EP3819984B1 - Antenne dipôle à double polarisation à balayage grand angle - Google Patents

Antenne dipôle à double polarisation à balayage grand angle Download PDF

Info

Publication number
EP3819984B1
EP3819984B1 EP20806225.7A EP20806225A EP3819984B1 EP 3819984 B1 EP3819984 B1 EP 3819984B1 EP 20806225 A EP20806225 A EP 20806225A EP 3819984 B1 EP3819984 B1 EP 3819984B1
Authority
EP
European Patent Office
Prior art keywords
metal
arms
antenna
feed
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20806225.7A
Other languages
German (de)
English (en)
Other versions
EP3819984A4 (fr
EP3819984A1 (fr
Inventor
Jia FANG
Qingchao ZHU
Tao Jiang
Weiying CAI
Mouping JIN
Quan Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 38 Research Institute
Original Assignee
CETC 38 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 38 Research Institute filed Critical CETC 38 Research Institute
Publication of EP3819984A1 publication Critical patent/EP3819984A1/fr
Publication of EP3819984A4 publication Critical patent/EP3819984A4/fr
Application granted granted Critical
Publication of EP3819984B1 publication Critical patent/EP3819984B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1207Supports; Mounting means for fastening a rigid aerial element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors

Definitions

  • the present invention relates to the technical field of antennas, and particularly relates to a wide-angle scanning dual-polarization dipole antenna.
  • An antenna is one of the most important components in systems of wireless broadcasting, wireless communication and wireless detection, and its structure and characteristics determine the working performance of the entire system to a great extent.
  • a phased array antenna has become an important development direction of the modern antenna because of its excellent beam scanning and beamforming capacity. Radar, communication and other systems often require the phased array antenna to have the characteristics of wide working frequency band, large scanning angle, low return loss, etc.
  • the antennas in some special applications often need to have strong environmental adaptability to adapt to harsh working conditions.
  • a dual-polarization antenna is composed of two polarization mutually-orthogonal antennas and is widely used in modern radar, communication and other systems.
  • Conventional forms of the dual-polarization antenna include microstrip antennas, dipole antennas, Vivaldi antennas, etc.
  • the crisscross dual-polarization antenna composed of two mutually-orthogonal dipole antennas has the advantages of wide bandwidth, low machining difficulty, high reliability and the like and is usually used as an arraying unit of the dual-polarization phased array.
  • impedance of the traditional dual-polarization dipole antenna may have dramatic changes during large-angle scanning, thereby further leading to impedance mismatch, and causing serious return loss.
  • the return loss of an antenna unit is always up to -6dB.
  • the antenna in some special application fields always encounters complicated working environments and extreme weather such as heavy rainfall, heavy snowfall, etc.
  • the traditional dual-polarization dipole antenna often has a large cross sectional area and is prone to snow accumulation, thereby greatly affecting the working time of the antenna.
  • Chinese patent application No. CN103682631A discloses a multi-standard multi-band dual-polarized antenna, which includes a reflecting plate, wherein the reflecting plate is provided with a plurality of low-frequency radiation units and a plurality of high-frequency radiation units; each low-frequency radiation unit comprises a guide sheet, a fixed medium, a radiator, a Balun and a feed conductor.
  • United States patent application No. US2011/057848A1 discloses an antenna apparatus that may be implemented using a single antenna feed and impedance matching network with a low profile antenna shape that optimizes over-the-horizon gain, with no requirement for a ground plane.
  • the antenna apparatus may also be implemented to cover the entire UHF SATCOM frequency band using a single antenna feed.
  • United States patent application No. US2007/200783A1 discloses a broadband dipole including two co-working conductors.
