EP3801855B1 - Device for mixing liquids and solids with liquids by means of vibration - Google Patents

Device for mixing liquids and solids with liquids by means of vibration Download PDF

Info

Publication number
EP3801855B1
EP3801855B1 EP19737206.3A EP19737206A EP3801855B1 EP 3801855 B1 EP3801855 B1 EP 3801855B1 EP 19737206 A EP19737206 A EP 19737206A EP 3801855 B1 EP3801855 B1 EP 3801855B1
Authority
EP
European Patent Office
Prior art keywords
spring elements
drive shaft
spring
liquids
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19737206.3A
Other languages
German (de)
French (fr)
Other versions
EP3801855C0 (en
EP3801855A1 (en
Inventor
Patrick Müller
Kevin WETTER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dr Mueller AG
Original Assignee
Dr Mueller AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr Mueller AG filed Critical Dr Mueller AG
Publication of EP3801855A1 publication Critical patent/EP3801855A1/en
Application granted granted Critical
Publication of EP3801855C0 publication Critical patent/EP3801855C0/en
Publication of EP3801855B1 publication Critical patent/EP3801855B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/10Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy
    • B06B1/12Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy operating with systems involving reciprocating masses
    • B06B1/14Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy operating with systems involving reciprocating masses the masses being elastically coupled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/44Mixers with shaking, oscillating, or vibrating mechanisms with stirrers performing an oscillatory, vibratory or shaking movement
    • B01F31/441Mixers with shaking, oscillating, or vibrating mechanisms with stirrers performing an oscillatory, vibratory or shaking movement performing a rectilinear reciprocating movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/55Mixing liquids with solids the mixture being submitted to electrical, sonic or similar energy
    • B01F23/551Mixing liquids with solids the mixture being submitted to electrical, sonic or similar energy using vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/45Magnetic mixers; Mixers with magnetically driven stirrers
    • B01F33/453Magnetic mixers; Mixers with magnetically driven stirrers using supported or suspended stirring elements
    • B01F33/4534Magnetic mixers; Mixers with magnetically driven stirrers using supported or suspended stirring elements using a rod for supporting the stirring element, e.g. stirrer sliding on a rod or mounted on a rod sliding in a tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/30Driving arrangements; Transmissions; Couplings; Brakes
    • B01F35/32Driving arrangements
    • B01F35/325Driving reciprocating or oscillating stirrers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/20Mixing the contents of independent containers, e.g. test tubes
    • B01F31/27Mixing the contents of independent containers, e.g. test tubes the vibrations being caused by electromagnets

