EP3818266A1 - Machine hydrostatique comportant une bague de came - Google Patents

Machine hydrostatique comportant une bague de came

Info

Publication number
EP3818266A1
EP3818266A1 EP19758791.8A EP19758791A EP3818266A1 EP 3818266 A1 EP3818266 A1 EP 3818266A1 EP 19758791 A EP19758791 A EP 19758791A EP 3818266 A1 EP3818266 A1 EP 3818266A1
Authority
EP
European Patent Office
Prior art keywords
cam ring
bearings
stator
hydrostatic machine
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19758791.8A
Other languages
German (de)
English (en)
Other versions
EP3818266B1 (fr
Inventor
Laurent Eugène ALBERT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP3818266A1 publication Critical patent/EP3818266A1/fr
Application granted granted Critical
Publication of EP3818266B1 publication Critical patent/EP3818266B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/10Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement the cylinders being movable, e.g. rotary
    • F04B1/107Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement the cylinders being movable, e.g. rotary with actuating or actuated elements at the outer ends of the cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B13/00Reciprocating-piston machines or engines with rotating cylinders in order to obtain the reciprocating-piston motion
    • F01B13/04Reciprocating-piston machines or engines with rotating cylinders in order to obtain the reciprocating-piston motion with more than one cylinder
    • F01B13/06Reciprocating-piston machines or engines with rotating cylinders in order to obtain the reciprocating-piston motion with more than one cylinder in star arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B13/00Reciprocating-piston machines or engines with rotating cylinders in order to obtain the reciprocating-piston motion
    • F01B13/04Reciprocating-piston machines or engines with rotating cylinders in order to obtain the reciprocating-piston motion with more than one cylinder
    • F01B13/06Reciprocating-piston machines or engines with rotating cylinders in order to obtain the reciprocating-piston motion with more than one cylinder in star arrangement
    • F01B13/061Reciprocating-piston machines or engines with rotating cylinders in order to obtain the reciprocating-piston motion with more than one cylinder in star arrangement the connection of the pistons with the actuated or actuating element being at the outer ends of the cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/10Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement the cylinders being movable, e.g. rotary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/10Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement the cylinders being movable, e.g. rotary
    • F04B1/107Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement the cylinders being movable, e.g. rotary with actuating or actuated elements at the outer ends of the cylinders
    • F04B1/1071Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement the cylinders being movable, e.g. rotary with actuating or actuated elements at the outer ends of the cylinders with rotary cylinder blocks

