EP3825972B1 - Système de détection de fumée - Google Patents

Système de détection de fumée Download PDF

Info

Publication number
EP3825972B1
EP3825972B1 EP19210470.1A EP19210470A EP3825972B1 EP 3825972 B1 EP3825972 B1 EP 3825972B1 EP 19210470 A EP19210470 A EP 19210470A EP 3825972 B1 EP3825972 B1 EP 3825972B1
Authority
EP
European Patent Office
Prior art keywords
computing device
mobile computing
group
test
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19210470.1A
Other languages
German (de)
English (en)
Other versions
EP3825972A1 (fr
Inventor
Reinhard Muth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to EP19210470.1A priority Critical patent/EP3825972B1/fr
Publication of EP3825972A1 publication Critical patent/EP3825972A1/fr
Application granted granted Critical
Publication of EP3825972B1 publication Critical patent/EP3825972B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/10Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using wireless transmission systems
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/12Checking intermittently signalling or alarm systems
    • G08B29/14Checking intermittently signalling or alarm systems checking the detection circuits
    • G08B29/145Checking intermittently signalling or alarm systems checking the detection circuits of fire detection circuits
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/181Prevention or correction of operating errors due to failing power supply

Definitions

  • the invention relates to smoke detection systems.
  • Smoke detectors can provide a warning when a fire has started inside of a building. To ensure that smoke detectors are functioning properly they should be tested at regular intervals.
  • International patent application publication WO2019079862A1 discloses methods of determining a likely end of life of a detector of a fire protection system, such as a smoke detector, comprise acquiring a plurality of measurements of an obscuration value of the detector from a fire indicator panel (FIP) and calculating a rate of contamination of the detector based on the plurality of measurements of the obscuration value.
  • the methods comprise determining a likely end of life of the detector based on the calculated rate of contamination of the detector and a nominal end of life (EOL) value for the detector set by a manufacturer of the detector.
  • EOL nominal end of life
  • United States patent application US 2018/0114431 A1 describes a method of sensor communication testing.
  • a sensor comprising a wireless transmitter configured to generate a radio-frequency (RF) signal, an RF attenuator configured to direct the RF signal in a pre-determined direction, and a controller configured to receive a self-test command to execute a communication test, send a communication test signal to a sensor panel in response to the self-test command, and receive a communication test response signal from the sensor panel in response to the communication test signal, where the communication test response signal indicates whether the sensor has passed or failed the communication test.
  • RF radio-frequency
  • United States patent application US 2019/088109 A1 describes a service management system that validates service on building management systems.
  • Devices of the building management systems include wireless transmitters (for example, radiofrequency identification (RFID) tags) for transmitting wireless signals containing identification information.
  • RFID radiofrequency identification
  • a technician reads the identification information using a mobile computing device (for example, an RFID reader) while also recording the signal strength of the wireless signals.
  • the mobile computing device sends the identification information and signal strength information to a connected services system along with information about the service, and a validation module confirms that the identification information and signal strength information indicates that the technician was actually in the vicinity of the devices that were serviced.
  • the invention provides for a smoke detector system, a computer program product, and a method of operating a smoke detector system in the independent claims. Embodiments are given in the dependent claims.
  • Embodiments may provide for an improved smoke detector system.
  • a group of smoke detector establishes a wireless communication channel with a personal mobile computing device. This eliminates the need for a central control panel.
  • the personal mobile computing device requests a self-test from the group of smoke detectors and receives self-test data in response.
  • the personal mobile computing device then sends the self-test data to a computer via a wireless internet connection.
  • the smoke detectors are firstly not connected directly to the internet. This may reduce the risk that hackers access the smoke detectors. It also enables lower energy protocols to be used for forming the wireless communication channel.
  • the invention provides for a smoke detector system, as described in claim 1, that comprises a computer.
  • the smoke detector system further comprises a personal mobile computing device.
  • the personal mobile computing device is configured to connect to the computer via a wireless internet connection.
  • the personal mobile computing device comprises a first wireless communication module.
  • the smoke detector system further comprises a group of smoke detectors that comprise a second wireless communication module. Each of smoke detectors comprises their own second wireless communication module.
  • the group of smoke detectors are configured for performing a self-test.
  • the smoke detectors are configured for testing the condition of a battery supplying power to each of the smoke detectors.
  • the smoke detectors may also be configured for performing a self-test of a smoke detecting element or sensor.
  • the group of smoke detectors are configured for acquiring self-test data measured during the self-test.
  • the self-test data provides such data as a battery voltage or level.
  • the self-test data may also include data measured with one or more sensors during the self-test. This may include such things as measurements which may be used for determining the condition of a smoke sensor.
  • the personal mobile computing device is configured for directly forming the wireless communication channel with the group of smoke detectors.
  • directly forming the communication channel means that the wireless communication channel is formed between the personal mobile computing device and the group of smoke detectors without any intermediate computer or other system forming a part of the wireless communication channel.
  • the personal mobile computing device forms the wireless communication channel with each of the group of smoke detectors individually. Instead of connecting through a remote server or other device the personal mobile computing device is able to communicate with the smoke detectors of the group of smoke detectors via the wireless communication channel.
  • the personal mobile computing device is configured for requesting the self-test from the group of smoke detectors via the wireless communication channel.
  • the personal mobile computing device forms the wireless communication channel with each of the group of smoke detectors and then request the self-test from each of the group of smoke detectors.
  • the personal mobile computing device is configured for receiving the self-test data from the group of smoke detectors via the wireless communication channel in response to requesting the self-test.
  • the personal mobile computing device is configured for sending the self-test data to the computer via the wireless internet connection.
  • the personal mobile computing device functions as an intermediary between the group of smoke detectors and the computer. This may have the advantage of enabling the computer to receive the self-test data without the need of an internet connection between the computer and the group of smoke detectors. This may for example have advantages in the longevity of battery life of the group of smoke detectors.
  • the personal mobile computing device may form a low energy wireless communication channel in some examples. If for example the group of smoke detectors were connected to the computer via a Wi-Fi connection the maintenance of this Wi-Fi connection may drain the batteries of the group of smoke detectors rapidly. Using the personal mobile computing device may therefore provide for a reduced consumption of energy by the group of smoke detectors. Connecting the group of smoke detectors through the personal mobile computing device may also provide for additional security of the group of smoke detectors.
  • the group of smoke detectors are not able to be contacted directly via the internet.
  • the security of the personal mobile computing device may then be used to protect the group of smoke detectors. Additionally the user of the personal mobile computing device does not need to enable communication with the group of smoke detectors constantly.
  • a personal mobile computing device as used herein may encompass a battery powered computing device that may be carried by a single person. This may for example be a so called smartphone or a tablet or a laptop or netbook computer.
  • the wireless internet connection could be provided via different ways. For example this may be provided via a Wi-Fi system or even a data connection over a cellular network.
  • the first communication module may also be used for forming the wireless internet connection but in some examples it may be different.
  • the first wireless communication module may use for example Bluetooth to communicate with the group of smoke detectors.
  • the self-test data comprises a time stamp and/or a cryptographic signature.
  • the time stamp may be useful for identifying when the test of the group of smoke detector took place.
  • the cryptographic signature may be useful to verify that the self-test data is authentic.
