WO2020025234A1 - Chambre de combustion comprenant une section de passage d'un tube a flamme modifiee notamment pour une turbine destinee a la production d'energie, notamment d'energie electrique - Google Patents

Chambre de combustion comprenant une section de passage d'un tube a flamme modifiee notamment pour une turbine destinee a la production d'energie, notamment d'energie electrique Download PDF

Info

Publication number
WO2020025234A1
WO2020025234A1 PCT/EP2019/067601 EP2019067601W WO2020025234A1 WO 2020025234 A1 WO2020025234 A1 WO 2020025234A1 EP 2019067601 W EP2019067601 W EP 2019067601W WO 2020025234 A1 WO2020025234 A1 WO 2020025234A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion chamber
zone
flame tube
dilution
turbine
Prior art date
Application number
PCT/EP2019/067601
Other languages
English (en)
Inventor
Jean-Baptiste Michel
Julien Thiriot
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Priority to EP19734807.1A priority Critical patent/EP3830486A1/fr
Publication of WO2020025234A1 publication Critical patent/WO2020025234A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/16Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration with devices inside the flame tube or the combustion chamber to influence the air or gas flow
    • F23R3/18Flame stabilising means, e.g. flame holders for after-burners of jet-propulsion plants

Definitions

  • the present invention relates to a combustion chamber of a turbine, in particular of a thermodynamic cycle turbine with recuperator, for the production of energy, in particular electrical energy.
  • It relates more particularly to a microturbine with recuperator for the production of electricity from a liquid or gaseous fuel.
  • microturbine a turbine of small power usually less than 200KW.
  • a turbine with recuperator generally comprises at least one compression stage with at least one compressor, a combustion chamber (or burner), at least one expansion stage with at least one expansion turbine, a heat exchange device (or recuperator) between the compressor and the combustion chamber making it possible to heat the gases compressed by the compressor to send them with a high temperature to the combustion chamber, this exchange device being traversed by the hot gases coming from the turbine.
  • the combustion chamber comprises a housing through which circulates the hot compressed air from the recuperator and a flame tube, located inside this box, in which combustion takes place.
  • the flame tube includes a primary zone which receives part of the total hot compressed air flow and in which combustion takes place and a dilution zone where the mixture between the burnt gases from the primary zone and the compressed gases takes place. hot from dilution holes on the tube.
  • the primary zone also includes a perforated diffuser allowing the passage of hot compressed air as well as fuel coming from a fuel injection system (liquid or gaseous) placed upstream of the diffuser.
  • the flame tube carries a flame stabilizer comprising the perforated diffuser, at least one flue gas recirculation passage and a mixing tube.
  • the compressed air is distributed in this combustion chamber in two flows via the dilution holes.
  • the first air flow is directed to the primary zone where combustion takes place while the second flow will enter directly into the dilution zone via the dilution holes to obtain, at the outlet of the combustion chamber, a homogeneous mixture. temperature and composition.
  • the asymmetry of the entry of compressed air into the combustion chamber with respect to the flame tube leads to a significant asymmetry in the flow of air and burnt gases. This can lead to licking of the wall by hot gases from the combustion of fuel in the primary zone. These gases can have very high temperatures (more than 1500 ⁇ ) can damage the wall of the flame tube.
  • the efficiency of the dilution zone is reduced and can lead to significant temperature heterogeneities at the outlet of the combustion chamber, which could reduce the life of the turbine.
  • French patent application No. 3055403 of the applicant relates to a combustion chamber of a turbine, in particular a thermodynamic cycle turbine with recuperator, for the production of energy, in particular electrical energy, comprising a housing with means for injecting at least one fuel and an inlet for hot compressed air, said housing housing a flame tube with a perforated diffuser for the passage of hot compressed air and fuel, and a flame stabilizer and the chamber comprises an air deflector disposed opposite the intake of hot compressed air for circulate this hot air in one axial direction from this hot air intake.
  • This configuration thus makes it possible to have a combustion chamber having an improvement in the location of the hot zones by allowing better durability of the parts as well as a better homogeneity of the temperature leaving the combustion chamber and a design at a lower cost.
  • FIG. 2a schematically represents the distribution of the flows in a flame tube of the prior art as described above and we thus have:
  • FIG. 2b which is a simulation of the flow of FIG. 2a, makes it possible to note that the flow against the current generated by the dilution induces an instability of the positioning and a phenomenon of flapping at the level of the holes of dilution represented by the reference 166. This is also due to the fact that the recirculations around the flame catch convect a significant proportion of fresh gas coming from the dilution zone.
  • the objective of the present invention is to improve the two preceding points and in particular aims to improve the stability of combustion and the disappearance of the beat phenomenon.
  • the invention also aims to have a greater recirculation by burnt gases in order to allow more dilute combustions and a further reduction in NOx emissions.
  • a first aspect of the invention relates to a combustion chamber of a turbine, in particular of a thermodynamic cycle turbine with recuperator, for the production of energy, in particular electrical energy, comprising a housing with a means for injecting at least one fuel and one inlet for hot compressed air, said housing housing a flame tube with a perforated diffuser for the passage of hot compressed air and fuel and a flame stabilizer and the
  • the flame tube comprises a region for narrowing the cross section of said flame tube.
  • the flame tube comprises a primary zone and a dilution zone and said narrowing zone is positioned between the primary zone and the dilution zone.
  • the flame tube has circumferential rows of radial dilution orifices positioned at the start of the dilution zone and said narrowing zone is positioned upstream (in the general direction of the burnt gases) of said rows circumferential radial dilution holes.
  • the narrowing zone of the section of said flame tube is formed by an obstacle of symmetry of revolution.
  • the obstacle of symmetry of revolution comprises a ring positioned in the flame tube.
  • the narrowing zone comprises a change in diameter of the flame tube upstream of the dilution zone.
  • the combustion chamber comprises an air deflector arranged opposite the intake of compressed hot air.
  • a second aspect of the invention relates to a turbine, in particular a thermodynamic cycle turbine with recuperator, for the production of energy, in particular electrical energy, comprising at least one compression stage with at least one gas compressor , a heat exchanger, a combustion chamber, and at least one expansion stage with at least one expansion turbine connected by a shaft to the compressor, and the invention is characterized in that it comprises a combustion chamber such that described above.
  • FIG. 1 is a diagram illustrating a turbine with a combustion chamber according to the invention for the production of energy, in particular electrical energy,
  • FIG. 2a is an axial sectional view showing the distribution of flows in a state-of-the-art combustion chamber
  • Figure 2b is an axial sectional view showing the beating of a flame in a state of the art combustion chamber
  • Figure 3 is an axial sectional view of a combustion chamber in a first embodiment according to the invention.
  • Figure 4 is an axial sectional view of a combustion chamber in a second embodiment according to the invention
  • Figure 5 is an axial sectional view showing the flame in the first embodiment of the invention.
  • a turbine 10 comprises at least one compression stage 12 with at least one gas compressor 14, a heat exchanger 16 (or recuperator), a combustion chamber 18 (or burner) supplied with fuel by at least one tank 20, at least one expansion stage 22 with at least one expansion turbine 24 connected by a shaft 26 to the compressor.
  • This turbine also comprises a means of producing energy, here electric, which comprises an electric generator 28 advantageously placed on the shaft 26 between the compressor and the turbine.
  • this generator can be alternately connected to the expansion turbine or to the compressor by a shaft other than that connecting the turbine and the compressor.
  • the heat exchanger 16 can be a cross-flow exchanger, for example of the shell-tube or alternating plate type with two inlets and two outlets.
  • the compressor 14 comprises an inlet 30 for fresh gas containing oxygen, here outside air generally at room temperature, and an outlet for compressed air 32 leading to an inlet for compressed air 34 of the exchanger 16 by a line 36.