Definitions

  • the invention relates to the field of mechanics and hydraulics and particularly relates to a hydrostatic machine.
  • Hydrostatic machines generally have one end connected to a frame and another end connected to a rotating drive element such as a wheel, propeller or any transmission device.
  • Such a hydrostatic machine can be used as a hydraulic motor. It is then supplied with pressurized hydraulic fluid and drives the rotating drive element in response.
  • the hydrostatic machine can also be used as a hydraulic pump. It then receives a torque transmitted by the rotating drive element and compresses the hydraulic fluid in response.
  • Patent application FR3030381 describes a hydraulic motor comprising:
  • stator provided with fixings for a frame and comprising a circumferential cam path
  • a rotor provided with fixings for a rotating drive element and comprising pistons distributed circumferentially and adapted to cooperate with the cam track;
  • a hydraulic distributor adapted to selectively supply the pistons with hydraulic fluid so that the cooperation of the pistons with the cam path corresponds to a relative rotation of the rotor relative to the stator.
  • the object of the invention is to improve this type of machine from the point of view of compactness, robustness, and the manufacturing process.
  • the invention relates to a hydrostatic machine comprising:
  • stator provided with fixings for a frame and comprising a circumferential cam path
  • rotor provided with fixings for a rotary drive element and comprising pistons distributed circumferentially and adapted to cooperate with the cam track
  • a hydraulic distributor adapted to selectively supply the pistons with hydraulic fluid so that the cooperation of the pistons with the cam path corresponds to a relative rotation of the rotor relative to the stator.
  • the stator has an internal cylindrical surface of constant diameter as well as a cam ring which comprises, on its internal circumference, the cam path, and which is mounted, by its external circumference, in the internal cylindrical surface;
  • Another object of the invention relates to a process for manufacturing a hydrostatic machine comprising the following steps:
  • Such a hydrostatic machine has an increased compactness, which is particularly advantageous when the hydrostatic machine is intended to take place in the wheel of a vehicle to motorize the latter. In the latter case, the more compact the hydrostatic machine, the more it is able to fit in the rim of the vehicle.
  • the hydrostatic machine On the internal cylindrical surface of the stator are mounted both the pivot connection elements with the rotor (the bearings) and the rotation drive elements of the rotor (the cam ring). No device or complex geometrical arrangement is necessary for the axial maintenance of these elements, the cylindrical surface being of constant diameter.
  • a shoulder can be provided on the stator at the end of this internal cylindrical surface and is sufficient for positioning both the bearings and the cam ring in the stator.
  • the cam ring can then combine its support function for the cam track with a positioning spacer function between the two bearings, which contributes to the axial compactness of the machine.
  • the axial compactness of the machine can be further improved by providing on the cam ring an annular base allowing positioning against the outer rings of the bearings, by escaping the bearing cages as tightly as possible, without therefore hampering the rotation of the latter.
  • the stator comprises a tubular casing, which promotes radial compactness.
  • the internal cylindrical surface of the rotor is then supported by a thin wall in comparison with the other dimensions of the machine.
  • the cam track being carried by a part (the cam ring) distinct from the rest of the stator, the function of cooperation with the pistons is decoupled from the function of structural maintenance of the elements linked to the stator.
  • the cam track must have a high hardness and a high resistance to wear caused by the rolling of the pistons on the cam track. These properties are generally provided by fragile materials, such as hardened steel.
  • the cam ring is therefore advantageously made of such a material because its only dynamic function is to cooperate with the pistons.
  • the tubular casing performs the structural maintenance function of the elements contained in the stator and must on the contrary have a certain ductility so as not to break or crack under the effect of shocks or possible deformations during operation of the machine which is supplied by a hydraulic fluid under high pressure.
  • These properties are provided to the stator by the choice of a ductile material, and of a thin thickness for the wall of the stator which can thus work in bending.
  • Working in bending is favored, at least in the portion of the stator close to the internal cylindrical surface, by the fact that the stator does not require, in this portion, geometric shapes or functional excess thicknesses which would be intended for positioning elements or stiffening.
  • the cam track is generally machined in the body of the stator and a heat treatment of hardening by surface quenching is provided in addition.
  • a stator is difficult and expensive to produce.
  • the cam ring can be made from a grade of steel called “bearing steel”, or “carbon steel”, which has a large proportion of carbon, a high resistance wear and fatigue, but which is sensitive to shocks.
  • the weakness of the cam ring with respect to shocks is compensated for by its mounting in the tubular casing of the rotor, which is ductile.
  • the invention thus makes it possible to benefit from the high performance of a material resistant to contact pressure and to fatigue for the production of the cam track without suffering from the drawbacks normally associated with this type of material.
  • This arrangement also makes it possible to considerably simplify the manufacturing process of the hydrostatic machine.
  • a main body of the rotor can be previously fitted with two bearings and the cam ring, the two bearings framing the cam ring on either side while holding it axially.
  • This sub-assembly consisting of the main body of the rotor, the bearings, and the cam ring can then be, in a single operation, mounted inside the stator so that the two bearings and the cam ring are slid along the internal cylindrical surface. The assembly operations are therefore considerably simplified.
  • stator production operations are also reduced by the presence of the stator tubular casing, which can be produced from a steel tube requiring little or no machining operations.
  • the cam ring can be produced by machining a steel tube for bearings which is inexpensive because it is produced in large volumes for the manufacture of bearings and which has excellent properties of hardness and resistance to contact fatigue.
  • the hydrostatic machine can also have the following additional characteristics, alone or in combination:
  • the hydrostatic machine comprises a tubular casing, the internal cylindrical surface being defined by the tubular casing;
  • the cam ring has a ductility lower than that of the tubular casing;
  • the cam ring is made of steel for bearings and the tubular casing is made of non-alloy steel or austenitic stainless steel;
  • the machine has anti-rotation fixings to couple the cam ring and the stator;
  • the machine comprises: a clamping ring disposed axially against one of the bearings and against the rotor; a lip seal disposed between the clamping ring and the stator;
  • the clamping ring is fixed to the rotor by a hub screwed into the rotor and carrying the fixings for a rotary drive element;
  • the fasteners for a rotating drive element consist of screws, the heads of which are clamped by the hub.
  • FIG. 2 is a perspective view showing the machine of Figure 1, on the rotor side;
  • FIG. 3 is a front view along the section AA of Figure 1;
  • FIG. 4 is a side view along section BB of Figure 3;
  • FIG. 5 is a diagram illustrating the manufacturing process of the machine of Figures 1 to 4;
  • FIG. 6 shows, in section, a sub-assembly for the production of the machine of Figures 1 to 4;
  • FIG. 7 shows in perspective the tubular casing of the machine of Figure 1;
  • Figure 8 shows in perspective the cam ring of the machine of Figure 1.
  • Figures 1 and 2 show a hydrostatic machine 1 according to the invention, respectively side view and perspective view of the rotor side.
  • the hydrostatic machine 1 has a generally cylindrical shape and comprises a stator 2 as well as a rotor 3. A relative rotational movement is allowed between the stator 2 and the rotor 3, around an axis X.
  • the generally cylindrical shape is suitable to the internal constitution of the machine and allows it to be mounted, at least partially, in a cylindrical element relating to the rotating drive element, for example in the rim of a wheel.
  • the hydrostatic machine 1 is intended to be fixed to a frame constituted by the chassis of a vehicle (not shown).
  • a wheel (not shown) is mounted on the rotor of the machine so that the vehicle can be propelled by the rotation of the wheel.
  • the hydrostatic machine 1 comprises, on the frame side (on the left of FIG. 1), means of attachment 15 to the frame as well as means 16 for supplying hydraulic fluid for the power supply of the hydrostatic machine 1.
  • the hydrostatic machine 1 On the wheel side (on the right side in FIG. 1), the hydrostatic machine 1 has a hub 4 which is part of the rotor 3.
  • This hub 4 has fixing means for a rotating drive element.
  • the rotary drive element is a vehicle wheel (not shown) and the fixing means are studs 5 for fixing the vehicle wheel.
  • the hydrostatic machine 1 thus being fixed on a frame by its stator 2, and being attached to a vehicle wheel by its rotor 3, can operate in two modes:
  • FIG. 2 shows the fixing holes of the hub 4 on the rest of the rotor 3.
  • FIG. 3 is a view along the section AA of FIG. 1 and illustrates the operating principle of the hydrostatic machine 1.
  • the part of the rotor 3 which is visible in this FIG. 3 is its main body 31. It is a circular part in which eight radial cylinders 6 are drilled, distributed circumferentially on the main body 31 of the rotor 3.
  • a hydraulic fluid supply outlet 7 opens into each of these cylinders 6.
  • a piston 8 is inserted into each cylinder 6 so that the pressurization of the hydraulic fluid by the supply mouth 7 causes the piston 8 to exit radially outwards and, conversely, the movement of the piston 8 when it is constrained radially inwardly causes the hydraulic fluid to exit through the supply mouth 7 (to simplify the figure, only three pistons have been shown in FIG. 3).
  • Each piston 8 is provided with a roller 9 mounted movably on the piston 8 relative to an axis parallel to the axis X.
  • FIG. 3 Furthermore, two elements of the stator 2 are visible in FIG. 3: a tubular casing 10 and a cam ring 11.
  • the cam ring 11 is mounted in the tubular casing 10 and these elements are made integral. Anti-rotation fasteners allow the cam ring 11 and the tubular casing to be integral in rotation.
  • the anti-rotation fasteners include holes 12 distributed over the circumference of the tubular casing 10, and corresponding holes 13 made in the cam ring 11, as well as screws (not shown) for fixing.
  • the cam ring 11 has on its internal circumference a cam path 14 corrugated in a succession of hollows and bumps. During the operation of the machine 1, the rollers 9 of the pistons 8 roll on the cam track 14.
  • the cam ring 11 is made of bearing steel, for example 100Cr6 steel.
  • the cam ring 11 is advantageously mounted tight in the tubular casing 10.
  • the tubular casing 10 is made of a more ductile material than the cam ring 11. The tightening of the cam ring 11 in the tubular casing 10 makes it possible to maintain the cam ring 11 in compression in the tubular casing 10, which contributes to preventing the appearance of fatigue cracks in the cam ring 1 1.
  • the pistons 8 are selectively supplied with pressurized fluid as a function of their angular position relative to the cam track 14 so that the pressure of the fluid is transformed into rotation of the cam track 14, and therefore of the rotor 3.
  • FIG. 4 is a sectional view of the hydrostatic machine 1 according to section BB of FIG. 3.
  • the stator 2 is made in two parts: a base 18 and a tubular casing 10.
  • FIG. 4 shows, on the frame side, the means for fixing the hydrostatic machine 1 to the frame of the vehicle. In the present example, these are threaded bores 15 regularly distributed over the circumference of the tubular casing 10 and allowing its fixing by screws to the frame (not shown).
  • the stator 2 also comprises, on the frame side, hydraulic connections 16 intended for the connection of the conduits of the hydraulic circuit of the vehicle for the supply of hydraulic fluid to the machine 1.