Definitions

  • the invention relates to a device for mixing liquids, liquids with gases or solids by vibration.
  • Known devices for mixing liquids by vibration have a mass-spring system which is caused to vibrate by an electromagnetic drive (hereinafter referred to as an electromagnet) and which is connected to a mixer plate by a shaft.
  • the spring system is electromagnetically coupled to the electromagnet, which is controlled with an alternating current or current pulses and causes the mass-spring system to oscillate.
  • the resulting (vertical) deflections in the direction of the impact and repulsion force of the magnetic field on the spring system are transferred to the mixer plate in the mixed medium by a drive shaft.
  • the oscillating system In order to achieve the highest possible efficiency, the oscillating system must oscillate as much as possible in its resonance, as this minimizes the required excitation force of the drive. This resonant frequency can be changed and optimized for the respective application by skillfully designing the spring elements of the mass and the damping values.
  • Such a system is known from the prior art under the designations vibro mixer and vibration mixer drive and is, for example, in CH289065 disclosed.
  • An example from industry is the vibro mixer under the name FUNDAMIXO from DrM Dr. called Müller AG.
  • vibro mixers of this type are used at an oscillating frequency of 50-100Hz and a Operated amplitude of 1-5mm.
  • Mixing elements which will not be discussed in detail here, are designed for unidirectional oscillating movement and achieve a comparable mixing performance to conventional rotary stirrers.
  • the spring system of such a vibro mixer usually consists of one or more spiral springs.
  • the springs mostly made of spring steel, withstand the constant changing load and are fixed to a spring force due to their geometric dimensions. This can be adjusted by changing the prestressing of the springs, which is associated with a great deal of effort, particularly when there are a large number of spiral springs.
  • the resonant frequency of the spring system is determined by the mass and the damping of the system and can therefore only be changed by replacing the springs or expanding the spring assembly. If there are several springs in the system, the spring forces can vary with several springs in the system due to the smallest differences in the material, temperature or geometry of the springs.
  • EP0626194A1 Another prior art device is EP0626194A1 disclosed.
  • a slide is supported by several leaf springs connected in series in such a way that it can oscillate in three dimensions.
  • the oscillation is excited by controlling coils that exert a force on permanent magnets that are connected to the individual oscillating springs.
  • the spring constants of the springs can be changed in all directions by superimposing the Springs with another spring system happens.
  • the series connection of a spring rod is mentioned here, the spring constant of which can be changed by an adjustable oscillating mass or an adjustable guide fork.
  • the document points out that the oscillating apparatus is usually operated at high frequencies of up to 20 kHz. Areas of application are mixing, homogenization and separation of liquids and solids on a laboratory scale.
  • the mechanical structure of the spring system and the device for adjusting the spring constant by means of an additional oscillating rod are expensive, complicated and take up a lot of space. Applications are limited to mixing smaller quantities of liquids and solids. The masses and amplitudes are small and the frequencies are large, designed for the respective process on a laboratory scale. A true-to-scale design for larger volumes, amplitudes, weights and mixing power would, however, involve enormous effort. Especially the device for adjusting the spring constants would no longer be economically feasible in a scale-up.
  • US2017/333857 discloses an apparatus according to the preamble of claim 1. It shows an actuator for mixing and shaking the contents of a container by linear back and forth motion by means of magnetic excitation.
  • the drive has an electromagnet and one or more magnets to which or which a shaft is attached.
  • the shaft extends into the container and a shaking or mixing plate is attached to the end of the shaft.
  • the electromagnet When the electromagnet is activated, the shaft is moved linearly in the direction of a magnet.
  • a reverse movement of the shaft is effected by reversing the polarity of the voltage on the electromagnet.
  • the linear return movement can be initiated by switching the electromagnet on and off and using gravity or a spring force.
  • Alternating magnetic flux for reciprocation can also be effected by physical movement of a permanent magnet outside the container.
  • DE 11 19 994 discloses a stirring device for the contents of closed vessels, which is moved linearly by an external magnetic field.
  • a The stirring shaft moves up and down with a magnetic anchor element, with compression springs acting linearly in the same direction limiting the movement.
  • a constant magnetic field acting on the armature element is stationary while two interconnected, cylindrical pole shoes arranged in a predetermined relative position to one another are moved up and down together in the direction of stirring, manually or by a drive intended for them, and the magnetic armature element is moved.
  • the object of the present invention is to create a device for mixing liquids and solids in liquids by means of vibration, in which a drive shaft is excited to oscillate in a main direction by means of an electromagnetic drive via a spring system.
  • the device should be designed in such a way that larger forces and amplitudes of several millimeters can be achieved at a frequency of up to 200 Hz.
  • the mechanical structure of the spring system should be optimized in such a way that the known problems are reduced or prevented.
  • a device for mixing liquids and solids in liquids by means of vibration, which has an electromagnetic drive, either a permanent magnet or a magnetisable, for example a ferritic element, and a drive shaft arranged coaxially with the electromagnetic drive.
  • the device has a system of spring elements with several flat spring elements. The spring system allows oscillation in one direction of oscillation, namely the main direction coaxial with the drive shaft and the electromagnetic drive, and is excited to oscillate centrally by an external force. This excitation force is generated by an electromagnetic drive, which transmits a force to a permanent magnet or a magnetizable element by means of a magnetic coupling.
  • the permanent magnet or the magnetizable element is connected to the spring system and enables the oscillation to be excited. Does the device according to the invention a permanent magnet, ie with a constant pole, the permanent magnet will resonate with the input frequency of the electromagnetic coil of the electromagnet. If the device according to the invention has a magnetizable element instead, this element is magnetized by the electromagnetic coil of the electromagnet and will therefore oscillate at twice the input frequency of the electromagnet.
  • the loading condition of the unidirectional oscillation is given by the main forces along the oscillation amplitude along the induced magnetic force, which are transmitted to the drive shaft and thus to a mixing element attached to the drive shaft.
  • first flat spring elements are arranged parallel to the main direction and to the drive shaft, and further, second, flat spring elements are arranged perpendicular to the main direction and to the drive shaft.
  • the latter second spring elements are connected to the permanent magnet or the magnetizable element.
  • the system of flat spring elements comprises a plurality of interconnected flat spring elements which are oriented perpendicularly to one another, or one or more curved flat spring elements.
  • the curved spring elements are each L-shaped designed.
  • the system has two L-shaped curved spring elements, each of the two L-shaped spring elements comprising a first spring element aligned parallel to the drive shaft and a second spring element aligned perpendicular to the drive shaft.
  • a bent, flat spring element is U-shaped.
  • a U-shape is to be understood as meaning a one-piece spring element which comprises two spring elements aligned parallel to the drive shaft and one spring element aligned perpendicular to the drive shaft.
  • the spring elements contain heavy-duty, elastic material, such as spring steel or fiber-reinforced plastic.
  • the first spring elements are fastened and mounted on the wall of a housing by means of clamping jaws.
  • the second spring elements are fastened and mounted on the permanent magnet or magnetizable element by means of clamping jaws.
  • the clamping lengths and widths of the spring elements in the clamping jaws and/or the distance between the spring elements and the electromagnetic drive can be adjusted.
  • the first spring elements are each realized by a damping block which absorbs the transverse forces.
  • Damping blocks also known by the term silent blocks, are to be understood as damping elements with a multi-layer structure, which have two metal plates and a shock-absorbing material arranged between the two metal plates.
  • the shock-absorbing material is rubber or plastic foam, for example, and absorbs the transverse forces in the second spring element perpendicular to the drive shaft.
  • the damping blocks are attached directly to the wall of an enclosure.
  • Flat spring elements can be produced cheaply in different materials and under tight geometry and material tolerances. It is usually made of spring steel or fiber-reinforced plastic. The latter offers increased resistance to alternating stress while maintaining high strength and low weight. In addition, the modulus of elasticity and thus the vibration behavior of the leaf spring can be preselected by a suitable choice of plastic. In the stress conditions described, the flat spring elements show an enormous longevity, even under high alternating loads. They are also compact and lightweight compared to conventional hairsprings. The storage and fixing of the flat springs is simple, easy to assemble and, given the compactness and the defined clamping of the springs, they generate hardly any noise.
  • the separate distribution of the spring elements according to the forces that occur allows flexible and easy adjustment of the clamped spring lengths and the position of the spring system in relation to the excitation force. This enables the system's resonant frequency to be fine-tuned and the electromagnetic drive to be utilized in the best possible way. Asymmetries in the components and groups can be compensated for by the flexible clamping of the spring elements and enable optimal vibration behavior.
  • the design of the spring system of the device according to the invention makes it possible for larger forces and amplitudes of several millimeters to be achieved at a frequency of up to 200 Hz.
  • the device can be used for mixing and homogenizing volumes in the order of 10,000L.
  • the use of a permanent magnet or a magnetizable element as the opposite pole to the electromagnetic drive can provide advantages.
  • the device according to the invention With the use of a permanent magnet, the device according to the invention generates half the oscillation frequency compared to the device with a magnetizable element under otherwise identical conditions. Especially at low operating frequencies, the use of permanent magnets can thus increase the drive efficiency, since the electromagnetic drive can usually be operated more efficiently at higher input frequencies.
  • the mechanical and thermal properties of the magnetizable element, mostly consisting of ferritic material, or the permanent magnet, mostly neodymium-iron-boron compounds are advantageously used depending on the application requirements.
  • the device according to the invention achieves the advantages that the service life and possible operating time of the stressed spring elements are increased because the load on the spring elements is optimally distributed due to the design according to the invention.
  • the device During operation of the device, there is a reduced generation of noise, which otherwise occurs at the high operating frequencies due to spiral springs and their bearings.
  • the weight and space requirements of the spring system are reduced compared to the devices of the prior art, and the costs of manufacture are reduced due to lower component costs and simpler assembly and system adjustment.
  • the maintenance of the device according to the invention and the great effort involved in setting the operating parameters can be reduced by the simpler construction and the flexible clamping mechanism.
  • figure 1 shows a drive for a device for mixing liquids according to the prior art in a simplified representation.
  • the electromagnetic drive 1 fixed to a rigid frame, chassis 3, connected.
  • a rigid plate 5 is thus connected and supported by one or more helical springs 4 to ensure optimal support, the springs 4 being able to be arranged both in parallel and in series.
  • a permanent magnet or magnetisable element 2 is connected to the plate 5 and is excited by the magnetic coupling through the electromagnet 1 so that the springs 4 are caused to oscillate.
  • the plate 5 is supported by the springs 4 in such a way that it can oscillate freely in the main direction.
  • the main direction along the line 11 is defined by the force of the electromagnet 1 on the permanent magnet or the magnetizable element 2 on the steel plate 5 .
  • a shaft 6 connected to the steel plate thus oscillates in the main direction 11 and can transmit the oscillation to a mixing element attached to the shaft 6 outside the chassis 3, ideally to a mixer plate within the medium to be mixed.
  • figure 2 shows the device according to the invention with an electromagnetic drive 1 attached to a housing 3, a drive shaft 6 to which a mixing element (not shown) is attached outside the housing 3, and a permanent magnet or magnetizable element 2.
  • Two individual curved, here L-profile -shaped, flat, spring elements 8 are connected to the permanent magnet or magnetizable element 2 by means of two clamping jaws 9, 9', the L-shaped spring elements 8 having a part 8" running parallel to the shaft 6 and a part 8' running perpendicular to the shaft 6.
  • a single spring element in the form of a U-profile can also be used instead of the two L-shaped spring elements 8.
  • An alternating magnetic field generated by the electromagnetic drive 1 excites the permanent magnet or the magnetizable element 2.
  • the two spring elements 8 are in turn supported by clamping jaws 7′, 7′′ and fixed to the lateral inner wall of the housing 3. Given the geometric dimensions of the flat springs 8, 8', 8", their material properties and their clamped lengths as well as the weight of the system, the springs 8 vibrate in the main direction 11, stimulated by the drive 1.
  • a shaft 6 connected to the springs 8 transmits the oscillating movement on a mixing element outside the housing 3.
  • the arrangement allows the loads to be distributed to the spring elements 8.
  • the part 8' of the spring element 8 running perpendicularly to the shaft can absorb the loads in the main direction 11 by bending the spring part 8', with transverse forces are transferred to the parts 8" of the spring element 8 that are parallel to the main direction and to the shaft. This enables an optimal distribution of the mechanical loads and thus an efficient use of the material properties of the springs 8.
  • FIG 3 shows a further embodiment of the device according to the invention.
  • several flat spring elements 8', 8" are used, with the spring elements 8 ⁇ again being aligned horizontally and perpendicularly to the main direction 11 and the spring elements 8" running parallel to the main direction 11.
  • the spring elements 8', 8" are connected to one another by clamping jaws 10', 10", 10′′′, the spring elements 8' being connected to the permanent magnet or magnetizable element 2 by means of clamping jaws 9', 9".
  • the spring elements 8" are in turn connected by means of Clamping jaws 7, 7" are fastened and mounted on the lateral inner wall of the housing 3.
  • a distinction is made between the spring elements 8' parallel to the main direction 11 and the spring elements 8" perpendicular to the main direction 11, which, depending on the load condition, absorb the mechanical forces accordingly and thus absorb optimally.
  • damping blocks for the first spring elements 8", which run parallel to the main direction 11
  • the first spring elements 8" together with the clamping jaws 7', 7", 10', 10" are replaced by damping blocks.
  • one of the two metal plates of the damping blocks on one side of the damping material is attached directly to the lateral inner walls of the housing 3, while the other metal plate on the opposite side of the damping material is attached to the clamping jaw 10 ′′′.
  • FIG 4 another embodiment of the device is shown.
  • the spring system has two spring elements 8' which are arranged perpendicularly to the main direction 11 and are arranged one above the other.
  • One of the spring elements 8' is attached to the permanent magnet or magnetizable element 2 by means of clamping jaws 9', 9"
  • the second spring element 8' is attached to the drive shaft 2 by means of clamping jaws 9', 9".
  • the two spring elements 8', which are arranged one above the other and run perpendicularly to the drive shaft 2 are connected to one another and fixed to one another by means of clamping jaws 10′′′ and 10′′′′.
  • Two spring elements 8′′ running parallel to the main direction 11 are fastened to the lateral inner wall of the housing by means of clamping jaws 7′, 7′′.
  • the spring elements 8′′ running parallel to the drive shaft are fixed to one another with the one spring element 8′ running perpendicular to the drive shaft 2 by means of clamping jaws 10′, 10′′.
  • This clamping of the spring elements 8', 8” supports the oscillation in the main direction 11 and the loads are optimally absorbed by it.
  • This parallel arrangement of several spring elements 8', 8" enables the drive shaft 6 to be better supported against external forces.
  • the clamped lengths of the spring elements 8', 8" and 9', 9" and the position of the permanent magnet or magnetizable element 2 relative to the electromagnetic drive 1 are important operating parameters and influence the vibration behavior and thus the mixing ability of the mixing element.
  • the clamping jaws 10', 10", 10′′′ and 10'' are each designed in such a way that they can preferably be flexibly fixed by the spring elements 8', 8" and 9', 9" in adjustable clamping lengths, widths and thicknesses as well whose positions can be fixed.
  • first spring elements 8" and the clamping jaws 7', 7", 10' and 10" are each replaced by a damping block, these being attached directly to the lateral inner wall of the housing 3 .

