EP3822475B1 - Valve for metering a fluid - Google Patents

Valve for metering a fluid Download PDF

Info

Publication number
EP3822475B1
EP3822475B1 EP20209959.4A EP20209959A EP3822475B1 EP 3822475 B1 EP3822475 B1 EP 3822475B1 EP 20209959 A EP20209959 A EP 20209959A EP 3822475 B1 EP3822475 B1 EP 3822475B1
Authority
EP
European Patent Office
Prior art keywords
armature
spring
valve
stop element
valve needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20209959.4A
Other languages
German (de)
French (fr)
Other versions
EP3822475A1 (en
Inventor
Andreas Glaser
Norbert Redlich
Martin Buehner
Matthias Boee
Peter Schramm
Christian Suenkel
Stefan Cerny
Joerg Abel
Marcel Behringer
Frank Mueller
Murat Ucal
Axel Heinstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3822475A1 publication Critical patent/EP3822475A1/en
Application granted granted Critical
Publication of EP3822475B1 publication Critical patent/EP3822475B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0685Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature and the valve being allowed to move relatively to each other or not being attached to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/008Arrangement of fuel passages inside of injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • F02M61/12Other injectors with elongated valve bodies, i.e. of needle-valve type characterised by the provision of guiding or centring means for valve bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/20Closing valves mechanically, e.g. arrangements of springs or weights or permanent magnets; Damping of valve lift
    • F02M61/205Means specially adapted for varying the spring tension or assisting the spring force to close the injection-valve, e.g. with damping of valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • F02M63/0075Stop members in valves, e.g. plates or disks limiting the movement of armature, valve or spring

