CN207098053U - Ka波段宽角扫描圆极化微带天线阵 - Google Patents

Ka波段宽角扫描圆极化微带天线阵 Download PDF

Info

Publication number
CN207098053U
CN207098053U CN201720801509.5U CN201720801509U CN207098053U CN 207098053 U CN207098053 U CN 207098053U CN 201720801509 U CN201720801509 U CN 201720801509U CN 207098053 U CN207098053 U CN 207098053U
Authority
CN
China
Prior art keywords
antenna
impedance section
antenna substrate
floor
tie point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201720801509.5U
Other languages
English (en)
Inventor
蒋立平
袁赤诚
邹景孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Ke Sai Technology Co., Ltd.
Original Assignee
Chengdu Topantech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Topantech Co Ltd filed Critical Chengdu Topantech Co Ltd
Application granted granted Critical
Publication of CN207098053U publication Critical patent/CN207098053U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/288Satellite antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • H01Q21/293Combinations of different interacting antenna units for giving a desired directional characteristic one unit or more being an array of identical aerial elements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

Ka波段宽角扫描圆极化微带天线阵,涉及卫星通信天线技术。本实用新型由M×N个天线单元构成,M、N为整数,且M≥1,N≥2。所述天线单元包括天线部分和基座部分,天线部分安装于基座部分上,所述天线部分包括第一天线基板、第二天线基板;第一天线基板与第二天线基板安装于天线地板上,第一天线基板与第二天线基板相交;天线地板上设置有地板接地线;天线地板上还设置有4根金属寄生棒,分别位于第一天线基板的两端和第二天线基板的两端;第一巴伦馈线和第二巴伦馈线相互绝缘;所述基座部分包括基座,其内设置有馈电网络电路。本实用新型重量轻,波束扫描范围大,频带宽,通信容量大。