Description

Technisches Gebiettechnical field

Die Erfindung betrifft eine Vorrichtung zum Mischen von Flüssigkeiten, von Flüssigkeiten mit Gasen oder Feststoffen durch Vibration.The invention relates to a device for mixing liquids, liquids with gases or solids by vibration.

Stand der TechnikState of the art

Bekannte Vorrichtungen zum Mischen von Flüssigkeiten durch Vibration weisen ein durch einen elektromagnetischen Antrieb (fortlaufend als Elektromagnet bezeichnet) in Schwingung gebrachtes Masse-Feder-System auf, das durch einen Schaft mit einer Mischerplatte verbunden ist. Das Federsystem ist elektromagnetisch zum Elektromagneten gekoppelt, welcher mit einem wechselnden Strom oder Strompulsen angesteuert wird und das Masse-Feder-System in Schwingung versetzt. Die dadurch entstehenden (vertikalen) Auslenkungen in der Richtung der an- und abstossenden Kraft des magnetischen Feldes auf das Federsystem werden durch einen Antriebsschaft auf die Mischerplatte im Mischmedium übertragen. Um eine möglichst hohe Effizienz zu erreichen muss das Schwingsystem möglichst in ihrer Resonanz oszillieren, da sich dadurch die benötigte Anregerkraft des Antriebes minimiert. Durch geschickte Auslegung der Federelemente der Masse sowie der Dämpfungswerte kann diese Resonanzfrequenz für die jeweilige Anwendung verändert und optimiert werden.Known devices for mixing liquids by vibration have a mass-spring system which is caused to vibrate by an electromagnetic drive (hereinafter referred to as an electromagnet) and which is connected to a mixer plate by a shaft. The spring system is electromagnetically coupled to the electromagnet, which is controlled with an alternating current or current pulses and causes the mass-spring system to oscillate. The resulting (vertical) deflections in the direction of the impact and repulsion force of the magnetic field on the spring system are transferred to the mixer plate in the mixed medium by a drive shaft. In order to achieve the highest possible efficiency, the oscillating system must oscillate as much as possible in its resonance, as this minimizes the required excitation force of the drive. This resonant frequency can be changed and optimized for the respective application by skillfully designing the spring elements of the mass and the damping values.

Ein solches System ist aus dem Stand der Technik unter den Bezeichnungen Vibromischer und Vibrationsmischantrieb bekannt und ist beispielsweise in CH 289065 offenbart. Als Beispiel aus der Industrie sei hier der Vibromischer unter dem Namen FUNDAMIXO der Firma DrM Dr. Müller AG genannt. Üblicherweise werden Vibromischer dieser Art bei einer Schwingfrequenz von 50-100Hz und einer Amplitude von 1-5mm betrieben. Mischorgane, auf welche hier nicht näher eingegangen werden soll, sind auf die unidirektionale Oszillationsbewegung ausgelegt und erreichen eine vergleichbare Mischleistung zu konventionellen Rotationsrührern.Such a system is known from the prior art under the designations vibro mixer and vibration mixer drive and is, for example, in CH289065 disclosed. An example from industry is the vibro mixer under the name FUNDAMIXO from DrM Dr. called Müller AG. Usually, vibro mixers of this type are used at an oscillating frequency of 50-100Hz and a Operated amplitude of 1-5mm. Mixing elements, which will not be discussed in detail here, are designed for unidirectional oscillating movement and achieve a comparable mixing performance to conventional rotary stirrers.

Nach dem Stand der Technik besteht das Federsystem eines solchen Vibromischers meist aus einer oder mehreren Spiralfedern. Die Federn, meist aus Federstahl, halten der dauernden Wechselbelastung stand und sind, gegeben durch deren geometrische Dimensionen auf eine Federkraft fixiert. Diese lässt sich durch Veränderung der Vorspannung der Federn anpassen, was mit einem grossen Aufwand, insbesondere bei einer grösseren Anzahl an Spiralfedern verbunden ist. Die Resonanzfrequenz des Federsystems wird aufgrund der Masse und der Dämpfung des Systems bestimmt und kann somit nur durch Austausch der Federn oder Erweiterung des Federpakets verändert werden. Sind mehrere Federn im System vorhanden, so können die Federkräfte bei mehreren Federn im System aufgrund kleinster Unterschiede in Material, Temperatur oder Geometrie der Federn variieren. Dies führt zu einer ungleichmässigen Verteilung der Kräfte und beeinträchtigt das Schwingverhalten des Systems. Die Lagerung von Spiralfedern ist mechanisch schwierig umzusetzen und kann zu einer störenden Geräuschentwicklung während dem Betrieb führen. Eine Unterdrückung dieser Lärmquelle ist nur mit aufwändigen Massnahmen zu erreichen, wie zum Beispiel durch Schalldämpfer ober Oberflächenbehandlung der Kontaktstellen zur Feder. Beide Methoden sind teuer und können das Resonanzverhalten des Schwingsystems sowie die Standzeiten der Federn beeinträchtigen.According to the state of the art, the spring system of such a vibro mixer usually consists of one or more spiral springs. The springs, mostly made of spring steel, withstand the constant changing load and are fixed to a spring force due to their geometric dimensions. This can be adjusted by changing the prestressing of the springs, which is associated with a great deal of effort, particularly when there are a large number of spiral springs. The resonant frequency of the spring system is determined by the mass and the damping of the system and can therefore only be changed by replacing the springs or expanding the spring assembly. If there are several springs in the system, the spring forces can vary with several springs in the system due to the smallest differences in the material, temperature or geometry of the springs. This leads to an uneven distribution of forces and impairs the vibration behavior of the system. The storage of spiral springs is mechanically difficult to implement and can lead to annoying noise during operation. Suppression of this source of noise can only be achieved with complex measures, such as silencers or surface treatment of the contact points with the spring. Both methods are expensive and can affect the resonance behavior of the oscillating system and the service life of the springs.

Eine weitere Vorrichtung aus dem Stand der Technik ist in EP 0626194A1 offenbart. Ein Objektträger ist durch mehrere in Serie verbundener Blattfedern so gelagert, dass dieser in drei Dimension schwingen kann. Die Anregung der Schwingung geschieht durch Ansteuerung von Spulen, die eine Krafteinwirkung auf Permanentmagneten ausüben, welche den einzelnen Schwingfedern verbunden sind. Um das Schwingverhalten anzupassen, können die Federkonstanten der Federn in allen Richtungen verändert werden, das durch eine Überlagerung der Federn mit einem weiteren Federsystem geschieht. Genannt ist hier die Serie-Schaltung eines Federstabes, dessen Federkonstante sich durch eine verstellbare Schwingmasse oder eine verstellbare Führungsgabel verändern lässt. Im Dokument ist darauf hingewiesen, dass der Schwingapparat üblicherweise bei hohen Frequenzen bis 20kHz betrieben wird. Anwendungsbereiche sind Mischungen, Homogenisierungen und Separierungen von Flüssigkeiten und Feststoffen im Labormassstab. Der mechanische Aufbau des Federsystems und die Einrichtung zur Anpassung der Federkonstante mittels zusätzlichem Schwingstab sind aufwändig, kompliziert und beanspruchen viel Platz. Die Anwendungen sind auf das Mischen von kleineren Mengen an Flüssigkeiten und Feststoffen begrenzt. Die Massen und Amplituden sind klein und die Frequenzen gross, ausgelegt auf den jeweiligen Prozess im Labormassstab. Eine massstäbliche Auslegung für grössere Volumen, Amplituden, Gewichte und Mischleistungen wäre jedoch mit einem enormen Aufwand verbunden. Gerade die Einrichtung zur Anpassung der Federkonstanten wäre in einem Scale-Up ökonomisch nicht mehr umsetzbar.Another prior art device is EP0626194A1 disclosed. A slide is supported by several leaf springs connected in series in such a way that it can oscillate in three dimensions. The oscillation is excited by controlling coils that exert a force on permanent magnets that are connected to the individual oscillating springs. In order to adapt the vibration behavior, the spring constants of the springs can be changed in all directions by superimposing the Springs with another spring system happens. The series connection of a spring rod is mentioned here, the spring constant of which can be changed by an adjustable oscillating mass or an adjustable guide fork. The document points out that the oscillating apparatus is usually operated at high frequencies of up to 20 kHz. Areas of application are mixing, homogenization and separation of liquids and solids on a laboratory scale. The mechanical structure of the spring system and the device for adjusting the spring constant by means of an additional oscillating rod are expensive, complicated and take up a lot of space. Applications are limited to mixing smaller quantities of liquids and solids. The masses and amplitudes are small and the frequencies are large, designed for the respective process on a laboratory scale. A true-to-scale design for larger volumes, amplitudes, weights and mixing power would, however, involve enormous effort. Especially the device for adjusting the spring constants would no longer be economically feasible in a scale-up.