  • the hot compressed air outlet 38 of this exchanger is connected by a line 40 to a hot compressed air inlet 42 of the burner 18.
  • the superheated gas outlet 44 of the burner is connected by a line 45 to the 'inlet 46 of the turbine, the outlet 48 of which is connected to another inlet 50 of the exchanger by a line of expanded superheated gases 52.
  • the exchanger 16 also includes an outlet of cooled gases 54 to be directed to all means of evacuation and treatment, such as a chimney (not shown).
  • the combustion chamber 18 illustrated in Figure 3 comprises a housing 1 12 of cylindrical shape with a tubular wall 1 14 of substantially circular section.
  • This housing is closed at one of its ends by an injector-carrying partition 116 and at the other of its ends by an annular partition 118 with an opening 120 which is substantially circular.
  • This combustion chamber also comprises a flame tube 122, also of substantially cylindrical shape, housed coaxially in the housing being of diameter smaller than the housing but of diameter identical to that of the opening 120 of the annular partition.
  • This tube comprises a wall 124 of substantially circular section, one end closed by a diffusion partition 126 facing and at a distance from the injector partition 11 16, and an open end 128 which passes through the annular partition by cooperating with sealing with the internal diameter of this annular partition to form the outlet 130 of this combustion chamber.
  • the housing carries on its peripheral wall 114, substantially at equal distance between the injector-carrying partition and the annular partition, a hot compressed air intake 132.
  • An air deflector 134 is placed between the two walls 1 14 and 124 and opposite this air intake to circulate this hot air in a single axial direction from this intake.
  • this deflector comprises a tube 136 open at each of its ends 138, 140.
  • This tube comprises a tubular fixing portion 142 and a tubular air diversion portion 144, of different section, connected to each other by a portion junction 146, here of frustoconical shape.
  • the section of the tubular portion of larger section 142 which corresponds to the tubular fixing portion, has an outside diameter substantially equal to that of the inside diameter of the housing 1 12 while the section of the tubular portion of smaller section 144, which corresponds to the tubular air bypass portion, has a outside diameter which is larger than the outside diameter of the wall 124 of the flame tube 122 and smaller than that of the inside diameter of the wall 1 14 of the housing 1 12.
  • This deflector is housed in the combustion chamber in such a way that the tubular fixing portion 142 is housed between the injector bulkhead 1 16 and the diffusion bulkhead 126 by being fixed by any known means (soldering, welding ,. .) at the wall of the housing, that the tubular air bypass portion 144 is located substantially opposite the air intake 132 and that the frustoconical portion 146 is placed near this intake.
  • the diameter of the tubular air bypass portion is such that it is equivalent to the average of the diameters of the housing 12 and of the flame tube 122. This makes it possible to create circulation passages for the compressed air of same radial height R between this portion and respectively the housing (passage 148) and the flame tube (passage 150).
  • the open end 140 of the tubular air bypass portion 144 is located at a distance from the annular partition 11 so that the distance between this open end and the partition creates a connecting passage 151 of which the axial dimension D is at least equal to the radial height R.
  • the injector-carrying partition carries a means for injecting at least one fuel 152, here in the form of an injector coaxial with the flame tube, opposite a flame stabilizer 154 which is placed on the bulkhead 126.
  • This stabilizer comprises a perforated diffuser 156 housed in the diffusion wall 126 and comprising a multiplicity of axial holes 158 regularly distributed circumferentially on the sole and a central axial orifice 160.
  • This sole continues in an axial direction and opposite to the partition by axial arms 162, here three arms arranged at 120 ° from each other, and carrying at their ends of a mixing tube 164 of limited axial extent and of outside diameter smaller than the inside diameter of the flame tube 122.
  • the flame tube 122 also comprises circumferential rows of radial dilution orifices 166 placed at a distance from the diffusion partition and near the annular partition of the housing, being regularly distributed advantageously on either side of the region of free end of the portion 144.
  • the flame tube 122 comprises a zone for narrowing the section of said flame tube.
  • the narrowing zone is formed by an obstacle of symmetry of revolution.
  • This obstacle may in particular be a ring 200 inserted in the flame tube and of symmetry of revolution.
  • This ring 200 has a diameter less than the diameter of the flame tube 122, so that it can be inserted into the flame tube 122.
  • the term “diameter” means the largest diameter of the ring, that is to say the external diameter taken on the periphery thereof.
  • the thickness of the ring 200 is preferably between a few millimeters and a few centimeters.
  • the combustion chamber thus formed comprises an injection / mixing zone ZM where the hot compressed air is mixed with the fuel and the start of combustion, a primary zone ZP in which combustion takes place, and a zone dilution ZD where the mixing takes place between the burnt gases from the primary zone and the hot compressed air from the dilution holes.
  • the narrowing zone (the ring 200) is positioned between the primary zone and the dilution zone.
  • This ring is positioned relative to the dilution holes 166 in such a way as to block the counter-current flows in the primary zone, that is to the left of the dilution holes 166 of FIG. 3 (upstream of the dilution holes , according to the general direction of flow of the burnt gases).
  • the tube with flame has a particular geometry which consists in having a shrinking zone 201 where there is a sudden change in diameter of the flame tube.
  • This narrowing zone 201 is positioned upstream of the dilution zone and before the dilution holes so as to block the counter-current flows in the primary zone, that is to say to the left of the dilution holes 166 in the figure. 4.
  • the primary zone ZP has an external diameter which is strictly greater than the external diameter of the dilution zone ZD.
  • the fuel here in liquid form, is injected by the injector 152 in the direction of the diffusion wall 126 to pass through the central orifice 160.
  • the hot compressed air coming from the inlet 132 is deflected by the deflector 134 according to arrow F1 in the first place by the frustoconical portion 146 to end up in the passage 148.
  • This air circulates in an axial direction starting from the admission 132 and throughout this passage 148 according to a single direction of circulation, here from left to right considering arrow F2 to arrive at the end passage 151. Arrived at this passage, the air has a radial direction of flow according to arrow F3 then circulates in passage 150, in an opposite axial direction to that of passage 148 according to arrow F4.
  • the flow of air from the intake is directed towards the side opposite to the mixing zone before returning to this mixing zone by surrounding the tubular air bypass portion 144.
  • the velocities of arrival of the air in the space located in the tubular air bypass portion 144 are low and more symmetrical (symmetry of revolution) with respect to the central axis of the tubular bypass portion of air, which improves the efficiency of the dilution. Indeed, in each of the different rows of dilution holes 166, the speeds of entry of the air into the dilution zone are close for all the holes;
  • the velocities of arrival in the zone located between diffusion partition 126 and the box 1 12 are very low due to the large section of the mixing zone ZM and the relatively low flow (part of the total flow leaves in the zone of ZD broadcast).
  • This zone behaves like a collector making it possible to have entry speeds into the main zone ZP via the diffusion wall which are normal to the wall and which are identical for each concentric row of holes. In this, the flame then generated in the primary zone ZP is located well around the axis of the tubular air bypass portion.
  • the recirculations do not entail fresh gas from the dilution zone in the recirculations in the primary zone.
  • the recirculation rate proportion of burnt gases on fresh gases
  • FIG. 5 which is a simulation of a flow in the context of the first embodiment of the combustion chamber 18, the counter-current flow generated by the dilution at the dilution holes 166 and obtained on the state-of-the-art configuration of FIG. 2b is no longer present. This results in a much more stable flame positioning and a very strong attenuation, even a disappearance of the beat phenomenon.
  • the invention is not limited to the sole embodiment of the device described above by way of example, on the contrary it embraces all the variant embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