  • the time stamp and/or cryptographic signature may be added by the group of smoke detectors.
  • the time stamp and/or cryptographic signature may be appended to the self-test data by the personal mobile computing device.
  • the computer is configured for generating a test summary report for the group of smoke detectors by inputting the self-test data into a report generation module.
  • the report generation module may for example comprise machine-executable code that receives the self-test data and then calculates or generates the test summary. This for example may include such things as receiving raw sensor data and then analyzing this raw sensor data to determine if the sensor is functioning properly.
  • the report generation module may also receive other data which is descriptive of the operation of a smoke detector and use this to establish if the smoke detector and its sensors are functioning properly.
  • test summary report may, for example be a summary of the operational status and function of the smoke detectors at the time the self-test data was acquired.
  • the test summary report may also be formatted to conform with regulatory requirements.
  • the test summary report may also be digitally signed by the computer to validate its origin and/or authenticity.
  • test summary report is not just the result of the self-test, the self-test data is evaluated by the computer to generate the test summary report, not the smartphone. This may reduce the amount of complicated software on the personal mobile computing device and the group of smoke detectors. This may also enables a big data approach on the server: data from multiple groups of smoke detectors may be analyzed.
  • the computer is further configured for generating a task completion signal after generating the test summary report. After the test summary report has been generated the smoke detector system may then generate the task completion signal.
  • the computer is then further configured for sending the task completion signal to the personal mobile computing device via the wireless communication channel. This for example may be useful in forming a closed control loop that enables the user of the personal mobile computing device to understand when the test summary report has been completed.
  • the personal mobile computing device can be connected intermittently or only when selected to communicate with the group of smoke detectors via the wireless communication channel. When the personal mobile computing device receives the task completion signal then the personal mobile computing device can for example disconnect or deactivate the wireless communication channel.
  • the smoke detector system comprises multiple of the group of smoke detectors.
  • the computer stores a self-test database that comprises self-test data from the multiple of the group of smoke detectors. For example, within a building or across different buildings there may be different and independent groups of smoke detectors. Each of these may connect to the computer via the personal mobile computing device or different personal mobile computing devices. For example there could be a personal mobile computing device that is able to pair or connect with each group of smoke detectors.
  • This embodiment may be beneficial because the data from the self-test for each of the multiple of the group of smoke detectors may be located on the single computer. This may be useful for centrally generating the test report summary for each group. It may also be useful because the self-test data is collected and stored in a single location. This may facilitate analyzing the self-test data and recognizing patterns which may help improve the maintenance or maintaining of the various groups of smoke detectors.
  • the computer is configured for generating a maintenance schedule for the group of smoke detectors by inputting at least a portion of the self-test database into a control system module.
  • the control system module may contain computer-executable instructions that are used to cause a processor of the computer to check various conditions of the smoke detectors using a predetermined set of criterion or examine the self-test database for patterns.
  • the control system module may in some examples comprise a neural network, a machine learning module, an expert system, and/or predetermined logic. This embodiment may be beneficial because the collection of the self-test database may be useful in maintaining the multiple groups of smoke detectors.
  • the computer is configured for generating a shipping order to ship repair parts to a location of the group of smoke detectors at a chosen time determined by the maintenance schedule.
  • the computer may send the shipping order to a logistic center or order it online.
  • the computer is further configured for detecting a delivery of the repair parts to the location. Often times when a logistics or delivery company delivers a package a message may be sent to an account that ordered the shipping of the repair parts.
  • the computer may for example be configured for receiving this message directly or for checking the account to see if the repair parts have been delivered.
  • the computer is further configured for displaying maintenance instructions on the user interface of the mobile computing device via the wireless communication channel after detecting the delivery of the repair parts. For example, once the computer detects that the repair parts have been delivered to the location a message or messages may be sent to the personal mobile computing device which either comprise instructions or trigger the instructions to be displayed by the personal mobile computing device. This may for example be beneficial in a situation where the group of smoke detectors is installed in an apartment and the personal mobile computing device is for example a smartphone of a tenant.
  • the computer is further configured for detecting when the repair parts have been installed in the group of smoke detectors. This may be used for forming a control loop to ensure that the operator of the personal mobile computing device does in fact repair the group of smoke detectors.
  • the group of smoke detectors comprises an elevator smoke detector mounted in an elevator shaft of an elevator. This embodiment may be beneficial because it may be difficult or inconvenient to perform a self-test of a smoke detector which is located in an elevator shaft.
  • the elevator smoke detector is located in the overhead of the elevator shaft.
  • an overhead of an elevator shaft is the space at the top or upper most portion of the elevator shaft. This contains a space into which the elevator does not travel and may be useful for mounting equipment. Also, if there is a fire at some location within the elevator shaft, the hot air and smoke from the fire will naturally rise to the top part of the elevator shaft or the overhead. Placing a smoke detector there ensures that a fire within then elevator shaft will be rapidly detected.
  • Mounting the elevator smoke detector in the overhead may also have the advantage that is facilitates forming the wireless communication channel between the personal mobile computing device and the elevator smoke detector.
  • the door of the elevator is open, there is a gap between the space above the elevator and the open elevator. This provides an unshielded region between the personal mobile communication device and the elevator smoke detector.
  • the elevator comprises a door.
  • the mobile computing device is configured for detecting when the door is at least partially open. This detection may be performed in a variety of ways.
  • the door of the elevator may be of metal and may partially shield or entirely block the wireless communication channel.
  • the mobile computing device may detect that the door is at least partially open because the signal strength of the wireless communication channel increases.
  • such things as a sensor may be installed in the door which communicates with the mobile computing device or the mobile computing device may have a camera which may be used in detecting optically when the door is at least partially open.
  • the personal mobile computing device is further configured for establishing the mobile communication channel with the elevator smoke detector when the door of the elevator is at least partially open. This embodiment may be beneficial because it may enable the convenient acquisition of the self-test data from the smoke detector in the overhead of the elevator shaft.
  • each of the group of smoke detectors comprises a unique identifier code.
  • the computer is configured for storing a configuration database that comprises configuration data.
  • the personal mobile computing device configured for establishing the wireless communication channel with the group of smoke detectors by configuring the first wireless communication module with the configuration data.
  • the personal mobile computing device is configured for receiving the unique identifier code of a selected smoke detector selected from any of the group of smoke detectors.
  • the personal mobile computing device is configured for sending a configuration request to the computer via the wireless internet connection where in the configuration request comprises the unique identifier code of the selected smoke detector.
  • the computer is configured for selecting the configuration data from a configuration data database by searching the configuration data database for the unique identifier code.
  • the computer is configured for sending the configuration data to the personal mobile computing device via the wireless internet connection in response to receiving the configuration request with the unique identifier code of the selected smoke detector.
  • the personal mobile computing device is configured for configuring the first wireless communication module with the configuration data.