US 2017/333857 offenbart eine Vorrichtung entsprechend dem Oberbegriff des Anspruchs 1. Es zeigt einen Antrieb zum Mischen und Schütteln des Inhalts eines Behälters durch lineare Vor- und Rückbewegung mittels magnetischer Erregung. Der Antrieb weist einen Elektromagneten sowie einen oder mehrere Magneten auf, an dem oder denen ein Schaft befestigt ist. Der Schaft ragt in den Behälter hinein, und eine Schüttel- oder Mischplatte ist am Ende des Schafts befestigt. Bei Aktivierung des Elektromagneten wird der Schaft linear in Richtung eines Magneten bewegt. Eine Rückbewegung des Schafts wird durch Umpolung der Spannung am Elektromagneten bewirkt. Alternativ kann die lineare Rückbewegung durch Ein- und Ausschalten des Elektromagneten und unter Einsatz der Schwerkraft oder einer Federkraft ausgelöst werden. Ein alternierender Magnetfluss für die Hin- und Rückbewegung kann auch durch physische Bewegung eines Permanentmagneten ausserhalb des Behälters bewirkt werden. US2017/333857 discloses an apparatus according to the preamble of claim 1. It shows an actuator for mixing and shaking the contents of a container by linear back and forth motion by means of magnetic excitation. The drive has an electromagnet and one or more magnets to which or which a shaft is attached. The shaft extends into the container and a shaking or mixing plate is attached to the end of the shaft. When the electromagnet is activated, the shaft is moved linearly in the direction of a magnet. A reverse movement of the shaft is effected by reversing the polarity of the voltage on the electromagnet. Alternatively, the linear return movement can be initiated by switching the electromagnet on and off and using gravity or a spring force. Alternating magnetic flux for reciprocation can also be effected by physical movement of a permanent magnet outside the container.

DE 11 19 994 offenbart eine Rühreinrichtung für den Inhalt von geschlossenen Gefässen, die durch ein äusseres Magnetfeld linear bewegt wird. Hierzu wird ein Rührschaft mit magnetischem Ankerelement auf und ab bewegt, wobei in gleicher Richtung linear agierende Druckfedern die Bewegung begrenzen. Ein auf das Ankerelement wirkendes konstantes Magnetfeld ist stationär während zwei miteinander verbundene, zylindrische und in vorbestimmter relativer Lage zueinander angeordnete Polschuhe manuell oder durch einen für sie bestimmten Antrieb gemeinsam in Rührrichtung auf und ab verlagert werden und das magnetische Ankerelement bewegt wird. DE 11 19 994 discloses a stirring device for the contents of closed vessels, which is moved linearly by an external magnetic field. For this purpose, a The stirring shaft moves up and down with a magnetic anchor element, with compression springs acting linearly in the same direction limiting the movement. A constant magnetic field acting on the armature element is stationary while two interconnected, cylindrical pole shoes arranged in a predetermined relative position to one another are moved up and down together in the direction of stirring, manually or by a drive intended for them, and the magnetic armature element is moved.

Die Aufgabe der vorliegenden Erfindung besteht darin, eine Vorrichtung zum Mischen von Flüssigkeiten und Feststoffen in Flüssigkeiten mittels Vibration zu schaffen, bei dem mittels eines elektromagnetischen Antriebes ein Antriebsschaft über ein Federsystem in einer Hauptrichtung oszillierend angeregt wird. Die Vorrichtung soll dabei so ausgelegt sein, dass auch grössere Kräfte und Amplituden von mehreren Millimetern bei einer Frequenz von bis zu 200Hz erreicht werden können. Gegenüber dem Stand der Technik soll der mechanische Aufbau des Feder-Systems so optimiert sein, dass die bekannten Probleme vermindert oder verhindert werden.The object of the present invention is to create a device for mixing liquids and solids in liquids by means of vibration, in which a drive shaft is excited to oscillate in a main direction by means of an electromagnetic drive via a spring system. The device should be designed in such a way that larger forces and amplitudes of several millimeters can be achieved at a frequency of up to 200 Hz. Compared to the prior art, the mechanical structure of the spring system should be optimized in such a way that the known problems are reduced or prevented.

Die Aufgabe wird erfindungsgemäss durch eine Vorrichtung entsprechend Anspruch 1 gelöst. Dies ist eine Vorrichtung zum Mischen von Flüssigkeiten und Feststoffen in Flüssigkeiten mittels Vibration, die einen elektromagnetischen Antrieb, entweder einen Permanentmagneten oder ein magnetisierbares, beispielsweise ein ferritisches Element und einen koaxial mit dem elektromagnetischen Antrieb angeordneten Antriebsschaft aufweist. Die Vorrichtung weist ein System von Federelementen auf mit mehreren flachen Federelementen. Das Federsystem erlaubt eine Schwingung in einer Oszillationsrichtung, nämlich der Hauptrichtung koaxial mit dem Antriebsschaft und dem elektromagnetischen Antrieb, und wird zentral durch eine äussere Kraft zur Oszillation angeregt. Diese Anregerkraft wird durch einen elektromagnetischen Antrieb erzeugt, welcher durch eine magnetische Kopplung eine Kraft auf einen Permanentmagneten bzw. ein magnetisierbares Element überträgt. Der Permanentmagnet oder das magnetisierbare Element ist mit dem Federsystem verbunden und ermöglicht die Anregung zur Schwingung. Weist die erfindungsgemässe Vorrichtung einen Permanentmagneten, d.h. mit einem stetigen Pol auf, wird der Permanentmagnet mit der Eingangsfrequenz der elektromagnetischen Spule des Elektromagneten mitschwingen. Weist die erfindungsgemässe Vorrichtung stattdessen ein magnetisierbares Element auf, so wird dieses Element durch die elektromagnetische Spule des Elektromagneten magnetisiert und wird dadurch in der doppelten Eingangsfrequenz des Elektromagneten schwingen. Der Belastungszustand der unidirektionalen Oszillation ist durch die Hauptkräfte entlang der Schwingungsamplitude entlang der induzierten magnetischen Kraft gegeben, welche auf den Antriebsschaft und somit zu einem am Antriebsschaft befestigten Mischorgan übertragen werden. Dabei entstehen auch transversale, senkrecht zur Oszillationsrichtung agierende Kräfte, gegeben durch äussere Kräfte vom Antriebsschaft und Mischorgan sowie Kräfte, die aus einer nicht perfekt symmetrischen Anordnung der Bauteile resultieren. Die flachen Federelemente, welche für eine Biege- und Torsionsbeanspruchung ausgelegt sind, können so angeordnet werden, dass diese jeweils die Haupt- oder Transversalkräfte optimal aufnehmen. Hierzu sind erste flache Federelemente parallel zur Hauptrichtung und zum Antriebsschaft angeordnet und weitere zweite, flache Federelemente senkrecht zur Hauptrichtung und zum Antriebsschaft angeordnet. Letztere zweite Federelemente sind mit dem Permanentmagneten bzw. dem magnetisierbaren Element verbunden. Müsste ein flaches Federelement beide Kraftsorten, d.h. Kräfte in Oszillations- oder Hauptrichtung sowie Transversalkräfte senkrecht zur Hauptrichtung aufnehmen, käme dies neben einer Biegung und Torsion ausserdem zu einer zusätzlichen Zug- und Druckbelastung entlang der Federachse und somit zu einer suboptimalen Beanspruchung des Materials. Die Kombination von flachen Federelementen ermöglicht somit die optimale Verteilung der beanspruchenden Kräfte im Schwingsystem.The object is achieved according to the invention by a device according to claim 1. This is a device for mixing liquids and solids in liquids by means of vibration, which has an electromagnetic drive, either a permanent magnet or a magnetisable, for example a ferritic element, and a drive shaft arranged coaxially with the electromagnetic drive. The device has a system of spring elements with several flat spring elements. The spring system allows oscillation in one direction of oscillation, namely the main direction coaxial with the drive shaft and the electromagnetic drive, and is excited to oscillate centrally by an external force. This excitation force is generated by an electromagnetic drive, which transmits a force to a permanent magnet or a magnetizable element by means of a magnetic coupling. The permanent magnet or the magnetizable element is connected to the spring system and enables the oscillation to be excited. Does the device according to the invention a permanent magnet, ie with a constant pole, the permanent magnet will resonate with the input frequency of the electromagnetic coil of the electromagnet. If the device according to the invention has a magnetizable element instead, this element is magnetized by the electromagnetic coil of the electromagnet and will therefore oscillate at twice the input frequency of the electromagnet. The loading condition of the unidirectional oscillation is given by the main forces along the oscillation amplitude along the induced magnetic force, which are transmitted to the drive shaft and thus to a mixing element attached to the drive shaft. Transversal forces, acting perpendicularly to the direction of oscillation, also arise, given by external forces from the drive shaft and mixing element, as well as forces that result from a not perfectly symmetrical arrangement of the components. The flat spring elements, which are designed for bending and torsional stress, can be arranged in such a way that they optimally absorb the main or transverse forces. For this purpose, first flat spring elements are arranged parallel to the main direction and to the drive shaft, and further, second, flat spring elements are arranged perpendicular to the main direction and to the drive shaft. The latter second spring elements are connected to the permanent magnet or the magnetizable element. If a flat spring element had to absorb both types of force, ie forces in the oscillation or main direction as well as transverse forces perpendicular to the main direction, this would not only result in bending and torsion but also in additional tensile and pressure loads along the spring axis and thus in suboptimal stress on the material. The combination of flat spring elements thus enables the optimal distribution of the stressing forces in the oscillating system.