  • hydraulic connections 16 are arranged on the base 18 and are connected, by internal channels of the stator 2, to a hydraulic distributor 17.
  • the hydraulic distributor 17 is itself provided with internal conduits allowing the selective supply of hydraulic fluid to the pistons 8.
  • the tubular casing 10 is a tube fitted on the base 18. In the present example, it is a force fitting which makes it possible to make the base 18 and the tubular casing 10 integral without any other additional fixing. Alternatively, screws or any other fixing means may be provided to consolidate the assembly.
  • the tubular casing 10 has a reinforcing shoulder 19.
  • the threaded bores 15 for fixing the machine 1 to the frame are here formed at the level of this reinforcing shoulder 19.
  • the tubular casing 10 extends, in the direction of the wheel side, along a first shoulder 20, an internal cylindrical surface 21 of constant diameter, and a second shoulder 22, these elements being arranged in step, that is to say that the internal diameters defined respectively by the first shoulder 22, the internal cylindrical surface 21, and the second shoulder, increase in the direction of the wheel side.
  • the tubular casing 10 therefore has three internal diameters, the larger is located on the wheel side.
  • On the internal cylindrical surface 21 are mounted:
  • the cam ring 11 has an annular base 41 for mounting in the tubular casing 10.
  • the base 41 is clamped between the outer rings of the two bearings 23, 24.
  • the bearings are here made of bearing steel, for example 100Cr6 steel.
  • the outer rings of the bearings 23, 24 and the cam ring 11 are therefore of the same material (steel 100Cr6), preferably quenched in the mass.
  • the rotor 3 is mounted rotating inside the tubular casing 10 thanks to the bearings 23, 24 which cooperate with the main body 31 of the rotor 3.
  • the internal ring of the first bearing 23 is mounted on the rotor 3 so that it comes axially in abutment against a shoulder 25 of the rotor 3, this shoulder 25 being located on the frame side.
  • the second bearing 24 is mounted on the rotor 3, on the wheel side, so that the two bearings 23, 24 come from either side of each cylinder 6.
  • the end of the main body 31 which is on the wheel side, has a radial face 26 which coincides with the rim of the inner ring of the second bearing 24.
  • the dimensions of the main body 31, of the bearings 23, 24, and of the ring cam 11, are chosen so that the chain of dimensions between the shoulder 25 and the rim of the inner ring of the second bearing 24 leads to an alignment in the same plane of the radial face 26 and of the rim of the inner ring of the second bearing 24.
  • an axial end of the inner ring of the second bearing 24 is placed in the same plane as the radial face 26 of the main body 31.
  • the rotor 3 further comprises a clamping ring 29 which abuts axially both against the internal ring of the second bearing 24 and against the radial face 26.
  • a clamping ring 29 which abuts axially both against the internal ring of the second bearing 24 and against the radial face 26.
  • the rotor 3 also comprises the wheel hub 4 which is fixed against the radial face 26 of the main body 31 by the screws 32.
  • the wheel hub 4 has a shoulder 33 whose axial dimension is equal to the axial dimension of the ring. tightening 29.
  • the rotor further comprises an O-ring 34 disposed in a groove in the main body 31 and interposed between the latter and the clamping ring 29 to seal between these two elements.
  • a lip seal 35 is interposed between the clamping ring 29 and the tubular casing 10.
  • the lip seal 35 axially abuts against the second shoulder 22.
  • the O-ring 34 and the lip seal 35 jointly constitute an outward sealing barrier confining, inside the tubular casing 10, the hydraulic fluid which could be there.
  • the lip seal 35 can come into abutment directly on the bearing 24 while staying away from the bearing cage of the bearing 24.
  • the wheel hub 4 includes, as also visible in FIG. 2, threaded holes 36 for mounting the studs 5.
  • the studs 5 are constituted by screws having a head 38 which is for example a hexagonal head dig.
  • Each threaded hole 36 is associated with a counterbore 37 whose axial dimension is equal to the height of the corresponding head 38.
  • the head 38 of the screws constituting the studs 5 is therefore locked in the two axial directions: by the counterbore 37 on the right side (with reference to FIG. 4) and by the clamping ring 29 on the left side (the right and left sides are indicated in reference to figure 4).
  • the height of the head 38 and the axial dimension of the counterbore 37 are therefore chosen so that the studs 5 are indessible in normal operation.
  • a dust-resistant annular seal 39 can also be provided between the wheel hub 4 and the tubular casing 10.
  • the seal 39 has a groove 42 equipped with an axial stop.
  • the threaded bores 15 which allow the hydrostatic machine 1 to be fixed to a chassis are made in the tubular casing 10 so that the forces are transmitted by a short mechanical path between the rotor and the chassis, this path passing only through the bearings 23 , 24 and the tubular casing 10.
  • FIG. 5 shows the main steps of the manufacturing process.
  • the base 18, the tubular casing 10 and the distributor 17, are respectively produced during steps E1, E2, E3.
  • the base 18 and the distributor 17 are produced by any conventional mechanical manufacturing means, for example by molding and machining of the functional parts.
  • the tubular casing 10 is advantageously produced from a rolled steel tube of type E470 (according to the European standard for the designation of steels E10027) which has the advantage of being inexpensive and having sufficient ductility for work of the tubular casing 10.
  • the tubular casing 10 is thus advantageously made of a weldable steel for, optionally, welding there any external fixing required for mounting the hydrostatic machine 1.
  • this E470 steel tube is equal to the thickness provided for the reinforcement shoulder 19, this tube then being machined on its internal surface to form the first shoulder 20, the internal cylindrical surface 21 and the second shoulder 22.
  • the holes 12 for fixing the cam ring are finally drilled in the tubular casing 10.
  • the tubular casing 10 produced in step E2 is shown in FIG. 7.
  • step E6 the base 18 and the tubular casing 10 are assembled by force fitting then the hydraulic distributor 17 is put in place on the base 18.
  • the main body 31 and the cam ring 11 are produced in steps E4 and E5 respectively.
  • the main body 31 is also produced by any conventional mechanical means.
  • the cam ring 11 is advantageously produced from a steel tube for bearings, for example 100Cr6 steel (according to the European standard for designation of steels E10027), the external diameter of which is substantially equal to the diameter of the internal cylindrical surface 21 of the tubular casing 10, according to the desired adjustment for the cam ring 11 in the tubular casing 10.
  • a slice of such a steel tube for bearings is all first cut, of a dimension equal to the axial dimension provided for the base 41 of the cam ring 11. A ring is thus obtained, and the internal surface of this ring is then machined with a digital milling machine to obtain the cam path 14 visible in Figure 3.
  • the base 41 is intended to be clamped between the outer rings two two bearings 23, 24 and the lateral clearances allow the passage of bearing cages which protrude axially from the inner ring.
  • the base 41 is therefore rectified after the machining of the lateral clearances (which also make it possible to have less material to be rectified).
  • the main body 31, the cam ring 11, and the two bearings 23, 24 are assembled to obtain the sub-assembly shown in FIG. 5.
  • the first bearing 23 is first mounted around of the main body 31 until it abuts against the shoulder 25.
  • the internal ring of the first bearing 23 (as well as the internal ring of the second bearing 24) can be assembled with a slight tightening on the main body 31.
  • the cam ring 1 1 is then mounted around the main body 31 so as to abut against the first bearing 23. More specifically, the base 41 comes into contact with the outer ring of the first bearing 23.
  • the cam ring 1 1 has, in this position, no radial support for its internal surface (the cam track 14) and must therefore be positioned so that its external surface is aligned with the external surface of the first bearing 23.
  • the second bearing 24 is then in turn mounted around the main body 31 until its outer ring abuts against the base 41 of the cam ring 1 1.
  • the dimensions of these various elements are chosen so that, at the end of assembly of the sub-assembly, the rim of the internal ring of the second bearing 24 coincides with the radial face 26.
  • the cam ring 1 1 is also positioned axially by the bearings 23, 24.
  • the sub-assembly of FIG. 5 is inserted in a single operation into the tubular casing 10 until the outer ring of the first bearing 23 comes into abutment against the first shoulder 20 of the tubular casing 10
  • the cam ring 1 1 is advantageously mounted tight in the tubular casing 10, with a tightening for example from 0.01 to 0.05 mm.
  • the bearings 23, 24 can also be mounted in the tubular casing 10 with a slight tightening.
  • the sub-assembly of FIG. 5 can be mounted in the tubular casing 10, for example with a press, by pushing the assembly with a tubular mounting tool whose external diameter is slightly less than the diameter of the internal cylindrical surface 21 and whose thickness is small enough to interact only with the outer ring of the second bearing 24.
  • This assembly is therefore carried out in a single operation of simple mechanics.
  • the clamping ring and the lip seal 35 are jointly placed in the tubular casing 10 until the lip seal 35 comes into abutment axially against the second shoulder 22 of the tubular casing 10.
  • the clamping ring 29 is then positioned by the lip seal 35.
  • step E10 the wheel hub 4, fitted with studs 5 in place, is screwed against the main body 31 thus clamping the clamping ring 29 and the dust-proof annular seal 39 is finally put in place.
  • the cam ring 11 is made of 100Cr6 steel, as are the two bearings 23, 24.
  • the tubular casing 10 by its tubular shape and the material which constitutes it, has the mechanical behavior of a tube, in particular as regards the bending of its walls.
  • the tubular casing 10 can bulge if it is locally deformed towards the outside by the cam ring 11, or on the contrary, it can become concave if the cam ring 11 is mechanically stressed inwards.
  • the hydrostatic machine 1 has an increased longevity thanks to the damping of deformations and shocks that the tubular casing 10 achieves on the cam ring 11.
  • the increased longevity is also due to the presence of a large amount of carbon in the bearing steel used for the cam ring 11, which contributes to a very low oxygen content of this steel.
  • the wheel hub 4 can be dismantled, for example to change or repair the studs 5. Such an operation is here carried out simply by unscrewing the screws 32 and by extracting the wheel hub 4 without the interior of the hydrostatic machine 1 being open, that is to say without any seal being removed.
  • the interior of the machine 1 thus remains sealed, making the removal and fitting operation of the wheel hub 4 simple and clean and of low criticality.
  • Other alternative embodiments of the hydrostatic machine 1 can be implemented without departing from the scope of the invention.
  • the materials used for the cam ring 11 and the tubular casing 10 can be other than those mentioned in the example described, from the moment when the material of the tubular casing 10 has a higher ductility than the cam ring 11.
  • the hydrostatic machine can be fixed on a frame other than that of a vehicle, for example a stationary machine, and the rotary drive element can be another element than a wheel, for example a gearbox. , a machine element or any other transmission device or element to be motorized.
  • the tubular casing 10 can also be produced from a stainless steel tube which will advantageously be non-martensitic to have sufficient ductility for the work of the tubular casing 10, and in any event a ductility greater than the cam 11.
  • the stainless steel will be austenitic, for example an iron-chromium-nickel alloy with less than 0.1% carbon, such than "18/10" stainless steel.
  • the hub 4 can also be made of stainless steel, which allows the hydrostatic machine to have an exterior entirely made of stainless steel and which allows the hydrostatic machine to be used in corrosive environments such as water. sea or corrosive chemicals.
  • the tubular casing 10 and the hub 4 can both be made of another material which would be suitable for a particular application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Motors (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Reciprocating Pumps (AREA)

