est compensée.
Les rangées circonférentielles d'orifices de dilution radiaux 166 sont placées à distance de la cloison de diffusion et à proximité de la cloison annulaire du boîtier 1 12 en étant reparties régulièrement avantageusement de part et d'autre de la région d'extrémité libre de la portion 144. Le tube à flamme 122 comprend aussi un obstacle de symétrie de révolution. Cet obstacle peut être notamment un anneau 200 inséré dans le tube à flamme 122 et de symétrie de révolution.
Cet anneau 200 a un diamètre inférieur au diamètre du tube à flamme 122. L’épaisseur de l’anneau est comprise entre quelques millimètres et quelques centimètres.
La chambre de combustion 18 ainsi constituée comprend une zone d'injection/mélange ZM où se réalise le mélange de l'air comprimé chaud avec le combustible et le début de la combustion, une zone primaire ZP dans laquelle se produit la combustion, et un zone de dilution ZD où a lieu le mélange entre les gaz brûlés issus de la zone primaire ZP et l'air comprimé chaud provenant des trous de dilution 166.
L’anneau 200 est positionné entre la zone primaire ZP et la zone de dilution ZD. Cet anneau 200 est positionné par rapport aux trous de dilution 166 de telle manière à bloquer les flux à contrecourant dans la zone primaire ZP, c’est-à-dire à gauche des trous de dilution 166 de la figure 3.
Dans un autre mode de réalisation du tube à flamme 122, non représenté, il n’y a pas d’anneau 200 mais le tube à flamme 122 a une géométrie particulière qui consiste à avoir une zone de rétrécissement ou s’opère un changement brutal de diamètre du tube à flamme 122. Cette zone de rétrécissement est positionnée en amont de la zone de dilution ZD et avant les trous de dilution 166 de manière à bloquer les flux à contrecourant dans la zone primaire ZP, c’est-à-dire à gauche des trous de dilution 166 de la figure 4.
En fonctionnement, le combustible, ici sous forme liquide, est injecté par l'injecteur 152 en direction de la cloison de diffusion 126 pour traverser l'orifice central 160. L'air comprimé chaud provenant de l'admission 132 est dévié par le déflecteur 134 selon la flèche F1 en premier lieu par la portion tronconique 146 pour aboutir dans le passage 148. Cet air circule dans un sens axial à partir de l'admission 132 et tout au long de ce passage 148 selon un seul sens de circulation, ici de la gauche vers la droite en considérant la flèche F2 pour arriver au passage d'extrémité 151. Arrivé à ce passage, l'air a un sens de circulation radiale selon la flèche F3 puis circule dans le passage 150, dans un sens axial opposé à celui du passage 148 selon la flèche F4. Une partie de l'air circulant dans le passage 150 pénètre alors dans le tube à flamme au travers des orifices de dilution (flèche F5) et l'autre partie cet air arrive dans la zone de mélange ZM (flèche F6). Cet air traverse ensuite les trous 158 de la cloison de diffusion 126 et est dirigé dans le tube mélangeur 164 dans lequel a lieu l’évaporation du combustible liquide, puis la combustion.
Grâce au déflecteur 134, l'écoulement de l'air issu de l’admission est dirigé vers le côté opposé à la zone de mélange avant de revenir vers cette zone de mélange en entourant la portion tubulaire de dérivation de l'air 144.
Ce faisant :
- les vitesses d’arrivée de l’air dans l’espace situé dans la portion tubulaire de dérivation de l'air 144 sont faibles et plus symétriques (symétrie de révolution) par rapport à l’axe central de la portion tubulaire de dérivation de l'air, ce qui permet une amélioration de l’efficacité de la dilution. En effet, dans chacune des différentes rangées de trous de dilution 166, les vitesses d’entrée de l’air dans la zone de dilution sont proches pour tous les trous ;
- la portion tubulaire de dérivation de l'air 144, qui est la pièce la plus chaude, est mieux isolée de l’extérieur par le double flux d’air ;
- les vitesses d’arrivée dans la zone située entre cloison de diffusion 126 et le boîtier 1 12 sont très faibles de par la grande section de la zone de mélange ZM et le débit relativement faible (une partie du débit total part dans la zone de diffusion ZD). Cette zone se comporte comme un collecteur permettant d’avoir des vitesses d’entrée dans la zone principale ZP via la cloison de diffusion qui sont normales à la cloison et qui sont identiques pour chaque rangée concentrique de trous. En cela, la flamme générée ensuite dans la zone primaire ZP se situe bien autour de l’axe de la portion tubulaire de dérivation de l'air.
Dans un deuxième mode de réalisation de la chambre de combustion 18, non représenté, le tube à flamme 122 ne comporte pas d’anneau 200. Dans un autre mode de réalisation encore, non représenté, de la chambre de combustion 18, celle-ci ne comprend pas de de déflecteur 134.
La modification selon l’invention permet ainsi de recentrer de manière efficace la flamme, tout ceci en ne modifiant que très peu la chambre de combustion 18.
Comme il va de soi, l’invention ne se limite pas aux seules formes de réalisation du dispositif décrit ci-dessus à titre d’exemple, elle embrasse au contraire toutes les variantes de réalisation.