  • a first of the conductors is comprised of a rod including a substantially centrally located axial hole, said hole forming an outer conductor of a coaxial line, and that the second conductor is comprised of a solid rod, and that a metallic wire inserted centrally in the axial hole of the first conductor is connected to the second conductor.
  • the present invention adopts the following technical solution to solve the above technical problems.
  • the present invention includes first metal arms, an antenna support column, second metal arms and feed baluns.
  • the first metal arms are located at the top of the antenna and used to improve impedance fluctuation of the antenna during large-angle scanning.
  • the feed baluns are located at the bottom of the antenna and used to convert an unbalanced feed input by a coaxial wire to a balanced feed.
  • the antenna support column is located between the feed baluns and the first metal arms and used to support the first metal arms.
  • the second metal arms are arranged at an outer upper ends of the feed baluns and fed respectively by the feed baluns.
  • the first metal arms are longitudinal cross-blade-shaped metal arms.
  • the second metal arms are longitudinal blade-shaped metal dipole arms.
  • Each of the first metal arms and the second metal arms includes a horizontal portion and a bending portion.
  • the horizontal portion and the bending portion are integrally-molded members.
  • the number of the second metal arms is two groups, in a total of four second metal arms.
  • the two groups of second metal arms are distributed symmetrically.
  • the antenna adopts a symmetric structure, so that two polarization directions are mutually orthogonal.
  • the number of feed baluns is two groups.
  • the two groups of feed baluns are mutually orthogonal, so that the feed baluns can conveniently feed the two groups of dipole arms with mutually-orthogonal polarization directions respectively.
  • each group of feed baluns includes a coaxial wire, an earthing metal column, a metal bridge and a medium substrate.
  • the metal bridge is arranged on the medium substrate.
  • the medium substrate is arranged at the upper ends of the coaxial wire and the earthing metal column.
  • the metal bridge is used to connect the coaxial wire and the earthing metal column.
  • each group of feed baluns further includes a plurality of medium support columns.
  • the coaxial wire includes a coaxial inner conductor and a coaxial outer conductor.
  • the coaxial inner conductor is located inside the coaxial outer conductor.
  • the plurality of medium support columns are arranged outside the coaxial inner conductor respectively.
  • the coaxial inner conductor is fixed by the medium support columns.
  • a parallel doublet structure is formed between the coaxial outer conductor and the earthing metal column.
  • the two groups of second metal arms are fixedly welded respectively on the coaxial outer conductor and the earthing metal column and fed by the parallel doublet structure.
  • the bending portion is bent downwards.
  • a bending angle of the second metal arm is kept consistent with the first metal arm.
  • the downwards bending can play a role in guiding rain and snow.
  • the present invention has the following advantages: the wide-angle scanning dual-polarization dipole antenna greatly improves impedance matching during large-angle scanning of the antenna and effectively improves wide-angle scanning performance of the antenna.
  • the wide-angle scanning of ⁇ 60° in a range of 208 MHz-260 MHz is realized, and a voltage standing-wave ratio during the scanning is less than 1.5.
  • the antenna has good cross polarization performance.
  • a cross polarization level is less than -25dB.
  • both the metal dipole arms and the top metal arms adopt a longitudinal blade-shaped bending structure respectively, and the cross sectional area is extremely small, snow and rain are not prone to accumulate, thereby greatly reducing the influence of accumulated snow and rain on performance and service life of the antenna.
  • the antenna is especially applicable to severe weather conditions such as heavy rainfall, heavy snowfall and the like.