Abstract

Machine hydrostatique (1) comportant un stator (2) et un rotor (3). Le stator (2) comporte une surface cylindrique interne (21) de diamètre constant ainsi qu'une une bague de came (11) qui comprend, sur sa circonférence interne, un chemin de came (14), et qui est montée, par sa circonférence externe, dans la surface cylindrique interne (21). La machine hydrostatique comporte en outre deux roulements (23, 24) qui permettent la rotation du rotor (3) par rapport au stator (2) et qui sont montés sur la surface cylindrique interne (21) du stator (2), axialement de part et d'autre de la bague de came (11), la bague de came (11) et les deux roulements (23, 24) présentant le même diamètre externe.

Description

Machine hydrostatique comportant une bague de came
L’invention concerne le domaine de la mécanique et de l’hydraulique et concerne particulièrement une machine hydrostatique.
Les machines hydrostatiques présentent généralement une extrémité reliée à un bâti et une autre extrémité reliée à un élément tournant d'entrainement tel qu’une roue, une hélice ou un quelconque dispositif de transmission.
Une telle machine hydrostatique peut être employée comme moteur hydraulique. Elle est alors alimentée par un fluide hydraulique sous pression et entraîne en réponse l’élément tournant d'entrainement.
La machine hydrostatique peut également être employée comme pompe hydraulique. Elle reçoit alors un couple transmis par l’élément tournant d'entrainement et comprime en réponse le fluide hydraulique.
La demande de brevet FR3030381 décrit un moteur hydraulique comportant :
- un stator muni de fixations pour un bâti et comportant un chemin de came circonférentiel ;
- un rotor muni de fixations pour un élément tournant d’entrainement et comportant des pistons répartis circonférentiellement et adaptés à coopérer avec le chemin de came ;
- un distributeur hydraulique adapté à alimenter sélectivement en fluide hydraulique les pistons de sorte que la coopération des pistons avec le chemin de came corresponde à une rotation relative du rotor par rapport au stator.
Le but de l’invention est d’améliorer ce type de machines du point de vue de la compacité, de la robustesse, et du procédé de fabrication.
À cet effet, l’invention vise une machine hydrostatique comportant :
- un stator muni de fixations pour un bâti et comportant un chemin de came circonférentiel ; - un rotor muni de fixations pour un élément tournant d’entrainement et comportant des pistons répartis circonférentiellement et adaptés à coopérer avec le chemin de came ;
- un distributeur hydraulique adapté à alimenter sélectivement en fluide hydraulique les pistons de sorte que la coopération des pistons avec le chemin de came corresponde à une rotation relative du rotor par rapport au stator.
La machine hydrostatique présente les caractéristiques suivantes :
- le stator comporte une surface cylindrique interne de diamètre constant ainsi qu’une une bague de came qui comprend, sur sa circonférence interne, le chemin de came, et qui est montée, par sa circonférence externe, dans la surface cylindrique interne ;
- elle comporte deux roulements qui permettent la rotation du rotor par rapport au stator et qui sont montés sur la surface cylindrique interne du stator, axialement de part et d’autre de la bague de came, la bague de came et les deux roulements présentant le même diamètre externe.
Un autre objet de l’invention vise un procédé de fabrication d’une machine hydrostatique comportant les étapes suivantes :
- usiner un tube d’acier pour roulements pour produire une bague de came présentant un chemin de came ;
- monter la bague de came et deux roulements sur un corps principal de rotor, la bague de came étant serrée entre les deux roulements, pour former un sous- ensemble ;
- insérer axialement le sous-ensemble dans un stator qui comporte une surface cylindrique interne de diamètre constant, les roulements et la bague de came venant se monter dans la surface cylindrique interne.
Une telle machine hydrostatique présente une compacité accrue, ce qui est particulièrement avantageux lorsque la machine hydrostatique est destinée à prendre place dans la roue d’un véhicule pour motoriser ce dernier. Dans ce dernier cas, plus la machine hydrostatique est compacte et plus elle est à même de se loger dans la jante du véhicule. Sur la surface cylindrique interne du stator sont montés aussi bien les éléments de liaison pivot avec le rotor (les roulements) que les éléments d’entrainement en rotation du rotor (la bague de came). Aucun dispositif ou agencement géométrique complexe n’est nécessaire pour le maintien axial de ces éléments, la surface cylindrique étant de diamètre constant.
Optionnellement, un épaulement peut être prévu sur le stator à l’extrémité de cette surface cylindrique interne et suffit à la mise en position aussi bien des deux roulements que de la bague de came dans le stator.
La surface cylindrique interne étant dépourvue d’élément de positionnement des roulements, la bague de came peut alors cumuler sa fonction de support pour le chemin de came avec une fonction d’entretoise de positionnement entre les deux roulements, ce qui contribue à la compacité axiale de la machine. La compacité axiale de la machine peut encore être améliorée en prévoyant sur la bague de came une base annulaire permettant le positionnement contre les bagues externes des roulements, en échappant aux cages de roulement au plus juste, sans donc gêner la rotation de ceux- ci.
Selon une caractéristique préférée, le stator comporte un carter tubulaire, ce qui favorise la compacité radiale. La surface cylindrique interne du rotor est alors supportée par une paroi fine en comparaison avec les autres dimensions de la machine.
En effet, le chemin de came étant porté par une pièce (la bague de came) distincte du reste du stator, la fonction de coopération avec les pistons est découplée de la fonction de maintien structurel des éléments en lien avec le stator.
Le chemin de came doit présenter une dureté élevée, et une importante résistance à l’usure provoquée par le roulement des pistons sur le chemin de came. Ces propriétés sont en général procurées par des matériaux fragiles, tel que l’acier trempé. La bague de came est donc avantageusement réalisée en un tel matériau car sa seule fonction dynamique est de coopérer avec les pistons.
Le carter tubulaire, quant à lui, réalise la fonction de maintien structurel des éléments que contient le stator et doit au contraire présenter une certaine ductilité pour ne pas casser ou se fissurer sous l’effet de chocs ou d’éventuelles déformations lors du fonctionnement de la machine qui est alimentée par un fluide hydraulique sous forte pression. Ces propriétés sont procurées au stator par le choix d’un matériau ductile, et d’une épaisseur fine pour la paroi du stator qui peut ainsi travailler en flexion. Le travail en flexion est favorisé, au moins dans la portion du stator voisine de la surface cylindrique interne, par le fait que le stator ne nécessite pas, dans cette portion, de formes géométriques ou de surépaisseurs fonctionnelles qui seraient destinées à la mise en position d’éléments ou à la rigidification.
Dans l’art antérieur, le chemin de came est généralement usiné dans le corps du stator et un traitement thermique de durcissement par trempe superficielle est prévu en complément. Un tel stator est difficile et coûteux à produire.
Selon une caractéristique préférée de l’invention, la bague de came peut être réalisée à partir d’une nuance d’acier dénommée « acier pour roulements », ou « acier au carbone », qui présente une proportion importante de carbone, une grande résistance à l’usure et à la fatigue, mais qui est cependant sensible aux chocs. La faiblesse de la bague de came vis-à-vis des chocs est compensée par son montage dans le carter tubulaire du rotor, qui est ductile.
L’invention permet ainsi de bénéficier de la haute performance d’un matériau résistant à la pression de contact et à la fatigue pour la réalisation du chemin de came sans souffrir des inconvénients normalement liés à ce type de matériau.
Ce montage permet par ailleurs de simplifier considérablement le procédé de fabrication de la machine hydrostatique.
En effet, lors du montage d’une telle machine, un corps principal du rotor peut être au préalable équipé des deux roulements et de la bague de came, les deux roulements encadrant de part et d’autre la bague de came en la maintenant axialement. Ce sous-ensemble constitué du corps principal du rotor, des roulements, et de la bague de came peut ensuite être, en une seule opération, monté à l’intérieur du stator de sorte que les deux roulements et la bague de came soient glissés le long de la surface cylindrique interne. Les opérations de montage sont donc considérablement simplifiées.
Les opérations de production du stator sont également réduites par la présence du carter tubulaire de stator, qui peut être produit à partir d’un tube d’acier nécessitant pas ou peu d’opérations d’usinage. La bague de came peut être réalisée par usinage d’un tube d’acier pour roulement qui est peu coûteux car produit dans de grands volumes en vue de la fabrication des roulements et qui présente d’excellentes propriétés de dureté et résistance à la fatigue de contact.
La production d’une telle machine hydrostatique est donc plus rapide et moins onéreuse.
La machine hydrostatique peut de plus comporter les caractéristiques additionnelles suivantes, seules ou en combinaison :
- la machine hydrostatique comporte un carter tubulaire, la surface cylindrique interne étant définie par le carter tubulaire ; - la bague de came présente une ductilité inférieure à celle du carter tubulaire ;
- la bague de came est en acier pour roulements et le carter tubulaire est en acier non allié ou en acier inoxydable austénitique ;
- le matériau de la bague de came et celui des deux roulements est le même acier pour roulements ;
- la bague de came est montée serrée dans le carter tubulaire ;
- la machine comporte des fixations antirotation pour coupler la bague de came et le stator ;
- la machine comporte : une bague de serrage disposée axialement contre l’un des roulements et contre le rotor ; un joint à lèvre disposé entre la bague de serrage et le stator ;
- la bague de serrage est fixée au rotor par un moyeu vissé dans le rotor et portant les fixations pour un élément tournant d’entrainement ;
- les fixations pour un élément tournant d’entrainement sont constituées par des vis dont les têtes sont bridées par le moyeu.
Un exemple préféré de réalisation de l’invention va maintenant être décrit en référence aux dessins annexés dans lesquels : - la figure 1 représente une machine hydrostatique selon l’invention, vue de côté ;
- la figure 2 est une vue en perspective montrant la machine de la figure 1 , du côté rotor ; - la figure 3 est une vue de face selon la coupe AA de la figure 1 ;
- la figure 4 est une vue de côté selon la coupe BB de la figure 3 ;
- la figure 5 est un schéma illustrant le procédé de fabrication de la machine des figures 1 à 4 ;
- la figure 6 représente, en coupe, un sous-ensemble destiné à la réalisation de la machine des figures 1 à 4 ;
- la figure 7 représente en perspective le carter tubulaire de la machine de la figure 1 ;