In einer Ausführung der Erfindung weist das System von flachen Federelementen mehrere miteinander verbundene flache Federelemente auf, die senkrecht zueinander ausgerichtet sind, oder ein oder mehrere gebogene, flache Federelemente auf.In one embodiment of the invention, the system of flat spring elements comprises a plurality of interconnected flat spring elements which are oriented perpendicularly to one another, or one or more curved flat spring elements.

In einer Ausführung sind die gebogenen Federelemente jeweils L-förmig ausgestaltet. In einer Ausführung weist das System zwei L-förmig ausgestaltete gebogene Federelemente auf, wobei jedes der beiden L-förmigen Federelemente jeweils ein erstes, zum Antriebsschaft parallel ausgerichtetes Federelement und ein zweites, zum Antriebsschaft senkrecht ausgerichtetes Federelement umfasst. Ein gebogenes flaches Federelement ist in einer weiteren Ausführung U-förmig ausgestaltet. Unter U-Form ist ein einstückiges Federelement zu verstehen, das zwei parallel zum Antriebsschaft ausgerichtete Federelemente und ein senkrecht zum Antriebsschaft ausgerichtetes Federelement umfasst.In one embodiment, the curved spring elements are each L-shaped designed. In one embodiment, the system has two L-shaped curved spring elements, each of the two L-shaped spring elements comprising a first spring element aligned parallel to the drive shaft and a second spring element aligned perpendicular to the drive shaft. In another embodiment, a bent, flat spring element is U-shaped. A U-shape is to be understood as meaning a one-piece spring element which comprises two spring elements aligned parallel to the drive shaft and one spring element aligned perpendicular to the drive shaft.

In einer Ausführung der Erfindung enthalten die Federelemente hochbelastbares, elastisches Material, wie Federstahl oder Faser-verstärkten Kunststoff.In one embodiment of the invention, the spring elements contain heavy-duty, elastic material, such as spring steel or fiber-reinforced plastic.

In einer Ausführung der Erfindung sind die ersten Federelemente mittels Einspannbacken an der Wand eines Gehäuses befestigt und gelagert.In one embodiment of the invention, the first spring elements are fastened and mounted on the wall of a housing by means of clamping jaws.

In einer Ausführung der Erfindung sind die zweiten Federelemente mittels Einspannbacken am Permanentmagneten oder magnetisierbaren Element befestigt und gelagert.In one embodiment of the invention, the second spring elements are fastened and mounted on the permanent magnet or magnetizable element by means of clamping jaws.

In einer Ausführung der Erfindung sind die Einspannlängen und -breiten der Federelemente in den Einspannbacken und/oder der Abstand der Federelemente vom elektromagnetischen Antrieb anpassbar.In one embodiment of the invention, the clamping lengths and widths of the spring elements in the clamping jaws and/or the distance between the spring elements and the electromagnetic drive can be adjusted.

In einer weiteren Ausführung der Erfindung sind die ersten Federelemente, parallel zur Hauptrichtung und zum Antriebsschaft jeweils durch einen Dämpfungsblock realisiert, welcher die transversalen Kräfte aufnimmt. Dämpfungsblöcke, auch unter dem Begriff Silent Blocks bekannt, sind als Dämpfungselemente mit einer mehrschichtigen Struktur zu verstehen, die zwei Metallplatten und ein zwischen den beiden Metallplatten angeordnetes stossabsorbierendes Material aufweisen. Das stossabsorbierende Material ist beispielsweis Gummi oder Kunststoffschaum und nimmt die transversalen Kräfte im zweiten Federelement senkrecht zum Antriebsschaft auf. Die Dämpfungsblöcke sind direkt an der Wand eines Gehäuses befestigt.In a further embodiment of the invention, the first spring elements, parallel to the main direction and to the drive shaft, are each realized by a damping block which absorbs the transverse forces. Damping blocks, also known by the term silent blocks, are to be understood as damping elements with a multi-layer structure, which have two metal plates and a shock-absorbing material arranged between the two metal plates. The shock-absorbing material is rubber or plastic foam, for example, and absorbs the transverse forces in the second spring element perpendicular to the drive shaft. The damping blocks are attached directly to the wall of an enclosure.

Flache Federelemente sind in verschiedenen Materialen und unter engen Geometrie- und Materialtoleranzen günstig herzustellen. Meist handelt es sich um Federstahl oder faserverstärktem Kunststoff. Letzteres bietet erhöhte Beständigkeit gegen Wechselbeanspruchung bei gleichzeitig hoher Festigkeit und einem kleinen Gewicht. Ausserdem lässt sich der E-Modul und somit das Schwingverhalten der Blattfeder durch geeignete Wahl des Kunststoffes vorselektieren. Die flachen Federelemente zeigen im beschriebenen Beanspruchungszustand eine enorme Langlebigkeit auch unter hohen Wechselbelastungen. Sie sind ausserdem kompakt und leicht im Vergleich zu konventionellen Spiralfedern. Die Lagerung und Fixierung der flachen Federn ist einfach, montagefreundlich und erzeugt gegeben durch die Kompaktheit und die definierte Einspannung der Federn kaum Lärm. Die separate Aufteilung der Federelemente gemäss auftretenden Kräften erlaubt eine flexible und einfache Einstellung der eingespannten Federlängen und die Position des Federsystems zur Anregerkraft. Dies ermöglicht eine Feineinstellung der Resonanzfrequenz des Systems und die bestmögliche Ausnutzung des elektromagnetischen Antriebs. Asymmetrien der Bauteile und -gruppen können durch die flexible Einspannung der Federelemente ausgeglichen werden und ermöglichen ein optimales Schwingverhalten.Flat spring elements can be produced cheaply in different materials and under tight geometry and material tolerances. It is usually made of spring steel or fiber-reinforced plastic. The latter offers increased resistance to alternating stress while maintaining high strength and low weight. In addition, the modulus of elasticity and thus the vibration behavior of the leaf spring can be preselected by a suitable choice of plastic. In the stress conditions described, the flat spring elements show an enormous longevity, even under high alternating loads. They are also compact and lightweight compared to conventional hairsprings. The storage and fixing of the flat springs is simple, easy to assemble and, given the compactness and the defined clamping of the springs, they generate hardly any noise. The separate distribution of the spring elements according to the forces that occur allows flexible and easy adjustment of the clamped spring lengths and the position of the spring system in relation to the excitation force. This enables the system's resonant frequency to be fine-tuned and the electromagnetic drive to be utilized in the best possible way. Asymmetries in the components and groups can be compensated for by the flexible clamping of the spring elements and enable optimal vibration behavior.

Die Auslegung des Federsystems der erfindungsgemässen Vorrichtung ermöglicht, dass auch grössere Kräfte und Amplituden von mehreren Millimetern bei einer Frequenz von bis zu 200Hz erreicht werden können. Die Vorrichtung kann für das Mischen und Homogenisieren von Volumen in der Grössenordnung von 10'000L verwendet werden.The design of the spring system of the device according to the invention makes it possible for larger forces and amplitudes of several millimeters to be achieved at a frequency of up to 200 Hz. The device can be used for mixing and homogenizing volumes in the order of 10,000L.

Die Nutzung eines Permanentmagneten oder eines magnetisierbaren Elementes als Gegenpol zum elektromagnetischen Antrieb kann je nach Anwendung Vorteile erbringen. Die erfindungsgemässe Vorrichtung erzeugt mit der Nutzung eines Permanentmagneten bei sonst gleichen Bedingungen die halbe Schwingfrequenz gegenüber der Vorrichtung mit magnetisierbarem Element. Gerade bei niederen Betriebsfrequenzen kann der Einsatz von Permanentmagneten somit die Antriebseffizienz erhöhen, da der elektromagnetische Antrieb bei höheren Eingangsfrequenzen meist effizienter betrieben werden kann. Auch können die mechanischen und thermischen Eigenschaften des magnetisierbaren Elementes, meist bestehend aus ferritischem Material, oder des Permanentmagneten, meist Neodym-Eisen-Bor-Verbindungen je nach Anwendungsanforderungen vorteilhaft eingesetzt werden.Depending on the application, the use of a permanent magnet or a magnetizable element as the opposite pole to the electromagnetic drive can provide advantages. With the use of a permanent magnet, the device according to the invention generates half the oscillation frequency compared to the device with a magnetizable element under otherwise identical conditions. Especially at low operating frequencies, the use of permanent magnets can thus increase the drive efficiency, since the electromagnetic drive can usually be operated more efficiently at higher input frequencies. The mechanical and thermal properties of the magnetizable element, mostly consisting of ferritic material, or the permanent magnet, mostly neodymium-iron-boron compounds are advantageously used depending on the application requirements.