  • first metal arm 1, antenna support column; 2, antenna support column; 3, second metal arm; 4, feed balun; 41, coaxial inner conductor; 42, coaxial outer conductor; 43, earthing metal column; 44, medium support column; 45, metal screw; 46, metal bridge; 47, medium substrate.
  • Embodiments of the present invention are described in detail below.
  • the present embodiment is implemented on the premise of the technical solution of the present invention. Detail implementations and specific operating processes are illustrated, but the protection scope of the present invention is not limited to the embodiment described below.
  • a wide-angle scanning dual-polarization dipole antenna includes first metal arms 1, an antenna support column 2, second metal arms 3 and feed baluns 4.
  • the first metal arms 1 are located at the top of the antenna and used to improve impedance fluctuation of the antenna during large-angle scanning.
  • the feed baluns 4 are located at the bottom of the antenna and used to convert an unbalanced feed input by a coaxial wire to a balanced feed.
  • the antenna support column 2 is located between the feed baluns 4 and the first metal arms 1 and used to support the first metal arms 1.
  • the second metal arms 3 are arranged at an outer upper ends of the feed baluns 4 and fed respectively by the feed baluns 4.
  • the first metal arms 1 are longitudinal cross-blade-shaped metal arms.
  • the first metal arms 1 are parasitic units and are not fed.
  • the second metal arms 3 are longitudinal blade-shaped metal dipole arms.
  • Each of the first metal arms 1 and the second metal arms 3 includes a horizontal portion and a bending portion.
  • the horizontal portion and the bending portion are integrally-molded members.
  • the bending portion is bent downwards.
  • a bending angle of the second metal arm is kept consistent with the first metal arm.
  • the downwards bending can play a role in guiding rain and snow.
  • the metal arms in the above shape have small cross sectional areas and are not prone to rain and snow accumulation, so that the antenna is integrally high in wind resistance and rain and snow resistance and can adapt to the extreme weather and complicated working environment.
  • the working frequency of the antenna is 208 MHz-260 MHz.
  • a polarization way includes horizontal polarization and vertical polarization.
  • the antenna units are distributed in a form of triangular lattices. Spacing among the antenna units in the horizontal polarization direction is 740 mm, and spacing among the antenna units in the vertical polarization direction is 640 mm.
  • the antenna is distributed in the practical triangular lattice form, the number of transverse and longitudinal units can be increased according to actual needs.
  • the antenna can also be distributed in a rectangular lattice form, an annular form or other forms according to the actual needs.
  • the first metal arms 1 include two mutually-orthogonal longitudinal blade-shaped metal arms. Each of the longitudinal blade-shaped metal arms has a transverse length of 370 mm, a longitudinal height of 106 mm and a width of 3 mm, and are arranged at the upper ends of the antenna support columns 2.
  • the metal arms 1 are fixed to the antenna support columns 2 by screws or in other ways.
  • the antenna support column 2 is made of polytetrafluoroethylene material with a dielectric coefficient Dk of 2.1.
  • Each of the antenna support columns 2 has a maximum diameter of 95 mm and a height of 45 mm, and is arranged on the feed baluns 4.
  • the antenna support columns 2 are fixed to the feed baluns 4 by screws or in other ways.
  • the number of feed baluns 4 is two groups.
  • the two groups of feed baluns 4 are mutually orthogonal, so that the feed baluns can conveniently feed the two groups of dipole arms with two mutually-orthogonal polarization directions.
  • Each group of baluns 4 includes a coaxial wire, an earthing metal column 43, a metal bridge 46 and a medium substrate 47.
  • the metal bridge 46 is arranged on the medium substrate 47 and is fixed respectively by four metal screws 45.
  • the medium substrate 47 is arranged at the upper ends of the coaxial wire and the earthing metal column 43.
  • the metal bride 46 is used to connect the coaxial wire and the earthing metal column 43.
  • Each group of feed baluns 4 also includes a plurality of medium support columns 44.