- la figure 8 représente en perspective la bague de came de la machine de la figure 1. Les figures 1 et 2 représentent une machine hydrostatique 1 selon l’invention, respectivement vue de profil et vue en perspective du côté rotor.
La machine hydrostatique 1 a une forme générale cylindrique et comporte un stator 2 ainsi qu’un rotor 3. Un mouvement de rotation relative est permise entre le stator 2 et le rotor 3, autour d’un axe X. La forme générale cylindrique est adaptée à la constitution interne de la machine et permet son montage, au moins partiellement, dans un élément cylindrique relatif à l’élément tournant d'entrainement, par exemple dans la jante d’une roue.
Dans le présent exemple, la machine hydrostatique 1 est destinée à être fixée sur un bâti constitué par le châssis d’un véhicule (non représenté). Une roue (non représentée) est montée sur le rotor de la machine de sorte que le véhicule puisse être propulsé par la rotation de la roue.
La machine hydrostatique 1 comporte, du côté bâti (sur la gauche de la figure 1 ), des moyens de fixation 15 au bâti ainsi que des moyens 16 d’alimentation en fluide hydraulique pour l’alimentation en puissance de la machine hydrostatique 1. Du côté roue (du côté droit sur la figure 1 ), la machine hydrostatique 1 comporte un moyeu 4 qui fait partie du rotor 3. Ce moyeu 4 comporte des moyens de fixation pour un élément tournant d'entrainement. Dans le présent exemple, l’élément tournant d'entrainement est une roue de véhicule (non représentée) et les moyens de fixation sont des goujons 5 pour la fixation de la roue de véhicule.
La machine hydrostatique 1 , étant ainsi fixée sur un bâti par son stator 2, et étant rattachée à une roue de véhicule par son rotor 3, peut fonctionner selon deux modes :
- un mode moteur dans lequel l’énergie du fluide sous pression est convertie en énergie mécanique et entraîne la rotation de la roue et donc le déplacement du véhicule ;
- un mode générateur dans lequel la roue est entraînée en rotation par l’environnement (par exemple lorsque le véhicule est sur une pente descendante) et entraîne elle même en rotation le rotor 3 pour mettre le fluide hydraulique sous pression.
La figure 2 montre les trous de fixation du moyeu 4 sur le reste du rotor 3.
La figure 3 est une vue selon la coupe AA de la figure 1 et illustre le principe de fonctionnement de la machine hydrostatique 1.
La partie du rotor 3 qui est visible sur cette figure 3, est son corps principal 31. Il s’agit d’une pièce circulaire dans laquelle sont percés huit cylindres 6 radiaux, répartis circonférentiellement sur le corps principal 31 du rotor 3.
Une bouche d’alimentation 7 en fluide hydraulique débouche dans chacun de ces cylindres 6.
Un piston 8 est inséré dans chaque cylindre 6 de sorte que la mise en pression du fluide hydraulique par la bouche d’alimentation 7 entraîne la sortie du piston 8 radialement vers l’extérieur et, inversement, le mouvement du piston 8 lorsqu’il est contraint radialement vers l’intérieur entraîne la sortie du fluide hydraulique par la bouche d’alimentation 7 (pour simplifier la figure, seuls trois pistons ont été représentés sur la figure 3). Chaque piston 8 est muni d’un rouleau 9 monté mobile sur le piston 8 par rapport à un axe parallèle à l’axe X.
Par ailleurs, deux éléments du stator 2 sont visibles sur la figure 3 : un carter tubulaire 10 et une bague de came 11.
La bague de came 11 est montée dans le carter tubulaire 10 et ces éléments sont rendus solidaires. Des fixations antirotation permettent à la bague de came 11 et au carter tubulaire d’être solidaires en rotation. Dans le présent exemple, le fixations antirotation comportent des trous 12 répartis sur la circonférence du carter tubulaire 10, et des trous correspondants 13 pratiqués dans la bague de came 11 , ainsi que des vis (non représentées) pour assurer la fixation. La bague de came 11 comporte sur sa circonférence interne un chemin de came 14 ondulé suivant une succession de creux et de bosses. Lors du fonctionnement de la machine 1 , les rouleaux 9 des pistons 8 roulent sur le chemin de came 14.
La bague de came 11 est réalisé en acier pour roulements, par exemple en acier 100Cr6. La bague de came 11 est avantageusement montée serrée dans le carter tubulaire 10. Le carter tubulaire 10 est réalisé dans un matériau plus ductile que la bague de came 11. Le serrage de la bague de came 11 dans le carter tubulaire 10 permet de maintenir la bague de came 11 en compression dans le carter tubulaire 10, ce qui contribue à empêcher l’apparition de fissures de fatigue dans la bague de came 1 1 .
De manière connue, les pistons 8 sont sélectivement alimentés en fluide sous pression en fonction de leur position angulaire par rapport au chemin de came 14 de sorte que la pression du fluide soit transformée en rotation du chemin de came 14, et donc du rotor 3.
La figure 4 est une vue en coupe de la machine hydrostatique 1 selon la coupe BB de la figure 3.
Le stator 2 est réalisé en deux parties : une embase 18 et un carter tubulaire 10. La figure 4 montre, du côté bâti, les moyens de fixation de la machine hydrostatique 1 sur le bâti du véhicule. Dans le présent exemple, il s’agit d’alésages filetés 15 régulièrement répartis sur la circonférence du carter tubulaire 10 et permettant sa fixation par vis au bâti (non représenté). Le stator 2 comporte également du côté bâti, des raccords hydrauliques 16 destinés à la connexion des conduits du circuit hydraulique du véhicule pour l’alimentation en fluide hydraulique de la machine 1.
Ces raccords hydrauliques 16 sont disposés sur l’embase 18 et sont connectés, par des canaux internes du stator 2, à un distributeur hydraulique 17. Le distributeur hydraulique 17 est lui-même muni de conduits internes permettant l’alimentation sélective en fluide hydraulique des pistons 8.
Le fonctionnement du distributeur hydraulique 17, et plus généralement de l’alimentation sélective des pistons 8 en fluide hydraulique, se fait conformément à ce qui est connu dans ce domaine. Ce fonctionnement, qui ne sera donc pas décrit plus en détail ici, permet de fournir le fluide hydraulique sous pression à certains pistons 8, par leur bouche d’alimentation 7, et permet de laisser sortir le fluide hydraulique de certains autres pistons 8, par leur bouche d’alimentation 7.
Le carter tubulaire 10 est un tube emmanché sur l’embase 18. Dans le présent exemple, il s’agit d’un emmanchement en force qui permet de rendre solidaire l’embase 18 et le carter tubulaire 10 sans autre fixation supplémentaire. En variante, des vis ou tout autre moyen de fixation peuvent être prévus pour consolider l’assemblage.
Au niveau de l’emmanchement en force, le carter tubulaire 10 comporte un épaulement de renfort 19. Les alésages filetés 15 pour la fixation de la machine 1 sur le bâti sont ici pratiqués au niveau de cet épaulement de renfort 19.
À partir de l’épaulement de renfort 19, le carter tubulaire 10 s’étend, en direction du côté roue, selon un premier épaulement 20, une surface cylindrique interne 21 de diamètre constant, et un deuxième épaulement 22, ces éléments étant disposés en gradin, c’est à dire que les diamètres internes définis respectivement par le premier épaulement 22, la surface cylindrique interne 21 , et le deuxième épaulement, vont en augmentant en direction du coté roue.
En dehors de l’épaulement de renfort 19, dont la fonction n’est pas liée à la coopération avec le rotor 3 mais seulement à la fixation et à l’assemblage du stator 2, le carter tubulaire 10 comporte donc trois diamètres internes dont le plus grand est situé du côté roue. Sur la surface cylindrique interne 21 sont montés :
- un premier roulement 23, dont la bague externe est axialement disposée contre le premier épaulement 20 ;
- la bague de came 11 qui est axialement positionnée par ses fixations 13 ;
- un deuxième roulement 24, dont la bague externe est axialement disposée contre une bague de serrage 29.
La bague de came 11 comporte une base annulaire 41 pour son montage dans le carter tubulaire 10. La base 41 est serrée entre les bagues externes des deux roulements 23, 24.
Les roulements sont ici réalisés en acier à roulement, par exemple en acier 100Cr6. Les bagues externes des roulements 23, 24 et la bague de came 11 sont donc de même matériau (acier 100Cr6), de préférence à trempe dans la masse.
En ce qui concerne le rotor 3, la coupe de la figure 4 permet de voir le profil de deux cylindres 6 et de leur bouche d’alimentation 7 respective.
Le rotor 3 est monté tournant à l’intérieur du carter tubulaire 10 grâce aux roulements 23, 24 qui coopèrent avec le corps principal 31 du rotor 3. La bague interne du premier roulement 23 est montée sur le rotor 3 de sorte qu’elle vienne axialement en butée contre un épaulement 25 du rotor 3, cet épaulement 25 étant situé du côté bâti.
Le deuxième roulement 24 est monté sur le rotor 3, du côté roue, de sorte que les deux roulements 23, 24 viennent de part et d’autre de chaque cylindre 6.
L’extrémité du corps principal 31 qui est du côté roue, comporte une face radiale 26 qui coïncide avec le rebord de la bague interne du deuxième roulement 24. Les dimensions du corps principal 31 , des roulements 23, 24, et de la bague de came 11 , sont choisies pour que la chaîne de cotes entre l’épaulement 25 et le rebord de la bague interne du deuxième roulement 24 conduise à un alignement dans le même plan de la face radiale 26 et du rebord de la bague interne du deuxième roulement 24. Ainsi, une extrémité axiale de la bague interne du deuxième roulement 24 vient se placer dans le même plan que la face radiale 26 du corps principal 31.
Le rotor 3 comporte de plus une bague de serrage 29 qui vient axialement en butée à la fois contre la bague interne du deuxième roulement 24 et contre la face radiale 26. En variante, la chaîne de cotes évoquées ci-dessus conduit au fait que le rebord de la bague interne du deuxième roulement 24 soit légèrement axialement au- delà de la face radiale 26, de sorte que la fixation de la bague de serrage 29 conduise à une précontrainte des roulements 23, 24.
Le rotor 3 comporte également le moyeu de roue 4 qui est fixé contre la face radiale 26 du corps principal 31 par les vis 32. Le moyeu de roue 4 présente un épaulement 33 dont la dimension axiale est égale à la dimension axiale de la bague de serrage 29.
Ainsi, lorsque le moyeu 4 est vissé contre le corps principal 31 , la bague de serrage 29 est plaquée à la fois contre le corps principal 31 et contre la bague interne du deuxième roulement 24, et maintenue dans cette position.
Le rotor comporte de plus un joint torique 34 disposé dans une gorge du corps principal 31 et intercalé entre ce dernier et la bague de serrage 29 pour assurer l’étanchéité entre ces deux éléments.
Par ailleurs, un joint à lèvres 35 est intercalé entre la bague de serrage 29 et le carter tubulaire 10. Le joint à lèvres 35 vient axialement en butée contre le deuxième épaulement 22.
Le joint torique 34 et le joint à lèvres 35 constituent conjointement une barrière d’étanchéité vers l’extérieur confinant à l’intérieur du carter tubulaire 10, le fluide hydraulique qui pourrait s’y trouver.
En variante, le joint à lèvre 35 peut venir directement en butée sur le roulement 24 en restant à l’écart de la cage de roulement du roulement 24.