Definitions

  • the invention relates to a valve for metering a fluid, in particular a fuel injection valve for internal combustion engines.
  • the invention relates to the field of injectors for fuel injection systems in motor vehicles, in which fuel is preferably injected directly into the combustion chambers of an internal combustion engine.
  • a valve for metering fluid is known.
  • the known valve has an electromagnet for actuating a valve needle that controls an orifice.
  • the electromagnet is used to actuate an armature that can be moved on a valve needle.
  • the armature has a bore adjacent to the valve needle, which forms a spring mount for a pre-stroke spring.
  • This configuration has the disadvantage that guidance between the armature and the valve needle is realized only over a short guidance length.
  • EP2789844 A1 discloses a valve for metering a fluid with an electromagnetic actuator and a valve needle that can be actuated by the actuator, with an armature of the actuator being guided on the valve needle, with a stop element being arranged on the valve needle, which limits a movement of the armature relative to the valve needle .
  • the valve according to the invention with the features of claim 1 has the advantage that an improved design and mode of operation are made possible. In particular, improved guidance between the armature and the valve needle and the valve needle along a longitudinal axis of the housing can be implemented.
  • the design of the stop element according to the invention has the advantage that an advantageous flow of fuel in the area of the Stop element can be achieved without the inner bore of the inner pole must be increased.
  • the armature that serves as the magnet armature is not firmly connected to the valve needle, but is mounted in a cantilevered manner between stops.
  • a stop can be formed on a stop element, which can be realized as a stop sleeve and/or a stop ring.
  • the armature is adjusted by a spring to a stop that is stationary with respect to the valve needle, so that the armature rests there.
  • the entire free travel of the armature is then available as an acceleration path, with the spring being shortened during acceleration.
  • the armature free travel can be specified via the axial play between the armature and the two stops.
  • the guide length between the armature and the valve needle is increased.
  • the armature can be guided on its outside in the valve housing along the longitudinal axis.
  • the guidance of the valve needle along the longitudinal axis then improves accordingly due to the increased guidance length between the armature and the valve needle.
  • the result is correspondingly improved guidance of the armature relative to the housing.
  • the spring can immerse itself completely in the spring receptacle when it is actuated, so that an optimal compromise can be achieved in relation to several disadvantages of a conventional design.
  • the disadvantages of a conventional design relate firstly to manufacturability, costs and assembly if a design without a spring mount is implemented, in which an additional component is required to accommodate the spring and connect it to the armature.
  • Second Disadvantages arise when a pole face between the armature and the inner pole is reduced, since a lower magnetic force then occurs. This relates in particular to a possible configuration in which a stepped bore is designed on the inner pole in order to create space for a spring.
  • a third disadvantage relates to a magnetic short circuit across the spring and the associated loss of magnetic force, which results in slower force build-up and lower holding force in the open state. This usually affects the magnetic spring steel used, which represents a bypass for the magnetic flux between the armature and the inner pole.
  • a fourth disadvantage relates to the smaller contact surface between the armature and a stop ring in a variant in which the stop ring dips into the spring seat formed on the armature. This can cause increased wear and reduced hydraulic damping.
  • a fifth disadvantage may result in a lever arm between the upper needle guide and the armature, particularly in the above embodiment where the stop ring dips into the spring retainer. This can result in large needle deflection, leading to increased wear, skewing, and the like.
  • a sixth potential disadvantage relates to designs that require a large spring diameter. Due to the limited radial installation space, lower spring forces can then be realized, which is bad for rapid armature settling after the first injection, in particular with regard to multiple injections. With the same spring force, a larger spring diameter also means a larger tilting moment on the armature, which is also disadvantageous for the injector function and, in particular, can result in a tilted armature stop.
  • a seventh and last disadvantage relates to the risk of the spring bulging under load and the resulting contact with the inner pole and/or the stop ring due to a relatively long spring length and small radial space conditions. This leads to undefined friction, which, in addition to possible wear and the formation of particles, results in considerable scattering of the injection behavior.
  • the stop element can be made of a non-magnetic material, as a result of which it can separate the inner pole from the armature from a magnetic point of view.
  • the lever arm can be kept short. Both a pole face and a stop face between the armature and the stop element, in particular the stop ring, can be selected to be sufficiently large.
  • a relatively small inner diameter of the spring can be realized, so that relatively high spring forces can be achieved even with a comparatively thin wire thickness of the spring.
  • the spring can also be designed to be relatively short, so that the risk of buckling and wear that occurs accordingly is reduced and a tilting moment introduced in this regard on the armature remains within acceptable limits.
  • the armature can be guided in the housing. Furthermore, in a further possible configuration, an annular gap between the armature and the housing can be minimized. In relation to the specified housing dimensions, this results in a rapid build-up of force and a large holding force. Due to the intersection of the through-openings with the spring receptacle, the end face of the armature facing the inner pole can also be made larger than if separate through-openings are realized.
  • a further advantage is that the flow cross section can be increased disproportionately to the resulting reduction in the surface area of the end face of the armature.
  • valve 1 shows a valve 1 for metering a fluid in a partial, schematic sectional view according to a first embodiment.
  • the valve 1 can be embodied in particular as a fuel injection valve 1 .
  • a preferred application is a fuel injection system in which such fuel injectors 1 are designed as high-pressure injectors 1 and are used for direct injection of fuel into associated combustion chambers of the internal combustion engine. Liquid or gaseous fuels can be used as the fuel. Accordingly, the valve 1 is suitable for metering liquid or gaseous fluids.
  • the valve 1 has a housing (valve housing) 2 in which an inner pole 3 is arranged in a stationary manner.
  • a longitudinal axis 4 is defined by the housing 2 and serves as a reference for guiding a valve needle 5 arranged within the housing 2 . This means that the valve needle 5 should be aligned along the longitudinal axis 4 during operation.
  • An armature (magnetic armature) 6 is arranged on the valve needle 5 .
  • a stop element 7 and a further stop element 8 are also arranged on the valve needle 5 .
  • stops 7 ', 8' are formed.
  • the armature 6 can be moved between the stop elements 7, 8 when it is actuated, with an armature free path 9 being predetermined.
  • the armature 6, the inner pole 3 and a magnet coil (not shown) are components of an electromagnetic actuator 10.
  • a valve closing body 11 is formed on the valve needle 5 and interacts with a valve seat surface 12 to form a sealing seat.
  • the armature 6 When the armature 6 is actuated, it is accelerated in the direction of the inner pole 3 . If the armature 6 hits the stop 7' of the stop element 7 and thereby actuates the valve needle 5, then fuel can be injected via the opened sealing seat and at least one nozzle opening 13 into a space, in particular a combustion chamber.
  • the valve 1 has a restoring spring 14, which moves the valve needle 5 via the stop element 7 into its initial position, in which the sealing seat is closed.
  • the armature 6 is based on a cylindrical basic shape 20 with a through hole 21 , the armature 6 being guided on the through hole 21 on the valve needle 5 .
  • the basic shape 20 of the armature 6 has a length L between an end face 22 facing the inner pole 3 and an end face 23 facing away from the inner pole 3 .
  • the armature 6 has a spring mount 25 .
  • the spring seat 25 is open on the end face 22 of the armature 6 .
  • the spring receptacle 25 has a length f along the longitudinal axis 4 between the end face 22 and a spring support surface 26 of the armature 6 .
  • the spring support surface 26 here represents the base 26 of the spring receptacle 25.
  • a spring 27 partially arranged in the spring receptacle 25 has a spring length F.
  • the spring length F is here the spring length F of the spring 27 in the non-actuated initial state.
  • the spring 27 supports this on the one hand on the spring support surface 26 of the armature 6 and on the other hand on the stop 7 'of the stop 7 from.
  • the spring length F is greater than the length f of the spring receptacle 25.
  • the spring 27 is shortened compared to its initial length F, and it can dip completely into the spring receptacle 25.
  • a guide web 28 is formed on the armature 6 .
  • the armature 6 has a (shortened) length l along the longitudinal axis 4 between the spring support surface 26 and the end face 23 . Without the guide web 28, only this shortened length l would be available as a guide length.
  • the guide bar 28 lengthens the length l by the length s of the guide bar 28 along the longitudinal axis 4 . This results in the guide length l+s in this exemplary embodiment.
  • the length s of the guide bar 28 is preferably chosen to be the same as or even greater than the length f of the spring receptacle 25 .
  • the guide length l + s of the armature 6 on the valve needle 5 is equal to or even greater than the length L of the armature 6 between its end faces 22, 23.
  • valve needle 5 is guided with respect to the longitudinal axis 4 or with respect to the housing 2 via the stop element 7 .
  • Possible configurations of the stop element 7, which allow an advantageous passage of the fluid, in particular fuel, are based on the Figures 5 to 8 described.
  • valve needle 5 can additionally or alternatively also be guided via the armature 6 .
  • the outside 32 of the armature 6 extends at least partially to the inside 33 of the housing 2.
  • an annular gap can then be realized between the stop element 7 and the inner pole 3.
  • FIG. 2 shows a valve 1 in a partial, schematic sectional view corresponding to a second example not according to the invention.
  • a guide extension 40 is provided.
  • the guide extension 40 has a length s' along the longitudinal axis 4, by which the guide of the armature 6 on the valve needle 5 is extended. This means that in this example the guide length s′+l is realized along the longitudinal axis 4 between the armature 6 and the valve needle 5 .
  • the spring receptacle 25 it is thus possible in this example for the spring receptacle 25 to be directly adjacent to the valve needle 5 .
  • this facilitates the manufacture of the armature 6 since the spring receptacle 25 can be realized by a cylindrical recess aligned with the longitudinal axis 4 .
  • directly on the basic form 20 of the armature 6 only the length l which is shortened compared to the length L of the armature 6 between the end faces 22, 23 is available.
  • this shortened length l is lengthened by the length s′ via the guide extension 40 .
  • the length s′ can be predetermined in such a way that the guide length s′+l is equal to or even greater than the length L of the armature 6 between its end faces 22 , 23 .
  • the guide extension 40 is designed in the form of a sleeve. This means that an outer diameter 41 on the guide extension 40 is selected to be significantly smaller than an outer diameter 42 on the outside 32 of the armature 6.
  • the spring 27 is designed with ground spring ends 43, 44 in this example. This results in an even better edition. Furthermore, there is reduced wear and a more uniform introduction of force into the armature 6 on the spring support surface 26 on the one hand and on the stop 7′ of the stop element 7 on the other.
  • FIGs 3 and 4 show possible configurations of the armature 6 of the valve 1 from FIG 1 III designated viewing direction, for better understanding, the valve needle 5 is shown as a sectional area.
  • the end face 22 is divided into sub-areas 22A and 22B, between which the spring receptacle 25 is provided.
  • through openings 51 to 54 are provided, which in this exemplary embodiment are configured as through bores 51 to 54 with a circular cross section. This results in intersections between the through bores 51 to 54 and the spring mount 25.
  • This means that the fuel can flow over the length f of the spring mount both through the part of the spring mount 25 not filled by the spring 27 and through the through openings 51 to 54 .
  • the fuel then flows over the shortened length l only through the through openings 51 to 54.
  • kidney-shaped configurations of the through-openings 51 to 54 are also implemented, so that the through-openings 51 to 54 extend in a circumferential direction 55 around the longitudinal axis 4 or circumferentially around the longitudinal axis 4 over a larger angular range.
  • the flow of fuel over the shortened length l of the armature 6 is improved in particular.
  • Figures 5 to 8 show possible configurations of the stop element 7 of the valve 1 contrary to the 1 View direction denoted by III, the valve needle 5 being shown in section for illustration purposes.
  • a support area 60 for the spring 27 is specified.
  • the support area 60 is delimited radially outwards by a broken line 60A.
  • the support area 60 is delimited radially inwards by a line 601 shown as a broken line.
  • the support area 60 serves as the structurally predetermined support area 60 in which the selected spring 27 is to be supported.
  • the Configurations preferably for an application in which a guide between the stop element 7 and the inner pole 3 is realized, as is the case, for example, in FIG 1 is illustrated.
  • Indentations 61 to 64 are provided in order to direct the fuel past the stop element 7 .
  • the stop element 7 can be modified by such indentations 61 to 64, starting from a basic hollow-cylindrical shape 65, which is characterized by an outer diameter D. This results in both the possibility of a guide on the outer diameter D and a fuel passage through the depressions 61 to 64.
  • the depressions 61 to 64 are designed here in such a way that, viewed from the longitudinal axis 4, they reach a maximum of a diameter d. This means that an annular surface 66 remains from the valve needle 5 to the diameter d.
  • the diameter d is set to be between the outer line 60A and the inner line 60l.
  • the spring 27 also rests at least partially on the support area 60 in the area of the depressions 61 to 64, namely at least on the annular surface 66. This results in a compromise between a good contact of the spring 27 on the support area 60 and the largest possible depressions 61 to 64 and at the same time the possibility of guiding on the outer diameter D.
  • FIGs 5 to 8 show different ways to perform the depressions 61 to 64.
  • figure 5 as an intersection with cylinder bores, 6 as intersections with rectangular cutouts, 7 as an intersection with flattening.
  • the flow cross section can be formed by ring segments.

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Ventil zum Zumessen eines Fluids, insbesondere ein Brennstoffeinspritzventil für Brennkraftmaschinen. Speziell betrifft die Erfindung das Gebiet der Injektoren für Brennstoffeinspritzanlagen von Kraftfahrzeugen, bei denen vorzugsweise eine direkte Einspritzung von Brennstoff in Brennräume einer Brennkraftmaschine erfolgt.The invention relates to a valve for metering a fluid, in particular a fuel injection valve for internal combustion engines. In particular, the invention relates to the field of injectors for fuel injection systems in motor vehicles, in which fuel is preferably injected directly into the combustion chambers of an internal combustion engine.