Description

Ka波段宽角扫描圆极化微带天线阵
技术领域
本实用新型涉及卫星通信天线技术。
背景技术
卫星通信是指利用人造地球卫星作为中继站来转发无线电波,从而实现两个或多个地球站之间的通信。
星载天线是通信卫星有效载荷的重要组成部分,对整个卫星通信系统的性能有着极其重要的影响。其中,宽波束(2θ0.5>90°)宽角圆极化天线以其独有的无需极化跟踪、可接受任意极化来波,宽角范围内极化失配损耗小等优良特性,在移动卫星系统,机载雷达系统等领域有着巨大的应用潜力。
同时,星载天线和尖端雷达等在寻的过程中,常常期望波束扫描方向不断改变,且能覆盖较大的扫描空间,因此对天线方向图的扫描角度提出了更高的要求。数字多波束扫描天线阵,能自适应地改变波束位置对目标进行搜索和跟踪,能灵活地控制波瓣,能识别目标,同时具有传输数据率高、扫描速度快和抵抗有害环境条件的能力。
目前使用的数字多波束天线阵多采用缝隙阵和喇叭阵,这种阵列天线存在的缺点是不仅体积大,重量超标,而且波束扫描范围小,一般在±20°左右,超过这个范围以后,就会出现大的栅瓣,主波束的增益也显著下降。
实用新型内容
本实用新型所要解决的技术问题是,提供一种Ka波段宽角扫描圆极化微带天线阵,具有体积小、重量轻、小型化、扫描角度宽的特点。
本实用新型解决所述技术问题采用的技术方案是,Ka波段宽角扫描圆极化微带天线阵,其特征在于,由M×N个天线单元构成,M、N为整数,且M≥1,N≥2。所述天线单元包括天线部分和基座部分,天线部分安装于基座部分上,所述天线部分包括:
第一天线基板,其正面设置有第一巴伦馈线,其反面设置有第一微带偶极子线,第一巴伦馈线与第一信号连接端连接;
第二天线基板,其正面设置有第二巴伦馈线,其反面设置有第二微带偶极子线,第二巴伦馈线与第二信号连接端连接;
第一天线基板与第二天线基板安装于天线地板上,第一天线基板与第二天线基板相交;
天线地板,其上设置有地板接地线;
天线地板上还设置有4根金属寄生棒,分别位于第一天线基板的两端和第二天线基板的两端;
第一巴伦馈线和第二巴伦馈线相互绝缘;
所述基座部分包括基座,其内设置有馈电网络电路,所述馈电网络电路包括一个分支线耦合器,分支线耦合器具有两个天线连接端,分别连接到第一信号连接端和第二信号连接端,分支线耦合器还具有一个负载连接端和外部连接端。
所述馈电网络电路包括:
顺次串联的第一阻抗段、第二阻抗段、第三阻抗段,
顺次串联的第四阻抗段、第五阻抗段、第六阻抗段,
位于第一连接点和第三连接点之间的第七阻抗段;
位于第二连接点和第四连接点之间的第八阻抗段;
第一连接点为连接第一阻抗段和第二阻抗段的连接点,
第二连接点为连接第二阻抗段和第三阻抗段的连接点,
第三连接点为连接第四阻抗段和第五阻抗段的连接点,
第四连接点为连接第五阻抗段和第六阻抗段的连接点。
进一步的,N=2n,n为大于3的整数,例如,n=4时,N=16。
进一步的,第一天线基板的正面垂直于第二天线基板的正面。第一天线基板的正面和第二天线基板的正面皆垂直于天线地板。4根金属寄生棒皆垂直于天线地板。所述第一信号连接端和第二信号连接端皆为同轴线。所述第一天线基板和第二天线基板皆为矩形平板,且皆在第一天线基板和第二天线基板的交叉区处设置有开口。
所述第一巴伦馈线包括相连接的低阻抗区和高阻抗区,高阻抗区跨过交叉区;所述第二巴伦馈线包括相连接的低阻抗区和高阻抗区,高阻抗区跨过交叉区。
地板接地线与第一微带偶极子线、第二微带偶极子线连接,第一信号连接端和第二信号连接端的同轴线的屏蔽层与地板接地线连接。
对本文中“交叉区”的解释:两个相互交叉的平板,等效于两个相互交叉的长方体,在交叉处有一部分在空间上同属于两个长方体,本文将此部分称为“交叉区”。
本实用新型的天线基板最好是采用PC板。PC板包括正面、反面和周围的侧面,通常正面和反面的面积远大于任何一个侧面,以PCB板为例,正面或反面为覆铜的表面。
本实用新型的有益效果是,由于本天线及天线阵重量轻,波束扫描范围大,频带宽,通信容量大,可用于Ka波段多波束宽带卫星通信系统(包括数字电视、数字广播、广域网互联、远程教学、远程医疗、电视会议和视频点播),新闻采集(SNG),VSAT,直接到户(DTH),个人卫星通信,机载、车载高速“动中通”等。
附图说明
图1是本实用新型的天线的立体示意图。
图2是本实用新型的天线的侧视状态示意图。
图3为本实用新型的天线的俯视状态示意图。
图4为第一天线基板反面示意图。
图5为第一天线基板正面示意图。
图6为第二天线基板反面示意图。