La présente invention concerne une chambre de combustion (18) d'une turbine, notamment d'une turbine à cycle thermodynamique avec récupérateur, pour la production d'énergie, en particulier d'énergie électrique, comportant un boîtier (112) avec un moyen d'injection (152) d'au moins un combustible et une admission (132) d'air comprimé chaud et du carburant, un stabilisateur de flamme (154). Selon l'invention, le tube à flamme (122) comprend une zone de rétrécissement (200, 201) de la section dudit tube à flamme (122).

Description

CHAMBRE DE COMBUSTION COMPRENANT UNE SECTION DE PASSAGE D’UN TUBE A FLAMME MODIFIEE NOTAMMENT POUR UNE TURBINE DESTINEE A LA PRODUCTION D'ENERGIE, NOTAMMENT D'ENERGIE ELECTRIQUE
La présente invention se rapporte à une chambre de combustion d'une turbine, notamment d'une turbine à cycle thermodynamique avec récupérateur, pour la production d'énergie, notamment d'énergie électrique.
Elle concerne plus particulièrement une microturbine avec récupérateur pour la production d'électricité à partir d'un combustible liquide ou gazeux.
Généralement, il est entendu par microturbine une turbine de petite puissance usuellement inférieure à 200KW.
Une turbine avec récupérateur comprend généralement au moins un étage de compression avec au moins un compresseur, une chambre de combustion (ou brûleur), au moins un étage de détente avec au moins une turbine de détente, un dispositif d'échange de chaleur (ou récupérateur) entre le compresseur et la chambre de combustion permettant de chauffer les gaz comprimés par le compresseur pour les envoyer avec une température élevée à la chambre de combustion, ce dispositif d'échange étant parcouru par les gaz chauds provenant de la turbine.
Tel que cela est décrit dans la demande de brevet français N° 3041742 et 3049044 du demandeur, la chambre de combustion comprend un boîtier au travers duquel circule l’air comprimé chaud provenant du récupérateur et un tube à flamme, situé à l’intérieur de ce boîtier, au sein duquel a lieu la combustion.
Le tube à flamme comprend une zone primaire qui reçoit une partie du débit d’air comprimé chaud total et dans laquelle se produit la combustion et une zone de dilution où a lieu le mélange entre les gaz brûlés issus de la zone primaire et des gaz comprimés chauds provenant de trous de dilution prévus sur le tube. La zone primaire comprend en outre un diffuseur perforé permettant le passage de l’air comprimé chaud ainsi que du combustible provenant d'un système d’injection de combustible (liquide ou gazeux) placé en amont du diffuseur.
Comme mieux décrit dans les demandes précitées, le tube à flamme porte un stabilisateur de flamme comprenant le diffuseur perforé, au moins un passage de recirculation de gaz de combustion et un tube de mélange.
Cette chambre de combustion, bien que donnant satisfaction présente néanmoins des inconvénients non négligeables.
En effet, l’air comprimé est distribué dans cette chambre de combustion en deux flux via les trous de dilution. Le premier flux d'air est dirigé vers la zone primaire où a lieu la combustion alors que le deuxième flux va entrer directement dans la zone de dilution via les trous de dilution pour obtenir, en sortie de la chambre de combustion, un mélange homogène en température et composition.
De ce fait, l’asymétrie de l’entrée d’air comprimé dans la chambre de combustion par rapport au tube à flamme conduit à une asymétrie importante de l’écoulement d’air et de gaz brûlés. Ceci peut conduire à un léchage de la paroi par des gaz chauds issus de la combustion du carburant dans la zone primaire. Ces gaz pouvant avoir des températures très élevées (plus de 1500Ό) peuvent endommager la paroi du tube à flamme.
Ceci entraîne une forte limitation de la durée de vie du tube à flamme, sauf à le réaliser dans des matériaux très onéreux.
De plus, si la flamme n’est pas correctement située dans le tube à flamme, l’efficacité de la zone de dilution est amoindrie et peut conduire à des hétérogénéités de température importantes en sortie de la chambre de combustion, ce qui pourrait réduire la durée de vie de la turbine.
En outre, il peut se produire des combustions incomplètes avec des risques d’extinction et de production de polluants.
Afin de répondre à ces inconvénients, la demande de brevet français N° 3055403 du demandeur concerne une chambre de co mbustion d'une turbine, notamment d'une turbine à cycle thermodynamique avec récupérateur, pour la production d'énergie, en particulier d'énergie électrique, comportant un boîtier avec un moyen d'injection d'au moins un combustible et une admission d'air comprimé chaud, ledit boîtier logeant un tube à flamme avec un diffuseur perforé pour le passage de l’air comprimé chaud et du carburant, et un stabilisateur de flamme et la chambre comprend un déflecteur d'air disposé en regard de l'admission d'air chaud comprimé pour faire circuler cet air chaud dans un seul sens axial à partir de cette admission d'air chaud.
Cette configuration permet ainsi d’avoir une chambre de combustion présentant une amélioration de la localisation des zones chaudes en permettant une meilleure durabilité des pièces ainsi qu’une meilleure homogénéité de la température en sortie de la chambre de combustion et une conception à moindre coût.
Cependant, il subsiste des inconvénients notamment liés à un écoulement à contre-courant dans le tube à flamme qui génère des instabilités de type battement avec le flux de gaz brûlés. Ces instabilités peuvent avoir, suivant les conditions, les conséquences suivantes :
• un léchage de gaz brûlés à très haute température contre les parois qui peut être destructif ;
• une déstabilisation de la combustion en zone primaire, en particulier lorsque la flamme est stabilisée en aval de l’accroche flamme.