Le moyeu de roue 4 comporte, comme également visible à la figure 2, des trous filetés 36 pour le montage des goujons 5. Dans le présent exemple, les goujons 5 sont constitués par des vis présentant une tête 38 qui est par exemple une tête hexagonale creuse. Chaque trou fileté 36 est associé à un lamage 37 dont la dimension axiale est égale à la hauteur de la tête 38 correspondante.
La tête 38 des vis constituant les goujons 5 est donc bloquée dans les deux directions axiales : par le lamage 37 du côté droit (en référence à la figure 4) et par la bague de serrage 29 du côté gauche (les côtés droit et gauche sont indiqués en référence à la figure 4). La hauteur de la tête 38 et la dimension axiale du lamage 37 sont donc choisies pour que les goujons 5 soient indesserrables en fonctionnement normal.
Un joint annulaire 39 antipoussière peut être de plus prévu entre le moyeu de roue 4 et le carter tubulaire 10. Le joint 39 comporte une gorge 42 équipée d’un arrêt axial. Ainsi si la pression dans le carter venait à pousser vers l’extérieur le joint à lèvre 35, le contact avec le joint 39 et cet arrêt axial empêchera tout désemmanchement des joints 35, 39.
Les alésages filetés 15 qui permettent la fixation de la machine hydrostatique 1 sur un châssis sont pratiqués dans le carter tubulaire 10 de sorte que les efforts sont transmis par un court chemin mécanique entre le rotor et le châssis, ce chemin passant uniquement par les roulements 23, 24 et le carter tubulaire 10.
Le procédé de fabrication de la machine hydrostatique 1 va maintenant être décrit en référence à la figure 5 qui schématise les principales étapes du procédé de fabrication.
L’embase 18, le carter tubulaire 10 et le distributeur 17, sont respectivement produits lors des étapes E1 , E2, E3. L’embase 18 et le distributeur 17 sont produits par tout moyen classique de fabrication mécanique, par exemple par moulage et usinage des parties fonctionnelles. Le carter tubulaire 10 est avantageusement produit à partir d’un tube d’acier laminé de type E470 (selon la norme européenne de désignation des aciers E10027) qui a l’avantage d’être peu onéreux et de présenter une ductilité suffisante pour le travail du carter tubulaire 10. Le carter tubulaire 10 est ainsi avantageusement constitué d’un acier soudable pour, optionnellement, y souder toute fixation externe requise pour le montage de la machine hydrostatique 1.
L’épaisseur de ce tube d’acier E470 est égale à l’épaisseur prévue pour l’épaulement de renfort 19, ce tube étant ensuite usiné sur sa surface interne pour former le premier épaulement 20, la surface cylindrique interne 21 et le deuxième épaulement 22. Les trous 12 pour la fixation de la bague de came sont enfin percés dans le carter tubulaire 10. Le carter tubulaire 10 produit à l’étape E2 est représenté à la figure 7. Lors de l’étape E6, l’embase 18 et le carter tubulaire 10 sont assemblés par emmanchement en force puis le distributeur hydraulique 17 est mis en place sur l’embase 18.
En parallèle des étapes décrites précédemment, le corps principal 31 et la bague de came 11 sont fabriqués respectivement aux étapes E4 et E5. Le corps principal 31 est également produit par tout moyen mécanique classique. La bague de came 11 est avantageusement produite à partir d’un tube d’acier pour roulements, par exemple de l’acier 100Cr6 (selon la norme européenne de désignation des aciers E10027), dont le diamètre externe est sensiblement égal au diamètre de la surface cylindrique interne 21 du carter tubulaire 10, selon l’ajustement voulu pour la bague de came 11 dans le carter tubulaire 10. Pour produire la bague de came 11 , une tranche d’un tel tube d’acier pour roulements est tout d’abord coupée, d’une dimension égale à la dimension axiale prévue pour la base 41 de la bague de came 11. Un anneau est ainsi obtenu, et la surface interne de cet anneau est ensuite usinée à la fraiseuse numérique pour obtenir le chemin de came 14 visible à la figure 3.
Des dégagements latéraux sont ensuite usinés dans la bague de came 11 pour former la base 41 de la bague de came 11. La base 41 est destinée à être serrée entre les bagues externes deux deux roulements 23, 24 et les dégagements latéraux permettent le passage des cages de roulements qui dépasseraient axialement par rapport à la bague interne. La base 41 venant au contact des bagues externes des roulements 23, 24, les deux faces latérales de la base 41 nécessitent une bonne planéité. La base 41 est donc rectifiée après l’usinage des dégagements latéraux (qui permettent également d’avoir moins de matière à rectifier).
Les trous 13 destinés à la fixation dans le carter tubulaire sont ensuite réalisés sur tout le contour de la bague de came. La bague de came issue de l’opération E5 est représentée à la figure 8.
Lors d’une étape E7, le corps principal 31 , la bague de came 11 , et les deux roulements 23, 24 sont assemblés pour obtenir le sous-ensemble représenté à la figure 5. Le premier roulement 23 est tout d’abord monté autour du corps principal 31 jusqu’à venir en butée contre l’épaulement 25. La bague interne du premier roulement 23 (de même que la bague interne du deuxième roulement 24) peut être assemblée avec un léger serrage sur le corps principal 31. La bague de came 1 1 est ensuite montée autour du corps principal 31 de sorte à venir en butée contre le premier roulement 23. Plus précisément, la base 41 vient au contact de la bague externe du premier roulement 23. La bague de came 1 1 n’a, dans cette position, aucun appui radial pour sa surface interne (le chemin de came 14) et doit donc être positionnée de sorte que sa surface externe soit alignée avec la surface externe du premier roulement 23.
Le deuxième roulement 24 est ensuite à son tour monté autour du corps principal 31 jusqu’à ce que sa bague externe vienne en butée contre l’embase 41 de la bague de came 1 1 .
Comme décrit précédemment, les dimensions de ces différents éléments sont choisies pour que, en fin de montage du sous-ensemble, le rebord de la bague interne du deuxième roulement 24 coïncide avec la face radiale 26. La bague de came 1 1 est par ailleurs positionnée axialement par les roulements 23, 24.
Lors d’une étape E8, le sous-ensemble de la figure 5 est inséré en une seule opération dans le carter tubulaire 10 jusqu’à ce que la bague externe du premier roulement 23 vienne en butée contre le premier épaulement 20 du carter tubulaire 10. La bague de came 1 1 est avantageusement montée serrée dans le carter tubulaire 10, avec un serrage par exemple de 0,01 à 0,05 mm. Les roulements 23, 24 peuvent être également montés dans le carter tubulaire 10 avec un léger serrage.
Le sous-ensemble de la figure 5 peut être monté dans le carter tubulaire 10, par exemple à la presse, en poussant l’ensemble avec un outil de montage tubulaire dont le diamètre externe est légèrement inférieur au diamètre de la surface cylindrique interne 21 et dont l’épaisseur est suffisamment faible pour n’interagir qu’avec la bague externe du deuxième roulement 24. Ce montage est donc réalisé en une seule opération de mécanique simple.
Une indexation angulaire doit cependant être prévue pour la bague de came 1 1 dont les trous 13 doivent être angulairement positionnés pour se placer chacun devant un trou 12 du carter tubulaire 10.
Lors d’une étape E9, la bague de serrage et le joint à lèvres 35 sont conjointement mis en place dans le carter tubulaire 10 jusqu’à ce que le joint à lèvres 35 vienne en butée axialement contre le deuxième épaulement 22 du carter tubulaire 10. La bague de serrage 29 est alors positionnée par le joint à lèvres 35.
Lors d’une étape E10, le moyeu de roue 4, muni des goujons 5 en place, est vissé contre le corps principal 31 bridant ainsi la bague de serrage 29 et le joint annulaire antipoussière 39 est finalement mis en place.
La bague de came 11 est dans le présent exemple réalisée en acier 100Cr6, de même que les deux roulements 23, 24.
Sur la surface cylindrique interne 21 du carter tubulaire 10, sont donc montées trois bagues de même matériau (la bague externe du premier roulement 23, la bague de came 11 , la bague externe du deuxième roulement 24).
Le carter tubulaire 10, de par sa forme tubulaire et le matériau qui le constitue, a le comportement mécanique d’un tube, notamment en ce qui concerne la flexion de ses parois. Autrement dit, le carter tubulaire 10 peut se bomber s’il est déformé localement vers l’extérieur par la bague de came 11 , ou au contraire, il peut devenir concave si la bague de came 11 est mécaniquement sollicitée vers l’intérieur.
Au cours de son fonctionnement, la machine hydrostatique 1 présente une longévité accrue grâce à l’amortissement des déformations et des chocs que réalise le carter tubulaire 10 sur la bague de came 11.
La longévité accrue est également due à la présence d’une importante quantité de carbone dans l’acier pour roulements employé pour la bague de came 11 , ce qui contribue à une très faible teneur en oxygène de cet acier.
Par ailleurs, en ce qui concerne la maintenance de la machine hydrostatique 1 , le moyeu de roue 4 est susceptible d’être démonté, par exemple pour changer ou réparer les goujons 5. Une telle opération est ici réalisée simplement en dévissant les vis 32 et en extrayant le moyeu de roue 4 sans que l’intérieur de la machine hydrostatique 1 ne soit ouvert, c’est-à-dire sans qu’aucun joint d’étanchéité ne soit démonté.
L’intérieur de la machine 1 reste ainsi étanche, rendant l’opération de dépose et pose du moyeu de roue 4 simple et propre et de faible criticité. D’autres variantes de réalisation de la machine hydrostatique 1 peuvent être mises en œuvre sans sortir du cadre de l’invention. Par exemple les matériaux employés pour la bague de came 11 et le carter tubulaire 10 peuvent être autres que ceux mentionnés dans l’exemple décrit, à partir du moment où le matériau du carter tubulaire 10 présente une ductilité supérieure à la bague de came 11.
De plus, la machine hydrostatique peut être fixée sur un bâti autre que celui d’un véhicule, par exemple une machine stationnaire, et l’élément tournant d'entrainement peut être un autre élément qu’une roue, par exemple une boite de vitesse, un élément de machine ou tout autre dispositif de transmission ou élément à motoriser.
Alternativement à l’acier E470, donné précédemment comme exemple de matériau ductile constituant le carter tubulaire 10, le carter tubulaire 10 peut être également réalisé à partir d’un tube d’acier inoxydable qui sera avantageusement non martensitique pour présenter une ductilité suffisante pour le travail du carter tubulaire 10, et en tout état de cause une ductilité supérieure à la came 11. De préférence, l’acier inoxydable sera austénitique, par exemple un alliage fer-chrome-nickel avec moins de 0,1 % de carbone, tel que l’acier inoxydable « 18/10 ». Dans ce cas, le moyeu 4 peut de plus être également en acier inoxydable, ce qui permet à la machine hydrostatique de présenter un extérieur entièrement en acier inoxydable et qui permet d’employer la machine hydrostatique dans des environnements corrosifs tel que l’eau de mer ou des produits chimiques corrosifs. Dans le même esprit, le carter tubulaire 10 et le moyeu 4 peuvent être tous deux réalisés en un autre matériau qui serait adapté à une application particulière.