图7为第二天线基板正面示意图。
图8为采用本实用新型的天线的馈电网络示意图。
图9为本实用新型天线在18.6GHz-19.4GHz的频带范围内的驻波仿真结果图。
图10为本实用新型天线的圆极化增益仿真结果图。
图11为本实用新型天线的归一化方向图仿真结果图。
图12为本实用新型天线的轴比仿真结果图。
图13为本实用新型天线阵列的方向图仿真结果图。
图14为本实用新型天线阵列的归一化方向图仿真结果图。
图15为本实用新型天线阵列的轴比仿真结果图。
图16为本实用新型天线阵列波束扫描25°的仿真结果图。
图17为本实用新型天线阵列波束扫描-25°的仿真结果图。
图18为本实用新型天线阵列波束扫描50°的仿真结果图。
图19为本实用新型天线阵列波束扫描-50°的仿真结果图。
图20为本实用新型的结构示意图。
图21为本实用新型的馈电网络的结构示意图。
图22为馈电网络的等效阻抗示意图。
图23为本实用新型的天线阵的结构示意图(仰视)。
图24为本实用新型的天线阵的结构示意图(俯视)。
图25为本实用新型的天线阵的结构示意图(主视)。
具体实施方式
参见图1~8,以及图21~25。
Ka波段宽角扫描圆极化微带天线阵,其特征在于,由M×N个天线单元构成,M=1,N=16,所述天线单元包括天线部分和基座部分,天线部分安装于基座部分上,所述天线部分包括:
第一天线基板21,其正面设置有第一巴伦馈线24,其反面设置有第一微带偶极子线31,第一巴伦馈线24与第一信号连接端42连接;
第二天线基板22,其正面设置有第二巴伦馈线20,其反面设置有第二微带偶极子线32,第二巴伦馈线20与第二信号连接端41连接;
第一天线基板21与第二天线基板22安装于天线地板25上,第一天线基板21与第二天线基板22相交;
平板状的天线地板25,其上设置有地板接地线;
天线地板25上还设置有4根金属寄生棒,分别位于第一天线基板21的两端和第二天线基板22的两端;
第一巴伦馈线和第二巴伦馈线相互绝缘。
第一天线基板和第二天线基板为平板,其与天线地板相交的位置可以视为一条线段。金属寄生棒位于天线基板的两端,是指金属寄生棒位于该线段的延长线处。
所述基座14内设置有馈电网络电路16,所述馈电网络电路16包括一个分支线耦合器,分支线耦合器具有两个天线连接端,分别连接到第一信号连接端42和第二信号连接端41,分支线耦合器还具有一个负载连接端和外部连接端,外部连接端可采用SMP-J连接器,如图23中的103所示。
参见图21~22,馈电网络电路16包括:
顺次串联的第一阻抗段81、第二阻抗段82、第三阻抗段83,
顺次串联的第四阻抗段84、第五阻抗段85、第六阻抗段86,
位于第一连接点和第三连接点之间的第七阻抗段87;
位于第二连接点和第四连接点之间的第八阻抗段88;
第一连接点为连接第一阻抗段81和第二阻抗段82的连接点,
第二连接点为连接第二阻抗段82和第三阻抗段83的连接点,
第三连接点为连接第四阻抗段84和第五阻抗段85的连接点,
第四连接点为连接第五阻抗段85和第六阻抗段86的连接点。
优选的阻抗值为:
第一阻抗段81、第三阻抗段83、第四阻抗段84、第六阻抗段86、第七阻抗段87和第八阻抗段88的阻抗值皆为50欧姆;
第二阻抗段82、第五阻抗段85的阻抗值皆为35.5欧姆。
位于第一天线基板21的两端的两根金属寄生棒231、232的轴线相互平行,这两根金属寄生棒的轴线构成的平面(称为第一平面)平行于第一天线基板21的正面。更优的,第一天线基板21的正面和反面与第一平面等距。
位于第二天线基板22的两端的两根金属寄生棒233、234的轴线相互平行,这两根金属寄生棒的轴线构成的平面(称为第二平面)平行于第二天线基板22的正面。更优的,第二天线基板22的正面和反面与第二平面等距。
第一天线基板21和第二天线基板22皆为平板。第一天线基板21的正面垂直于第二天线基板22的正面。
并且,第一天线基板的正面和第二天线基板的正面皆垂直于天线地板25的正面。4根金属寄生棒皆垂直于天线地板25。
第一信号连接端和第二信号连接端皆为同轴线。
第一天线基板和第二天线基板皆为矩形平板,且皆在第一天线基板和第二天线基板的交叉区处设置有开口。
所述第一巴伦馈线包括相连接的低阻抗区和高阻抗区,高阻抗区跨过交叉区。第一巴伦馈线24的低阻抗区为矩形区域,其长边垂直于天线地板25;第一巴伦馈线24的高阻抗区包括一个矩形区域,其长边垂直于天线地板25;第二巴伦馈线20的低阻抗区为矩形区域,其长边垂直于天线地板25;第二巴伦馈线20的高阻抗区包括一个矩形区域,其长边垂直于天线地板25。