Aus der DE 10 2013 222 613 A1 ist ein Ventil zum Zumessen von Fluid bekannt. Das bekannte Ventil weist einen Elektromagneten zum Betätigen einer eine Zumessöffnung steuernden Ventilnadel auf. Der Elektromagnet dient zum Betätigen eines auf einer Ventilnadel verschiebbaren Ankers. Hierbei weist der Anker eine an die Ventilnadel angrenzende Bohrung auf, die eine Federaufnahme für eine Vorhubfeder bildet. Diese Ausgestaltung hat den Nachteil, dass eine Führung zwischen dem Anker und der Ventilnadel nur über eine kurze Führungslänge realisiert ist.From the DE 10 2013 222 613 A1 a valve for metering fluid is known. The known valve has an electromagnet for actuating a valve needle that controls an orifice. The electromagnet is used to actuate an armature that can be moved on a valve needle. Here, the armature has a bore adjacent to the valve needle, which forms a spring mount for a pre-stroke spring. This configuration has the disadvantage that guidance between the armature and the valve needle is realized only over a short guidance length.

Aus der EP2789844 A1 ist ein Ventil zum Zumessen eines Fluids bekannt mit einem elektromagnetischen Aktuator und einer von dem Aktuator betätigbaren Ventilnadel, wobei an der Ventilnadel ein Anker des Aktuators geführt ist, wobei an der Ventilnadel ein Anschlagelement angeordnet ist, das eine Bewegung des Ankers relativ zu der Ventilnadel begrenzt.From the EP2789844 A1 discloses a valve for metering a fluid with an electromagnetic actuator and a valve needle that can be actuated by the actuator, with an armature of the actuator being guided on the valve needle, with a stop element being arranged on the valve needle, which limits a movement of the armature relative to the valve needle .

Offenbarung der ErfindungDisclosure of Invention

Das erfindungsgemäße Ventil mit den Merkmalen des Anspruchs 1 hat den Vorteil, dass eine verbesserte Ausgestaltung und Funktionsweise ermöglicht sind. Insbesondere kann eine verbesserte Führung zwischen dem Anker und der Ventilnadel sowie der Ventilnadel entlang einer Längsachse des Gehäuses realisiert werden. Die erfindungsgemäße Ausgestaltung des Anschlagelements hat den Vorteil, dass ein vorteilhafter Brennstofffluss im Bereich des Anschlagelements erzielt werden kann, ohne dass die Innenbohrung des Innenpols vergrößert werden muss.The valve according to the invention with the features of claim 1 has the advantage that an improved design and mode of operation are made possible. In particular, improved guidance between the armature and the valve needle and the valve needle along a longitudinal axis of the housing can be implemented. The design of the stop element according to the invention has the advantage that an advantageous flow of fuel in the area of the Stop element can be achieved without the inner bore of the inner pole must be increased.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen des im Anspruch 1 angegebenen Ventils möglich.Advantageous further developments of the valve specified in claim 1 are possible as a result of the measures listed in the dependent claims.

Bei dem Ventil zum Zumessen des Fluids ist der als Magnetanker dienende Anker nicht fest mit der Ventilnadel verbunden, sondern zwischen Anschlägen fliegend gelagert. Solch ein Anschlag kann an einem Anschlagelement ausgebildet sein, das als Anschlaghülse und/oder Anschlagring realisiert werden kann. Über eine Feder wird der Anker im Ruhezustand an einen bezüglich der Ventilnadel ortsfesten Anschlag verstellt, so dass der Anker dort anliegt. Bei der Ansteuerung des Ventils steht dann der komplette Ankerfreiweg als Beschleunigungsstrecke zur Verfügung, wobei die Feder während der Beschleunigung verkürzt wird. Der Ankerfreiweg kann über das axiale Spiel zwischen dem Anker und den beiden Anschlägen vorgegeben werden.In the valve for metering the fluid, the armature that serves as the magnet armature is not firmly connected to the valve needle, but is mounted in a cantilevered manner between stops. Such a stop can be formed on a stop element, which can be realized as a stop sleeve and/or a stop ring. In the resting state, the armature is adjusted by a spring to a stop that is stationary with respect to the valve needle, so that the armature rests there. When the valve is actuated, the entire free travel of the armature is then available as an acceleration path, with the spring being shortened during acceleration. The armature free travel can be specified via the axial play between the armature and the two stops.

Von Vorteil ist es, dass die Führungslänge zwischen dem Anker und der Ventilnadel vergrößert ist. Beispielsweise kann der Anker an seiner Außenseite in dem Ventilgehäuse entlang der Längsachse geführt sein. Dann verbessert sich über die vergrößerte Führungslänge zwischen dem Anker und der Ventilnadel entsprechend die Führung der Ventilnadel entlang der Längsachse. Bei einer Ausgestaltung, bei der die Ventilnadel über das Anschlagelement beispielsweise an einem ortsfest im Gehäuse angeordneten Innenpol geführt ist, ergibt sich entsprechend eine verbesserte Führung des Ankers relativ zu dem Gehäuse.It is advantageous that the guide length between the armature and the valve needle is increased. For example, the armature can be guided on its outside in the valve housing along the longitudinal axis. The guidance of the valve needle along the longitudinal axis then improves accordingly due to the increased guidance length between the armature and the valve needle. In a configuration in which the valve needle is guided via the stop element, for example on an inner pole arranged in a stationary manner in the housing, the result is correspondingly improved guidance of the armature relative to the housing.

Von Vorteil ist es, dass die Feder bei der Betätigung ganz in die Federaufnahme eintauchen kann, so dass ein optimaler Kompromiss in Bezug auf mehrere Nachteile einer herkömmlichen Ausgestaltung erzielt werden kann.It is advantageous that the spring can immerse itself completely in the spring receptacle when it is actuated, so that an optimal compromise can be achieved in relation to several disadvantages of a conventional design.

Die Nachteile einer herkömmlichen Ausgestaltung betreffen zum Ersten die Herstellbarkeit, die Kosten und die Montage, wenn eine Ausgestaltung ohne Federaufnahme realisiert wird, bei der ein zusätzliches Bauteil zur Aufnahme der Feder sowie deren Anbindung an den Anker erforderlich ist. Zum Zweiten ergeben sich Nachteile, wenn eine Polfläche zwischen dem Anker und dem Innenpol reduziert ist, da dann eine geringere Magnetkraft auftritt. Dies betrifft speziell eine mögliche Ausgestaltung, bei der am Innenpol eine Stufenbohrung ausgestaltet wird, um Platz für eine Feder zu schaffen.The disadvantages of a conventional design relate firstly to manufacturability, costs and assembly if a design without a spring mount is implemented, in which an additional component is required to accommodate the spring and connect it to the armature. Second Disadvantages arise when a pole face between the armature and the inner pole is reduced, since a lower magnetic force then occurs. This relates in particular to a possible configuration in which a stepped bore is designed on the inner pole in order to create space for a spring.

Ein dritter Nachteil betrifft einen magnetischen Kurzschluss über die Feder und den damit verbundenen Verlust von Magnetkraft, was einen langsameren Kraftaufbau und eine geringere Haltekraft im geöffneten Zustand zur Folge hat. Dies betrifft in der Regel die eingesetzten magnetischen Federstähle, die einen Bypass für den magnetischen Fluss zwischen dem Anker und dem Innenpol darstellen. Ein vierter Nachteil betrifft die geringere Kontaktfläche zwischen dem Anker und einem Anschlagring bei einer Variante, bei der der Anschlagring in die an dem Anker ausgebildete Federaufnahme eintaucht. Dies kann einen erhöhten Verschleiß sowie eine reduzierte hydraulische Dämpfung bedingen.A third disadvantage relates to a magnetic short circuit across the spring and the associated loss of magnetic force, which results in slower force build-up and lower holding force in the open state. This usually affects the magnetic spring steel used, which represents a bypass for the magnetic flux between the armature and the inner pole. A fourth disadvantage relates to the smaller contact surface between the armature and a stop ring in a variant in which the stop ring dips into the spring seat formed on the armature. This can cause increased wear and reduced hydraulic damping.