Claims

REVENDICATIONS
1. Machine hydrostatique (1 ) comportant :
- un stator (2) muni de fixations pour un bâti et comportant un chemin de came (14) circonférentiel ;
- un rotor (3) muni de fixations pour un élément tournant d’entrainement et comportant des pistons (8) répartis circonférentiellement et adaptés à coopérer avec le chemin de came (14) ;
- un distributeur hydraulique (17) adapté à alimenter sélectivement en fluide hydraulique les pistons (8) de sorte que la coopération des pistons (8) avec le chemin de came (14) corresponde à une rotation relative du rotor (3) par rapport au stator (2) ; la machine hydrostatique (1 ) étant caractérisée en ce que :
- le stator (2) comporte une surface cylindrique interne (21 ) de diamètre constant ainsi qu’une une bague de came (11 ) qui comprend, sur sa circonférence interne, le chemin de came (14), et qui est montée, par sa circonférence externe, dans la surface cylindrique interne (21 ) ;
- elle comporte deux roulements (23, 24) qui permettent la rotation du rotor (3) par rapport au stator (2) et qui sont montés sur la surface cylindrique interne (21 ) du stator (2), axialement de part et d’autre de la bague de came (11 ), la bague de came (11 ) et les deux roulements (23, 24) présentant le même diamètre externe.
2. Machine hydrostatique selon la revendication 1 , caractérisée en ce que le stator (2) comporte un carter tubulaire (10), la surface cylindrique interne (21 ) étant définie par le carter tubulaire (10).
3. Machine hydrostatique selon la revendication 2, caractérisée en ce que la bague de came (11 ) présente une ductilité inférieure à celle du carter tubulaire (10).
4. Machine hydrostatique selon la revendication 3, caractérisée en ce que la bague de came (11 ) est en acier pour roulements et en ce que le carter tubulaire (10) est en acier non allié.
5. Machine hydrostatique selon la revendication 3, caractérisé en ce que la bague de came (11 ) est en acier à roulements et en ce que le carter tubulaire (10) est en acier inoxydable austénitique.
6. Machine hydrostatique selon la revendication 4 ou 5, caractérisée en ce que le matériau de la bague de came (11 ) et celui des deux roulements (23, 24) est le même acier pour roulements.
7. Machine hydrostatique selon l'une des revendications 2 à 5, caractérisée en ce que la bague de came (11 ) est montée serrée dans le carter tubulaire (10).
8. Machine hydrostatique selon l'une quelconque des revendications précédentes, caractérisée en ce qu’elle comporte des fixations antirotation (12, 13) pour coupler la bague de came (11 ) et le stator (2).
9. Machine hydrostatique selon l'une quelconque des revendications précédentes, caractérisée en ce qu’elle comporte :
- une bague de serrage (29) disposée axialement contre l’un (24) des roulements et contre le rotor (3) ;
- un joint à lèvre (35) disposé entre la bague de serrage (29) et le stator (2).
10. Machine hydrostatique selon la revendication 9, caractérisée en ce que la bague de serrage (29) est fixée au rotor (3) par un moyeu (4) vissé dans le rotor (3) et portant les fixations (5) pour un élément tournant d’entrainement.
11. Machine hydrostatique selon la revendication 10, caractérisée en ce que les fixations pour un élément tournant d’entrainement sont constituées par des vis (5) dont les têtes (38) sont bridées par le moyeu (4).
12. Procédé de fabrication d’une machine hydrostatique (1 ) caractérisé en ce qu’il comporte les étapes suivantes : - usiner un tube d’acier pour roulements pour produire une bague de came
(11 ) présentant un chemin de came (14) ;
- monter la bague de came (11 ) et deux roulements (23, 24) sur un corps principal (31 ) de rotor (3), la bague de came (11 ) étant serrée entre les deux roulements (23, 24), pour former un sous-ensemble ; - insérer axialement le sous-ensemble dans un stator (2) qui comporte une surface cylindrique interne (21 ) de diamètre constant, les roulements (23, 24) et la bague de came (11 ) venant se monter dans la surface cylindrique interne (21 ).
EP19758791.8A 2018-07-03 2019-07-03 Machine hydrostatique comportant une bague de came Active EP3818266B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1856142A FR3083573B1 (fr) 2018-07-03 2018-07-03 Machine hydrostatique comportant une bague de came
PCT/FR2019/051648 WO2020008145A1 (fr) 2018-07-03 2019-07-03 Machine hydrostatique comportant une bague de came