La figure 2a représente de façon schématique la répartition des flux dans un tube à flamme de l’art antérieur tel que décrit précédemment et on a ainsi :
Les gaz brûlés (Gb) issus de la combustion en zone primaire ;
L’air (A) entrant directement dans la chambre via les trous de dilution ;
Le mélange (MG) de gaz dirigé vers la sortie ;
L’écoulement (E) à contre-courant généré par la dilution ;
Les recirculations (R) de gaz brûlés autour de l’accroche flamme.
La figure 2b qui est une simulation de l’écoulement de la figure 2a, permet de remarquer que l’écoulement à contre-courant généré par la dilution induit une instabilité du positionnement et un phénomène de battement au niveau des trous de dilution représentés par la référence 166. Ceci est également dû au fait que les recirculations autour de l’accroche flamme convectent une proportion non négligeable de gaz frais issus de la zone de dilution.
L’objectif de la présente invention est d’améliorer les deux points précédents et notamment vise l’amélioration de la stabilité de la combustion et la disparition du phénomène de battement. L’invention vise également à avoir une recirculation par des gaz brûlés plus importante afin de permettre des combustions plus diluées et une baisse supplémentaire des émissions de NOx.
Pour ce faire un premier aspect de l’invention concerne une chambre de combustion d'une turbine, notamment d'une turbine à cycle thermodynamique avec récupérateur, pour la production d'énergie, en particulier d'énergie électrique, comportant un boîtier avec un moyen d'injection d'au moins un combustible et une admission d'air comprimé chaud, ledit boîtier logeant un tube à flamme avec un diffuseur perforé pour le passage de l’air comprimé chaud et du carburant et un stabilisateur de flamme et l’invention se caractérise en ce que le tube à flamme comprend une zone de rétrécissement de la section dudit tube à flamme.
Selon une caractéristique de l’invention, le tube à flamme comprend une zone primaire et une zone de dilution et ladite zone de rétrécissement est positionnée entre la zone primaire et la zone de dilution.
Selon une caractéristique de l’invention, le tube à flamme comporte des rangées circonférentielles d'orifices de dilution radiaux positionnées au début de la zone de dilution et ladite zone de rétrécissement est positionnée en amont (selon la direction générale des gaz brûlés) desdites rangées circonférentielles d'orifices de dilution radiaux.
Selon une caractéristique de l’invention, la zone de rétrécissement de la section dudit tube à flamme est formée par un obstacle de symétrie de révolution. Selon une caractéristique de l’invention, l’obstacle de symétrie de révolution comprend un anneau positionné dans le tube à flamme.
Selon une caractéristique de l’invention, la zone de rétrécissement comporte un changement de diamètre du tube à flamme en amont de la zone de dilution.
Selon une caractéristique de l’invention, la chambre de combustion comprend un déflecteur d'air disposé en regard de l'admission d'air chaud comprimé.
Un deuxième aspect de l’invention concerne une turbine, notamment d'une turbine à cycle thermodynamique avec récupérateur, pour la production d'énergie, en particulier d'énergie électrique, comprenant au moins un étage de compression avec au moins un compresseur de gaz, un échangeur de chaleur, une chambre de combustion, et au moins un étage de détente avec au moins une turbine de détente reliée par un arbre au compresseur, et l’invention se caractérise en ce qu'elle comprend une chambre de combustion telle que décrite ci-dessus.
D'autres caractéristiques et avantages du système selon l'invention, apparaîtront à la lecture de la description ci-après d'exemples non limitatifs de réalisation, en se référant aux figures annexées et décrites ci-après dans lesquelles :
- la figure 1 est un schéma illustrant une turbine avec une chambre de combustion selon l'invention pour la production d'énergie, notamment d'énergie électrique,
- la figure 2a, déjà décrite, est une vue en coupe axiale montrant la répartition des flux dans une chambre de combustion de l’état de l’art ;
La figure 2b, déjà décrite, est une vue en coupe axiale montrant les battements d’une flamme dans une chambre de combustion de l’état de l’art ;
La figure 3 est une vue en coupe axiale d’une chambre de combustion dans un premier mode de réalisation selon l’invention ;
La figure 4 est un une vue en coupe axiale d’une chambre de combustion dans un deuxième mode de réalisation selon l’invention ; La figure 5 est un une vue en coupe axiale montrant la flamme dans le premier mode de réalisation de l’invention.
Description détaillée de l'invention
D’une manière générale et comme visible à la figure 1 , une turbine 10 comprend au moins un étage de compression 12 avec au moins un compresseur de gaz 14, un échangeur de chaleur 16 (ou récupérateur), une chambre de combustion 18 (ou brûleur) alimentée en combustible par au moins un réservoir 20, au moins un étage de détente 22 avec au moins une turbine de détente 24 reliée par un arbre 26 au compresseur. Cette turbine comprend également un moyen de production d'énergie, ici électrique, qui comprend une génératrice électrique 28 placée avantageusement sur l'arbre 26 entre le compresseur et la turbine.
Bien entendu, cette génératrice peut être alternativement reliée à la turbine de détente ou au compresseur par un arbre autre que celui reliant la turbine et le compresseur.
De manière préférentielle, l'échangeur de chaleur 16 peut être un échangeur à flux croisés, par exemple de type tubes-calandre ou à plaques alternées avec deux entrées et deux sorties.