  • the configuration data which is stored on the computer is used for configuring the personal mobile computing device so that it is able to form the wireless communication channel with the group of smoke detectors. It does this by acquiring and receiving one unique identifier code from the group of smoke detectors. This may be beneficial because it enables the operator of the personal mobile computing device to more easily acquire the self-test data because the operator does not need to establish a pairing with each of the group of smoke detectors individually.
  • the initial mobile computing device comprises a third wireless communication module.
  • the initial mobile computing device is configured to connect to the computer via the wireless internet connection.
  • the initial mobile computing device is configured for generating pairing data during a wireless pairing with the group of smoke detectors via the second wireless communication module and the third wireless communication module.
  • the initial mobile computing device is configured for receiving the unique identifier code during the wireless pairing.
  • the initial mobile computing device is configured for receiving location data descriptive of a location of the group of smoke detectors via a user interface. This may for example include the location of different smoke detectors of the group of smoke detectors and their position in different rooms.
  • the initial mobile computing device is configured for constructing the configuration data from the unique identifier and the pairing data.
  • the initial mobile computing device is configured for transferring the configuration data to the computer via the wireless internet connection.
  • the computer is configured for appending the configuration data to the configuration data database.
  • an initial mobile computing device is used to establish the pairing between the initial mobile computing device and the different smoke detectors of the group of smoke detectors. This is then used to construct the configuration data which is then stored in the computer. This enables the personal mobile computing device to then later retrieve this configuration data and with a single unique identifier code from the group of smoke detectors to form the wireless communication channel. This for example may include the ability to form a Bluetooth connection with each of the group of smoke detectors.
  • the group of smoke detectors comprises a test activation element.
  • the selected smoke detector is configured for transmitting the unique identifier code with the second wireless communication module in response to an activation of the test activation element.
  • the test activation element may be a button or switch on a smoke detector which may be operated. When this test activation element is operated then the unique identifier code of that smoke detector is transmitted.
  • the personal mobile computing device may receive this unique identifier code and then contact the computer via the internet and retrieve the proper configuration data using the unique identifier code to reference the correct configuration data.
  • the group of smoke detectors comprises an optical identifier that uniquely identifies the unique identifier code.
  • a barcode or QR code could be printed on the face of each of the smoke detectors.
  • the optical identifier is visible when the group of smoke detectors are in an operational position. This may mean that when each are in operational position.
  • the personal mobile computing device comprises a camera.
  • the personal mobile computing device is configured for determining the unique identifier code from the optical identifier imaging the optical identifier with the camera. For example, if there is a barcode or QR code or other writing or markings on the individual smoke detectors the operator may control the personal mobile computing device to image the smoke detector. The personal mobile computing device may then use this optical image to generate or determine the unique identifier code.
  • the personal mobile computing device is configured for forming the wireless communication channel with the group of smoke detectors in response to receiving a test request.
  • This embodiment may be beneficial because the personal mobile computing device does not form the wireless communication channel unless it is desired to perform a self-test. This may provide for reduced energy consumption as well as better security for the group of smoke detectors.
  • the personal mobile computing device is configured to generate the test request in response to a user input.
  • a user input For example there may be a dialogue box or user interface on the personal mobile computing device where the operator can manually cause the test request to be initiated.
  • the computer is configured for sending a test request to the personal mobile computing device via the wireless internet connection.
  • the computer may centrally schedule when the group of smoke detectors should be tested using the self-test. This for example may be useful in forming an automatic control loop for testing and/or repairing the group of smoke detectors.
  • the personal mobile computing device is configured for automatically generating the test request according to a predetermined schedule.
  • a predetermined schedule For example there may be calendar data or other data which is included on an application or program of the personal mobile computing device which causes the test request to be initiated according to the predetermined schedule.
  • the personal mobile computing device is configured for displaying a test request pop-up in response to receiving the test request.
  • the test request pop-up comprises a delay selector configured for delay information of the wireless communication channel with the group of smoke detectors.
  • the personal mobile computing device may be away from the group of smoke detectors and the operator may delay until it is possible to perform the self-test. Also for other reasons the operator may wish to perform the self-test at a different time.
  • the test request pop-up comprises a device selector configured for selecting one smoke detector of the group of smoke detectors to initiate forming the wireless communication channel.
  • the personal mobile computing device may connect in some examples to each of the set of smoke detectors individually.
  • the use of the device selector may enable the personal mobile computing device to query or test the group of smoke detectors individually and in a predetermined or sequential order.
  • the wireless communication channel is a Bluetooth wireless communication channel.
  • the wireless communication channel is a Bluetooth LE or low energy wireless communication channel.
  • the wireless communication channel is a wireless communication channel with a maximum power of 100 mW.
  • the wireless communication channel is a wireless communication channel with a maximum power of 2.5 mW.
  • the wireless communication channel is a wireless communication channel with a maximum power of 1 mW.
  • the invention provides for a computer program product, as described in claim 11, comprising machine-executable instructions for execution by a processor controlling a mobile computing device.
  • the personal mobile computing device comprises a first wireless communication module.
  • Execution of the machine-executable instructions causes the processor to form the wireless communication channel with a group of smoke detectors with the first wireless communication module. This may be with the group of smoke detectors as a whole or it may include individual pairings with each of the group of smoke detectors.
  • Execution of the machine-executable instructions further causes the processor to request a self-test of the group of smoke detectors via the wireless communication channel. Again this may be a request which is sent to all the group or it may be with each of the group of smoke detectors sequentially.
  • Execution of the machine-executable instructions further causes the processor to receive self-test data from the group of smoke detectors via the wireless communication channel in response to requesting the self-test.
  • Execution of the machine-executable instructions further causes the processor to connect to a computer via a wireless internet connection.
  • Execution of the machine-executable instructions further causes the processor to send the self-test data to the computer via the wireless internet connection.
  • This computer program product may for example be beneficial because it may provide for a means of providing the self-test data from a group of smoke detectors that are not connected directly with the computer.
  • the invention provides for a method of operating a smoke detector system as described in claim 12.
  • aspects of the present invention may be embodied as an apparatus, method or computer program product. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a "circuit,” “module” or “system.” Furthermore, aspects of the present invention may take the form of a computer program product embodied in one or more computer readable medium(s) having computer executable code embodied thereon.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a 'computer-readable storage medium' as used herein encompasses any tangible storage medium which may store instructions which are executable by a processor of a computing device.
  • the computer-readable storage medium may be referred to as a computer-readable non-transitory storage medium.
  • the computer-readable storage medium may also be referred to as a tangible computer readable medium.
  • a computer-readable storage medium may also be able to store data which is able to be accessed by the processor of the computing device.
  • Examples of computer-readable storage media include, but are not limited to: a floppy disk, a magnetic hard disk drive, a solid state hard disk, flash memory, a USB thumb drive, Random Access Memory (RAM), Read Only Memory (ROM), an optical disk, a magnetooptical disk, and the register file of the processor.