  • the coaxial wire includes a coaxial inner conductor 41 and a coaxial outer conductor 42.
  • the coaxial inner conductor 41 is located inside the coaxial outer conductor 42.
  • the plurality of medium support columns 44 are arranged respectively outside the coaxial inner conductors 41.
  • a parallel doublet structure is formed between the coaxial outer conductor 42 and the earthing metal column 43.
  • the two groups of second metal columns 3 are fixedly welded on the coaxial outer conductor 42 and the earthing metal column 43 respectively and fed by the parallel doublet structure.
  • coaxial outer conductor 42 and the earthing metal column 43 are symmetric in position and have a same size with a diameter (an outer diameter of the coaxial outer conductor 42) of 28.08 mm and a height is 423.7 mm, and spacing between the two is 25.86 mm.
  • the coaxial outer conductor 42 may be taken as a hollow metal sleeve with an inner diameter of 24 mm.
  • the coaxial inner conductor 41 is located at the center of the coaxial outer conductor 42, has the same height with the coaxial outer conductor 42, and is fixed by the polytetrafluoroethylene medium support columns 44.
  • the diameter of the coaxial inner conductor 41 is determined according to an impedance change need and according to whether the inner conductor penetrates through the medium support columns 44.
  • the maximum diameter is 10 mm, and the minimum diameter is 4.774 mm.
  • the bottom of the coaxial inner conductor 41 is connected with a coaxial radio-frequency connector for feeding.
  • the metal bridge 46 has a total length of 64 mm and a width of 10 mm. Minimum spacing among the metal bridge 46, the coaxial outer conductor 42 and the earthing metal column 43 is 9 mm.
  • Two arms of the longitudinal blade-shaped metal dipole arms are welded at the outer top ends of the coaxial outer conductor 42 and the earthing metal column 43 and fed successively by the coaxial outer conductor 42, the coaxial inner conductor 41, the metal bridge 46 and the earthing metal column 43.
  • Each dipole arm has a transverse length of 190 mm, a longitudinal height of 238 mm and a thickness of 3 mm.
  • the antenna support column 2, the medium support columns 44 and the medium substrate 47 are made of polytetrafluoroethylene, and other structures are made of metal materials.
  • the longitudinal cross-blade-shaped metal arms greatly improve the impedance mismatch of the antenna during the scanning. Adding the cross-blade-shaped metal arms is substantially to introduce capacitance and inductance into an equivalent circuit of the antenna, thereby changing a resonance point and impedance during the large-angle scanning.
  • the blade-shaped metal arm structure provides high wind and snow resistance and is applicable to the extreme weather environment.
  • a voltage standing-wave ratio is less than 1.5 in the range of 208MHz-260MHz, which realizes a wide-angle scanning process with low return loss.
  • an E/H-plane pattern of the antenna has no obvious deterioration within a bandwidth, and a cross polarization level is less than -25dB.
  • the wide-angle scanning dual-polarization dipole antenna in the present embodiment greatly improves impedance matching during the large-angle scanning of the antenna and effectively improves wide-angle scanning performance of the antenna.
  • the wide-angle scanning of ⁇ 60° in a range of 208MHz-260MHz is realized, and a voltage standing-wave ratio during the scanning is less than 1.5.
  • the voltage standing-wave ratio during the scanning at a wide angle of ⁇ 60° is well suppressed.
  • the antenna has good cross polarization performance.
  • the cross polarization level is less than -25dB.
  • both the metal dipole arms and the top metal arms adopt a longitudinal blade-shaped bending structure respectively, and the cross sectional area is extremely small, snow and rain are not prone to accumulate, thereby greatly reducing the influence of accumulated snow and rain on performance and service life of the antenna.
  • the antenna is especially applicable to severe weather conditions such as heavy rainfall, heavy snowfall and the like.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)
  • Aerials With Secondary Devices (AREA)