Le compresseur 14 comprend une entrée 30 de gaz frais contenant de l'oxygène, ici de l'air extérieur généralement à température ambiante, et une sortie d'air comprimé 32 aboutissant à une entrée d'air comprimé 34 de l'échangeur 16 par une ligne 36. La sortie d'air comprimé chaud 38 de cet échangeur est reliée par une ligne 40 à une admission d'air comprimé chaud 42 du brûleur 18. La sortie de gaz surchauffés 44 du brûleur est connectée par une ligne 45 à l'entrée 46 de la turbine dont la sortie 48 est reliée à une autre entrée 50 de l'échangeur par une ligne de gaz surchauffés détendus 52. L'échangeur 16 comprend également une sortie de gaz refroidis 54 pour être dirigés vers tous moyens d'évacuation et de traitement, comme une cheminée (non représentée). Dans un premier mode de réalisation de la chambre de combustion 18 illustrée sur la figure 3, de manière non limitative, celle-ci comprend un boîtier 1 12 de forme cylindrique avec une paroi tubulaire 1 14 de section sensiblement circulaire. Ce boîtier est fermé à l'une de ses extrémités par une cloison porte-injecteur 1 16 et à l'autre de ses extrémités par une cloison annulaire 118 avec une ouverture 120 sensiblement circulaire.
Cette chambre de combustion comprend également un tube à flamme 122, également de forme sensiblement cylindrique, logé coaxialement dans le boîtier en étant de diamètre inférieur au boîtier mais de diamètre identique à celui de l'ouverture 120 de la cloison annulaire. Ce tube comprend une paroi 124 de section sensiblement circulaire, une extrémité fermée par une cloison de diffusion 126 en regard et à distance de la cloison porte-injecteur 1 16, et une extrémité ouverte 128 qui traverse la cloison annulaire en coopérant à étanchéité avec le diamètre intérieur de cette cloison annulaire pour former la sortie 130 de cette chambre de combustion.
Le boîtier porte sur sa paroi périphérique 1 14, sensiblement à égale distance entre la cloison porte-injecteur et la cloison annulaire, une admission d'air comprimé chaud 132.
Un déflecteur d'air 134 est placé entre les deux parois 1 14 et 124 et en regard de cette admission d'air pour faire circuler cet air chaud dans un seul sens axial à partir de cette admission.
Plus particulièrement, ce déflecteur comporte un tube 136 ouvert à chacune de ses extrémités 138, 140. Ce tube comporte une portion tubulaire de fixation 142 et une portion tubulaire de dérivation de l'air 144, de section différente, reliées entre elles par une portion de jonction 146, ici de forme tronconique.
La section de la portion tubulaire de plus grande section 142, qui correspond à la portion tubulaire de fixation, a un diamètre extérieur sensiblement égal à celui du diamètre intérieur du boîtier 1 12 alors que la section de la portion tubulaire de plus petite section 144, qui correspond à la portion tubulaire de dérivation de l'air, a un diamètre extérieur qui est plus grand que le diamètre extérieur de la paroi 124 du tube à flamme 122 et plus petit que celui du diamètre intérieur de la paroi 1 14 du boîtier 1 12.
Ce déflecteur est logé dans la chambre de combustion d'une manière telle que la portion tubulaire de fixation 142 soit logée entre la cloison porte-injecteur 1 16 et la cloison de diffusion 126 en étant fixée par tous moyens connus (brasage, soudage,..) à la paroi du boîtier, que la portion tubulaire de dérivation de l'air 144 se trouve sensiblement en regard de l'admission d'air 132 et que la portion tronconique 146 soit placée à proximité de cette admission.
Avantageusement, le diamètre de la portion tubulaire de dérivation de l'air est tel qu'il équivaut à la moyenne des diamètres du boîtier 1 12 et du tube à flamme 122. Ceci permet de créer des passages de circulation de l'air comprimé de même hauteur radiale R entre cette portion et respectivement le boîtier (passage 148) et le tube à flamme (passage 150).
De même, l'extrémité ouverte 140 de la portion tubulaire de dérivation de l'air 144 est située à distance de la cloison annulaire 1 18 de manière à ce que la distance entre cette extrémité ouverte et la cloison créée un passage de liaison 151 dont la dimension axiale D est au moins égale à la hauteur radiale R.
Ainsi, lors de l'admission de l'air chaud comprimé, ce dernier circule dans des passages sans variation dimensionnelle importante.
Sur la figure 3, la cloison porte-injecteur porte un moyen d'injection d'au moins un combustible 152, ici sous la forme d'un injecteur coaxial au tube à flamme, en regard d'un stabilisateur de flamme 154 qui est placé sur la cloison de diffusion 126.
Ce stabilisateur comprend un diffuseur perforé 156 logé dans la cloison de diffusion 126 et comportant une multiplicité de trous axiaux 158 régulièrement réparties circonférentiellement sur la semelle et un orifice axial central 160. Cette semelle se poursuit dans une direction axiale et à l'opposé de la cloison par des bras axiaux 162, ici trois bras disposés à 120° les uns des autres, et portant à leurs extrémités un tube mélangeur 164 d'étendue axiale limitée et de diamètre extérieur inférieur au diamètre intérieur du tube à flamme 122.
Le tube à flamme 122 comprend également des rangées circonférentielles d'orifices de dilution radiaux 166 placés à distance de la cloison de diffusion et à proximité de la cloison annulaire du boîtier en étant reparties régulièrement avantageusement de part et d'autre de la région d'extrémité libre de la portion 144.
Selon l’invention, le tube à flamme 122 comprend une zone de rétrécissement de la section dudit tube à flamme. La zone de rétrécissement est formée par un obstacle de symétrie de révolution. Cette obstacle peut être notamment un anneau 200 inséré dans le tube à flamme et de symétrie de révolution.