  • Examples of optical disks include Compact Disks (CD) and Digital Versatile Disks (DVD), for example CD-ROM, CD-RW, CD-R, DVD-ROM, DVD-RW, or DVD-R disks.
  • the term computer readable-storage medium also refers to various types of recording media capable of being accessed by the computer device via a network or communication link.
  • a data may be retrieved over a modem, over the internet, or over a local area network.
  • Computer executable code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wire line, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
  • a computer readable signal medium may include a propagated data signal with computer executable code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof.
  • a computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Computer memory is any memory which is directly accessible to a processor.
  • a 'processor' as used herein encompasses an electronic component which is able to execute a program or machine executable instruction or computer executable code.
  • References to the computing device comprising "a processor” should be interpreted as possibly containing more than one processor or processing core.
  • the processor may for instance be a multi-core processor.
  • a processor may also refer to a collection of processors within a single computer system or distributed amongst multiple computer systems.
  • the term computing device should also be interpreted to possibly refer to a collection or network of computing devices each comprising a processor or processors.
  • the computer executable code may be executed by multiple processors that may be within the same computing device or which may even be distributed across multiple computing devices.
  • Computer executable code may comprise machine executable instructions or a program which causes a processor to perform an aspect of the present invention.
  • Computer executable code for carrying out operations for aspects of the present invention may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the "C" programming language or similar programming languages and compiled into machine executable instructions.
  • object oriented programming language such as Java, Smalltalk, C++ or the like
  • conventional procedural programming languages such as the "C" programming language or similar programming languages and compiled into machine executable instructions.
  • the computer executable code may be in the form of a high level language or in a pre-compiled form and be used in conjunction with an interpreter which generates the machine executable instructions on the fly.
  • the computer executable code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
  • These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
  • These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.
  • the computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
  • a ⁇ user interface' as used herein is an interface which allows a user or operator to interact with a computer or computer system.
  • a 'user interface' may also be referred to as a 'human interface device.
  • a user interface may provide information or data to the operator and/or receive information or data from the operator.
  • a user interface may enable input from an operator to be received by the computer and may provide output to the user from the computer.
  • the user interface may allow an operator to control or manipulate a computer and the interface may allow the computer indicate the effects of the operator's control or manipulation.
  • the display of data or information on a display or a graphical user interface is an example of providing information to an operator.
  • the receiving of data through a keyboard, mouse, trackball, touchpad, pointing stick, graphics tablet, joystick, gamepad, webcam, headset, pedals, wired glove, remote control, and accelerometer are all examples of user interface components which enable the receiving of information or data from an operator.
  • a 'hardware interface' as used herein encompasses an interface which enables the processor of a computer system to interact with and/or control an external computing device and/or apparatus.
  • a hardware interface may allow a processor to send control signals or instructions to an external computing device and/or apparatus.
  • a hardware interface may also enable a processor to exchange data with an external computing device and/or apparatus. Examples of a hardware interface include, but are not limited to: a universal serial bus, IEEE 1394 port, parallel port, IEEE 1284 port, serial port, RS-232 port, IEEE-488 port, Bluetooth connection, Wireless local area network connection, TCP/IP connection, Ethernet connection, control voltage interface, MIDI interface, analog input interface, and digital input interface.
  • a 'display' or ⁇ display device' as used herein encompasses an output device or a user interface adapted for displaying images or data.
  • a display may output visual, audio, and or tactile data.
  • Examples of a display include, but are not limited to: a computer monitor, a television screen, a touch screen, tactile electronic display, Braille screen, Cathode ray tube (CRT), Storage tube, Bi-stable display, Electronic paper, Vector display, Flat panel display, Vacuum fluorescent display (VF), Light-emitting diode (LED) displays, Electroluminescent display (ELD), Plasma display panels (PDP), Liquid crystal display (LCD), Organic light-emitting diode displays (OLED), a projector, and Head-mounted display.
  • VF Vacuum fluorescent display
  • LED Light-emitting diode
  • ELD Electroluminescent display
  • PDP Plasma display panels
  • LCD Liquid crystal display
  • OLED Organic light-emitting diode displays
  • Fig. 1 illustrates a functional diagram of a smoke detector 100.
  • the smoke detector 100 comprises a processor 102.
  • the smoke detector 100 is powered by a battery 104.
  • the smoke detector 100 also comprises an internal memory 106, a smoke detector component 108, a self-test component 110, and a second wireless communication module 112 that are each connected to the processor 102.
  • the smoke detector 100 is further shown as containing an optional environmental sensor 114 which is also connected to the processor 102.
  • the smoke detector component 108 may be used for detecting smoke and/or heat for detecting a fire.
  • the self-test component 110 contains components for testing the smoke detector component 108.
  • the second wireless communication module 112 may for example be useful for establishing a wireless communication channel with a personal mobile computing device.
  • the optional environmental sensor 114 may be used to optionally gather data descriptive of the environment around the smoke detector 100.
  • the self-test component 110 may also contain components which may be used to verify the correct placement and operation of the smoke detector 100. For example, the self-test component 110 may also contain a proximity sensor to determine if the smoke detector 100 is placed too close to a wall or other structure.
  • the self-test component 110 may also contain components for measuring the voltage or capacity of the battery 104.
  • the internal memory 106 is shown as containing machine-executable instructions 120. These machine-executable instructions 120 enable the processor 102 to perform various operational tasks in running the smoke detector 100 and also for performing various methods of controlling the smoke detector 100. For example the machine-executable instructions 120 may implement a routine to self-test the smoke detector 100.
  • the memory 106 is further shown as containing a self-test request 122 that the smoke detector 100 has received via the second wireless communication module 112. The reception of the self-test request 122 may cause the machine-executable instructions 120 to execute a self-test routine.
  • the machine-executable instructions 120 then control the other components such as the self-test component 110 to acquire self-test data 124.
  • the self-test data 124 can for example be used to provide the self-test data 124 over the second wireless communication module 112.
  • the smoke detector 100 is further shown as containing environmental sensor data 126 that has been acquired by the environmental sensor 114.
  • the environmental sensor data 126 may also be acquired by external environmental sensors that communicate with the smoke detector 100 via the second wireless communication module 112.
  • the memory 106 is further shown as containing a unique identifier code 128.
  • the smoke detector 100 is further shown as containing an optional test activation element 118.
  • the test activation element 118 may be a button on an external surface of the smoke detector 100 which causes the smoke detector to test itself.
  • the processor 102 can be programmed to transmit the unique identifier code 128 via the second wireless communication module 112. This for example may be useful in pairing the smoke detector 100 with other devices.
  • Fig. 2 illustrates an example of a personal mobile computing device 200.
  • the personal mobile computing device 200 may for example be a smartphone or a tablet in some examples.
  • the personal mobile computing device 200 comprises a display and/or user interface 202.
  • the personal mobile computing device 200 further comprises a processor 204.
  • the personal mobile computing device 200 is powered by a battery 206.
  • the personal mobile computing device 200 is shown as comprising a first wireless communication module 208 and an optional transmitter 210.
  • the first wireless communication module 208 may for example be useful for communicating with the second wireless communication module 112 of the smoke detector 100.
  • the transmitter 210 may in some instances be a cellular communication transmitter used for communicating with a cellular network such as used for telephones.
  • the transmitter 210 may provide access to a mobile data network and the internet.
  • the transmitter 210 may comprise a transmitter which is adapted for connecting to a Wi-Fi system.