Bei einem fünften Nachteil kann sich ein Hebelarm zwischen der oberen Nadelführung und dem Anker ergeben, was insbesondere die obengenannte Ausgestaltung betrifft, bei der der Anschlagring in die Federaufnahme eintaucht. Dies kann eine große Nadeldurchbiegung zur Folge haben, was zu erhöhtem Verschleiß, einem schiefen Anschlagen und dergleichen führt. Ein sechster möglicher Nachteil betrifft Ausgestaltungen, bei denen ein großer Federdurchmesser nötig wird. Aufgrund des begrenzten radialen Bauraums sind dann geringere Federkräfte realisierbar, was schlecht für eine schnelle Ankerberuhigung nach der ersten Einspritzung, insbesondere in Bezug auf Mehrfacheinspritzungen, ist. Bei gleicher Federkraft bedeutet ein größerer Federdurchmesser außerdem ein größeres Kippmoment auf den Anker, was für die Injektorfunktion ebenfalls nachteilig ist und insbesondere einen verkippten Ankeranschlag zur Folge haben kann. Ein siebter und letzter Nachteil betrifft die Gefahr des Ausbeulens der Feder unter Last und der dadurch bedingten Berührung des Innenpols und/oder des Anschlagrings aufgrund einer relativ langen Federlänge und geringer radialer Platzverhältnisse. Hierdurch kommt es zu einer undefinierten Reibung, die neben einem möglichen Verschleiß und der Entstehung von Partikeln erhebliche Streuungen des Einspritzverhaltens zur Folge hat.A fifth disadvantage may result in a lever arm between the upper needle guide and the armature, particularly in the above embodiment where the stop ring dips into the spring retainer. This can result in large needle deflection, leading to increased wear, skewing, and the like. A sixth potential disadvantage relates to designs that require a large spring diameter. Due to the limited radial installation space, lower spring forces can then be realized, which is bad for rapid armature settling after the first injection, in particular with regard to multiple injections. With the same spring force, a larger spring diameter also means a larger tilting moment on the armature, which is also disadvantageous for the injector function and, in particular, can result in a tilted armature stop. A seventh and last disadvantage relates to the risk of the spring bulging under load and the resulting contact with the inner pole and/or the stop ring due to a relatively long spring length and small radial space conditions. This leads to undefined friction, which, in addition to possible wear and the formation of particles, results in considerable scattering of the injection behavior.

Somit kann durch das komplette Eintauchen der Feder in die Federaufnahme des Ankers ein optimaler Kompromiss in Bezug auf die oben aufgeführten möglichen Nachteile erzielt werden. Hierbei kann das Anschlagelement aus einem nicht magnetischen Werkstoff hergestellt werden, wodurch es den Innenpol aus magnetischer Sicht vom Anker trennen kann. Ferner kann der Hebelarm kurz gehalten werden. Sowohl eine Polfläche als auch eine Anschlagfläche zwischen dem Anker und dem Anschlagelement, insbesondere Anschlagring, können ausreichend groß gewählt werden. Ferner kann ein relativ geringer Innendurchmesser der Feder realisiert werden, so dass auch bei einer vergleichsweise dünnen Drahtstärke der Feder relativ hohe Federkräfte erzielt werden können. Des Weiteren kann die Feder auch relativ kurz ausgestaltet werden, so dass die Gefahr eines Ausbeulens und eines dementsprechend auftretenden Verschleißes reduziert ist und ein diesbezüglich auf den Anker eingeleitetes Kippmoment innerhalb vertretbarer Grenzen bleibt.Thus, by completely immersing the spring in the spring seat of the armature, an optimal compromise can be achieved in relation to the possible disadvantages listed above. In this case, the stop element can be made of a non-magnetic material, as a result of which it can separate the inner pole from the armature from a magnetic point of view. Furthermore, the lever arm can be kept short. Both a pole face and a stop face between the armature and the stop element, in particular the stop ring, can be selected to be sufficiently large. Furthermore, a relatively small inner diameter of the spring can be realized, so that relatively high spring forces can be achieved even with a comparatively thin wire thickness of the spring. Furthermore, the spring can also be designed to be relatively short, so that the risk of buckling and wear that occurs accordingly is reduced and a tilting moment introduced in this regard on the armature remains within acceptable limits.

Ein vorteilhaftes Durchströmen des Ankers ist ermöglicht. Dadurch kann bei einer möglichen Ausgestaltung eine Führung des Ankers in dem Gehäuse erzielt werden. Ferner kann bei einer weiteren möglichen Ausgestaltung ein Ringspalt zwischen dem Anker und dem Gehäuse minimiert werden. In Bezug auf vorgegebene Gehäuseabmessungen ergeben sich dadurch ein schneller Kraftaufbau und eine große Haltekraft. Durch die Verschneidung der Durchgangsöffnungen mit der Federaufnahme kann außerdem die dem Innenpol zugewandte Stirnseite des Ankers größer ausgestaltet werden als wenn separate Durchgangsöffnungen realisiert sind.An advantageous flow through the armature is made possible. As a result, in one possible embodiment, the armature can be guided in the housing. Furthermore, in a further possible configuration, an annular gap between the armature and the housing can be minimized. In relation to the specified housing dimensions, this results in a rapid build-up of force and a large holding force. Due to the intersection of the through-openings with the spring receptacle, the end face of the armature facing the inner pole can also be made larger than if separate through-openings are realized.

Ein weiterer Vorteil, dass der Durchflussquerschnitt überproportional zur dadurch bedingten Verringerung der Fläche der Stirnseite des Ankers vergrößert werden kann.A further advantage is that the flow cross section can be increased disproportionately to the resulting reduction in the surface area of the end face of the armature.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Bevorzugte Ausführungsbeispiele der Erfindung sind in der nachfolgenden Beschreibung unter Bezugnahme auf die beigefügten Zeichnungen, in denen sich entsprechende Elemente mit übereinstimmenden Bezugszeichen versehen sind, näher erläutert. Es zeigen:

  • Fig. 1 ein Ventil in einer auszugsweisen, schematischen Schnittdarstellung entsprechend einem ersten Ausführungsbeispiel;
  • Fig. 2 ein Ventil in einer auszugsweisen, schematischen Schnittdarstellung entsprechend einem zweiten nicht erfindungsgemäßen Beispiel;
  • Fig. 3 und 4 mögliche Ausgestaltungen eines Ankers eines Ventils aus der in Fig. 1 mit III bezeichneten Blickrichtung und
  • Fig. 5 bis 8 mögliche Ausgestaltungen eines Anschlagelements eines Ventils entgegen der in Fig. 1 mit III bezeichneten Blickrichtung.
Preferred embodiments of the invention are in the following description with reference to the accompanying drawings in which Corresponding elements are provided with the same reference numerals, explained in more detail. Show it:
  • 1 a valve in a partial, schematic sectional view according to a first embodiment;
  • 2 a valve in a partial, schematic sectional view according to a second example not according to the invention;
  • Figures 3 and 4 possible configurations of an armature of a valve from the in 1 line of sight indicated by III and
  • Figures 5 to 8 possible configurations of a stop element of a valve contrary to the in 1 line of sight marked III.

Ausführungsformen der ErfindungEmbodiments of the invention

Fig. 1 zeigt ein Ventil 1 zum Zumessen eines Fluids in einer auszugsweisen, schematischen Schnittdarstellung entsprechend einem ersten Ausführungsbeispiel. Das Ventil 1 kann insbesondere als Brennstoffeinspritzventil 1 ausgebildet sein. Ein bevorzugter Anwendungsfall ist eine Brennstoffeinspritzanlage, bei der solche Brennstoffeinspritzventile 1 als Hochdruckeinspritzventile 1 ausgebildet sind und zur direkten Einspritzungen von Brennstoff in zugeordnete Brennräume der Brennkraftmaschine dienen. Als Brennstoff können hierbei flüssige oder gasförmige Brennstoffe zum Einsatz kommen. Entsprechend eignet sich das Ventil 1 zum Zumessen von flüssigen oder gasförmigen Fluiden. 1 shows a valve 1 for metering a fluid in a partial, schematic sectional view according to a first embodiment. The valve 1 can be embodied in particular as a fuel injection valve 1 . A preferred application is a fuel injection system in which such fuel injectors 1 are designed as high-pressure injectors 1 and are used for direct injection of fuel into associated combustion chambers of the internal combustion engine. Liquid or gaseous fuels can be used as the fuel. Accordingly, the valve 1 is suitable for metering liquid or gaseous fluids.