Claims

REVENDICATIONS
1 ) Chambre de combustion (18) d'une turbine à gaz, notamment d'une turbine à gaz à cycle thermodynamique avec récupérateur, pour la production d'énergie, en particulier d'énergie électrique, comportant un boîtier (1 12) avec un moyen d'injection (152) d'au moins un combustible et une admission (132) d'air comprimé chaud, ledit boîtier logeant un tube à flamme (122) caractérisée en ce que le tube à flamme (122) comprend au moins une rangée circonférentielle d'orifices de dilution radiaux (166) et la surface de passage des orifices de dilution radiaux (166) se trouvant au-dessus d’un plan P est supérieure à la surface de passage des orifices de dilution radiaux (166) se trouvant en dessous du plan P, ledit plan P est le plan qui coupe le tube à flamme (122) dans la longueur et qui passe par le centre de celui-ci et orienté de telle sorte que les orifices de dilution radiaux (166) se trouvant au-dessus du plan P se trouvent en vis-à-vis de l’admission (132) d'air comprimé chaud.
2) Chambre de combustion (18) selon la revendication 1 , caractérisée en ce que ledit plan P est sensiblement parallèle à un plan théorique PT qui est le plan formé par une ouverture (600) créée dans le boîtier (1 12) pour l’admission (132) d'air comprimé chaud.
3) Chambre de combustion (18) selon l’une des revendications précédentes, caractérisée en ce que ledit tube à flamme (122) comprend un diffuseur perforé (156) pour le passage de l’air comprimé chaud et du carburant, ledit diffuseur perforé (156) comprend des trous de diffusion axiaux (158) répartis circulairement et la surface totale des trous axiaux (158) se situant au-dessus du plan P est supérieure à la surface totale des trous axiaux (158) se situant en dessous du plan P.
4) Chambre de combustion (18) selon l’une des revendications précédentes caractérisée, en ce que le tube à flamme (122) comprend une zone primaire (ZP) et une zone de dilution (ZD) et la rangée circonférentielle d'orifices de dilution radiaux (166) est positionnée au début de la zone de dilution (ZD). 5) Chambre de combustion (18) selon l’une des revendications précédentes, caractérisée en ce que le tube à flamme (122) comporte une zone de rétrécissement (200) qui est positionnée en amont desdites rangées circonférentielles d'orifices de dilution radiaux (166).
6) Chambre de combustion (18) selon la revendication 5, caractérisée en ce que la zone de rétrécissement (200) de la section dudit tube à flamme (122) comprend un obstacle de symétrie de révolution.
7) Chambre de combustion (18) selon la revendication précédente, caractérisée en ce que l’obstacle de symétrie de révolution comprend un anneau positionné dans le tube à flamme (122).
8) Chambre de combustion (18) selon la revendication 5, caractérisée en ce que la zone de rétrécissement comprend un changement de diamètre du tube à flamme (122) en amont de la zone de dilution (ZD).
9) Chambre de combustion (18) selon l’une des revendications précédentes, caractérisée en ce qu’elle comprend un déflecteur d'air (134) disposé en regard de l'admission (132) d'air comprimé chaud.
10) Turbine à gaz, notamment d'une turbine à gaz à cycle thermodynamique avec récupérateur, pour la production d'énergie, en particulier d'énergie électrique, comprenant au moins un étage de compression avec au moins un compresseur de gaz, un échangeur de chaleur, une chambre de combustion, et au moins un étage de détente avec au moins une turbine de détente, caractérisée en ce qu'elle comprend une chambre de combustion (18) selon l'une des revendications précédentes.
EP19734803.0A 2018-07-30 2019-07-01 Chambre de combustion pour une turbine a gaz destinee a la production d'energie notamment d'energie electrique, comprenant des trous de dilution asymetriques dans un tube a flamme Withdrawn EP3830485A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1857059A FR3084447B1 (fr) 2018-07-30 2018-07-30 Chambre de combustion pour une turbine a gaz destinee a la production d'energie notamment d'energie electrique, comprenant des trous de dilution asymetriques dans un tube a flamme.
PCT/EP2019/067574 WO2020025233A1 (fr) 2018-07-30 2019-07-01 Chambre de combustion pour une turbine a gaz destinee a la production d'energie notamment d'energie electrique, comprenant des trous de dilution asymetriques dans un tube a flamme

Publications (1)

Publication Number Publication Date
EP3830485A1 true EP3830485A1 (fr) 2021-06-09

Family

ID=63491799

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19734803.0A Withdrawn EP3830485A1 (fr) 2018-07-30 2019-07-01 Chambre de combustion pour une turbine a gaz destinee a la production d'energie notamment d'energie electrique, comprenant des trous de dilution asymetriques dans un tube a flamme

Country Status (3)