Cet anneau 200 a un diamètre inférieur au diamètre du tube à flamme 122, de manière à pouvoir être inséré dans le tube à flamme 122. On entend par diamètre, le diamètre le plus grand de l’anneau, c’est-à-dire le diamètre externe pris en périphérie de celui-ci. L’épaisseur de l’anneau 200 est, de préférence, compris entre quelques millimètres et quelques centimètres.
La chambre de combustion ainsi constituée comprend une zone d'injection/mélange ZM où se réalise le mélange de l'air comprimé chaud avec le combustible et le début de la combustion, une zone primaire ZP dans laquelle se produit la combustion, et un zone de dilution ZD où a lieu le mélange entre les gaz brûlés issus de la zone primaire et l'air comprimé chaud provenant des trous de dilution.
La zone de rétrécissement (l’anneau 200) est positionnée entre la zone primaire et la zone de dilution. Cet anneau est positionné par rapport aux trous de dilution 166 de telle manière à bloquer les flux à contrecourant dans la zone primaire, c’est-à-dire à gauche des trous de dilution 166 de la figure 3 (en amont des trous de dilution, selon la direction générale d’écoulement des gaz brûlés).
Dans un second mode de réalisation du tube à flamme visible sur la figure 4, schématiquement et de manière non limitative, il n’y a pas d’anneau mais le tube à flamme a une géométrie particulière qui consiste à avoir une zone de rétrécissement 201 ou s’opère un changement brutal de diamètre du tube à flamme. Cette zone de rétrécissement 201 est positionnée en amont de la zone de dilution et avant les trous de dilution de manière à bloquer les flux à contrecourant dans la zone primaire, c’est- à-dire à gauche des trous de dilution 166 de la figure 4. En d’autres termes, pour ce mode de réalisation, la zone primaire ZP comporte un diamètre externe qui est strictement supérieur au diamètre externe de la zone de dilution ZD.
En fonctionnement, le combustible, ici sous forme liquide, est injecté par l'injecteur 152 en direction de la cloison de diffusion 126 pour traverser l'orifice central 160. L'air comprimé chaud provenant de l'admission 132 est dévié par le déflecteur 134 selon la flèche F1 en premier lieu par la portion tronconique 146 pour aboutir dans le passage 148. Cet air circule dans un sens axial à partir de l'admission 132 et tout au long de ce passage 148 selon un seul sens de circulation, ici de la gauche vers la droite en considérant la flèche F2 pour arriver au passage d'extrémité 151. Arrivé à ce passage, l'air a un sens de circulation radiale selon la flèche F3 puis circule dans le passage 150, dans un sens axial opposé à celui du passage 148 selon la flèche F4. Une partie de l'air circulant dans le passage 150 pénètre alors dans le tube à flamme au travers des orifices de dilution (flèche F5) et l'autre partie cet air arrive dans la zone de mélange ZM (flèche F6). Cet air traverse ensuite les trous 158 de la cloison de diffusion 126 et est dirigé dans le tube mélangeur 164 dans lequel a lieu l’évaporation du combustible liquide, puis la combustion.
Grâce au déflecteur, l'écoulement de l'air issu de l’admission est dirigé vers le côté opposé à la zone de mélange avant de revenir vers cette zone de mélange en entourant la portion tubulaire de dérivation de l'air 144.
Ce faisant :
- les vitesses d’arrivée de l’air dans l’espace situé dans la portion tubulaire de dérivation de l'air 144 sont faibles et plus symétriques (symétrie de révolution) par rapport à l’axe central de la portion tubulaire de dérivation de l'air, ce qui permet une amélioration de l’efficacité de la dilution. En effet, dans chacune des différentes rangées de trous de dilution 166, les vitesses d’entrée de l’air dans la zone de dilution sont proches pour tous les trous ;
- la portion tubulaire de dérivation de l'air 144, qui est la pièce la plus chaude, est mieux isolée de l’extérieur par le double flux d’air ;
- les vitesses d’arrivée dans la zone située entre cloison de diffusion 126 et le boîtier 1 12 sont très faibles de par la grande section de la zone de mélange ZM et le débit relativement faible (une partie du débit total part dans la zone de diffusion ZD). Cette zone se comporte comme un collecteur permettant d’avoir des vitesses d’entrée dans la zone principale ZP via la cloison de diffusion qui sont normales à la cloison et qui sont identiques pour chaque rangée concentrique de trous. En cela, la flamme générée ensuite dans la zone primaire ZP se situe bien autour de l’axe de la portion tubulaire de dérivation de l'air.
Dans un deuxième mode de réalisation de la chambre de combustion 18, non représenté, il n’y a pas de déflecteur d’air 134 disposé en regard de l'admission d'air chaud comprimé 132. Le tube à flamme 122 comporte néanmoins un rétrécissement (200, 201 ) tel que décrit précédemment.
Grâce à la modification selon l’invention, les recirculations n’entrainent pas de gaz frais issus de la zone de dilution dans les recirculations en zone primaire. En cela, on ne recircule que des gaz brûlés et le taux de recirculation (proportion de gaz brûlés sur les gaz frais) en zone primaire augmente. Ceci permettra d’atteindre des régimes de combustion plus dilués, intéressants en termes d’émissions polluantes (notamment NOx et HC).
Comme visible sur la figure 5 qui est une simulation d’un écoulement dans le cadre du premier mode de réalisation de la chambre de combustion 18, l’écoulement à contre-courant généré par la dilution au niveau des trous de dilution 166 et obtenu sur la configuration de l’état de l’art de la figure 2b, n’est plus présent. Cela se traduit par un positionnement de la flamme beaucoup plus stable et une très forte atténuation, voire une disparition du phénomène de battement. Comme il va de soi, l’invention ne se limite pas aux seules forme de réalisation du dispositif décrit ci-dessus à titre d’exemple, elle embrasse au contraire toutes les variantes de réalisation.