地板接地线与第一微带偶极子线31、第二微带偶极子线32连接。
设线极化的微带偶极子天线的中心工作频率:f0=19000MHz,
可求得自由空间波长:λ0=15.79mm
印制板材料采用Taconic RF-35(tm),厚度h0=0.254mm,介电常数ε=3.5,在此条件下,天线的工作波长
优选的参数如下:
微带偶极子臂长度L0=0.86λg=7.26mm
臂宽度W0=0.115λg=0.97mm
臂底边高度LH=0.16λg=1.35mm
臂底边宽度WH=0.14λg=1.18mm
微带馈线长度Lf=0.25λg=2.11mm
按此条件设计的微带偶极子天线,其3dB波束宽度为80°左右。为了展宽天线单元的波束宽度,分别在微带偶极子天线长度方向的轴线上加载寄生金属棒。金属寄生棒与微带偶极子天线中心的距离d1=3.7mm,3dB波束宽度达到120°。
采用HFSS电磁工程软件对上述的初始设计参数进行优化,优化的结果是
臂的长度L0=6mm
臂的宽度W0=2.1mm
臂底边高度LH=2.25mm
臂底边宽度WH=1.3mm
高度HS=4.6mm
输入端50Ω微带馈线
宽度W1=0.54mm
长度Lf=2.4mm
100Ω微带馈线
宽度W2=0.2mm
长度5.2mm
寄生金属棒
高度h=2.7mm
直径0.5mm
地板为方形,宽度WG=8.5mm
为了实现正交极化,分别在两个单极化微带天线的中间切掉一块宽度Wf=0.3mm,长度分别为L1=1.6mm、L2=3mm的长方体,切掉部分互补,使其垂直交叉。在交叉处,为了避免馈线相碰应错开。
在实现了正交极化的基础上,通过采用微带3dB分支线耦合器实现圆极化,微带3dB分支线耦合器如图8所示,具体结构尺寸如图21所示。该微带3dB分支线耦合器采用Rogers RT/duroid 5880板材,厚度为0.254mm。
图中L3=3.23mm
L4=2.91mm
L5=12mm
W3=5.6mm。
分支线耦合器为数段具有特定特性阻抗的微带线组成的电桥,其具体阻抗值见图21。
采用HFSS电磁工程软件对天线系统进行仿真,仿真结果示于图9至图12。
以圆极化的正交微带型偶极子天线作为阵元,设计1×16的均匀直线阵列。阵列主波束最大扫描角θmax=±50°,中心工作频率f=19000MHz,在不出现栅瓣的条件下,确定阵元的最大间距
取阵元间距d=8.5mm。
由此,阵列长度L=16d=136mm
阵列宽度W=8.5mm
阵列高度H=25.5mm。
阵列仿真结果示于图13至图15。
波束扫描设计:
对于均匀直线阵,各天线元的电流幅度相等,相位以均匀比例递增或递减,而且以相等间距排列在一条直线上,其归一化阵因子为
其中,ψ为相邻的两个阵元,其辐射波到达同一点时产生的相位差
ψ=βdcosθm-α (3)
式(3)中右边第一项是由于天线位置引起的相位差,而第二项则是由馈电系统引起的相位差。
n为均匀直线阵的阵元数,n=16;
d为阵元间距,在本天线阵中,d=8.5mm;
θm为天线阵主波束指向;
α是由馈电系统引起的相位差;
对于F(ψ),其最大值可由
确定,求得条件为
ψ=0 (5)
即当阵因子F(ψ)取最大值时,有
ψ=βdcosθm-α=0 (6)
可得
由此式可见,天线阵的主波束方向θm既与相邻阵元之间的由馈电系统引起的相位差α有关,还和阵元间距d有关。在d一定的条件下,改变相位差α,便可改变主波束的辐射方向,从而实现波束的电扫描。
由式(7)可知
当相位差α=0°时,主波束方向θm=90°;
当相位差α=81.9°时,主波束方向θm=65°,此时最大扫描角θmax=25°;
当相位差α=148.45°时,主波束方向θm=40°,此时最大扫描角θmax=50°。
其仿真结果示于图16至图19。
从仿真结果可以看出,当主波束扫描为0°时,阵列增益为17.17dB。
当主波束扫描25°时,其增益为16.77dB,增益下降0.4dB;
当主波束扫描-25°时,其增益为16.78dB,增益下降0.39dB;
当主波束扫描50°时,其增益为15.99dB,增益下降1.18dB;
当主波束扫描-50°时,其增益为16.00dB,增益下降1.17dB。
并且在主波束扫描到±50°时,均未出现栅瓣。
本实用新型突破了原有已经采用多年的波导缝隙阵和喇叭阵在体积、重量方面的局限性,使其体积、重量大幅度下降,约为前者的四分之一左右,而扫描角由±20°扩展到±50°,在此种情况下系统增益仅下降1.18dB,不出现栅瓣。