  • the transmitter 210 in this case may also provide access to the internet.
  • the personal mobile computing device 200 is further shown as containing a memory 212.
  • the display and/or user interface 202, the first wireless communication module 208, the transmitter 210, and the memory 212 are connected to the processor 204.
  • the memory 212 is shown as containing machine-executable instructions 214 which enable the processor 204 to control the operation and function of the personal mobile computing device 200.
  • the memory 212 is further shown as containing a test request 216.
  • the test request 216 may for example have been generated by the personal mobile computing device 200 or it may for example have been received via the transmitter 210.
  • the personal mobile computing device 200 then generates a self-test request 122 and sends it to the smoke detector 100 via a wireless communication channel formed by the first wireless communication module 208 and the second wireless communication module 112.
  • the memory 212 is further shown as containing pairing data and/or configuration data 218 which enables configuration of the first wireless communication module 208 so it is able to communicate with the second wireless communication module 212.
  • Fig. 3 shows a flowchart which illustrates a method of operating the mobile computing device 200.
  • a wireless communication channel is formed with a group of smoke detectors with the first wireless communication module 208. This may be done by forming a wireless communication channel with the individual second wireless communication modules 112 of the individual smoke detectors 100.
  • a self-test request 122 of the group of smoke detectors 100 is requested via the wireless communication channel in response to requesting the self-test.
  • the first wireless communication module 208 receives the self-test data 124 via the wireless communication channel in response to requesting the self-test 122.
  • the processor 204 controls the personal mobile computing device 200 to connect to a computer via a wireless internet connection.
  • the wireless internet connection may for example be formed using the transmitter 210.
  • wireless internet connection it is implied that a portion of the internet connection is formed via a wireless transmitter and receiver.
  • An example is the use of the transmitter 210.
  • the first wireless communication module 208 and the transmitter 210 may be the same component.
  • the processor 204 controls the transmitter 210 to send the self-test data 124 to the computer via the wireless internet connection.
  • Fig. 4 illustrates an example of a smoke detector system 400.
  • the smoke detector system 400 comprises a group of smoke detectors 402. It also comprises the personal mobile computing device 200 and a computer 404.
  • the computer 404 comprises a processor 406 which is connected to a network interface 408 and a memory 410.
  • the group of smoke detectors 402 forms a wireless communication channel 412 with the personal mobile computing device 200.
  • the network interface 408 and the transmitter 210 are used to form at least a portion of a wireless internet connection 414.
  • the memory 410 is shown as containing machine-executable instructions 420 that enable the processor 406 to control and operate the computer system 404.
  • the memory 410 is further shown as containing self-test data 124 that is received via the network interface 408.
  • the memory 410 is further shown as containing a report generation module 422.
  • the report generation module 422 takes the self-test data 124 as input and then exports a test summary report 424.
  • the test summary report 424 may for example contain a report which summarizes the function and status of the group of smoke detectors 402.
  • the processor 406 constructs or generates a task completion signal 426 which is then sent to the mobile computing device 200 via the wireless internet connection 414. This for example may cause a message on the display 202 informing the user that the group of smoke detectors 402 has been tested.
  • the memory 410 is shown as containing an optional configuration data database 428.
  • the optional configuration data database 428 contains configuration data 218 for different groups of smoke detectors 402.
  • the computer 404 may be used to connect to a variety or a number of different groups 402 of smoke detectors.
  • One of the smoke detectors 100 may send a unique identifier 128 to the personal mobile computing device 200 which then transmits it to the computer 404 via the wireless internet connection 414.
  • the processor 406 searches the configuration data database for the unique identifier 128. This is used to reference and then retrieve the configuration data 218.
  • the configuration data 218 can for example be forwarded to the personal mobile computing device 200 via the wireless internet connection 414. This may enable the personal mobile computing device 200 to reuse a previous pairing with the group of smoke detectors 402.
  • Fig. 5 shows a further view of the smoke detector system 400.
  • an initial mobile computing device 500 which has established the wireless communication channel 412 with the individual smoke detectors 100 of the group of smoke detectors 402. This for example was performed by performing a pairing operation between the initial mobile computing device 500 and the smoke detectors 100. This for example may be time consuming and involve data entry on the part of the operator of the initial mobile computing device 500.
  • the initial mobile computing device 500 then sends the configuration data 218 to the processor 406 of the computer 404 via the mobile internet connection 414.
  • the processor 406 then appends or enters the configuration data 218 into the configuration data database 428.
  • a unique identifier 128 of one of the smoke detectors 100 can be used to retrieve the configuration data 218 and then later configure the personal mobile computing device 200 to form the wireless communication channel 412.
  • Fig. 6 illustrates a further example of a smoke detector system 600.
  • the smoke detector system 600 is similar to the smoke detector system 400 illustrated in Fig. 5 except there are additionally a larger number of groups of smoke detectors 402, 402', 402" that are connected to the computer 404 via individual personal mobile communication devices 200, 200', 200".
  • Each of the personal mobile computing devices 200, 202', 202" send self-test data 124, 124', 124" from their groups of smoke detectors 402, 402', 402".
  • the self-test data 124 is provided by group of smoke detectors 402.
  • the self-test data 124' is provided by the group of smoke detectors 402'.
  • the self-test data 124" is provided by the group of smoke detectors 402".
  • the processor 402 then copies or appends the self-test data 124, 124', 124" into a self-test database 602. At least a portion of the self-test database 602 is input into a control system module 604. This for example may be an expert system, a rule-based system, and/or a machine learning-based system which then outputs a maintenance schedule 606 for one or more of the group of smoke detectors 402, 402', 402".
  • the processor 406 is able to generate a shipping order 608 and send this to either a logistics center or order it online and have it shipped to a location or the person who is responsible for the particular group of smoke detectors 402, 402', 402".
  • a delivery receipt 610 may be provided to the processor 406 via the internet.
  • this causes the processor 406 to send maintenance instructions 612 to the personal mobile computing device 200 of the recipient of the spare parts. This may then be used to provide the maintenance instructions 612 on the display 202 to ensure that the replacement parts are properly installed.
  • the computer 404 may then request to verify additional self-test data 124, 124', 124" to ensure that the group of smoke detectors 402, 402', 402" were properly repaired.
  • Fig. 7 illustrates an example of a building.
  • the building comprises a rental unit 700, 702' and 702".
  • Rental unit 702 comprises a group of smoke detectors 402.
  • Rental unit 702' comprises group of smoke detectors 402'.
  • Rental unit 702" comprises group of smoke detectors 402".
  • Each of these smoke detectors 100 is placed in its individual room 704.
  • the building 700 in Fig. 7 could for example be an apartment building and the different rental units 702, 702', 702" are rented by different occupants.
  • an additional environmental sensor 706 that is able to communicate with one of the smoke detectors 100 of the group of smoke detectors 402".
  • 706 may be a dampness or moisture sensor or for example a radon sensor such as a radiation detector. This may then send data to the smoke detector 100 and this may be stored in the internal memory until the self-test is performed and then this may be additionally provided to the computer system 404 via the personal mobile computing device 200".
  • the building 700 is additionally shown as comprising an elevator 710.
  • the elevator has a shaft 712 with an overhead 714.
  • Within the overhead 714 of the elevator shaft 712 is an elevator smoke detector 100'.
  • the elevator smoke detector 100' may be equivalent to one of the smoke detectors 100.
  • the elevator smoke detector 100' may be connected separately to a different personal mobile computing device or in some cases it may be assigned to one of the personal mobile computing devices 200, 200' or 200".
  • Fig. 8 shows a further view of a smoke detector 100.
  • an optical identifier 800 On a surface of the smoke detector 100 is an optical identifier 800 that is visible.
  • the optical identifier 800 may for example be a machine readable optical identifier such as a QR code or barcode. This for example may be imaged by a camera of the personal mobile computing device.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Fire Alarms (AREA)