Das Ventil 1 weist ein Gehäuse (Ventilgehäuse) 2 auf, in dem ortsfest ein Innenpol 3 angeordnet ist. Durch das Gehäuse 2 ist eine Längsachse 4 bestimmt, die hier als Reverenz zur Führung einer innerhalb des Gehäuses 2 angeordneten Ventilnadel 5 dient. Dies bedeutet, dass im Betrieb eine Ausrichtung der Ventilnadel 5 entlang der Längsachse 4 erfolgen soll.The valve 1 has a housing (valve housing) 2 in which an inner pole 3 is arranged in a stationary manner. A longitudinal axis 4 is defined by the housing 2 and serves as a reference for guiding a valve needle 5 arranged within the housing 2 . This means that the valve needle 5 should be aligned along the longitudinal axis 4 during operation.

An der Ventilnadel 5 ist ein Anker (Magnetanker) 6 angeordnet. An der Ventilnadel 5 sind außerdem ein Anschlagelement 7 und ein weiteres Anschlagelement 8 angeordnet. An den Anschlagelementen 7, 8 sind Anschläge 7', 8' ausgebildet. Der Anker 6 kann hierbei bei einer Betätigung zwischen den Anschlagelementen 7, 8 bewegt werden, wobei ein Ankerfreiweg 9 vorgegeben ist. Der Anker 6, der Innenpol 3 sowie eine nicht dargestellte Magnetspule sind Bestandteile eines elektromagnetischen Aktuators 10.An armature (magnetic armature) 6 is arranged on the valve needle 5 . A stop element 7 and a further stop element 8 are also arranged on the valve needle 5 . At the stop elements 7, 8 stops 7 ', 8' are formed. In this case, the armature 6 can be moved between the stop elements 7, 8 when it is actuated, with an armature free path 9 being predetermined. The armature 6, the inner pole 3 and a magnet coil (not shown) are components of an electromagnetic actuator 10.

An der Ventilnadel 5 ist ein Ventilschließkörper 11 ausgebildet, der mit einer Ventilsitzfläche 12 zu einem Dichtsitz zusammenwirkt. Bei einer Betätigung des Ankers 6 wird dieser in Richtung auf den Innenpol 3 beschleunigt. Wenn der Anker 6 an dem Anschlag 7' des Anschlagelement 7 anschlägt und dadurch die Ventilnadel 5 betätigt, dann kann Brennstoff über den geöffneten Dichtsitz und zumindest eine Düsenöffnung 13 in einen Raum, insbesondere einen Brennraum, eingespritzt werden.A valve closing body 11 is formed on the valve needle 5 and interacts with a valve seat surface 12 to form a sealing seat. When the armature 6 is actuated, it is accelerated in the direction of the inner pole 3 . If the armature 6 hits the stop 7' of the stop element 7 and thereby actuates the valve needle 5, then fuel can be injected via the opened sealing seat and at least one nozzle opening 13 into a space, in particular a combustion chamber.

Das Ventil 1 weist eine Rückstellfeder 14 auf, die die Ventilnadel 5 über das Anschlagelement 7 in ihre Ausgangsstellung verstellt, in der der Dichtsitz geschlossen ist.The valve 1 has a restoring spring 14, which moves the valve needle 5 via the stop element 7 into its initial position, in which the sealing seat is closed.

Der Anker 6 basiert auf einer zylinderförmigen Grundform 20 mit einer Durchgangsbohrung 21, wobei der Anker 6 an der Durchgangsbohrung 21 an der Ventilnadel 5 geführt ist. Hierbei weist die Grundform 20 des Ankers 6 eine Länge L zwischen einer dem Innenpol 3 zugewandten Stirnseite 22 und einer von dem Innenpol 3 abgewandten Stirnseite 23 auf.The armature 6 is based on a cylindrical basic shape 20 with a through hole 21 , the armature 6 being guided on the through hole 21 on the valve needle 5 . Here, the basic shape 20 of the armature 6 has a length L between an end face 22 facing the inner pole 3 and an end face 23 facing away from the inner pole 3 .

Der Anker 6 weist eine Federaufnahme 25 auf. Die Federaufnahme 25 ist hierbei an der Stirnseite 22 des Ankers 6 geöffnet. Die Federaufnahme 25 weist entlang der Längsachse 4 eine Länge f zwischen der Stirnseite 22 und einer Federstützfläche 26 des Ankers 6 auf. Die Federstützfläche 26 stellt hierbei den Boden 26 der Federaufnahme 25 dar. Im Ausgangszustand, in dem der Dichtsitz geschlossen ist, weist eine teilweise in der Federaufnahme 25 angeordnete Feder 27 eine Federlänge F auf. Die Federlänge F ist hier also die Federlänge F der Feder 27 im unbetätigten Ausgangszustand. Die Feder 27 stützt sich hierbei einerseits an der Federstützfläche 26 des Ankers 6 und andererseits an dem Anschlag 7' des Anschlags 7 ab. Die Federlänge F ist größer als die Länge f der Federaufnahme 25. Bei einer Betätigung des Ankers 6 wird die Feder 27 allerdings gegenüber ihrer Ausgangslänge F verkürzt, wobei sie vollständig in die Federaufnahme 25 eintauchen kann.The armature 6 has a spring mount 25 . The spring seat 25 is open on the end face 22 of the armature 6 . The spring receptacle 25 has a length f along the longitudinal axis 4 between the end face 22 and a spring support surface 26 of the armature 6 . The spring support surface 26 here represents the base 26 of the spring receptacle 25. In the initial state, in which the sealing seat is closed, a spring 27 partially arranged in the spring receptacle 25 has a spring length F. The spring length F is here the spring length F of the spring 27 in the non-actuated initial state. The spring 27 supports this on the one hand on the spring support surface 26 of the armature 6 and on the other hand on the stop 7 'of the stop 7 from. The spring length F is greater than the length f of the spring receptacle 25. However, when the armature 6 is actuated, the spring 27 is shortened compared to its initial length F, and it can dip completely into the spring receptacle 25.

An dem Anker 6 ist in diesem Ausführungsbeispiel ein Führungssteg 28 ausgebildet. Zwischen der Federstützfläche 26 und der Stirnseite 23 weist der Anker 6 entlang der Längsachse 4 eine (verkürzte) Länge l auf. Ohne den Führungssteg 28 würde nur diese verkürzte Länge l als Führungslänge zur Verfügung stehen. Durch den Führungssteg 28 wird die Länge l um die Länge s des Führungsstegs 28 entlang der Längsachse 4 verlängert. Somit ergibt sich in diesem Ausführungsbeispiel die Führungslänge l + s. Hierbei wird die Länge s des Führungsstegs 28 vorzugsweise gleich groß oder sogar größer als die Länge f der Federaufnahme 25 gewählt. Dadurch ist die Führungslänge l + s des Ankers 6 an der Ventilnadel 5 gleich oder sogar größer als die Länge L des Ankers 6 zwischen seinen Stirnseiten 22, 23.In this exemplary embodiment, a guide web 28 is formed on the armature 6 . The armature 6 has a (shortened) length l along the longitudinal axis 4 between the spring support surface 26 and the end face 23 . Without the guide web 28, only this shortened length l would be available as a guide length. The guide bar 28 lengthens the length l by the length s of the guide bar 28 along the longitudinal axis 4 . This results in the guide length l+s in this exemplary embodiment. In this case, the length s of the guide bar 28 is preferably chosen to be the same as or even greater than the length f of the spring receptacle 25 . As a result, the guide length l + s of the armature 6 on the valve needle 5 is equal to or even greater than the length L of the armature 6 between its end faces 22, 23.