Claims (10)

1.Ka波段宽角扫描圆极化微带天线阵,其特征在于,由M×N个天线单元构成,M、N为整数,且M≥1,N≥2;所述天线单元包括天线部分和基座部分,天线部分安装于基座部分上,
所述天线部分包括:
第一天线基板(21),其正面设置有第一巴伦馈线(24),其反面设置有第一微带偶极子线(31),第一巴伦馈线(24)与第一信号连接端(42)连接;
第二天线基板(22),其正面设置有第二巴伦馈线(20),其反面设置有第二微带偶极子线(32),第二巴伦馈线(24)与第二信号连接端(41)连接;
第一天线基板(21)与第二天线基板(22)安装于天线地板(25)上,第一天线基板(21)与第二天线基板(22)相交;
天线地板(25),其上设置有地板接地线;
天线地板(25)上还设置有4根金属寄生棒,分别位于第一天线基板(21)的两端和第二天线基板(22)的两端;
第一巴伦馈线(24)和第二巴伦馈线(20)相互绝缘;
所述基座部分包括基座(14),其内设置有馈电网络电路(16),所述馈电网络电路(16)包括一个分支线耦合器,分支线耦合器具有两个天线连接端,分别连接到第一信号连接端(42)和第二信号连接端(41),分支线耦合器还具有一个负载连接端和外部连接端。
2.如权利要求1所述的Ka波段宽角扫描圆极化微带天线阵,其特征在于,第一天线基板(21)的正面垂直于第二天线基板(22)的正面。
3.如权利要求1所述的Ka波段宽角扫描圆极化微带天线阵,其特征在于,第一天线基板(21)的正面和第二天线基板(22)的正面皆垂直于天线地板(25)。
4.如权利要求1所述的Ka波段宽角扫描圆极化微带天线阵,其特征在于,4根金属寄生棒皆垂直于天线地板(25)。
5.如权利要求1所述的Ka波段宽角扫描圆极化微带天线阵,其特征在于,N=2n,n为大于3的整数。
6.如权利要求1所述的Ka波段宽角扫描圆极化微带天线阵,其特征在于,所述第一天线基板(21)和第二天线基板(22)皆为矩形平板,且皆在第一天线基板(21)和第二天线基板(22)的交叉区处设置有开口。
7.如权利要求6所述的Ka波段宽角扫描圆极化微带天线阵,其特征在于,所述第一巴伦馈线(24)包括相连接的低阻抗区和高阻抗区,高阻抗区跨过交叉区;所述第二巴伦馈线(20)包括相连接的低阻抗区和高阻抗区,高阻抗区跨过交叉区。
8.如权利要求7所述的Ka波段宽角扫描圆极化微带天线阵,其特征在于,
第一巴伦馈线(24)的低阻抗区为矩形区域,其长边垂直于天线地板(25);
第一巴伦馈线(24)的高阻抗区包括一个矩形区域,其长边垂直于天线地板(25);
第二巴伦馈线(20)的低阻抗区为矩形区域,其长边垂直于天线地板(25);
第二巴伦馈线(20)的高阻抗区包括一个矩形区域,其长边垂直于天线地板(25)。
9.如权利要求1所述的Ka波段宽角扫描圆极化微带天线阵,其特征在于,地板接地线与第一微带偶极子线(31)、第二微带偶极子线(32)连接。
10.如权利要求1所述的Ka波段宽角扫描圆极化微带天线阵,其特征在于,所述馈电网络电路(16)包括:
顺次串联的第一阻抗段(81)、第二阻抗段(82)、第三阻抗段(83),
顺次串联的第四阻抗段(84)、第五阻抗段(85)、第六阻抗段(86),
位于第一连接点和第三连接点之间的第七阻抗段(87);
位于第二连接点和第四连接点之间的第八阻抗段(88);
第一连接点为连接第一阻抗段(81)和第二阻抗段(82)的连接点,
第二连接点为连接第二阻抗段(82)和第三阻抗段(83)的连接点,
第三连接点为连接第四阻抗段(84)和第五阻抗段(85)的连接点,
第四连接点为连接第五阻抗段(85)和第六阻抗段(86)的连接点。
CN201720801509.5U 2017-05-19 2017-07-04 Ka波段宽角扫描圆极化微带天线阵 Active CN207098053U (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710357413 2017-05-19
CN2017103574139 2017-05-19