Claims (13)

  1. Système détecteur de fumée (400, 600) comprenant :
    - un ordinateur (404) ;
    - un dispositif informatique mobile personnel (200, 200', 200"), dans lequel le dispositif informatique mobile personnel est conçu pour se connecter à l'ordinateur par le biais d'une connexion internet sans fil (414, 414', 414"), dans lequel le dispositif informatique mobile personnel comprend un premier module de communication sans fil (208) ; et
    - un groupe de détecteurs de fumée (402, 402', 402"), qui comprennent chacun un deuxième module de communication sans fil (112), dans lequel le groupe de détecteurs de fumée est conçu pour exécuter un autotest, dans lequel le groupe de détecteurs de fumée est conçu pour acquérir des données d'autotest (124, 124', 124") mesurées durant l'autotest, dans lequel chaque détecteur dans le groupe de détecteurs de fumée est alimenté par pile, dans lequel les données d'autotest comprennent des données de niveau de pile ;
    dans lequel le dispositif informatique mobile personnel est conçu pour former directement et individuellement un canal de communication sans fil (412, 412', 412") avec chaque détecteur du groupe de détecteurs de fumée ;
    dans lequel le dispositif informatique mobile personnel est conçu pour demander l'autotest (122) à partir du groupe de détecteurs de fumée par le biais du canal de communication sans fil ;
    dans lequel le dispositif informatique mobile personnel est conçu pour recevoir les données d'autotest à partir du groupe de détecteurs de fumée par le biais du canal de communication sans fil en réponse à la demande d'autotest ; et
    dans lequel le dispositif informatique mobile personnel est conçu pour envoyer les données d'autotest vers l'ordinateur par le biais de la connexion internet sans fil.
  2. Système détecteur de fumée selon l'une quelconque des revendications précédentes, dans lequel l'ordinateur est conçu pour :
    - générer un rapport résumé du test pour le groupe de détecteurs de fumée en entrant les données d'autotest dans un module de génération de rapport (422) ;
    - générer un signal d'exécution de tâche (426) après la génération du rapport résumé du test ; et
    - envoyer le signal d'exécution de la tâche vers le dispositif informatique mobile personnel par le biais du canal de communication sans fil.
  3. Système détecteur de fumée selon la revendication 2, le système détecteur de fumée comprenant un multiple du groupe de détecteurs, dans lequel l'ordinateur enregistre une base de données d'autotest (602) qui comprend des données d'autotest à partir du multiple du groupe de détecteurs de fumée.
  4. Système détecteur de fumée selon la revendication 3, dans lequel l'ordinateur est conçu pour générer un calendrier de maintenance (606) pour le groupe de détecteurs de fumée en entrant au moins une partie de la base de données d'autotest dans un module de système de commande (604).
  5. Système détecteur de fumée selon la revendication 4, dans lequel l'ordinateur est conçu pour générer un bon d'expédition (608) pour expédier des pièces de rechange vers un emplacement du groupe de détecteurs de fumée à un moment donné déterminé par le calendrier de maintenance,
    dans lequel l'ordinateur est conçu pour détecter une livraison des pièces de rechange vers l'emplacement, dans lequel l'ordinateur est conçu pour afficher des instructions de maintenance (612) sur l'interface d'utilisateur du dispositif informatique mobile par le biais du canal de communication sans fil après la détection de la livraison des pièces de rechange.
  6. Système détecteur de fumée selon l'une quelconque des revendications précédentes, dans lequel le groupe de détecteurs de fumée comprend un détecteur de fumée d'ascenseur (100') monté dans une cage d'ascenseur d'un ascenseur, de préférence au plafond de la cage d'ascenseur.
  7. Système détecteur de fumée selon l'une quelconque des revendications précédentes, dans lequel chaque détecteur du groupe de détecteurs comprend un code d'identification unique (128), dans lequel l'ordinateur est conçu pour enregistrer une base de données de configuration (428) qui comprend des données de configuration (218), dans lequel le dispositif informatique mobile personnel est conçu pour établir le canal de communication sans fil avec le groupe de détecteurs de fumée en configurant le premier module de communication sans fil avec les données de configuration ;
    dans lequel le dispositif informatique mobile personnel est conçu pour recevoir le code d'identification unique d'un détecteur de fumée sélectionné choisi parmi un détecteur quelconque du groupe de détecteurs de fumée ;
    dans lequel le dispositif informatique mobile personnel est conçu pour envoyer une demande de configuration à l'ordinateur par le biais de la connexion internet sans fil, dans lequel la demande de configuration comprend le code d'identification unique du détecteur de fumée sélectionné ;
    dans lequel l'ordinateur est conçu pour sélectionner les données de configuration à partir de la base de données de données de configuration en recherchant la base de données des données de configuration pour le code d'identification unique ;
    dans lequel l'ordinateur est conçu pour envoyer les données de configuration vers le dispositif informatique mobile personnel par le biais de la connexion internet sans fil en réponse à la réception de la demande de configuration avec le code d'identification unique du détecteur de fumée sélectionné ;
    dans lequel le dispositif informatique mobile personnel est conçu pour configurer le premier module de communication sans fil avec les données de configuration.
  8. Système détecteur de fumée selon l'une quelconque des revendications précédentes, dans lequel le dispositif informatique mobile initial (500) comprend un troisième module de communication sans fil, dans lequel le dispositif informatique mobile initial est conçu pour se connecter à l'ordinateur par le biais de la connexion internet sans fil,
    dans lequel le dispositif informatique mobile initial est conçu pour générer des données d'appariement durant un appariement sans fil avec le groupe de détecteurs de fumée par le biais du deuxième module de communication sans fil et du troisième module de communication sans fil,
    dans lequel le dispositif informatique mobile initial est conçu pour recevoir le code d'identification unique durant l'appariement sans fil ;
    dans lequel le dispositif informatique mobile initial est conçu pour recevoir des données d'emplacements descriptrices d'un emplacement du groupe de détecteurs de fumée par le biais d'une interface d'utilisateur ;
    dans lequel le dispositif informatique mobile initial est conçu pour construire les données de configuration à partir de l'identifiant unique et des données d'appariement ;
    dans lequel le dispositif informatique mobile initial est conçu pour transférer les données de configuration vers l'ordinateur par le biais de la connexion internet sans fil ; et
    dans lequel l'ordinateur est conçu pour ajouter les données de configuration à la base de données des données de configuration.
  9. Système détecteur de fumée selon la revendication 7 ou la revendication 8, dans lequel il y a un élément quelconque parmi ce qui suit :
    - le groupe de détecteurs de fumée comprend un élément d'activation de test (118), dans lequel le détecteur de fumée sélectionné est conçu pour transmettre le code d'identification unique avec le deuxième module de communication sans fil en réponse à une activation de l'élément d'activation de test ; et
    - le groupe de détecteurs de fumée comprend un identificateur optique (800) qui encode le code d'identification unique, dans lequel l'identificateur optique est visible lorsque le groupe de détecteurs de fumée est dans une position opérationnelle, dans lequel le dispositif informatique mobile personnel comprend une caméra, dans lequel le dispositif informatique mobile personnel est conçu pour déterminer le code d'identification unique à partir de l'identificateur unique en formant l'image de l'identificateur optique avec la caméra.
  10. Système détecteur de fumée selon un élément quelconque parmi ce qui suit, dans lequel le dispositif informatique mobile personnel est conçu pour former un canal de communication sans fil avec le groupe de détecteurs de fumée en réponse à la réception d'une demande de test, dans lequel il y a un élément quelconque de ce qui suit :
    - le dispositif informatique mobile personnel est conçu pour générer la demande de test en réponse à une entrée d'utilisateur ;
    - l'ordinateur est conçu pour envoyer une demande de test vers le dispositif informatique mobile personnel par le biais de la connexion internet sans fil ; et
    - le dispositif informatique mobile personnel est conçu pour générer automatiquement la demande de test selon un calendrier prédéterminé.
  11. Produit-programme informatique comprenant des instructions exécutables par machine (214) destinées à être exécutées par un processeur commandant un dispositif informatique mobile personnel (200, 200', 200"), dans lequel le dispositif informatique mobile personnel comprend un premier module de communication sans fil (208), dans lequel l'exécution des instructions exécutables par machine fait en sorte que le processeur :
    - forme (300) un canal de communication sans fil individuellement avec chaque détecteur d'un groupe de détecteurs de fumée (402, 402', 402") avec le premier module de communication sans fil ;
    - demande (302) un autotest (122) du groupe de détecteurs de fumée par le biais du canal de communication sans fil ;
    - reçoive (304) des données d'autotest (124, 124', 124") à partir du groupe de détecteurs de fumée par le biais du canal de communication sans fil en réponse à la demande d'autotest, dans lequel les données d'autotest comprennent des données de niveau de pile ;
    - se connecte (306) à un ordinateur (404) par le biais d'une connexion internet sans fil (414, 414', 414") ; et
    - envoie (308) les données d'autotest vers l'ordinateur par le biais de la connexion internet sans fil.
  12. Procédé de fonctionnement d'un système détecteur de fumée (400, 600), dans lequel le système détecteur de fumée comprend :
    - un ordinateur (404) ;
    - un dispositif informatique mobile personnel (200, 200', 200"), dans lequel le dispositif informatique mobile personnel est conçu pour se connecter à l'ordinateur par le biais d'une connexion internet sans fil (414, 414', 414"), dans lequel le dispositif informatique mobile personnel comprend un premier module de communication sans fil (208) ; et
    - un groupe de détecteurs de fumée (402n 402', 402") qui comprennent chacun un deuxième module de communication sans fil (112), dans lequel le groupe de détecteurs de fumée est conçu pour exécuter un autotest, dans lequel le groupe de détecteurs de fumée est conçu pour acquérir des données d'autotest (124, 124', 124") mesurées durant l'autotest, dans lequel chaque détecteur dans le groupe de détecteurs de fumée est alimenté par pile, dans lequel les données d'autotest comprennent des données de niveau de pile ;
    dans lequel le dispositif informatique mobile personnel est conçu pour former directement un canal de communication sans fil (412, 412', 412") avec chaque détecteur du groupe de détecteurs de fumée individuellement ;
    dans lequel le dispositif informatique mobile personnel est conçu pour demander l'autotest (122) à partir du groupe de détecteurs de fumée par le biais du canal de communication sans fil ;
    dans lequel le dispositif informatique mobile sans fil est conçu pour recevoir les données d'autotest à partir du groupe de détecteurs de fumée par le biais du canal de communication sans fil en réponse à la demande d'autotest ; et
    dans lequel le dispositif informatique mobile personnel est conçu pour envoyer les données d'autotest vers l'ordinateur par le biais de la connexion internet sans fil, le procédé comprenant :
    - la formation (300) d'un canal de communication sans fil individuellement entre chaque détecteur d'un groupe de détecteurs de fumée (402, 402', 402") avec le premier module de communication sans fil et le dispositif informatique mobile personnel ;
    - la demande (302) de l'autotest (122) du groupe de détecteurs de fumée par le dispositif de communication mobile personnel par le biais du canal de communication sans fil ;
    - la réception (304) des données d'autotest (124, 124', 124") à partir du groupe de détecteurs de fumée par le dispositif de communication mobile personnel par le biais du canal de communication sans fil en réponse à la demande d'autotest, dans lequel les données d'autotest comprennent des données de niveau de pile ;
    - la connexion (306) du dispositif de communication mobile personnel à un ordinateur (404) par le biais d'une connexion internet sans fil (414, 414', 414") ; et
    - l'envoi (308) des données d'autotest à partir du dispositif de communication mobile personnel vers l'ordinateur par le biais de la connexion internet sans fil.
  13. Procédé selon la revendication 12, le procédé comprenant en outre :
    - la génération d'un rapport résumé du test pour le groupe de détecteurs de fumée par l'ordinateur en entrant les données d'autotest dans un module de génération de rapport (422) ;
    - la génération d'un signal d'exécution de tâche (426) après la génération du rapport résumé du test par l'ordinateur ; et
    - l'envoi du signal d'exécution de tâche à partir de l'ordinateur vers le dispositif informatique mobile personnel par le biais du canal de communication sans fil.
EP19210470.1A 2019-11-20 2019-11-20 Système de détection de fumée Active EP3825972B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19210470.1A EP3825972B1 (fr) 2019-11-20 2019-11-20 Système de détection de fumée