Die Führung der Ventilnadel 5 bezüglich der Längsachse 4 beziehungsweise bezüglich des Gehäuses 2 ergibt sich in diesem Ausführungsbeispiel über das Anschlagelement 7. Hierbei ist das Anschlagelement 7 in einem Führungsbereich 30 an einer Innenbohrung 31 des Innenpols 3 geführt. Mögliche Ausgestaltungen des Anschlagelements 7, die eine vorteilhafte Durchleitung des Fluids, insbesondere Brennstoffs, ermöglichen, sind anhand der Fig. 5 bis 8 beschrieben. In diesem Ausführungsbeispiel ergibt sich zwischen einer Außenseite 32 des Ankers 6 und einer Innenseite 33 des Gehäuses 2 ein Ringspalt 34.In this exemplary embodiment, the valve needle 5 is guided with respect to the longitudinal axis 4 or with respect to the housing 2 via the stop element 7 . Possible configurations of the stop element 7, which allow an advantageous passage of the fluid, in particular fuel, are based on the Figures 5 to 8 described. In this exemplary embodiment, there is an annular gap 34 between an outer side 32 of the armature 6 and an inner side 33 of the housing 2.

Bei einer abgewandelten Ausgestaltung kann die Führung der Ventilnadel 5 zusätzlich oder alternativ auch über den Anker 6 realisiert werden. Hierbei reicht die Außenseite 32 des Ankers 6 zumindest teilweise bis an die Innenseite 33 des Gehäuses 2. Bei dieser Ausgestaltung kann anstelle des Führungsbereichs 30 dann ein Ringspalt zwischen dem Anschlagelement 7 und dem Innenpol 3 realisiert werden.In a modified embodiment, the valve needle 5 can additionally or alternatively also be guided via the armature 6 . The outside 32 of the armature 6 extends at least partially to the inside 33 of the housing 2. In this embodiment, instead of the guide area 30, an annular gap can then be realized between the stop element 7 and the inner pole 3.

Somit kann eine vorteilhafte Führung der Ventilnadel 5 entlang der Längsachse 4 realisiert werden. Hierbei ergibt sich zugleich eine vorteilhafte Führung zwischen dem Anker 6 und der Ventilnadel 5 über eine Führungslänge l + s, die vorzugsweise nicht kleiner als die Länge L ist.Advantageous guidance of the valve needle 5 along the longitudinal axis 4 can thus be implemented. At the same time, this results in an advantageous guidance between the armature 6 and the valve needle 5 over a guidance length l+s, which is preferably not less than the length L.

Fig. 2 zeigt ein Ventil 1 in einer auszugsweisen, schematischen Schnittdarstellung entsprechend einem zweiten nicht erfindungsgemäßen Beispiel. In diesem Beispiel ist eine Führungsverlängerung 40 vorgesehen. Die Führungsverlängerung 40 hat entlang der Längsachse 4 eine Länge s', um die sich die Führung des Ankers 6 an der Ventilnadel 5 verlängert. Dies bedeutet, dass in diesem Beispiel die Führungslänge s' + l entlang der Längsachse 4 zwischen dem Anker 6 und der Ventilnadel 5 realisiert ist. 2 shows a valve 1 in a partial, schematic sectional view corresponding to a second example not according to the invention. In this example, a guide extension 40 is provided. The guide extension 40 has a length s' along the longitudinal axis 4, by which the guide of the armature 6 on the valve needle 5 is extended. This means that in this example the guide length s′+l is realized along the longitudinal axis 4 between the armature 6 and the valve needle 5 .

Somit ist es in diesem Beispiel möglich, dass die Federaufnahme 25 direkt an die Ventilnadel 5 angrenzt. Dies erleichtert insbesondere die Herstellung des Ankers 6, da die Federaufnahme 25 durch eine an der Längsachse 4 ausgerichtete zylinderförmige Ausnehmung realisiert werden kann. Dadurch steht allerdings direkt an der Grundform 20 des Ankers 6 nur die gegenüber der Länge L des Ankers 6, die dieser zwischen den Stirnseiten 22, 23 aufweist, verkürzte Länge l zur Verfügung. Diese verkürzte Länge l wird hierdurch gewissermaßen über die Führungsverlängerung 40 um die Länge s' verlängert. Speziell kann die Länge s' so vorgegeben sein, dass die Führungslänge s' + l gleich groß oder sogar größer als die Länge L des Ankers 6 zwischen seinen Stirnseiten 22, 23 ist.It is thus possible in this example for the spring receptacle 25 to be directly adjacent to the valve needle 5 . In particular, this facilitates the manufacture of the armature 6 since the spring receptacle 25 can be realized by a cylindrical recess aligned with the longitudinal axis 4 . As a result, however, directly on the basic form 20 of the armature 6 only the length l which is shortened compared to the length L of the armature 6 between the end faces 22, 23 is available. As a result, this shortened length l is lengthened by the length s′ via the guide extension 40 . In particular, the length s′ can be predetermined in such a way that the guide length s′+l is equal to or even greater than the length L of the armature 6 between its end faces 22 , 23 .

Außerdem ist die Führungsverlängerung 40 hülsenförmig ausgestaltet. Dies bedeutet, dass ein Außendurchmesser 41 an der Führungsverlängerung 40 deutlich kleiner gewählt ist als ein Außendurchmesser 42 an der Außenseite 32 des Ankers 6.In addition, the guide extension 40 is designed in the form of a sleeve. This means that an outer diameter 41 on the guide extension 40 is selected to be significantly smaller than an outer diameter 42 on the outside 32 of the armature 6.

Ferner ist die Feder 27 in diesem Beispiel mit angeschliffenen Federenden 43, 44 ausgestaltet. Dadurch ergibt sich eine noch bessere Auflage. Ferner ergeben sich ein reduzierter Verschleiß sowie eine gleichmäßigere Krafteinleitung einerseits in den Anker 6 an der Federstützfläche 26 und andererseits an dem Anschlag 7' des Anschlagelements 7.Furthermore, the spring 27 is designed with ground spring ends 43, 44 in this example. This results in an even better edition. Furthermore, there is reduced wear and a more uniform introduction of force into the armature 6 on the spring support surface 26 on the one hand and on the stop 7′ of the stop element 7 on the other.

Fig. 3 und 4 zeigen mögliche Ausgestaltungen des Ankers 6 des Ventils 1 aus der in Fig. 1 mit III bezeichneten Blickrichtung, wobei zur besseren Verständlichkeit die Ventilnadel 5 als Schnittfläche dargestellt ist. Die Stirnseite 22 teilt sich in Teilflächen 22A und 22B auf, zwischen denen die Federaufnahme 25 vorgesehen ist. Ferner sind Durchgangsöffnungen 51 bis 54 vorgesehen, die in diesem Ausführungsbeispiel als Durchgangsbohrungen 51 bis 54 mit kreisförmigem Querschnitt ausgestaltet sind. Hierbei ergeben sich Verschneidungen zwischen den Durchgangsbohrungen 51 bis 54 und der Federaufnahme 25. Dies bedeutet, dass der Brennstoff über die Länge f der Federaufnahme sowohl durch den von der Feder 27 nicht ausgefüllten Teil der Federaufnahme 25 als auch durch die Durchgangsöffnungen 51 bis 54 strömen kann. Anschließend strömt der Brennstoff dann über die verkürzte Länge l nur durch die Durchgangsöffnungen 51 bis 54. Dadurch ist ein Brennstofffluss von der Stirnseite 22 zur Stirnseite 23 mit geringer Drosselung ermöglicht, ohne dass die Gesamtfläche der Stirnseite 22, die sich aus den Teilflächen 22A, 22B zusammensetzt, weiter verkleinert ist. Dies wirkt sich günstig auf das Ansteuerverhalten bei einer Betätigung des Ankers 6 aus, da sich sowohl eine große Magnetkraft als auch eine reduzierte hydraulische Drosselung ergeben. Figures 3 and 4 show possible configurations of the armature 6 of the valve 1 from FIG 1 III designated viewing direction, for better understanding, the valve needle 5 is shown as a sectional area. The end face 22 is divided into sub-areas 22A and 22B, between which the spring receptacle 25 is provided. Furthermore, through openings 51 to 54 are provided, which in this exemplary embodiment are configured as through bores 51 to 54 with a circular cross section. This results in intersections between the through bores 51 to 54 and the spring mount 25. This means that the fuel can flow over the length f of the spring mount both through the part of the spring mount 25 not filled by the spring 27 and through the through openings 51 to 54 . The fuel then flows over the shortened length l only through the through openings 51 to 54. This enables a fuel flow from the end face 22 to the end face 23 with little throttling, without the total area of the end face 22, which consists of the partial areas 22A, 22B composed, is further reduced. This has a favorable effect on the control behavior when the armature 6 is actuated, since both a large magnetic force and reduced hydraulic throttling result.