Publications (2)

Publication Number Publication Date
EP3818266A1 true EP3818266A1 (fr) 2021-05-12
EP3818266B1 EP3818266B1 (fr) 2022-08-24

Family

ID=66867180

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19758791.8A Active EP3818266B1 (fr) 2018-07-03 2019-07-03 Machine hydrostatique comportant une bague de came

Country Status (4)

Country Link
US (2) US11841009B2 (fr)
EP (1) EP3818266B1 (fr)
FR (1) FR3083573B1 (fr)
WO (1) WO2020008145A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3083573B1 (fr) * 2018-07-03 2020-10-02 Laurent Eugene Albert Machine hydrostatique comportant une bague de came
JP7068410B2 (ja) * 2020-09-28 2022-05-16 大同メタル工業株式会社 ラジアルピストン機械の軸受装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE551317C (de) * 1926-05-08 1932-05-28 Fritz Egersdoerfer Rundlaufpumpe als Brennstoffeinspritzpumpe fuer mehrzylindrige Brennkraftmaschinen, insbesondere fuer Dieselmotoren
US2111658A (en) * 1934-10-24 1938-03-22 Elek K Benedek Variable delivery pump or motor
GB663462A (en) * 1948-06-02 1951-12-19 John Shaw & Sons Salford Ltd Improvements in and relating to revolving cylinder hydraulic pumps or motors
GB1440579A (en) * 1972-08-16 1976-06-23 Newage Engineers Ltd Rotary hydraulic piston machines
DE3219513A1 (de) * 1981-05-29 1982-12-23 Alfred Teves Gmbh, 6000 Frankfurt Radialkolbenmaschine, insbesondere radialkolbenpumpe
DE3121531A1 (de) * 1981-05-29 1983-01-27 Alfred Teves Gmbh, 6000 Frankfurt Radialkolbenmaschine, insbesondere kugelkolbenpumpe
FR2655090B1 (fr) 1989-11-30 1993-03-19 Poclain Hydraulics Sa Mecanisme a fluide sous pression, tel qu'un moteur ou une pompe, attele a un dispositif de freinage.
DK292690D0 (da) * 1990-12-10 1990-12-10 Htc As Motor- eller pumpeaggregat
GB9425384D0 (en) * 1994-12-13 1995-02-15 Unipat Ag Hydraulic radial piston machines
JPH0814133A (ja) * 1994-06-30 1996-01-16 Toyota Motor Corp 燃料噴射ポンプ
DE102005015905A1 (de) * 2005-04-07 2006-10-12 Linde Ag Anordnung mit einem Schwungrad einer Brennkraftmaschine und mit einer dazu benachbarten hydrostatischen Pumpe
DE102005059031A1 (de) * 2005-12-10 2007-06-14 Schaeffler Kg Radialkolben-Hochdruckpumpe einer Einspritzanlage zum Einspritzen eines flüssigen Brennstoffs
FR2901581B1 (fr) * 2006-05-29 2008-08-15 Mrcc Ind Soc Par Actions Simpl Perfectionnements aux pompes hydrauliques a pistons radiaux
DE102009016010A1 (de) 2009-04-02 2010-10-07 Linde Material Handling Gmbh Hydrostatischer Nabenantrieb mit einem Mehrhubmotor
FR2985786B1 (fr) 2012-01-18 2016-11-25 Poclain Hydraulics Ind Circuit de transmission hydraulique a cylindrees multiples
FR3030381B1 (fr) 2014-12-19 2018-10-19 Eugene Albert Laurent Moteur hydraulique pour roue de vehicule
DE102015200310A1 (de) * 2015-01-13 2016-07-14 Robert Bosch Gmbh Kolbeneinheit und hydrostatische Radialkolbenmaschine
JP6217727B2 (ja) * 2015-10-15 2017-10-25 株式会社豊田自動織機 可変容量型ポンプ
FR3049990A1 (fr) 2016-04-08 2017-10-13 Laurent Eugene Albert Machine hydrodynamique
FR3083573B1 (fr) * 2018-07-03 2020-10-02 Laurent Eugene Albert Machine hydrostatique comportant une bague de came
FR3094425B1 (fr) * 2019-03-27 2021-04-23 Poclain Hydraulics Ind Machine hydraulique comportant un palier perfectionné

Also Published As

Publication number Publication date
US20230400015A1 (en) 2023-12-14
WO2020008145A1 (fr) 2020-01-09
US11841009B2 (en) 2023-12-12
FR3083573A1 (fr) 2020-01-10
EP3818266B1 (fr) 2022-08-24
FR3083573B1 (fr) 2020-10-02
US20210285429A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
EP3090182B1 (fr) Système hydraulique à carter draine
EP3818266B1 (fr) Machine hydrostatique comportant une bague de came
EP0995033B1 (fr) Moteur hydraulique a frein compact
FR2945091A1 (fr) Dispositif de transmission viscoelastique d'un actionneur d'un volet roulant
BE897900A (fr) Liaison entre un premier élément et un alésage formé dans un second élément.
EP3308026B1 (fr) Systeme hydraulique a chambre drainee
EP3233553B1 (fr) Moteur hydraulique pour roue de vehicule
EP2347140A1 (fr) Bague pour palier hydrostatique ou hydrodynamique, machine hydraulique equipee d'une telle bague et procede de montage d'une telle bague sur un arbre
EP0429326A1 (fr) Joint de transmission articulé télescopique, notamment pour l'automobile
FR2530571A1 (fr) Dispositif de cylindre et piston, engrenage de direction assistee utilisant ce dispositif et procede de fabrication d'un piston pour ce dispositif
WO2007010106A2 (fr) Procede de montage d'un palier pourvu d'un flasque et a deux rangees de corps roulants
EP0426540A1 (fr) Moteur à combustion interne à rapport volumétrique variable
EP3106325B1 (fr) Système pneumatique pour gonflage de pneu intégré à un essieu motorisé
FR3003201A1 (fr) Assemblage d’un moyeu de roue motrice et d’un bol de joint de transmission
WO2013092825A1 (fr) Support de roue muni de conduits d'alimentation d'un appareil hydraulique
FR3049990A1 (fr) Machine hydrodynamique
EP3234359B1 (fr) Appareil hydraulique a pistons radiaux comprenant au moins un roulement a billes
EP0487393B1 (fr) Mécanisme à fluide sous pression dit "à came tournante"
FR3122207A1 (fr) Perforateur hydraulique roto-percutant
FR2997327A1 (fr) Procede de realisation d'un piston avec un dispositif d'etancheite ainsi que le piston correspondant
FR3047789A1 (fr) Systeme d'etancheite ameliore pour carter et palier de machine hydraulique
WO2020021019A1 (fr) Machine hydraulique
FR3084409A1 (fr) Machine hydraulique
FR2817299A1 (fr) Compresseur a piston axial pour installations de climatisation de vehicules
EP0246954A2 (fr) Distributeur hydraulique rotatif et procédé d'assemblage d'un tel distributeur

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220224

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1513809

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220915

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019018712

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221226

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221124

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1513809

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221224

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019018712

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230724

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230727

Year of fee payment: 5

Ref country code: GB

Payment date: 20230720

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230721

Year of fee payment: 5

Ref country code: FR

Payment date: 20230721

Year of fee payment: 5

Ref country code: DE

Payment date: 20230724

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602019018712

Country of ref document: DE

Owner name: ROBERT BOSCH GESELLSCHAFT MIT BESCHRAENKTER HA, DE

Free format text: FORMER OWNER: ALBERT, LAURENT EUGENE, FRIGNICOURT, FR

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20240118 AND 20240124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230703

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: ROBERT BOSCH GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: ALBERT, LAURENT, EUGENE

Effective date: 20240423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731