Die erfindungsgemässe Vorrichtung erwirkt die Vorteile, dass die Standzeiten und mögliche Betriebsdauer der beanspruchten Federelemente erhöht sind, weil die Belastung der Federelemente aufgrund der erfindungsgemässen Auslegung optimal verteilt ist. Es entsteht beim Betrieb der Vorrichtung eine verminderte Lärmerzeugung, die sonst bei den hohen Betriebsfrequenzen durch Spiralfedern und deren Lagerung entsteht. Zudem ist das Gewicht und Platzbedürfnis des Federsystems im Vergleich zu den Vorrichtungen des Standes der Technik vermindert, und die Kosten der Herstellung sind durch geringere Bauteilkosten sowie die einfachere Montage und Systemeinstellung vermindert. Der Unterhalt der erfindungsgemässen Vorrichtung sowie der hohe Aufwand zum Einstellen der Betriebsparameter können durch die einfachere Konstruktion und den flexiblen Einspannmechanismus vermindert werden.The device according to the invention achieves the advantages that the service life and possible operating time of the stressed spring elements are increased because the load on the spring elements is optimally distributed due to the design according to the invention. During operation of the device, there is a reduced generation of noise, which otherwise occurs at the high operating frequencies due to spiral springs and their bearings. In addition, the weight and space requirements of the spring system are reduced compared to the devices of the prior art, and the costs of manufacture are reduced due to lower component costs and simpler assembly and system adjustment. The maintenance of the device according to the invention and the great effort involved in setting the operating parameters can be reduced by the simpler construction and the flexible clamping mechanism.

Die Erfindung wird anhand von Figuren näher beschrieben werden.The invention will be described in more detail with reference to figures.

Es zeigen:

  • Fig. 1 einen Querschnitt des Antriebsorganes eines Vibrationsmischers nach dem Stand der Technik
  • Fig. 2 einen Querschnitt der erfindungsgemässen Vorrichtung mit einfachen L-Profil Federelementen
  • Fig. 3 einen Querschnitt der erfindungsgemässen Vorrichtung mit mehreren flachen Federelementen und deren Einspannmechanismus
  • Fig. 4 einen Querschnitt der erfindungsgemässen Vorrichtung mit mehreren flachen Federelementen und deren Einspannmechanismus in einer Doppelausführung
Show it:
  • 1 a cross section of the drive element of a vibration mixer according to the prior art
  • 2 a cross section of the inventive device with simple L-profile spring elements
  • 3 a cross section of the inventive device with several flat spring elements and the clamping mechanism
  • 4 a cross section of the inventive device with several flat spring elements and their clamping mechanism in a double version

Figur 1 zeigt einen Antrieb für eine Vorrichtung für das Mischen von Flüssigkeiten nach dem Stand der Technik in vereinfachter Darstellung. Hierbei ist der elektromagnetische Antrieb 1 fest mit einem starren Rahmen, Chassis 3, verbunden. Eine starre Platte 5 ist so durch eine oder mehrere Spiralfedern 4 verbunden und gelagert, um eine optimale Lagerung zu gewährleisten, wobei die Federn 4 sowohl parallel als auch seriell angeordnet werden können. Ein Permanentmagnet oder magnetisierbares Element 2 ist mit der Platte 5 verbunden und wird durch die magnetische Koppelung durch den Elektromagneten 1 angeregt, so dass sich die Federn 4 in Schwingung versetzen. Die Platte 5 ist dabei durch die Federn 4 so gelagert, dass diese in Hauptrichtung frei schwingen kann. Die Hauptrichtung entlang der Linie 11 ist durch die Kraftwirkung des Elektromagneten 1 auf den Permanentmagneten oder das magnetisierbare Element 2 auf der Stahlplatte 5 definiert. Ein mit der Stahlplatte verbundener Schaft 6 schwingt somit in Hauptrichtung 11 mit und kann die Oszillation auf ein am Schaft 6 befestigtes Mischorgan ausserhalb des Chassis 3 übertragen, im Idealfall auf eine Mischerplatte innerhalb des zu mischenden Mediums. figure 1 shows a drive for a device for mixing liquids according to the prior art in a simplified representation. Here is the electromagnetic drive 1 fixed to a rigid frame, chassis 3, connected. A rigid plate 5 is thus connected and supported by one or more helical springs 4 to ensure optimal support, the springs 4 being able to be arranged both in parallel and in series. A permanent magnet or magnetisable element 2 is connected to the plate 5 and is excited by the magnetic coupling through the electromagnet 1 so that the springs 4 are caused to oscillate. The plate 5 is supported by the springs 4 in such a way that it can oscillate freely in the main direction. The main direction along the line 11 is defined by the force of the electromagnet 1 on the permanent magnet or the magnetizable element 2 on the steel plate 5 . A shaft 6 connected to the steel plate thus oscillates in the main direction 11 and can transmit the oscillation to a mixing element attached to the shaft 6 outside the chassis 3, ideally to a mixer plate within the medium to be mixed.

In den Figuren 2 bis 4 sind beispielhafte Ausführungen der erfindungsgemässen Vorrichtung zur Erzeugung von Schwingbewegungen mittels eines Systems aus mehreren flachen Federelementen dargestellt.In the Figures 2 to 4 exemplary embodiments of the device according to the invention for generating oscillating movements by means of a system of several flat spring elements are shown.

Figur 2 zeigt die erfindungsgemässe Vorrichtung mit einem an einem Gehäuse 3 befestigten elektromagnetischen Antrieb 1, einem Antriebsschaft 6, an dem ein Mischorgan (nicht dargestellt) ausserhalb des Gehäuses 3 befestigt ist, und einem Permanentmagneten oder magnetisierbaren Element 2. Zwei einzelne gebogene, hier L-Profil-förmige, flache, Federelemente 8 sind mittels zwei Einspannbacken 9, 9' mit dem Permanentmagneten oder magnetisierbaren Element 2 verbunden, wobei die L-förmigen Federelemente 8 einen parallel zum Schaft 6 verlaufenden Teil 8" und einen senkrecht zum Schaft 6 verlaufenden Teil 8' aufweisen. Anstelle der beiden L-Profil-förmigen Federelemente 8 kann auch ein einzelnes Federelement in der Form eines U-Profils zum Einsatz kommen. Ein durch den elektromagnetischen Antrieb 1 erzeugtes wechselndes Magnetfeld regt den Permanentmagneten oder das magnetisierbare Element 2 an. Die beiden Federelemente 8 sind wiederum jeweils durch Einspannbacken 7', 7" gelagert und an der seitlichen Innenwand des Gehäuses 3 fixiert. Gegeben durch die geometrischen Dimensionen der Flachfedern 8, 8`, 8", deren Materialeigenschaften sowie deren eingespannten Längen als auch dem Gewicht des Systems schwingen die Federn 8 angeregt durch den Antrieb 1 in Hauptrichtung 11. Ein mit den Federn 8 verbundener Schaft 6 überträgt die oszillierende Bewegung auf ein Mischorgan ausserhalb des Gehäuses 3. Die Anordnung erlaubt die Aufteilung der Belastungen auf die Federelemente 8. Hierbei kann der senkrecht zum Schaft verlaufende Teil 8' des Federelements 8 die Belastungen in Hauptrichtung 11 durch Biegung des Federteiles 8' aufnehmen, wobei Transversalkräfte auf die zur Hauptrichtung und zum Schaft parallelen Teile 8" des Federelementes 8 übertragen werden. Dies ermöglicht eine optimale Aufteilung der mechanischen Belastungen und somit eine effiziente Ausnutzung der Materialeigenschaften der Federn 8. figure 2 shows the device according to the invention with an electromagnetic drive 1 attached to a housing 3, a drive shaft 6 to which a mixing element (not shown) is attached outside the housing 3, and a permanent magnet or magnetizable element 2. Two individual curved, here L-profile -shaped, flat, spring elements 8 are connected to the permanent magnet or magnetizable element 2 by means of two clamping jaws 9, 9', the L-shaped spring elements 8 having a part 8" running parallel to the shaft 6 and a part 8' running perpendicular to the shaft 6. A single spring element in the form of a U-profile can also be used instead of the two L-shaped spring elements 8. An alternating magnetic field generated by the electromagnetic drive 1 excites the permanent magnet or the magnetizable element 2. The two spring elements 8 are in turn supported by clamping jaws 7′, 7″ and fixed to the lateral inner wall of the housing 3. Given the geometric dimensions of the flat springs 8, 8', 8", their material properties and their clamped lengths as well as the weight of the system, the springs 8 vibrate in the main direction 11, stimulated by the drive 1. A shaft 6 connected to the springs 8 transmits the oscillating movement on a mixing element outside the housing 3. The arrangement allows the loads to be distributed to the spring elements 8. The part 8' of the spring element 8 running perpendicularly to the shaft can absorb the loads in the main direction 11 by bending the spring part 8', with transverse forces are transferred to the parts 8" of the spring element 8 that are parallel to the main direction and to the shaft. This enables an optimal distribution of the mechanical loads and thus an efficient use of the material properties of the springs 8.