Bei dem anhand der Fig. 4 beschriebenen Ausführungsbeispiel sind zusätzlich nierenförmige Ausgestaltungen der Durchgangsöffnungen 51 bis 54 realisiert, so dass sich die Durchgangsöffnungen 51 bis 54 in einer Umfangsrichtung 55 um die Längsachse 4 beziehungsweise umfänglich um die Längsachse 4 über einen größeren Winkelbereich erstrecken. Dadurch wird insbesondere der Brennstofffluss über die verkürzte Länge l des Ankers 6 verbessert.In the case of the 4 In the exemplary embodiment described, kidney-shaped configurations of the through-openings 51 to 54 are also implemented, so that the through-openings 51 to 54 extend in a circumferential direction 55 around the longitudinal axis 4 or circumferentially around the longitudinal axis 4 over a larger angular range. As a result, the flow of fuel over the shortened length l of the armature 6 is improved in particular.

Fig. 5 bis 8 zeigen mögliche Ausgestaltungen des Anschlagelements 7 des Ventils 1 entgegen der in Fig. 1 mit III bezeichneten Blickrichtung, wobei zur Veranschaulichung die Ventilnadel 5 im Schnitt dargestellt ist. Hierbei ist ein Stützbereich 60 für die Feder 27 vorgegeben. Der Stützbereich 60 ist radial nach außen durch eine unterbrochen dargestellte Linie 60A begrenzt. Ferner ist der Stützbereich 60 radial nach innen durch eine unterbrochen dargestellte Linie 601 begrenzt. Der Stützbereich 60 dient als der konstruktiv vorgegebene Stützbereich 60, in dem sich die gewählte Feder 27 abstützen soll. Ferner beziehen sich die Ausgestaltungen vorzugsweise auf einen Anwendungsfall, bei dem eine Führung zwischen dem Anschlagelement 7 und dem Innenpol 3 realisiert ist, wie es beispielsweise in der Fig. 1 veranschaulicht ist. Figures 5 to 8 show possible configurations of the stop element 7 of the valve 1 contrary to the 1 View direction denoted by III, the valve needle 5 being shown in section for illustration purposes. Here, a support area 60 for the spring 27 is specified. The support area 60 is delimited radially outwards by a broken line 60A. Furthermore, the support area 60 is delimited radially inwards by a line 601 shown as a broken line. The support area 60 serves as the structurally predetermined support area 60 in which the selected spring 27 is to be supported. Furthermore, the Configurations preferably for an application in which a guide between the stop element 7 and the inner pole 3 is realized, as is the case, for example, in FIG 1 is illustrated.

Um den Brennstoff an dem Anschlagelement 7 vorbeizuleiten, sind Vertiefungen 61 bis 64 vorgesehen. Hierbei kann das Anschlagelement 7 ausgehend von einer hohlzylinderförmigen Grundform 65, die durch einen Außendurchmesser D charakterisiert ist, durch solche Vertiefungen 61 bis 64 modifiziert werden. Dadurch ergibt sich sowohl die Möglichkeit einer Führung an dem Außendurchmesser D als auch einer Brennstoffdurchleitung durch die Vertiefungen 61 bis 64.Indentations 61 to 64 are provided in order to direct the fuel past the stop element 7 . Here, the stop element 7 can be modified by such indentations 61 to 64, starting from a basic hollow-cylindrical shape 65, which is characterized by an outer diameter D. This results in both the possibility of a guide on the outer diameter D and a fuel passage through the depressions 61 to 64.

Die Vertiefungen 61 bis 64 sind hier so ausgeführt, dass sie von der Längsachse 4 aus betrachtet maximal bis zu einem Durchmesser d reichen. Dies bedeutet, dass von der Ventilnadel 5 bis zu dem Durchmesser d eine kreisringförmige Fläche 66 verbleibt.The depressions 61 to 64 are designed here in such a way that, viewed from the longitudinal axis 4, they reach a maximum of a diameter d. This means that an annular surface 66 remains from the valve needle 5 to the diameter d.

Vorzugsweise ist der Durchmesser d so vorgegeben, dass dieser zwischen der äußeren Linie 60A und der inneren Linie 60l liegt. Dadurch liegt die Feder 27 auch im Bereich der Vertiefungen 61 bis 64 zumindest teilweise, nämlich zumindest an der kreisringförmigen Fläche 66, an dem Stützbereich 60 an. Hierdurch ergibt sich ein Kompromiss aus einer guten Anlage der Feder 27 an dem Stützbereich 60 und möglichst großen Vertiefungen 61 bis 64 sowie gleichzeitig der Möglichkeit einer Führung an dem Außendurchmesser D.Preferably, the diameter d is set to be between the outer line 60A and the inner line 60l. As a result, the spring 27 also rests at least partially on the support area 60 in the area of the depressions 61 to 64, namely at least on the annular surface 66. This results in a compromise between a good contact of the spring 27 on the support area 60 and the largest possible depressions 61 to 64 and at the same time the possibility of guiding on the outer diameter D.

Die Fig. 5 bis 8 zeigen verschiedene Möglichkeiten, die Vertiefungen 61 bis 64 auszuführen. Fig. 5 als Verschneidung mit Zylinderbohrungen, Fig. 6 als Verschneidungen mit rechteckförmigen Ausfräsungen, Fig. 7 als Verschneidung mit Abflachungen. Bei der Ausgestaltung nach Fig. 8 kann der Durchflussquerschnitt durch Ringsegmente gebildet werden.The Figures 5 to 8 show different ways to perform the depressions 61 to 64. figure 5 as an intersection with cylinder bores, 6 as intersections with rectangular cutouts, 7 as an intersection with flattening. When designing 8 the flow cross section can be formed by ring segments.