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19210470.1A EP3825972B1 (fr) 2019-11-20 2019-11-20 Système de détection de fumée

Publications (2)

Publication Number Publication Date
EP3825972A1 EP3825972A1 (fr) 2021-05-26
EP3825972B1 true EP3825972B1 (fr) 2023-03-08

Family

ID=68766476

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19210470.1A Active EP3825972B1 (fr) 2019-11-20 2019-11-20 Système de détection de fumée

Country Status (1)

Country Link
EP (1) EP3825972B1 (fr)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107067633A (zh) * 2017-06-15 2017-08-18 深圳市海曼科技有限公司 一种烟雾报警器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2926459C (fr) * 2013-10-07 2023-10-03 Google Inc. Dispositif de domotique favorisant une experience d'installation conviviale
US10049562B2 (en) * 2016-10-25 2018-08-14 Honeywell International Inc. Sensor communication testing
US10755555B2 (en) * 2017-09-18 2020-08-25 Johnson Controls Fire Protection LP Method and apparatus for verifying service of installed devices using RFID
WO2019079862A1 (fr) 2017-10-27 2019-05-02 Diligent Fire & Safety Pty Ltd Système de détection d'incendie, capture de données automatique, test à distance, analyse, appareil et procédés

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107067633A (zh) * 2017-06-15 2017-08-18 深圳市海曼科技有限公司 一种烟雾报警器

Also Published As

Publication number Publication date
EP3825972A1 (fr) 2021-05-26

Similar Documents

Publication Publication Date Title
US10895871B2 (en) Method and system for automatically generating interactive wiring diagram in an industrial automation environment
CN107636702A (zh) 集成式资产完整性管理系统
CN105378810A (zh) 测量数据的远程共享
US10152878B2 (en) Hazard detector, test device for hazard detector, hazard monitoring system and method for testing a hazard detector
US20160335391A1 (en) Method and system for interacting rail transit vehicle commissioning task information
CN108875857B (zh) 巡检方法、装置及系统
CN106375134A (zh) 一种机房it设备运维方法及系统
JP2011188474A (ja) 装置の要素をロックアウトする通信デバイスおよび方法
KR20210012200A (ko) 환경시험 장비의 성능이상 감지장치를 이용한 유지관리 시스템 및 그 제어방법
WO2017187499A1 (fr) Système d'assistance à la maintenance à distance d'ascenseur et procédé d'assistance à la maintenance à distance d'ascenseur
US11755007B2 (en) System and method for determining a health condition and an anomaly of an equipment using one or more sensors
JP2010213770A (ja) 遊技機の個体監視方法
US10347055B2 (en) Method and apparatus for connecting to a heavy duty vehicle and performing a vehicle roadworthiness check
EP3825972B1 (fr) Système de détection de fumée
US11520793B2 (en) Servicing, diagnosing, logging, and surveying building equipment assets
CN116523498A (zh) 基于ai的电力设施巡视方法、系统、装置和存储介质
CN104599097B (zh) 一种运钞袋电子签封监控的方法及装置
JP2006338093A (ja) 巡回警備支援システム及びこれに用いる巡回ルート管理装置
JP2019106568A (ja) 遠隔監視装置、監視センタサーバおよび監視対象設備の初期設定方法
JP2019209426A (ja) ロボット状態監視システム及びロボット状態監視方法
KR102480411B1 (ko) 상관형 엣지 컴퓨팅 처리 방법
CN107765123A (zh) 检测规则更新方法及用电安全监测系统
JP2021152918A (ja) 保守支援装置及び保守支援方法
JP2018106606A (ja) 作業工程管理ラック、作業工程管理システム、作業工程管理方法
EP2244231B1 (fr) Système de surveillance de structures

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20200716

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221026

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1553119

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019026101

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230608

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1553119

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230609

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230710

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230708

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019026101

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231121

Year of fee payment: 5

26N No opposition filed

Effective date: 20231211