Figur 3 zeigt eine weitere Ausführung der erfindungsgemässen Vorrichtung. Anstelle von L-förmigen, gebogenen, flachen Federelementen 8 werden mehrere flache Federelemente 8', 8" verwendet, wobei die Federelemente 8` wiederum horizontal und senkrecht zur Hauptrichtung 11 ausgerichtet sind und die Federelemente 8" parallel zur Hauptrichtung 11 verlaufen. Die Federelemente 8', 8" sind durch Einspannbacken 10', 10", 10‴ miteinander verbunden, wobei die Federelemente 8' mittels Einspannbacken 9', 9" mit dem Permanentmagneten oder magnetisierbaren Element 2 verbunden sind. Die Federelemente 8" sind wiederum mittels Einspannbacken 7, 7" an der seitlichen Innenwand des Gehäuses 3 befestigt und gelagert. Es wird auch hier zwischen den zur Hauptrichtung 11 parallelen Federelemente 8' sowie den zur Hauptrichtung 11 senkrechten Federelementen 8" unterschieden, welche je nach Belastungszustand die mechanischen Kräfte entsprechend und somit optimal aufnehmen. figure 3 shows a further embodiment of the device according to the invention. Instead of L-shaped, curved, flat spring elements 8, several flat spring elements 8', 8" are used, with the spring elements 8` again being aligned horizontally and perpendicularly to the main direction 11 and the spring elements 8" running parallel to the main direction 11. The spring elements 8', 8" are connected to one another by clamping jaws 10', 10", 10‴, the spring elements 8' being connected to the permanent magnet or magnetizable element 2 by means of clamping jaws 9', 9". The spring elements 8" are in turn connected by means of Clamping jaws 7, 7" are fastened and mounted on the lateral inner wall of the housing 3. Here, too, a distinction is made between the spring elements 8' parallel to the main direction 11 and the spring elements 8" perpendicular to the main direction 11, which, depending on the load condition, absorb the mechanical forces accordingly and thus absorb optimally.

In einer alternativen Ausführung mit Dämpfungsblöcken (Silent blocks) für die ersten Federelemente 8", die parallel zur Hauptrichtung 11 verlaufen, werden die ersten Federelemente 8" zusammen mit den Einspannbacken 7', 7", 10', 10" durch Dämpfungsblöcke ersetzt. Dabei ist eine der beiden Metallplatten der Dämpfungsblöcke an einer Seite des Dämpfungsmaterials direkt an den seitlichen Innenwänden des Gehäuses 3 befestigt während die andere Metallplatte auf der gegenüberliegenden Seite des Dämpfungsmaterials an der Einspannbacke 10‴ befestigt ist.In an alternative embodiment with damping blocks (silent blocks) for the first spring elements 8", which run parallel to the main direction 11, the first spring elements 8" together with the clamping jaws 7', 7", 10', 10" are replaced by damping blocks. In this case, one of the two metal plates of the damping blocks on one side of the damping material is attached directly to the lateral inner walls of the housing 3, while the other metal plate on the opposite side of the damping material is attached to the clamping jaw 10 ‴.

Auch in Figur 4 ist eine weitere Ausführung der Vorrichtung gezeigt. Hier weist das Federsystem zwei senkrecht zur Hauptrichtung 11 angeordnete Federelemente 8', die übereinander angeordnet sind. Davon ist eines der Federelemente 8' mittels Einspannbacken 9', 9" am Permanentmagneten oder magnetisierbaren Element 2 befestigt, und das zweite Federelement 8' ist mittels Einspannbacken 9', 9" am Antriebsschaft 2 befestigt. Die beiden übereinander angeordneten, senkrecht zum Antriebsschaft 2 verlaufenden Federelemente 8` sind mittels Einspannbacken 10‴ und 10ʺʺ miteinander verbunden und zueinander fixiert. Zwei parallel zur Hauptrichtung 11 verlaufende Federelemente 8" sind mittels Einspannbacken 7', 7" an der seitlichen Gehäuseinnenwand befestigt. Die parallel zum Antriebsschaft verlaufenden Federelemente 8" sind mit dem einen senkrecht zum Antriebsschaft 2 verlaufenden Federelement 8' mittels Einspannbacken 10', 10" zueinander fixiert. Diese Einspannung der Federelemente 8', 8" unterstützt die Schwingung in der Hauptrichtung 11 und die Belastungen werden von diesem optimal aufgenommen. Diese parallele Anordnung mehrerer Federelemente 8', 8" ermöglicht die verbesserte Lagerung des Antriebsschaftes 6 gegenüber äusseren Kräften.Also in figure 4 another embodiment of the device is shown. Here the spring system has two spring elements 8' which are arranged perpendicularly to the main direction 11 and are arranged one above the other. One of the spring elements 8' is attached to the permanent magnet or magnetizable element 2 by means of clamping jaws 9', 9", and the second spring element 8' is attached to the drive shaft 2 by means of clamping jaws 9', 9". The two spring elements 8', which are arranged one above the other and run perpendicularly to the drive shaft 2, are connected to one another and fixed to one another by means of clamping jaws 10‴ and 10″″. Two spring elements 8″ running parallel to the main direction 11 are fastened to the lateral inner wall of the housing by means of clamping jaws 7′, 7″. The spring elements 8″ running parallel to the drive shaft are fixed to one another with the one spring element 8′ running perpendicular to the drive shaft 2 by means of clamping jaws 10′, 10″. This clamping of the spring elements 8', 8" supports the oscillation in the main direction 11 and the loads are optimally absorbed by it. This parallel arrangement of several spring elements 8', 8" enables the drive shaft 6 to be better supported against external forces.

Die eingespannten Längen der Federelemente 8', 8" und 9', 9" und die Position des Permanentmagneten oder magnetisierbaren Elementes 2 gegenüber dem elektromagnetischen Antrieb 1 sind wichtige Betriebsparameter und beeinflussen das Schwingverhalten und somit das Mischvermögen des Mischorganes. Die Einspannbacken 10', 10", 10‴ und 10ʺʺ sind jeweils so gestaltet, dass diese vorzugsweise flexibel fixierbar sind, indem die Federelemente 8', 8" sowie 9', 9" in anpassbaren Einspann-Längen, -Breiten und -dicken sowie deren Positionen befestigt werden können.The clamped lengths of the spring elements 8', 8" and 9', 9" and the position of the permanent magnet or magnetizable element 2 relative to the electromagnetic drive 1 are important operating parameters and influence the vibration behavior and thus the mixing ability of the mixing element. The clamping jaws 10', 10", 10‴ and 10'' are each designed in such a way that they can preferably be flexibly fixed by the spring elements 8', 8" and 9', 9" in adjustable clamping lengths, widths and thicknesses as well whose positions can be fixed.

Auch hier ist eine alternative Ausführung möglich, gleich wie im Zusammenhang mit Figur 3 beschrieben. Hier werden die ersten Federelemente 8" und die Einspannbacken 7', 7", 10' und 10" jeweils durch einen Dämpfungsblock ersetzt, wobei dieser an der seitlichen Innenwand des Gehäuses 3 direkt befestigt sind.Here, too, an alternative embodiment is possible, the same as in connection with figure 3 described. Here the first spring elements 8" and the clamping jaws 7', 7", 10' and 10" are each replaced by a damping block, these being attached directly to the lateral inner wall of the housing 3 .