Claims

REVENDICATIONS
1 ) Chambre de combustion (18) d'une turbine, notamment d'une turbine à cycle thermodynamique avec récupérateur, pour la production d'énergie, en particulier d'énergie électrique, comportant un boîtier (1 12) avec un moyen d'injection (152) d'au moins un combustible et une admission (132) d'air comprimé chaud, ledit boîtier logeant un tube à flamme (122) avec un diffuseur perforé (126) pour le passage de l’air comprimé chaud et du carburant et un stabilisateur de flamme (154) caractérisée en ce que le tube à flamme (122) comprend une zone de rétrécissement (200, 201 ) de la section dudit tube à flamme (122).
2) Chambre de combustion (18) selon la revendication 1 , caractérisée en ce que le tube à flamme (122) comprend une zone primaire (ZP) et une zone de dilution (ZD) et ladite zone de rétrécissement (200, 201 ) est positionnée entre la zone primaire (ZP) et la zone de dilution (ZD).
3) Chambre de combustion (18) selon la revendication 2, caractérisée en ce que le tube à flamme (122) comporte des rangées circonférentielles d'orifices de dilution radiaux (166) positionnées au début de la zone de dilution (ZD) et ladite zone de rétrécissement (200, 201 ) est positionnée en amont desdites rangées circonférentielles d'orifices de dilution radiaux (166).
4) Chambre de combustion (18) selon l’une des revendications précédentes, caractérisée en ce que la zone de rétrécissement (200) de la section dudit tube à flamme (122) comporte un obstacle de symétrie de révolution.
5) Chambre de combustion (18) selon la revendication précédente, caractérisée en ce que l’obstacle de symétrie de révolution comporte un anneau positionné dans le tube à flamme (122). 6) Chambre de combustion (18) selon l'une des revendications 1 à 3, caractérisée en ce que la zone de rétrécissement (201 ) comporte un changement de diamètre du tube à flamme en amont de la zone de dilution (ZD). 7) Chambre de combustion (18) selon l’une des revendications précédentes, caractérisée en ce qu’il comprend un déflecteur d'air (134) disposé en regard de l'admission d'air chaud comprimé (132).
8) Turbine, notamment d'une turbine à cycle thermodynamique avec récupérateur, pour la production d'énergie, en particulier d'énergie électrique, comprenant au moins un étage de compression avec au moins un compresseur de gaz, un échangeur de chaleur, une chambre de combustion, et au moins un étage de détente avec au moins une turbine de détente reliée par un arbre au compresseur, caractérisée en ce qu'elle comprend une chambre de combustion (18) selon l'une des revendications précédentes.
PCT/EP2019/067601 2018-07-30 2019-07-01 Chambre de combustion comprenant une section de passage d'un tube a flamme modifiee notamment pour une turbine destinee a la production d'energie, notamment d'energie electrique WO2020025234A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19734807.1A EP3830486A1 (fr) 2018-07-30 2019-07-01 Chambre de combustion comprenant une section de passage d'un tube a flamme modifiee notamment pour une turbine destinee a la production d'energie, notamment d'energie electrique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1857060A FR3084450B1 (fr) 2018-07-30 2018-07-30 Chambre de combustion comprenant une section de passage d'un tube a flamme modifiee notamment pour une turbine destinee a la production d'energie, notamment d'energie electrique
FR1857060 2018-07-30

Publications (1)

Publication Number Publication Date
WO2020025234A1 true WO2020025234A1 (fr) 2020-02-06

Family

ID=63491800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/067601 WO2020025234A1 (fr) 2018-07-30 2019-07-01 Chambre de combustion comprenant une section de passage d'un tube a flamme modifiee notamment pour une turbine destinee a la production d'energie, notamment d'energie electrique

Country Status (3)

Country Link
EP (1) EP3830486A1 (fr)
FR (1) FR3084450B1 (fr)
WO (1) WO2020025234A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022171451A1 (fr) 2021-02-15 2022-08-18 IFP Energies Nouvelles Systeme de combustion avec une chambre de combustion tubulaire et un echangeur de chaleur annulaire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3938324A (en) * 1974-12-12 1976-02-17 General Motors Corporation Premix combustor with flow constricting baffle between combustion and dilution zones
JPH04268113A (ja) * 1991-02-21 1992-09-24 Nissan Motor Co Ltd 燃焼器
FR3041742A1 (fr) 2015-09-30 2017-03-31 Ifp Energies Now Chambre de combustion d'une turbine, notamment d'une turbine a cycle thermodynamique avec recuperateur, pour la production d'energie, en particulier d'energie electrique.
FR3049044A1 (fr) 2016-03-18 2017-09-22 Ifp Energies Now Chambre de combustion d'une turbine, notamment d'une turbine a cycle thermodynamique avec recuperateur, pour la production d'energie, en particulier d'energie electrique.
FR3055403A1 (fr) 2016-08-29 2018-03-02 IFP Energies Nouvelles Chambre de combustion avec un deflecteur d'air comprime chaud, notamment pour une turbine destinee a la production d'energie, notamment d'energie electrique

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3938324A (en) * 1974-12-12 1976-02-17 General Motors Corporation Premix combustor with flow constricting baffle between combustion and dilution zones
JPH04268113A (ja) * 1991-02-21 1992-09-24 Nissan Motor Co Ltd 燃焼器
FR3041742A1 (fr) 2015-09-30 2017-03-31 Ifp Energies Now Chambre de combustion d'une turbine, notamment d'une turbine a cycle thermodynamique avec recuperateur, pour la production d'energie, en particulier d'energie electrique.
FR3049044A1 (fr) 2016-03-18 2017-09-22 Ifp Energies Now Chambre de combustion d'une turbine, notamment d'une turbine a cycle thermodynamique avec recuperateur, pour la production d'energie, en particulier d'energie electrique.
FR3055403A1 (fr) 2016-08-29 2018-03-02 IFP Energies Nouvelles Chambre de combustion avec un deflecteur d'air comprime chaud, notamment pour une turbine destinee a la production d'energie, notamment d'energie electrique

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022171451A1 (fr) 2021-02-15 2022-08-18 IFP Energies Nouvelles Systeme de combustion avec une chambre de combustion tubulaire et un echangeur de chaleur annulaire
FR3119868A1 (fr) 2021-02-15 2022-08-19 IFP Energies Nouvelles Système de combustion avec une chambre de combustion tubulaire et un échangeur de chaleur annulaire

Also Published As

Publication number Publication date
FR3084450A1 (fr) 2020-01-31
FR3084450B1 (fr) 2020-07-31
EP3830486A1 (fr) 2021-06-09

Similar Documents

Publication Publication Date Title
CA2588952C (fr) Chambre de combustion d'une turbomachine
CA2646959C (fr) Systeme d'injection d'un melange d'air et de carburant dans une chambre de combustion de turbomachine
EP0214003B1 (fr) Dispositif d'injection à bol elargi pour chambre de combustion de turbomachine
FR2824625A1 (fr) Dispositif et procede d'injection d'un combustible liquide dans un flux d'air pour une chambre de combustion
CA2899508C (fr) Ensemble de combustion de turbomachine comprenant un circuit d'alimentation de carburant ameliore
EP3356737B1 (fr) Turbine a cycle thermodynamique avec récupérateur, pour la production d'énergie électrique
FR2967754A1 (fr) Premelangeur pour chambre de combustion
WO2020025233A1 (fr) Chambre de combustion pour une turbine a gaz destinee a la production d'energie notamment d'energie electrique, comprenant des trous de dilution asymetriques dans un tube a flamme
EP3430316B1 (fr) Chambre de combustion d'une turbine, notamment d'une turbine a cycle thermodynamique avec recuperateur, pour la production d'energie, en particulier d'energie electrique
EP3504481B1 (fr) Chambre de combustion avec un déflecteur d'air comprimé chaud, notamment pour une turbine destinée à la production d'énergie, notamment d'énergie électrique
FR3059363A1 (fr) Turbomachine, notamment turbogenerateur et echangeur pour une telle turbomachine
FR2942640A1 (fr) Chambre de post-combustion pour turbomachine
EP3830486A1 (fr) Chambre de combustion comprenant une section de passage d'un tube a flamme modifiee notamment pour une turbine destinee a la production d'energie, notamment d'energie electrique
FR2979416A1 (fr) Paroi de chambre de combustion
FR3084448A1 (fr) Chambre de combustion pour une turbine a gaz destinee a la production d'energie notamment d'energie electrique, comprenant des trous de dilution orientes dans un tube a flamme.
FR3081539A1 (fr) Fond de chambre de combustion de turbomachine
EP3887721A1 (fr) Injecteur de carburant avec moyens de refroidissement
FR3081974A1 (fr) Chambre de combustion d'une turbomachine
EP3504480B1 (fr) Turbine modulaire avec echangeur de chaleur pour la production d'energie electrique
FR2946413A1 (fr) Chambre de combustion de moteur a turbine a gaz avec element de paroi multi-perfore
FR3061948A1 (fr) Chambre de combustion de turbomachine a haute permeabilite
FR3108966A1 (fr) Chambre de combustion comportant une paroi comprenant un conduit de refroidissement entre une première cloison et une deuxième cloison
WO2022008820A1 (fr) Chambre annulaire de combustion pour une turbomachine d'aeronef
FR2780488A1 (fr) Amelioration aux appareils a combustion comportant plusieurs conduits de transport de comburant
BE484274A (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19734807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019734807

Country of ref document: EP

Effective date: 20210301