Claims (4)

  1. Valve (1) for metering in a fluid, in particular fuel injection valve for internal combustion engines, with an electromagnetic actuator (10) and a valve needle (5) which can be actuated by the actuator (10), an armature (6) of the actuator (10) being guided on the valve needle (5), a stop element (7) which limits a movement of the armature (6) relative to the valve needle (5) being arranged on the valve needle (5), and the armature (6) having a spring support (25) which is open towards the stop element (7) and into which a spring (27) which is supported on the stop element (7) is inserted, the valve needle (5) being guided via the armature (6) and/or the stop element (7) along the longitudinal axis (4) of a housing (2), and a length (f) of the spring support (25) as viewed along the longitudinal axis (4) being smaller than a spring length (F) of the spring (27) in the non-actuated starting state, characterized in that the stop element (7) is based on a hollow-cylindrical basic shape with a defined external diameter (D) with regard to the longitudinal axis (4), and in that at least one depression (61-64) is configured up to a defined diameter (d) with regard to the longitudinal axis on an outer side of the basic shape (65), and in that the supporting region (60) for the spring (27) lies within the defined external diameter (D) of the stop element (7) and outside the defined diameter (d) of the stop element (7), a guide web (28) which faces the stop element (7) and guides the armature (6) along the longitudinal axis (4) on the valve needle (5) being configured on the armature (6).
  2. Valve according to Claim 1, characterized in that, in the case of actuation, the spring (27) can be shortened to that length (f) of the spring support (25) which is predefined by the spring support (25) of the armature (6) .
  3. Valve according to either of Claims 1 and 2, characterized in that the armature (6) has at least one through opening (51-54) which extends along the longitudinal axis (4) and intersects with the spring support (25).
  4. Valve according to Claim 3, characterized in that at least one through opening (51-54) is configured to be of kidney-shaped extent in the circumferential direction (55) .
EP20209959.4A 2016-12-21 2017-10-19 Valve for metering a fluid Active EP3822475B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016225776.5A DE102016225776A1 (en) 2016-12-21 2016-12-21 Valve for metering a fluid
EP17786914.6A EP3559437B1 (en) 2016-12-21 2017-10-19 Valve for metering a fluid
PCT/EP2017/076701 WO2018114088A1 (en) 2016-12-21 2017-10-19 Valve for metering a fluid

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP17786914.6A Division EP3559437B1 (en) 2016-12-21 2017-10-19 Valve for metering a fluid
EP17786914.6A Division-Into EP3559437B1 (en) 2016-12-21 2017-10-19 Valve for metering a fluid

Publications (2)

Publication Number Publication Date
EP3822475A1 EP3822475A1 (en) 2021-05-19
EP3822475B1 true EP3822475B1 (en) 2023-05-17

Family

ID=60138384

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17786914.6A Active EP3559437B1 (en) 2016-12-21 2017-10-19 Valve for metering a fluid
EP20209959.4A Active EP3822475B1 (en) 2016-12-21 2017-10-19 Valve for metering a fluid

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP17786914.6A Active EP3559437B1 (en) 2016-12-21 2017-10-19 Valve for metering a fluid

Country Status (7)

Country Link
US (1) US11359589B2 (en)
EP (2) EP3559437B1 (en)
JP (1) JP6845937B2 (en)
KR (1) KR102394017B1 (en)
CN (1) CN110100089B9 (en)
DE (1) DE102016225776A1 (en)
WO (1) WO2018114088A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018218682A1 (en) 2018-10-31 2020-04-30 Robert Bosch Gmbh Valve for metering a fluid
DE102018219054A1 (en) 2018-11-08 2020-05-14 Robert Bosch Gmbh Valve for metering a fluid
DE102018219543A1 (en) 2018-11-15 2020-05-20 Robert Bosch Gmbh Valve for metering a fluid
DE102018222443A1 (en) 2018-12-20 2020-06-25 Robert Bosch Gmbh Valve for metering a fluid

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3707992A (en) * 1970-11-09 1973-01-02 Skinner Precision Ind Inc Electromagnetic valve assembly
US5984210A (en) * 1997-11-04 1999-11-16 Caterpillar Inc. Fuel injector utilizing a solenoid having complementarily-shaped dual armatures
DE19946602A1 (en) * 1999-09-29 2001-04-12 Bosch Gmbh Robert Fuel injector
DE19948238A1 (en) * 1999-10-07 2001-04-19 Bosch Gmbh Robert Fuel injector
JP2002357173A (en) 2001-03-28 2002-12-13 Denso Corp Fuel injection valve manufacturing method and fuel injection valve
DE10133166A1 (en) 2001-07-07 2003-01-16 Bosch Gmbh Robert Fuel injection valve for internal combustion engines
DE10205970A1 (en) 2002-02-14 2003-09-04 Bosch Gmbh Robert Fuel injection valve for internal combustion engines
JP5152024B2 (en) * 2009-02-04 2013-02-27 株式会社デンソー Fuel injection valve
JP5488120B2 (en) * 2010-03-30 2014-05-14 株式会社デンソー Fuel injection valve
US8453951B2 (en) 2010-09-22 2013-06-04 Delphi Technologies, Inc. Fuel injector
KR101345431B1 (en) * 2011-12-09 2013-12-27 주식회사 현대케피코 GDI fuel injector
DE102011090006B4 (en) * 2011-12-28 2015-03-26 Continental Automotive Gmbh Valve
DE102013219974B4 (en) 2013-10-02 2019-08-08 Continental Automotive Gmbh Valve assembly for an injection valve
DE102013222613A1 (en) 2013-11-07 2015-05-07 Robert Bosch Gmbh Valve for metering fluid
EP3009655B1 (en) 2014-10-13 2017-08-23 Continental Automotive GmbH Fuel injection valve for an internal combustion engine
DE102017207273A1 (en) * 2016-06-30 2018-01-04 Robert Bosch Gmbh Valve for metering a fluid

Also Published As

Publication number Publication date
CN110100089A (en) 2019-08-06
WO2018114088A1 (en) 2018-06-28
CN110100089B (en) 2021-12-21
JP2020502423A (en) 2020-01-23
US20190309712A1 (en) 2019-10-10
KR20190097052A (en) 2019-08-20
EP3822475A1 (en) 2021-05-19
EP3559437A1 (en) 2019-10-30
KR102394017B1 (en) 2022-05-06
JP6845937B2 (en) 2021-03-24
DE102016225776A1 (en) 2018-06-21
US11359589B2 (en) 2022-06-14
EP3559437B1 (en) 2021-01-27
CN110100089B9 (en) 2022-01-11

Similar Documents

Publication Publication Date Title
EP3822475B1 (en) Valve for metering a fluid
DE102011013702B4 (en) Electromagnetic actuator
EP3535486B1 (en) Fuel injection valve for injecting a gaseous and / or liquid fuel
EP3478957B1 (en) Valve for injecting gaseous fuel
DE102014217441A1 (en) Electromagnetically actuated proportional valve
DE102008035087B4 (en) Injector
EP3141737B1 (en) Valve for metering a fluid
EP4033087B1 (en) Valve for metering a fluid
EP2472096A1 (en) Injection valve for injecting a fluid
DE102019205301A1 (en) Valve for metering a fluid
EP3034857A1 (en) Fuel injector valve
EP3034856B1 (en) Fuel injector valve
DE102013224863A1 (en) Magnetic actuator for a fuel injector and fuel injector
DE102018221086A1 (en) Valve for metering a fluid, in particular fuel injection valve
DE102017222501A1 (en) Valve for metering a fluid
DE102018215210A1 (en) Valve for metering a fluid
WO2010108747A1 (en) Fuel injection device
DE10032924A1 (en) Fuel injection device for internal combustion engines
DE102018219054A1 (en) Valve for metering a fluid
DE102022204538A1 (en) Gas injector with compact design
DE102020215621A1 (en) fuel injector
DE10143500A1 (en) Fuel injection valve for fuel injection system for IC engine, has guide collar with flat deviating from circular outer contour of armature so that at least one aperture is formed between collar and guiding counter surface
DE102013225817A1 (en) Fuel injector
DE102012224247A1 (en) Fuel injector i.e. common-rail injector, for use with self-ignition engine, has magnet armature indirectly connected with coupler, which delimits adjusting element over coupling element by spring element
DE102019205306A1 (en) Valve for metering a fluid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 3559437

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211119

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F02M 63/00 20060101ALI20230126BHEP

Ipc: F02M 55/00 20060101ALI20230126BHEP

Ipc: F02M 61/20 20060101ALI20230126BHEP

Ipc: F02M 61/12 20060101ALI20230126BHEP

Ipc: F02M 51/06 20060101AFI20230126BHEP

INTG Intention to grant announced

Effective date: 20230223

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 3559437

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017014732

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1568464

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230615

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230918

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230817

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230917

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231123

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017014732

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240220