Publications (1)

Publication Number Publication Date
CN207098053U true CN207098053U (zh) 2018-03-13

Family

ID=60135645

Family Applications (4)

Application Number Title Priority Date Filing Date
CN201720801509.5U Active CN207098053U (zh) 2017-05-19 2017-07-04 Ka波段宽角扫描圆极化微带天线阵
CN201710539599.XA Pending CN107302133A (zh) 2017-05-19 2017-07-04 Ka波段宽角扫描圆极化微带天线阵
CN201710539154.1A Pending CN107834181A (zh) 2017-05-19 2017-07-04 Ka波段宽角扫描圆极化微带天线
CN201720801111.1U Active CN207353452U (zh) 2017-05-19 2017-07-04 Ka波段宽角扫描圆极化微带天线

Family Applications After (3)

Application Number Title Priority Date Filing Date
CN201710539599.XA Pending CN107302133A (zh) 2017-05-19 2017-07-04 Ka波段宽角扫描圆极化微带天线阵
CN201710539154.1A Pending CN107834181A (zh) 2017-05-19 2017-07-04 Ka波段宽角扫描圆极化微带天线
CN201720801111.1U Active CN207353452U (zh) 2017-05-19 2017-07-04 Ka波段宽角扫描圆极化微带天线

Country Status (1)

Country Link
CN (4) CN207098053U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107302133A (zh) * 2017-05-19 2017-10-27 成都银丰信禾电子科技有限公司 Ka波段宽角扫描圆极化微带天线阵

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108761218B (zh) * 2018-05-24 2021-02-12 广东曼克维通信科技有限公司 双极化近场测量探头
CN111987417B (zh) * 2020-09-14 2021-06-01 电子科技大学 一种用于5G-Sub6G Massive MIMO的多波束双极化天线
CN117175195B (zh) * 2023-03-16 2024-04-12 广州程星通信科技有限公司 一种宽带广角扫描的双圆极化天线阵列