Claims (8)

  1. Antenne dipôle à double polarisation à balayage grand angle, comprenant des premiers bras métalliques (1), une colonne de support d'antenne (2), des deuxièmes bras métalliques (3) et des baluns d'alimentation (4), dans laquelle
    les premiers bras métalliques (1) sont situés au sommet de l'antenne et sont configurés pour améliorer la fluctuation d'impédance de l'antenne pendant un balayage grand angle ;
    les baluns d'alimentation (4) sont situés au bas de l'antenne et sont configurés pour convertir une alimentation déséquilibrée entrée par un fil coaxial en une alimentation équilibrée ;
    la colonne de support d'antenne (2) est située entre les baluns d'alimentation (4) et les premiers bras métalliques (1) et est configurée pour supporter les premiers bras métalliques (1) ;
    les deuxièmes bras métalliques (3) sont disposés sur les baluns d'alimentation (4) et configurés pour être alimentés respectivement par les baluns d'alimentation (4) ;
    les premiers bras métalliques (1) sont des bras métalliques longitudinaux en forme de lame transversale ; les deuxièmes bras métalliques (3) sont des bras dipolaires métalliques longitudinaux en forme de lame ; chacun des premiers bras métalliques (1) et des deuxièmes bras métalliques (3) comprend une partie horizontale et une partie courbée ; et la partie horizontale et la partie courbée sont des éléments intégralement moulés ;
    l'antenne étant configurée de telle sorte que lorsque la polarisation horizontale et la polarisation verticale sont balayées à ±60° dans un plan E/H, un rapport d'onde stationnaire de tension est inférieur à 1,5 pendant le balayage dans la plage de 208 MHz à 260 MHz.
  2. Antenne dipôle à double polarisation à balayage grand angle selon la revendication 1, dans lequel le nombre de deuxièmes bras métalliques (3) est de deux groupes, sur un total de quatre deuxièmes bras métalliques ; les directions de polarisation des deux groupes de deuxièmes bras métalliques (3) sont mutuellement orthogonales ; et les deux groupes de deuxièmes bras métalliques (3) sont répartis symétriquement.
  3. Antenne dipôle à double polarisation à balayage grand angle selon la revendication 1, dans laquelle l'antenne adopte une structure symétrique, de sorte que deux directions de polarisation sont mutuellement orthogonales.
  4. Antenne dipôle à double polarisation à balayage grand angle selon la revendication 2, dans laquelle le nombre de baluns d'alimentation (4) est de deux groupes ; et les deux groupes de baluns d'alimentation (4) sont mutuellement orthogonaux, de sorte que les baluns d'alimentation (4) alimentent les deux groupes de bras dipolaires métalliques avec des directions de polarisation mutuellement orthogonales respectivement.
  5. Antenne dipôle à double polarisation à balayage grand angle selon la revendication 4, dans lequel chaque groupe de baluns d'alimentation (4) comprend un fil coaxial, une colonne métallique de mise à la terre (43), un pont métallique (46) et un substrat intermédiaire (47) ; le pont métallique (46) est disposé sur le substrat intermédiaire (47) ; le substrat intermédiaire (47) est disposé au niveau des extrémités supérieures du fil coaxial et de la colonne métallique de mise à la terre (43) ; et le fil coaxial et la colonne métallique de mise à la terre (43) sont connectés via le pont métallique (46).
  6. Antenne dipôle à double polarisation à balayage grand angle selon la revendication 5, dans lequel chaque groupe de baluns d'alimentation comprend en outre une pluralité de colonnes de support moyennes (44) ; le fil coaxial comprend un conducteur intérieur coaxial (41) et un conducteur extérieur coaxial (42) ; le conducteur intérieur coaxial (41) est situé à l'intérieur du conducteur extérieur coaxial (42) ; la pluralité de colonnes de support moyennes (44) est disposée respectivement à l'extérieur du conducteur intérieur coaxial (41) ; et le conducteur intérieur coaxial (41) est fixé par les colonnes de support moyennes (44).
  7. Antenne dipôle à double polarisation à balayage grand angle selon la revendication 6, dans laquelle une structure en doublet parallèle est formée entre le conducteur extérieur coaxial (42) et la colonne métallique de mise à la terre (43) ; et les deux groupes de deuxièmes bras métalliques (3) sont fixés respectivement sur le conducteur extérieur coaxial (42) et la colonne métallique de mise à la terre (43) et alimentés par la structure doublet parallèle.
  8. Antenne dipôle à double polarisation à balayage grand angle selon la revendication 1, dans laquelle la partie courbée est courbée vers le bas ; et un angle de courbure du deuxième bras métallique (3) reste cohérent avec le premier bras métallique (1).
EP20806225.7A 2019-05-15 2020-05-14 Antenne dipôle à double polarisation à balayage grand angle Active EP3819984B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910403512.5A CN110176666B (zh) 2019-05-15 2019-05-15 一种宽角扫描双极化偶极子天线
PCT/CN2020/090163 WO2020228759A1 (fr) 2019-05-15 2020-05-14 Antenne dipôle à double polarisation à balayage grand angle

Publications (3)

Publication Number Publication Date
EP3819984A1 EP3819984A1 (fr) 2021-05-12
EP3819984A4 EP3819984A4 (fr) 2022-04-20
EP3819984B1 true EP3819984B1 (fr) 2024-05-01

Family

ID=67691192

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20806225.7A Active EP3819984B1 (fr) 2019-05-15 2020-05-14 Antenne dipôle à double polarisation à balayage grand angle

Country Status (4)

Country Link
EP (1) EP3819984B1 (fr)
JP (1) JP7025596B2 (fr)
CN (1) CN110176666B (fr)
WO (1) WO2020228759A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110176666B (zh) * 2019-05-15 2020-09-25 中国电子科技集团公司第三十八研究所 一种宽角扫描双极化偶极子天线
CN111446541A (zh) * 2020-04-10 2020-07-24 航天恒星科技有限公司 十字阵子圆极化天线
CN112563716A (zh) * 2020-11-18 2021-03-26 中国电子科技集团公司第三十八研究所 一种高增益大角度扫描十字交叉天线
CN114256606B (zh) * 2021-12-21 2024-03-29 上海海积信息科技股份有限公司 一种天线
CN115663463B (zh) * 2022-12-08 2023-08-11 中国电子科技集团公司第二十研究所 圆极化天线

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4131896A (en) * 1976-02-10 1978-12-26 Westinghouse Electric Corp. Dipole phased array with capacitance plate elements to compensate for impedance variations over the scan angle
JPH05152837A (ja) * 1991-11-28 1993-06-18 Nec Corp フエーズドアレーアンテナ
JP3061990B2 (ja) * 1993-09-24 2000-07-10 日本電気株式会社 クロスダイポールアンテナ
JP2001111327A (ja) * 1999-10-14 2001-04-20 Harada Ind Co Ltd 円偏波クロスダイポールアンテナ
US6717555B2 (en) * 2001-03-20 2004-04-06 Andrew Corporation Antenna array
JP2004032392A (ja) * 2002-06-26 2004-01-29 Hitachi Cable Ltd 偏波ダイバーシチダイポールアンテナ
JP4133665B2 (ja) * 2003-07-31 2008-08-13 Dxアンテナ株式会社 複合アンテナ
JP4133695B2 (ja) * 2003-09-01 2008-08-13 Dxアンテナ株式会社 複合アンテナ
CN2676433Y (zh) * 2004-01-08 2005-02-02 广州杰赛科技股份有限公司 一种应用在基站天线上的双极化振子
SE0400974D0 (sv) * 2004-04-15 2004-04-15 Cellmax Technologies Ab Dipole design
FI120522B (fi) * 2006-03-02 2009-11-13 Filtronic Comtek Oy Uudenlainen antennirakenne ja menetelmä sen valmistamiseksi
JP4512630B2 (ja) * 2007-11-09 2010-07-28 電気興業株式会社 ダイポールアンテナおよびダイポールアレイアンテナ
CN201233958Y (zh) 2008-07-11 2009-05-06 广东通宇通讯设备有限公司 一种宽频带全波对称振子天线
US20170149145A1 (en) * 2009-08-03 2017-05-25 Venti Group Llc Cross-Dipole Antenna Configurations
KR101085889B1 (ko) * 2009-09-02 2011-11-23 주식회사 케이엠더블유 광대역 다이폴 안테나
US8378903B2 (en) * 2009-09-09 2013-02-19 L-3 Communications Integrated Systems L.P. Antenna apparatus and methods of use therefor
CN201845866U (zh) * 2010-09-30 2011-05-25 佛山市健博通电讯实业有限公司 一种三频双极化天线振子
KR20120086838A (ko) * 2011-01-27 2012-08-06 엘에스전선 주식회사 Pcb 기판형 광대역 이중 편파 다이폴 안테나
US9276329B2 (en) * 2012-11-22 2016-03-01 Commscope Technologies Llc Ultra-wideband dual-band cellular basestation antenna
JP6207339B2 (ja) * 2013-10-18 2017-10-04 Kddi株式会社 アンテナ及びセクタアンテナ
CN103682631A (zh) * 2013-12-31 2014-03-26 张家港保税区国信通信有限公司 多制式多频段双极化天线
CN103887598B (zh) * 2014-04-15 2016-08-31 北京敏视达雷达有限公司 一种卫星导航天线
CN105703084B (zh) * 2014-11-25 2018-05-11 中国移动通信集团设计院有限公司 一种室分天线
CN107134648A (zh) * 2016-02-29 2017-09-05 南京理工大学 一种l波段宽带双极化电磁偶极子天线
CN105762508B (zh) * 2016-03-23 2018-08-31 重庆邮电大学 一种加载金属柱的宽频带双极化移动基站天线单元
CN206441871U (zh) * 2016-11-08 2017-08-25 深圳市普方众智精工科技有限公司 双频双极化全向天线
JP6827336B2 (ja) * 2017-02-07 2021-02-10 株式会社Nttドコモ 偏波共用アンテナ、アンテナシステム
CN107293863A (zh) * 2017-05-03 2017-10-24 西安电子科技大学 一种宽波束宽带双极化天线
US10530068B2 (en) * 2017-07-18 2020-01-07 The Board Of Regents Of The University Of Oklahoma Dual-linear-polarized, highly-isolated, crossed-dipole antenna and antenna array
US10290930B2 (en) 2017-07-18 2019-05-14 Honeywell International Inc. Crossed dipole with enhanced gain at low elevation
CN207800874U (zh) * 2017-12-29 2018-08-31 嘉兴诺艾迪通信科技有限公司 折叠振子臂的宽波束圆极化十字振子天线
CN108511923A (zh) * 2018-03-01 2018-09-07 太行通信股份有限公司 一种双极化交叉折叠偶极子三频段天线
CN109301462B (zh) * 2018-09-06 2021-02-23 深圳市南斗星科技有限公司 一种应用于5g通信的双宽面磁电偶极子基站天线
CN110176666B (zh) * 2019-05-15 2020-09-25 中国电子科技集团公司第三十八研究所 一种宽角扫描双极化偶极子天线