Country Link
EP (1) EP3830485A1 (fr)
FR (1) FR3084447B1 (fr)
WO (1) WO2020025233A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112035969B (zh) * 2020-08-10 2024-03-01 中国人民解放军海军工程大学 改进气改油火焰筒低工况熄火特性的方法及装置
FR3119868B1 (fr) 2021-02-15 2023-01-13 Ifp Energies Now Système de combustion avec une chambre de combustion tubulaire et un échangeur de chaleur annulaire

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3938324A (en) * 1974-12-12 1976-02-17 General Motors Corporation Premix combustor with flow constricting baffle between combustion and dilution zones
US4041699A (en) * 1975-12-29 1977-08-16 The Garrett Corporation High temperature gas turbine
JPH04268113A (ja) * 1991-02-21 1992-09-24 Nissan Motor Co Ltd 燃焼器
FR2972027B1 (fr) * 2011-02-25 2013-03-29 Snecma Chambre annulaire de combustion de turbomachine comprenant des orifices de dilution ameliores
FR2981733B1 (fr) * 2011-10-25 2013-12-27 Snecma Module de chambre de combustion de turbomachine d'aeronef et procede de conception de celui-ci
FR3041742B1 (fr) 2015-09-30 2017-11-17 Ifp Energies Now Chambre de combustion d'une turbine, notamment d'une turbine a cycle thermodynamique avec recuperateur, pour la production d'energie, en particulier d'energie electrique.
FR3049044B1 (fr) 2016-03-18 2019-12-20 IFP Energies Nouvelles Chambre de combustion d'une turbine, notamment d'une turbine a cycle thermodynamique avec recuperateur, pour la production d'energie, en particulier d'energie electrique.
FR3055403B1 (fr) * 2016-08-29 2021-01-22 Ifp Energies Now Chambre de combustion avec un deflecteur d'air comprime chaud, notamment pour une turbine destinee a la production d'energie, notamment d'energie electrique

Also Published As

Publication number Publication date
WO2020025233A1 (fr) 2020-02-06
FR3084447B1 (fr) 2020-07-31
FR3084447A1 (fr) 2020-01-31

Similar Documents

Publication Publication Date Title
EP0214003B1 (fr) Dispositif d'injection à bol elargi pour chambre de combustion de turbomachine
WO2002090831A1 (fr) Dispositif et procede d'injection d'un combustible liquide dans un flux d'air pour une chambre de combustion
EP0933594B1 (fr) Procédé de fonctionnement d'une chambre de combustion de turbine à gaz fonctionnant au carburant liquide
FR2770283A1 (fr) Chambre de combustion pour turbomachine
EP3356737B1 (fr) Turbine a cycle thermodynamique avec récupérateur, pour la production d'énergie électrique
EP3545176B1 (fr) Turbomachine, notamment turbogenerateur et echangeur pour une telle turbomachine
EP3430316B1 (fr) Chambre de combustion d'une turbine, notamment d'une turbine a cycle thermodynamique avec recuperateur, pour la production d'energie, en particulier d'energie electrique
FR2922629A1 (fr) Chambre de combustion a dilution optimisee et turbomachine en etant munie
EP3830485A1 (fr) Chambre de combustion pour une turbine a gaz destinee a la production d'energie notamment d'energie electrique, comprenant des trous de dilution asymetriques dans un tube a flamme
EP3504481B1 (fr) Chambre de combustion avec un déflecteur d'air comprimé chaud, notamment pour une turbine destinée à la production d'énergie, notamment d'énergie électrique
FR3001497A1 (fr) Ensemble de combustion de turbomachine comprenant un circuit d alimentation de carburant ameliore
FR2922630A1 (fr) Paroi de chambre de combustion a dilution et refroidissement optimises,chambre de combustion et turbomachine en etant munies
EP3830486A1 (fr) Chambre de combustion comprenant une section de passage d'un tube a flamme modifiee notamment pour une turbine destinee a la production d'energie, notamment d'energie electrique
FR3084448A1 (fr) Chambre de combustion pour une turbine a gaz destinee a la production d'energie notamment d'energie electrique, comprenant des trous de dilution orientes dans un tube a flamme.
FR2946413A1 (fr) Chambre de combustion de moteur a turbine a gaz avec element de paroi multi-perfore
EP3887721A1 (fr) Injecteur de carburant avec moyens de refroidissement
WO2018134501A2 (fr) Chambre de combustion de turbomachine a haute permeabilite
FR3071908A1 (fr) Chambre de combustion de turbomachine a geometrie de cheminee fixe
EP3504480B1 (fr) Turbine modulaire avec echangeur de chaleur pour la production d'energie electrique
EP4179256A1 (fr) Chambre annulaire de combustion pour une turbomachine d'aeronef
FR3108966A1 (fr) Chambre de combustion comportant une paroi comprenant un conduit de refroidissement entre une première cloison et une deuxième cloison
EP0549416A1 (fr) Brûleur perfectionné à grille ainsi qu'installation de chauffage équipée d'un tel brûleur
BE484274A (fr)
FR2780488A1 (fr) Amelioration aux appareils a combustion comportant plusieurs conduits de transport de comburant

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210301

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220222

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20220705