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2836260Y (zh) * 2005-08-05 2006-11-08 西安海天天线科技股份有限公司 高增益水平极化全向阵列天线
CN201219133Y (zh) * 2008-06-02 2009-04-08 烟台宏益微波科技有限公司 宽频带宽波束圆极化天线
CN102800965A (zh) * 2012-07-23 2012-11-28 电子科技大学 一种宽带宽波束双极化偶极子天线
CN103887595B (zh) * 2012-12-21 2016-08-17 宏达国际电子股份有限公司 天线系统
CN103531895B (zh) * 2013-09-29 2017-01-11 华侨大学 一种新颖分支线集成馈电巴伦的宽带印刷偶极子天线
CN103972658B (zh) * 2014-04-25 2016-04-06 中国电子科技集团公司第三十八研究所 宽带宽角扫描的双圆极化微带天线
CN104393399A (zh) * 2014-11-22 2015-03-04 成都锦江电子系统工程有限公司 一种新型复合伞形微带振子
CN104934700A (zh) * 2015-06-26 2015-09-23 中国船舶重工集团公司第七二四研究所 一种宽角覆盖低交叉极化电平天线辐射单元
CN207098053U (zh) * 2017-05-19 2018-03-13 成都银丰信禾电子科技有限公司 Ka波段宽角扫描圆极化微带天线阵

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107302133A (zh) * 2017-05-19 2017-10-27 成都银丰信禾电子科技有限公司 Ka波段宽角扫描圆极化微带天线阵

Also Published As

Publication number Publication date
CN107302133A (zh) 2017-10-27
CN107834181A (zh) 2018-03-23
CN207353452U (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
CN106848554B (zh) 一种基于交指型紧耦合偶极子单元的超宽带宽角天线阵
CN207098053U (zh) Ka波段宽角扫描圆极化微带天线阵
KR100574014B1 (ko) 광대역 슬롯 배열 안테나
US6239764B1 (en) Wideband microstrip dipole antenna array and method for forming such array
US20120146872A1 (en) Antenna radiating element
CN110233335B (zh) 基于人工磁导体的宽带小型化低剖面双极化天线
US10862218B2 (en) Vivaldi notch waveguide antenna
CN113285220B (zh) 双频共口径相控阵天线、通信装置及系统
EP3819984B1 (en) Wide-angle scanning dual-polarized dipole antenna
CN113644432B (zh) 一种双圆极化相控阵天线阵列
WO2014009697A1 (en) Antennas
Breden et al. Printed fractal antennas
CN103199336A (zh) 应用于北斗系统的双框带切口四桥跨接微带天线
CN103199337A (zh) 圆极化微带天线
CN102769183B (zh) 应用于北斗系统的四螺旋分布加载振子微带天线
Hossain et al. Improvement of antenna performance using stacked microstrip patch antenna
EP2309596A1 (en) Dual-polarization antenna's radiating element
CN103414017A (zh) 基于同相功分器馈电的双偶极子定向天线
Yoon et al. High-gain planar tapered slot antenna for Ku-band applications
CN213692328U (zh) 微带天线
CN205319312U (zh) 一种圆极化天线
US11404786B2 (en) Planar complementary antenna and related antenna array
AU2011202962B2 (en) Low-tilt collinear array antenna
CN102760945B (zh) 带有辐射型负载的直接馈电型全向印刷天线
CN106961011B (zh) 超宽带全向微带天线阵列

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 610000 Chengdu, Sichuan Province China (Sichuan) Free Trade Experimental Zone Chengdu High-tech Zone Tianfu Third Street 69, Building 9, 903

Patentee after: Chengdu Ke Sai Technology Co., Ltd.

Address before: 610041 No. 1, 9 floor, 1 1 Tianfu street, Chengdu high tech Zone, Sichuan

Patentee before: CHENGDU TOPANTECH CO., LTD.

CP03 Change of name, title or address