Also Published As

Publication number Publication date
JP2021524699A (ja) 2021-09-13
WO2020228759A1 (fr) 2020-11-19
EP3819984A4 (fr) 2022-04-20
CN110176666A (zh) 2019-08-27
EP3819984A1 (fr) 2021-05-12
CN110176666B (zh) 2020-09-25
JP7025596B2 (ja) 2022-02-24

Similar Documents

Publication Publication Date Title
EP3819984B1 (fr) Antenne dipôle à double polarisation à balayage grand angle
EP3841637B1 (fr) Antennes comprenant des éléments rayonnants à dipôles croisés à résonance multiple et éléments rayonnants associés
US10892559B2 (en) Dipole antenna
CN106848554B (zh) 一种基于交指型紧耦合偶极子单元的超宽带宽角天线阵
US7864130B2 (en) Broadband single vertical polarized base station antenna
CN207098053U (zh) Ka波段宽角扫描圆极化微带天线阵
CN113644432B (zh) 一种双圆极化相控阵天线阵列
CN107293863A (zh) 一种宽波束宽带双极化天线
CN103972658A (zh) 宽带宽角扫描的双圆极化微带天线
WO2009047553A1 (fr) Antenne réseau à commande de phase
Breden et al. Printed fractal antennas
CN114883785B (zh) 一种薄型双极化超宽带宽角扫描阵列天线
CN114188716B (zh) 一种微带平面天线及天线阵列
US8698696B1 (en) Corporate feed network for compact ultra wideband high gain antenna arrays
CN110233336B (zh) 一种串馈圆极化天线法向组阵
KR101859179B1 (ko) 소형 광대역 대수 주기 안테나
CN209822857U (zh) 一种新型紧馈型宽带双极化蝶形振子
CN209822850U (zh) 一种平面弯折十字交叉型宽带双极化蝶形振子
US8665173B2 (en) Continuous current rod antenna
CN106961011B (zh) 超宽带全向微带天线阵列
KR101816018B1 (ko) 소형 광대역 대수 주기 안테나
AU2011202962A1 (en) Low-tilt collinear array antenna
CN112563716A (zh) 一种高增益大角度扫描十字交叉天线
CN116387803A (zh) 低剖面宽带双极化金属偶极子米波天线
Jia A Low Profile Wide Band Wide scan Tightly Coupled Dipole Antenna

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

A4 Supplementary search report drawn up and despatched

Effective date: 20220321

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 21/26 20060101AFI20220315BHEP

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref document number: 602020030298

Country of ref document: DE

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: H01Q0001360000

Ipc: H01Q0021260000

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 21/26 20060101AFI20231108BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240104

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020030298

Country of ref document: DE