Claims (8)

  1. A device for mixing liquids and solids in liquids by means of vibration, comprising
    an electromagnetic drive (1), a drive shaft (6) with a mixing element and either a permanent magnet or a magnetizable element (2), the drive shaft (6) being arranged coaxially with the electromagnetic drive,
    characterized by
    a system of a plurality of flat spring elements (8, 8', 8"),
    which has a plurality of first spring elements (8"), which are arranged parallel to the drive shaft (6), and
    one or more second spring elements (8'), which are arranged perpendicular to the drive shaft (6),
    wherein the one or more second spring elements (8'), which are arranged perpendicular to the drive shaft (6), are connected to the permanent magnet or the magnetizable element (2).
  2. The device according to Claim 1, characterized in that
    the system of spring elements is designed as two bent, L-shaped flat spring elements (8), wherein in each case a first spring element (8"), which is arranged parallel to the drive shaft (6), forms a part (8") of the L-shaped spring elements (8), which runs parallel to the drive shaft (6), and in each case a second spring element (8'), which is arranged perpendicular to the drive shaft (6), forms a part (8') of the L-shaped spring elements (8), which runs perpendicular to the drive shaft (6).
  3. The device according to Claim 1, characterized in that the system of spring elements is designed as a one-piece, U-shaped, flat spring element, wherein two first spring elements, which are arranged parallel to the drive shaft (6), form two parts of the U-shaped spring element, which run parallel to the drive shaft (6), and a second spring element, which is arranged perpendicular to the drive shaft (6), forms a part of the U-shaped spring element, which runs perpendicular to the drive shaft (6).
  4. The device according to one of Claims 1 to 3, characterized in that the spring elements (8, 8', 8") contain heavy-duty elastic material, such as spring steel or fibre-reinforced plastic.
  5. The device according to one of Claims 1 to 4, characterized in that the first spring elements (8") are fastened and mounted on the wall of a housing (3) by means of clamping jaws (7', 7").
  6. The device according to one of Claims 1 to 5, characterized in that the second spring elements (8') are fastened and mounted on permanent magnets or the magnetizable element (2) by means of clamping jaws (9', 9").
  7. The device according to one of Claims 1 to 6, characterized in that the clamping lengths and widths of the spring elements (8, 8', 8'') in the clamping jaws (7', 7'', 9', 9") and/or the spacing of the spring elements (8, 8', 8'') from the electromagnetic drive (1) are adjustable.
  8. The device according to one of Claims 1 to 4, characterized in that the first spring elements (8") are respectively formed by a damping block, which is fastened directly on the inner wall of a housing (3).
EP19737206.3A 2018-06-06 2019-05-20 Device for mixing liquids and solids with liquids by means of vibration Active EP3801855B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH00721/18A CH715070A2 (en) 2018-06-06 2018-06-06 Device for mixing liquids and solids with liquids by means of vibration.
PCT/IB2019/054137 WO2019234534A1 (en) 2018-06-06 2019-05-20 Device for mixing liquids and solids with liquids by means of vibration

Publications (3)

Publication Number Publication Date
EP3801855A1 EP3801855A1 (en) 2021-04-14
EP3801855C0 EP3801855C0 (en) 2023-06-14
EP3801855B1 true EP3801855B1 (en) 2023-06-14

Family

ID=67211761

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19737206.3A Active EP3801855B1 (en) 2018-06-06 2019-05-20 Device for mixing liquids and solids with liquids by means of vibration

Country Status (7)

Country Link
US (1) US11958025B2 (en)
EP (1) EP3801855B1 (en)
JP (1) JP2021526456A (en)
KR (1) KR20210018799A (en)
CN (1) CN112512676A (en)
CH (1) CH715070A2 (en)
WO (1) WO2019234534A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10945752B2 (en) 2019-03-20 2021-03-16 Covidien Lp Tissue resecting instrument including a rotation lock feature
CN112221402B (en) * 2020-09-28 2022-06-21 江西航天日用化工发展有限责任公司 Homogenizing device and toothpaste production device
CN113545258B (en) * 2021-08-23 2023-01-13 宁夏禹尧农产品科技有限公司 Tomato planting method

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH289065A (en) 1951-04-02 1953-02-28 Mueller Hans Container closure at vibromixer.
DE1119994B (en) * 1958-10-30 1961-12-21 Deutsch & Neumann Stirring device operated by a moving external magnetic field, especially for closed, pressurized vessels
US3399869A (en) * 1967-08-31 1968-09-03 Walter J. Loria Liquid agitating device
SE389972B (en) * 1975-03-27 1976-11-29 Autochem Instrument Ab DEVICE FOR DOSING A LIQUID INTO A PROVER AND FOR AGITATING THE CONTENTS OF THE PROVER
DE9307761U1 (en) 1993-05-22 1993-08-19 Kuston Deutschland Gmbh Mixer with a vibratory drive
JP2911393B2 (en) * 1995-07-25 1999-06-23 日本テクノ株式会社 Method and apparatus for producing fertilizer aqueous solution from electroless nickel plating wastewater
CN2375390Y (en) * 1999-05-16 2000-04-26 张胜田 Spring stiffness adjustable electromagnetic vibrator
US6605252B2 (en) * 2000-05-02 2003-08-12 Japan Techno Co., Ltd. Vibrationally stirring apparatus for sterilization, sterilizing apparatus and sterilizing method
JP4269318B2 (en) * 2001-06-25 2009-05-27 日本テクノ株式会社 Vibration agitator, treatment apparatus and treatment method using the same
AU2002332243A1 (en) * 2001-12-03 2003-06-17 Japan Techno Co., Ltd. Hydrogen-oxygen gas generator and hydrogen-oxygen gas generating method using the generator
JP2003181376A (en) * 2001-12-21 2003-07-02 Matsushita Electric Ind Co Ltd Vibratory linear actuator
US6923567B2 (en) * 2002-04-12 2005-08-02 Hynetics Llc Mixing tank assembly
DE102006020461B3 (en) * 2006-04-28 2007-10-04 Sartorius Biotech Gmbh Flexible wall liquid container includes an agitator with through-wall magnetic coupled drive for longitudinal shaft movement from an external driver
CN200970577Y (en) * 2006-08-18 2007-11-07 苏州东菱振动试验仪器有限公司 High efficiency electric vibration exciter
DE102007013700B4 (en) * 2007-03-19 2015-05-28 Renfert Gmbh Dentalgeräterüttelvorrichtung
WO2009095852A2 (en) * 2008-02-01 2009-08-06 Nxp B.V. An actuator and a method of manufacturing the same
WO2016073858A1 (en) * 2014-11-07 2016-05-12 Genesis Technologies, Llc Linear reciprocating actuator

Also Published As

Publication number Publication date
KR20210018799A (en) 2021-02-18
EP3801855C0 (en) 2023-06-14
WO2019234534A1 (en) 2019-12-12
CH715070A2 (en) 2019-12-13
JP2021526456A (en) 2021-10-07
EP3801855A1 (en) 2021-04-14
CN112512676A (en) 2021-03-16
US11958025B2 (en) 2024-04-16
US20210197149A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
EP3801855B1 (en) Device for mixing liquids and solids with liquids by means of vibration
EP1641602B1 (en) Small electrical appliance comprising an electric motor for generating an oscillating displacement
WO2000013297A1 (en) Electromagnetic actuator with an oscillating spring-mass system
DE10225024A1 (en) Drive device for generating an oscillating movement for a small electrical device
DE10001162A1 (en) Electromagnetic vibrator for controlling linear vibrator, has pair of solenoids fastened together with connecting piece directed outwards, and legs directed towards one another
WO2013149758A2 (en) Actuator for damping low-frequency oscillations
DE2753449A1 (en) ELECTROMAGNETIC VIBRATION PUMP
EP1723713A1 (en) Linear drive device provided with an armature body having a magnet carrier
DE102005060537A1 (en) Electric shaver with oscillating shaving head
DE10242094B4 (en) Drive device for generating an oscillating movement for a small electrical appliance
DE102008030757B4 (en) Bimodular airbag absorber
EP1539439B1 (en) Small electrical appliance with a drive device for generation of an oscillating movement
DE102009004990A1 (en) Linear vibratory conveyor
DE3306509C2 (en)
DE102015222305A1 (en) Micromechanical component and method for adjusting an adjustable element
DE60317738T2 (en) An oscillating linear actuator
CH211916A (en) Device for inducing shaking movements.
EP3217035B1 (en) Vibration generator
EP1539438B1 (en) Drive device for the generation of an oscillating movement for a small electrical appliance
EP0119410B1 (en) Oscillating conveyor with a vibrating conveyor bowl
DE3508367C2 (en)
AT523462B1 (en) Converter for converting mechanical into electrical energy
DE102021104761B4 (en) Linear motor for linear pumps and linear compressors
AT257462B (en) Electromagnetic vibratory drive
EP2149194B1 (en) Oscillating drive

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201202

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502019008197

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B01F0011000000

Ipc: B01F0031441000

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: B01F0011000000

Ipc: B01F0031441000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B06B 1/14 20060101ALI20230116BHEP

Ipc: B01F 35/32 20220101ALI20230116BHEP

Ipc: B01F 33/453 20220101ALI20230116BHEP

Ipc: B01F 31/441 20220101AFI20230116BHEP

INTG Intention to grant announced

Effective date: 20230203

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019008197

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1578820

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230715

U01 Request for unitary effect filed

Effective date: 20230619

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230626

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230914

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231014

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230614

U20 Renewal fee paid [unitary effect]

Year of fee payment: 6

Effective date: 20240307

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT