Aus einem Stahl geformtes Blechformteil mit einer hohen Zugfestigkeit und Verfahren zu dessen Herstellung
Die Erfindung betrifft ein aus einem Stahl geformtes Blechformteil mit einer hohen Zugfestigkeit Rm von mindestens 1000 MPa und einem Biegewinkel von mehr als 70°.
Des Weiteren betrifft die Erfindung ein Verfahren zur Herstellung eines solchen Blechformteils.
Wenn nachfolgend von einem Stahlflachprodukt oder auch von einem
„Blechprodukt“ die Rede ist, so sind damit Walzprodukte, wie Stahlbänder oder -bleche, gemeint, aus denen für die Herstellung von beispielsweise
Karosseriebauteilen Zuschnitte oder Platinen abgeteilt werden. "Blechformteile" oder "Blechbauteile” der erfindungsgemäßen Art sind aus derartigen Stahlflachoder Blechprodukten hergestellt, wobei hier die Begriffe "Blechformteil" und "Blechbauteil" synonym verwendet werden.
Alle Angaben zu Gehalten der in der vorliegenden Anmeldung angegebenen Stahlzusammensetzungen sind auf das Gewicht bezogen, sofern nicht ausdrücklich anders erwähnt. Alle nicht näher bestimmten, im Zusammenhang mit einer Stahllegierung stehenden "%-Angaben" sind daher als Angaben in "Gew.-%" zu verstehen. Mit Ausnahme der auf das Volumen (Angabe in "Vol.- %") bezogenen Angaben zum Restaustenit-Gehalt des Gefüges eines erfindungsgemäßen Stahlerzeugnisses beziehen sich Angaben zu den
Gehalten der verschiedenen Gefügebestandteil jeweils auf die Fläche eines
Schliffe einer Probe des jeweiligen Erzeugnisses (Angabe in Flächenprozent "Flächen-%“), soweit nicht ausdrücklich anders angegeben. In diesem Text gemachte Angaben zu den Gehalten der Bestandteile einer Atmosphäre beziehen sich auf das Volumen (Angabe in„Vol.-%“).
Mechanische Eigenschaften, wie Zugfestigkeit, Streckgrenze, Dehnung, die hier berichtet werden, sind im Zugversuch gemäß DIN EN ISO 6892 - 1 :2009 ermittelt worden, soweit nicht ausdrücklich anders angegeben.
Das Gefüge wurde an Querschliffen bestimmt, die einer Ätzung mit 3% Nital (alkoholische Salpetersäure) unterzogen worden sind. Die Gefügebestimmung erfolgte im Raster Elektronenmikroskop bei 5000-facher Vergrößerung für die Bestimmung des Anteils des plattenartigen und anderen nicht plattenartigen Bainits und bei 20.000- bis 50.000-facher Vergrößerung für die Bestimmung der Plattenlänge, -breite und des Plattenabstands. Der Anteil an Restaustenit wurde röntgendiffraktometrisch bestimmt.
Aus der EP 2 719 786 B1 sind ein Blechförmteil und ein Verfahren zum
Hersteilen eines solchen Stahlblechförmteils bekannt, das eine Zugfestigkeit von mindestens 980 MPa besitzt. Das Blechformteil besteht dabei aus einem Stahl, der neben Eisen und unvermeidbaren Verunreinigungen aus (in Masse- %) 0,15 - 0.4 % C, 0,5 - 3 % Si, 0.5 - 2 % Mn, bis zu 0.05 % P, bis zu 0,05 %
S, 0.01 - 0.1 % AI, 0.01 - 1 % Cr, 0.0002 - 0.01 % B, 0.001 - 0.01 % N sowie TI mit der Maßgabe zusammengesetzt ist, dass der Ti-Gehalt mindestens dem Vierfachen des N-Gehalts und höchstens 0,1 % beträgt. Gemäß dem
bekannten Verfahren wird ein aus einem so zusammengesetzten Stahl erzeugter Blechzuschnitt auf eine Temperatur, die nicht weniger als die Ac3- Temperatur des jeweiligen Stahls beträgt und nicht höher als 1000 °C ist, erwärmt und dann in einem Presswerkzeug warm umgeformt, um das heißpressgeformte Blechformteil zu formen. Während der Formgebung wird das Blechformteil mit einer durchschnittlichen Kühlrate von mindestens 20 °C/s oder höher in dem Pressformwerkzeug gekühlt. Dabei wird als Zieltemperaturbereich
dieser Abkühlung eine Spanne genannt, die 100 °C unterhalb der
Bainitstarttemperatur„BS“, also 100 °C unterhalb der Temperatur, ab der sich Im Gefüge des Stahls Bainit bildet, beginnt und bei der Martensitstarttemperatur MS, also der Temperatur, ab der sich Martensit im Gefüge des Stahls bildet, endet. In diesem Temperaturbereich wird das Blechformteil für mindestens 10 s gehalten, um die Eigenschaften des Formteils einzustellen. Das Halten kann ein isothermes Halten, ein Abkühlen oder ein Wiedererwärmen umfassen, solange es in dem genannten Temperaturbereich stattfindet. Das so erhaltene
Stahipnodukt soll ein Gefüge, das (in Flächen-%) zu 70 - 97 % aus bainitischem Ferrit, bis zu 27 % aus Martensit und zu 3 - 20 % aus Restaustenit bestehen soll, wobei die restlichen Gefügebestandteile höchstens 5 % einnehmen.
Vor dem Hintergrund des Standes der Technik bestand die Aufgabe, ein durch Warmumformen, wie Presshärten, herstellbares Blechformteil zu nennen, das eine optimierte Festigkeit in Kombination mit einem optimalen Energieaufnahmevermögen im Fall plötzlicher Verformungsbelastung hat, wie sie bei einem Crash eines Automobils auftritt.
Darüber hinaus sollte ein Verfahren angegeben werden, mit dem sich derartige Blechformteile praxisgerecht hereteilen lassen.
Die Erfindung hat diese Aufgabe zum einen durch ein Blechformteil mit den in Anspruch 1 angegebenen Merkmalen gelöst.
Zum anderen schlägt die Erfindung zur Herstellung solcher Blechbauteile das In Anspruch 8 angegebene Verfahren vor.
Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen
Ansprüchen angegeben und werden nachfolgend wie der allgemeine
Erfindungsgedanke im Einzelnen erläutert.
Ein erfindungsgemäßes Blechformteil weist dementsprechend eine Zugfestigkeit Rm von mindestens 1000 MPa und einen Biegewinkel von mehr als 70° auf und ist aus einem Stahlflachprodukt geformt, das aus (in Gew.-%):
sowie jeweils optional zusätzlich aus einem Element oder mehreren
Elementen aus der Gruppe„Ti, Nb, V, B, Ni, Cu, Mo, W“ mit der Maßgabe
und als Rest aus Eisen sowie unvermeidbaren Verunreinigungen besteht, zu denen auch weniger als 0,05 % S und weniger als 0,01 % N gehören,
- wobei das Gefüge des Blechformteils zu 40 - 100 Flächen-% aus
plattenförmig ausgeprägtem Bainit besteht, der
- zu 70 - 95 % aus Ferrit, zu 2 - 30 % aus kohlenstoffreichen Phasen, die zu mindestens 70 % plattenförmig mit einer Plattenlänge PL von mindestens 200 nm bei einem Verhältnis von Plattenlänge PL zu Plattenbreite PB der plattenförmig ausgebildeten kohlenstoffreichen Phase PL/PB von mindestens 1 ,7 ausgebildet und in einem Abstand angeordnet sind, der 50 nm bis 2 mm beträgt, sowie
- als Rest zu weniger als 5 % aus sonstigen Bestandteilen gebildet ist,
- wobei das nicht durch den plattenförmig ausgeprägten Bainit
eingenommene restliche Gefüge des Blechformteils bis zu 40 Flächen-% aus nicht plattenförmig ausgeprägtem Bainit besteht,
- der zu 70 - 95 % aus Ferrit, zu 2 - 30 % aus kohlenstoffreichen Phasen sowie
- zu weniger als 5 % aus sonstigen Bestandteilen gebildet ist,
- wobei die Summe der Anteile des plattenförmig und des nicht
plattenförmig ausgeprägten Bainits am Gefüge des Blechformteils mindestens 60 Flächen-% beträgt,
- wobei der Restaustenitgehalt des Gefüges des Blechformteils
2 - 20 Vol.-% beträgt. und
- wobei der nicht durch die bainitischen Bestandteile eingenommene Rest des Gefüges des Blechformteils aus einem oder mehreren Bestandteilen der folgenden Gruppe besteht: "martensitische oder austenitische
Bestandteile, proeutektoider Ferrit, Elsenkarbide, Eisennitride,
Übergangsmetallkarbide, Übergangsmetallnitride, Nichtmetallkarbide, Nichtmetallnitride, metallische oder nicht-metallische Einschlüsse, Sulfide und sonstige unvermeidbare Verunreinigungen".
Der nicht aus Ferrit und kohlenstoffreiche Phasen bestehende, weniger als 5 % des plattenförmig ausgeprägten Bainits einnehmende Rest umfasst beispielsweise Nitride von Mikrolegierungselementen oder sonstige Einschlüsse.
Unter„Bainit“ wird hierbei das Umwandlungsprodukt verstanden, welches sich im Gefüge bei der Abkühlung des Stahls, aus dem das erfindungsgemäße
Blechformteil besteht, aus dem Austenit bildet. Dabei handelt es sich beim
Bainit nicht um eine Einzelphase. Vielmehr besteht Bainit immer mindestens aus bainitischem Ferrit und aus einer oder mehreren kohlenstoffreichen
Phasen.
Unter "plattenförmig ausgeprägtem Bainit" wird vorliegend eine Mischung aus Ferrit und kohlenstoffreichen Phasen, die zu mindestens 70 % plattenförmig ausgebildet sind, sowie bis zu 5 % restliche Bestandteile verstanden.
Vorliegend werden unter dem Begriff "kohlenstoffreiche Phasen" Austenit, Zementit und sonstige Karbide verstanden.
Ferrit lässt sich im Schliffbild einer Probe des jeweiligen Blechformteils durch Anätzen mit 3%iger Nitallösung leicht darstellen.
Die kohlenstoffreichen Phasen werden ebenfalls nach Ätzung mit 3%iger Nitallösung im Schliffbild kenntlich und sind mittels eines
Rasterelektonenmikroskops bestimmbar. Während Ferrit durch das Ätzmittel stark abgetragen wird, bleiben die kohlenstoffreichen Phasen weitestgehend in ihrer ursprünglichen Form bestehen, da sie kaum angeäzt werden. Bei der Quantifizierung der kohlenstoffreichen Phasen nach Form, Größe und Lage zueinander, werden nur die nach der Ätzung stehen gebliebenen Phasen betrachtet - also diejenigen, die vor der Ätzung angeschliffen wurden. Etwaige Karbide in größerer Tiefe, die erst durch das Wegätzen des Ferrits freigelegt worden sind, werden nicht mitbetrachtet. Ansonsten würde das Ergebnis von der Tiefe des weggeätzten Ferrits abhängen.
Der Restaustenitanteil des Gesamtgefüges wird in der Regel durch
Mikrodiffraktometrie bestimmt. Beim Zementit handelt es sich um das stabilste und wichtigste Eisenkarbid mit der stöchiometrischen Zusammensetzung FeaC.
Der Zementit als Teil der kohlenstoffreichen Phasen wird nicht separat bestimmt, sondern wird in der Gesamtheit der kohlenstoffreichen Phasen mitbestimmt.
Das Gefüge eines erfindungsgemäßen Blechformteils besteht aus: i) plattenförmig ausgeprägtem Bainit (Anteil am Gesamtgefüge 40 - 100
Flächen-%), wobei 70 - 95 % des jeweiligen Anteils des plattenförmig ausgeprägten Bainits von Ferrit, 2 - 30 % des jeweiligen Anteils des plattenförmig ausgeprägten Bainits von kohlenstoffreichen Phasen, die zu mindestens 70% plattenförmig mit einer Plattenlänge von mindestens 200 nm, einem Verhältnis von Plattenlänge zu Plattenbreite von mindestens 1 ,7 und in einem Abstand angeordnet sind, der 50 nm bis 2 mm beträgt, ausgebildet sind, sowie als Rest zu weniger als 5 % des Anteils des plattenförmig ausgeprägten Bainits von sonstigen Bestandteilen, bei denen es sich um Nitride von Mikrolegierungselementen oder um sonstige
Einschlüsse handeln kann, eingenommen werden; ii) anderem Bainit, also Bainit, der nicht plattenförmig ausgeprägt ist, wie
globularer Bainit, wobei dieser andere nicht plattenförmig ausgebildete Bainit bis zu 40 Flächen-% des Gesamtgefüges einnehmen kann und wobei auch hier 70 - 95 % des nicht plattenförmig ausgeprägten Bainits von Ferrit, 2 - 30 % des nicht plattenförmig ausgeprägten Bainits von
kohlenstoffreichen Phasen und als Rest weniger als 5 % des jeweiligen Anteils des plattenförmig ausgeprägten Bainits durch sonstige Bestandteile, wie Nitride der Mikroleglerungselemente oder sonstige Einschlüsse eingenommen werden; und iii) als Rest aus martensitischen oder austenitischen Bestandteilen, zu denen angelassener Martensit, nlcht-angelassener Martensit oder Austenit zählen, sowie als weiterer Rest proeutektoider Ferrit, Eisenkarbide,
Eisennitride, Übergangsmetallkarbide, Übergangsmetallnitride,
Nichtmetallkarbide, Nichtmetallnitride, wie zum Beispiel Borkarbonitrid, metallische Einschlüsse, nicht-metallische Einschlüsse, Sulfide und unvermeidbare Verunreinigungen gehören können, wobei es sich von
selbst versteht, dass der Anteil des betreffenden Rests am Gesamtgefüge im technischen Sinne auch„0“ sein kann, also praktisch nicht nachweisbar oder so gering ist, dass er keine technische Wirkung hat.
Die voranstehend unter i) und ii) definierten Bainitanteile (Anteil des
plattenförmig ausgeprägten Bainits und Anteil des anderen, nicht plattenförmig ausgebildeten Bainits) am Gefüge eines erfindungsgemäßen Blechformteils sind dabei so eingestellt, dass sie in Summe mindestens 60 Flächen-% am Gefüge des Blechformteils betragen. Neben den erfindungsgemäß
vorgegebenen Bainitanteilen sind Martensitanteile von bis zu 30 Flächen-% im Gefüge des erfindungsgemäßen Blechformteils tolerierbar, wobei der
Martensitanteil optimalerweise möglichst gering ist, also insbesondere weniger als 20 Flächen-% oder weniger als 5 Flächen-% beträgt
Wesentlich für die Erfindung ist somit, dass der im Gefüge eines
erfindungsgemäßen Blechformteils vorhandene Bainit zu einem wesentlichen Teil, optimalerweise zu mehr als 50 %, plattenartig ausprägt ist. Das bedeutet, dass die Bestandteile des betreffenden Bainits als Platten von bainitischem Ferrit sowie von kohlenstoffreichen Phasen, wie Restaustenit und Zementit, vorliegen.
Zur Erläuterung des prinzipiellen Aufbaus des Gefüges eines
erfindungsgemäßen Blechformteils wird auf die beigefügten Figuren 1 a und 1 b Bezug genommen. In diesen sind mögliche Konfigurationen der
kohlenstoffreichen Phasen jeweils in schwarz aufgezeigt. Der weiß dargestellte Bereich zwischen den schwarzen kohlenstoffreichen Phasen stellt den Ferrit dar. Dabei können sich In dem weißen Bereich beliebig viele weitere
Ausscheidungen befinden, deren maximale Länge im Anschliff 200 nm beträgt.
Wie anhand der Figuren 1a und 1b ersichtlich, gilt für die kohlenstoffreichen Phasen des plattenförmig ausgeprägten Bainits erfindungsgemäß, dass mindestens 70% plattenförmig ausgeprägt sind. Diese 70% plattenförmig
ausgeprägten kohlenstoffreichen Phasen weisen eine Länge PL von
mindestens 200 nm und ein Verhältnis der Länge PL zur Breite PB auf , dass um das mindestens 1 ,7-fache größer ist als die Breite PB der jeweiligen Platte (PL/PB > 1 ,7). Die Größe der Platten der kohlenstoffreichen Phasen des plattenförmig ausgeprägten Bainits ist dabei so bestimmt, dass die zwischen ihnen liegenden Ferritplatten ausreichend weit voneinander entfernt sind, um eine einfache Umgehung durch Versetzungen zu vermeiden. Gestreckte Platten (PL/PB > 1 ,7; Figuren 1 a, 1 b) sind des Weiteren nötig, um die Duktilität zu erhalten. Eine blockige Ausprägung (PL/PB < 1 ,7) würde zu einer erhöhten Rissempfindlichkeit bei Scherspannungen führen.
Letzteres wäre vor allem unter Biegebelastung nachteilig. Der Abstand PA zwischen zwei zueinander benachbarten und parallel ausgerichteten Platten der kohlenstoffreichen Phase muss mindestens 50 nm, bevorzugt mindestens 100 nm, und maximal 2mm betragen. Der Abstand PA stellt die effektive Korngröße des bainitischen Ferrits dar. Je kleiner die Korngröße, desto höher der
Widerstand gegen Verformung und damit einhergehend die Festigkeit der betreffenden Gefügekomponente. Für eine ausreichende Festigkeit darf der Abstand nicht mehr als 2mm, bevorzugt nicht mehr als 1 ,2 mm, betragen. Läge der Abstand PA unter 50 nm, so würde die Festigkeit so stark anstelgen, dass sich dieser Bereich kaum noch verformt, da die kritische Rissspannung im Gesamtgefüge erreicht wird. Hieraus würde sich ein sprödes Materialversagen ergeben, was gerade vermieden werden soll. Als„parallel ausgerichtet“ angesehen werden dabei zwei Platten K dann, wenn die Ausrichtung der längsten Seite der jeweils betrachteten Platten um weniger als 25° voneinander abweicht.
Die erfindungsgemäße Gefügebeschaffenheit hat mehrere Vorteile, die zu einer außergewöhnlichen Kombination aus Festigkeit und Biegbarkeit führen: i. Die hohe Festigkeit von mindestens 1000 MPa wird durch die Feinheit des Gefüges erreicht und nicht durch spröde Bestandteile wie z.B. Martensit.
Nach der Hall-Petch-Beziehung steigt die Festigkeit mit abnehmender Korngröße. Beim erfindungsgemäßen Blechbauteil stellt der maximale orthogonale Abstand zwischen zwei nächstgelegenen kohlenstoffreichen Platten die effektive Korngröße dar. Die beiden notwendigen Bestandteile des Gefüges sind Austenit und bainitischer Ferrit, welche beide eine hohe Verformbarkeit aufweisen. Sollte sich zusätzlich Zementit bilden, so ist dieser noch feiner als der Austenit. Infolgedessen verschlechtert er die Biegeeigenschaften kaum, obwohl Zementit selber eine sehr harte und spröde Phase darstellt. Über einen größeren Bereich betrachtet (> 100mm) ist das Gefüge wiederum sehr homogen, was entscheidend für eine gute Biegbarkeit ist. Fig. 2 zeigt eine lichtmikroskopische Aufnahme eines Schliffe einer Probe eines erfindungsgemäß verarbeiteten und
zusammengesetzten Stahls in 1000-facher Vergrößerung. Deutlich ist die sehr gute makroskopische Homogenität zu erkennen. ii. Die Funktion des Austenits Im Gefüge eines erfindungsgemäßen
Blechformteils Ist in der Hauptsache, die freie Bewegung von Versetzungen durch den Ferrit zu verhindern und somit einen höheren Widerstand gegen Verformung (= Festigkeit) zu erzeugen. Gleichzeitig werden durch die Schichtstruktur während der Verformung Risse aufgefangen, welche somit nicht auf eine kritische Risslänge wachsen und zu einem vorzeitigen Versagen beim Biegen führen können. iii. Neben dem hohen Kohlenstoffgehalt, der durch die Partitionierung des Kohlenstoffe bei 350 - 450°C eingestellt wird, sorgt die große Feinheit des Austenits auch dafür, dass dieser mechanisch gegen verformungsinduzierte Martensitbildung stabilisiert wird. Die Bildung von grobem, sprödem
Martensit würde die Biegsamkeit deutlich verschlechtern. Die Gefahr der Bildung größerer Martensitanteile im Gefüge eines erfindungsgemäßen Blechbauteils wird durch die besondere Feinheit des Restaustenits gleich zweifach eingeschränkt: Zum einen führt die kleine Korngröße zu einer weiteren Absenkung der Ms Temperatur, so dass sich weniger Austenit bei
einer Verformung in Martensit umwandelt. Sollte sich dennoch Martensit bilden, so Ist dieser zum anderen auch noch so fein, dass der negative Einfluss auf die mechanischen Eigenschaften begrenzt bleibt.
Für den plattenartigen Ferrit im Gefüge eines erfindungsgemäßen
Blechformteils gilt, dass dieser so regelmäßig von Platten der
kohlenstoffreichen Phase unterbrochen wird, dass an jedem Punkt eine kohlenstoffreiche Platte maximal 1 mm, bevorzugt maximal 0,6 mm, entfernt ist. Diese Maßgabe beschränkt die Bewegungsweite von Versetzungen im Ferrit weit genug, so dass sich in Folge der sehr feinen effektiven Korngröße die außergewöhnlich hohe Festigkeit erfindungsgemäßer Blechformteile einstellt.
In Folge seiner relativ geringen Si-Gehalte von bis zu 2 Gew.-%, bevorzugt bis zu 1 ,4 Gew.-%, besonders bevorzugt bis zu 1 Gew.-%, erlaubt die
Erfindung eine Schmelztauchbeschichtung des Blechförmteils insbesondere mit einer aluminiumbasierten Schutzbeschichtung. Im Fall, dass eine solche Beschichtung aufgebracht ist, kann der Umformprozess betriebssicher an atmosphärischer Luft durchgeführt werden, ohne dass dadurch eine
Verzunderung und die damit einhergehenden Probleme ausgelöst werden.
Die Zusammensetzung des Stahlflachprodukts, aus dem ein
erfindungsgemäßes Blechformteil geformt ist, ist so gewählt, dass sich bei optimaler Verformbarkeit des Stahlflachprodukts eine Zugfestigkeit von mindestens 1000 MPa, insbesondere mindestens 1100 MPa, erhalten lässt, wobei regelmäßig Zugfestigkeiten von 1200 MPa und mehr erzielt werden.
Gleichzeitig weisen erfindungsgemäße Blechbauteile einen gemäß
VDA 238-100 ermittelten Biegewinkel von mehr als 70° auf. Ein derart hoher Biegewinkel steht dafür, dass an einem beispielsweise als Karosseriebauteil in einem Personen- oder Transportfahrzeug eingesetzten
erfindungsgemäßen Blechformteil eine hohe Energieabsorption durch
Biegung erfolgt, wenn das Blechformteil einer plötzlichen starken
Verformungsbelastung ausgesetzt ist, wie sie sich beim Auftreffen auf ein Hindernis und des gleichen, also in einer typischen Unfallsituation, ereignet.
Die voranstehend erläuterte Eigenschaftskombination lässt sich
insbesondere dadurch erreichen, dass ein erfindungsgemäßes Bauteil förmgehärtet ist, also, wie nachstehend im Einzelnen erläutert, ihm in einer Form so schnell Wärme entzogen worden ist, dass sich das
erfindungsgemäß vorgegebene Gefüge einstellt, durch das die
Voraussetzung für die erfindungsgemäß erzielten Eigenschaften geschaffen ist.
Ihre besonderen Eigenschaften machen erfindungsgemäße Blechformteile insbesondere für die Verwendung als Teil einer Karosserie oder eines
Fahrwerks eines Fahrzeugs, insbesondere eines landgebundenen
Fahrzeugs, geeignet.
Im Einzelnen enthält der Stahl eines erfindungsgemäßen Blechformteils als Grundlage für diese Eigenschaftskombination Gehalte an
Pflichtbestandteilen (C, Sl, Mn, AL, Cr, P, Fe) und optional zugegebenen, d.h. nicht notwendig vorhandenen optionalen Bestandteilen (Ti, Nb, V, B, Ni, Cu, Mo, W). Die Gehalte der einzelnen Bestandteile des Stahls, aus dem ein erfindungsgemäßes Blechformteil besteht, sind gemäß der Erfindung wie folgt bestimmt:
Kohlenstoff („C“) ist im Stahl, aus dem erfindungsgemäße Blechformteile bestehen, in Gehalten von 0,10 - 0,30 Gew.-% enthalten. Derart eingestellte C- Gehalte tragen zur Härtbarkeit des Stahls bei, indem sie die Ferrit- und
Bainitbildung verzögern sowie den Restaustenit im Gefüge stabilisieren. Ein Kohlenstoffgehalt von mindestens 0,10 Gew.-% ist erforderlich, um eine ausreichende Härtbarkeit und eine damit einhergehende hohe Festigkeit zu erzielen. Ab einem oberhalb von 0,30 Gew.-% liegenden C-Gehalt wird allerdings die Bainitbildung zu stark verzögert, so dass ein ausreichender
Umwandlungsgrad während der erfindungsgemäß vorgesehenen Haltezeit bzw. der Luftabkühlung nicht gewährleistet wird. Damit sich eine besonders hohe Festigkeit des Bainits ergibt, ist eine niedrige Umwandlungstemperatur nötig. Diese ist wiederum nach unten hin durch die martensitische Umwandlung begrenzt, welche sich wiederum durch C zu tieferen Temperaturen verschieben lässt. C in den erfindungsgemäß vorgesehenen Gehalten vermindert die Ac3- Umwandlungstemperatur sowie die Martensitstarttemperatur MS. Um die positiven Effekte der Anwesenheit von C besonders sicher nutzen zu können, können C-Gehaite von mindestens 0,13 Gew.-%, insbesondere mindestens 0,15 Gew.-% vorgesehen werden. Bei diesen Gehalten lassen sich unter Beachtung der weiteren Maßgaben der Erfindung Festigkeiten von mindestens 1000 MPa, insbesondere mindestens 1100 MPa, sicher erreichen. Sollen negative Einflüsse der Anwesenheit hoher C-Gehalt auf die Eigenschaften eines erfindungsgemäßen Blechformteils vermieden werden, so kann dies durch eine Begrenzung des C-Gehalts auf höchstens 0,25 Gew.-%,
insbesondere höchstens 0,20 Gew.-% erzielt werden. Die Einhaltung der niedrigeren Obergrenzen für den C-Gehalt tragen besonders zur Verbesserung der Schweißbarkeit bei, da bei niedrigeren C-Gehalten größere
Härtedifferenzen zwischen Schweißlinse und dem umgebenden Werkstoff des Blechbauteils vermieden werden.
Silizium („Si“) wird Im Stahl eines erfindungsgemäßen Stahlflachprodukts in Gehalten von 0,5 - 2,0 Gew.-% zur Unterdrückung der Zementitausscheidung eingesetzt. Si ist in Zementit praktisch unlösbar, so dass sich bei Anwesenheit ausreichender Si-Gehalte die Keimbildung deutlich vermindert. Ein weniger als 0,5 Gew.-% betragender Si-Gehalt wäre nicht ausreichend, um die
Zementitausscheidung aus bainitischem Ferrit bei den erfindungsgemäß vorgegebenen Haltetemperaturen zu unterdrücken. Durch den
erfindungsgemäß vorgesehenen Si-Gehalt von mindestens 0,5 Gew.-% lässt sich zudem der Restaustenit stabilisieren. Dieser Effekt lässt sich durch eine Erhöhung des Si-Gehalts auf mindestens 0,6 Gew.-%, insbesondere
mindestens 0,7 Gew.-%, weiter verstärken. Gehalte von mindestens 0,7 Gew.- % Si eröffnen dabei ein größeres Prozessfenster in der Warmumformung, indem sie den Restaustenitzerfall deutlich verlangsamen. Bel einem 2,0 Gew.- % übersteigendem Si-Gehalt würde allerdings die Oberflächenqualität und Beschichtbarkeit eines erfindungsgemäß beschaffenen Blechformteils zu stark abnehmen. Soll ein erfindungsgemäßes Blechformteil oder das
Stahlflachprodukt, aus dem das Blechformteil geformt ist, mit einer
Schmelztauchbeschichtung versehen werden, so kann es zur Vermeidung von Beschichtungsproblemen zweckmäßig sein, den Si-Gehalt auf höchstens 1 ,4 Gew.-%, insbesondere höchstens 1 ,0 Gew.-%, zu beschränken. Dies gilt insbesondere dann, wenn die Schmelztauchbeschichtung mit einer Si-haltigen Schmelze auf Al-Basis vorgenommen werden soll. Gleichzeitig erlauben geringere Si-Gehalte, ein Stahlflachprodukt, aus dem das erfindungsgemäße Blechbauteil geformt werden soll, bei niedrigeren Temperaturen zu
austenitisieren. Überraschend hat es sich hier gezeigt, dass es bei einem erfindungsgemäß zusammengesetzten, niedrig legierten Stahl gelingt, bei Si- Gehalten von weniger 1 Gew.-%, erhebliche Mengen an Austenit zu
stabilisieren.
Mangan („Mn“) ist im erfindungsgemäßen Blechformteil in Gehalten von 0,5 - 2,4 Gew.-% vorhanden. Mn dient als härtendes Element, indem es die Ferrit- und Bainitbildung stark verzögert. Zusätzlich stabilisiert es den Restaustenit (Austenitbildner) und hemmt eine der Bainitumwandlung nachgelagerte
Zersetzung des Restaustenits in Zementit und Ferrit. Bei einem unter 0,5 Gew.- % liegenden Mangangehalt würde der Austenit nicht ausreichend stabilisiert, so dass es bei den verwendeten Si-Gehalten zu einer nachgelagerten Zersetzung des Austenits kommen würde. Durch Anhebung der Mn-Gehalte auf
mindestens 0,9 Gew.-%, insbesondere mindestens 1 ,1 Gew.-% kann die Austenitstabilität noch einmal deutlich erhöht werden, weil hierdurch In
Kombination mit den anderen erfindungsgemäß vorgesehenen
Legierungselementen verhindert werden kann, dass sich größere Gefügeanteile
bei oberhalb der erfindungsgemäß vorgesehenen maximalen Haltetemperatur bilden. Wird der Mangangehait auf mehr als 2,4 Gew.-% angehoben, verlangsamt sich allerdings die Bainitumwandlung so deutlich, dass man während des erfindungsgemäßen Verfahrens die erfindungsgemäß
vorgegebene Haltetemperatur zu lange aufrechterhalten müsste, um die erfindungsgemäß angestrebte Umwandlung des Gefüges eines
erfindungsgemäßen Blechformteils in ein vorzugsweise zu mehr als 60
Flächen-% nach Maßgabe der Erfindung bainitisches Gefüge zu erzielen. Soll gleichzeitig eine optimierte Schweißbarkeit erzielt werden, so lässt sich dies durch eine Begrenzung des Mn-Gehalts auf höchstens 2,0 Gew.-%,
insbesondere höchstens 1 ,8 Gew.-%, bewerkstelligen. Als besonders günstig erweisen sich Mn-Gehalte von höchstens 1 ,6 Gew.%, Insbesondere weniger als 1 ,6 Gew.-%, da dann die bainitische Umwandlung so schnell abläuft, dass durch die damit einhergehende Rekaleszenz nach Entnahme aus dem
Pressformwerkzeug der Aufwand für eine zusätzliche Beheizung des
Werkstücks entfällt, der gegebenenfalls erforderlich ist, um das Blechbauteil nach dem Pressformen ausreichend lange auf der bainitischen
Umwandlungstemperatur zu halten. In vielen Anwendungsfällen kann bei derart eingestelltem Mn-Gehalt auf die zusätzliche Beheizung durch Wahl eines geeigneten C-Gehalts von höchstens 0,2 Gew.-% und bei geeigneter
Blechdicke von mindestens 1 ,2 mm sogar vollständig darauf verzichtet werden.
Aluminium („AI“) dient in Gehalten von 0,01 - 0,2 Gew.-% bei der Erzeugung des Stahls, aus dem ein erfindungsgemäßes Blechformteil besteht, als
Desoxidationsmittel. Zur sicheren Abbindung des in der Stahlschmelze enthaltenen Sauerstoffs werden mindestens 0,01 Gew.-% AI benötigt. AI kann darüber hinaus zusätzlich zur Abbindung der im erfindungsgemäßen
Blechprodukt unerwünschten, jedoch herstellungsbedingt unvermeidbaren Gehalte an N verwendet werden. Gleichzeitig hemmt AI die Entstehung von Zementit im Gefüge des Blechförmteils. Allerdings würde durch zu hohe Gehalte an AI auch die Ac3-Temperatur deutlich nach oben verschoben. Ab
einem Gehalt von mehr als 0,2 Gew.-% würde AI die Austenitisierung zu stark behindern. Um in der Praxis die negativen Einflüsse von AI im Stahl des erfindungsgemäßen Blechformteils sicher zu vermeiden, kann der Al-Gehalt auf höchstens 0,1 Gew.-% beschränkt werden.
Chrom („Cr“) trägt zur Härte des Stahls eines erfindungsgemäßen
Blechformteils bei, Indem es diffusive Umwandlungen während der Abkühlung auf die erfindungsgemäß vorgegebene Haltetemperatur verlangsamt und so für einen stabilen Prozess in der Wannumformung sorgt. Diese günstige Wirkung stellt sich ab einem Gehalt von 0,005 Gew.-% ein, wobei sich ein Gehalt von mindestens 0,15 Gew.-% in der Praxis für eine sichere Prozessführung bewährt hat. Zu hohe Gehalte an Cr beeinträchtigen allerdings die Beschichtbarkeit des Stahls. Deshalb ist der Cr-Gehalt des Stahls eines erfindungsgemäßen
Blechformteils auf höchstens 1 ,5 Gew.-%, insbesondere 0,75 Gew.-%, beschränkt.
Phosphor („P“) wird in Gehalten von 0,01 - 0,1 Gew.-% im Stahl eines erfindungsgemäßen Blechformteils als Ausgleich zum reduzierten Si-Gehalt benötigt, um die Keimbildung von Zementit zu unterdrücken. P segreglert zu Komgrenzen, Gitterfehlstellen und anderen Stellen, welche typischerweise als Nukleationsstellen für Zementit fungieren. Auf diese Weise verdrängt P den an den betreffenden Stellen vorhanden Kohlenstoff und verringert
dementsprechend lokal die Kohlenstoffkonzentration an möglichen
Zementitkeimstellen mit der Folge, dass dort die thermodynamische Triebkraft zur Ausscheidung gesenkt wird mit der Folge, dass die Zementitausscheidung unterdrückt wird. Dieser Effekt stellt sich ab einem P-Gehalt von mindestens 0,01 Gew.-% ein und steigt mit zunehmendem P-Gehalt an. Ein zu hoher Phosphorgehalt würde allerdings die Schweißbarkeit, Beschichtbarkeit und Kerbschlagarbeit des Stahls beeinträchtigen, aus dem ein erfindungsgemäßes Blechbauteil geformt ist. Dessen maximaler P-Gehalt ist daher
erfindungsgemäß auf 0,1 Gew.-% beschränkt.
Titan („Ti“) ist optional im Stahl eines erfindungsgemäßen Blechformteils in Gehalten von 0,005 - 0,1 Gew.-% enthalten, um Stickstoff abzubinden und auf diese Weise dem ebenfalls optional in wirksamen Gehalten vorhandenen Bor zu ermöglichen, seine die Bildung von Ferrit stark hemmende Wirkung zu entfalten. Gleichzeitig trägt Ti als Mikrolegierungselement zur Kornfeinung bei. Um diese positiven Einflüsse zu nutzen, kann ein Ti-Gehalt von mindestens 0,005 Gew.-% vorgesehen sein, wobei der Ti-Gehalt optimalerweise so eingestellt wird, dass er mindestens dem 3,42-fachen des N-Gehalts des Stahls entspricht. Allerdings neigt Ti auch zur Bildung von grobem TIN und kann die Kaltwalzbarkeit sowie die Rekristallisierbarkeit deutlich herabsetzen. Daher ist der Ti-Gehalt, sofern vorhanden, auf höchstens 0,1 Gew.-% beschränkt.
Wie Ti kann auch Niob (Nb) dem Stahl eines erfindungsgemäßen
Blechformteils optional in Gehalten von 0,005 - 0,1 Gew.-% zur Kornfeinung und Reduktion der Zementitausscheidung beigegeben werden. Allerdings verschlechtert Nb bei Gehalten von mehr als 0,1 Gew.-% auch die
Rekristallisierbarkeit.
Optional kann auch Vanadium (V) für eine zusätzliche Festigkeitssteigerung dem Stahl eines erfindungsgemäßen Blechformteils in Gehalten von 0,001 - 0,2 Gew.-% zugegeben werden. V trägt zudem zur Stabilisierung des
Restaustenits bei. Bei der Kaltbandherstellung bildet V allerdings
Vanadiumkarbide, die sich während der Austenitisierung des Werkstoffes vor der Warmumformung auflösen müssen. Dies wird dadurch gewährleistet, dass der V-Gehalt auf max. 0,2 Gew.-% beschränkt ist. Das in Lösungen befindliche Vanadium wird während der Bainitbildung in einer Größe von wenigen
Nanometern ausgeschieden und trägt so mittels Ausscheidungshärtung zur Festigkeit bei. Für eine ausreichende Triebkraft werden V-Gehalte von mindestens 0,001 Gew.-%, insbesondere mehr als 0,01 Gew.-%, benötigt.
Ebenfalls optional kann Bor („B“) im Stahl des erfindungsgemäßen Bauteils in Gehalten von 0,0005 - 0,01 Gew.-% vorhanden sein, um die Härtbarkeit des
Stahls zu erhöhen. B legt sich auf die Komgrenzen und verringert so ihre Energie. Damit wird die Nukleation von Ferrit unterdrückt. Für einen deutlichen Effekt werden B-Gehalte von mindestens 0,0005 Gew.-% benötigt. Bei
Gehalten von mehr als 0,01 Gew.-% bilden sich jedoch vermehrt Borkarbide, Bomitride oder Bomitrokarbide, welche wiederum bevorzugte Keimstellen für die Nukleation von Ferrit darstellen und den härtenden Effekt wieder absenken.
Nickel („Ni“), welches ebenfalls optional im Stahl eines erfindungsgemäßen Bauteils vorhanden ist, ist ein Austenitbildner, der die Stabilität von Austenit und somit die Prozessstablilität bei längeren Haltezeiten während der Bainitbildung verbessert. Im Fall, dass Kupfer im Stahl des erfindungsgemäßen Bauteils vorhanden ist, kann durch die gleichzeitige Anwesenheit von Ni der negative Einfluss von Kupfer auf die Warmwalzbarkeit aufgehoben werden. Hierbei helfen bereits kleine Gehalte an Ni von mindestens 0,05 Gew.-%. Bei Ni- Gehalten von mehr als 0,4 Gew.% kann es dagegen zu einer Verlangsamung der Bainitbildung kommen.
Optional kann auch Kupfer („Cu“) dem Stahl eines erfindungsgemäßen Bauteils zugegeben werden, um die Härtbarkeit zu erhöhen. Hierzu sind mindestens 0,01 Gew.-% Cu ausreichend. Cu verbessert darüber hinaus den Widerstand gegen atmosphärische Korrosion bei unbeschichteten Blechen. Über 0,8 Gew.- % liegende Cu-Gehalte verschlechtern allerdings die Warmwalzbarkelt aufgrund niedrigschmelzender Cu-Phasen an der Oberfläche deutlich.
Molybdän („Mo“) kann optional in Gehalten von 0,01 - 1 ,0 Gew.-% im Stahl eines erfindungsgemäßen Blechförmteils vorhanden sein, um die
Prozessstabilität zu verbessern. Mo verlangsamt die Ferritbildung deutlich und wirkt sich nur geringfügig auf die Bainitbildung im erfindungsgemäß avisierten Temperaturfenster aus. Ab Gehalten von mindestens 0,01 Gew.-% bilden sich dynamisch Molybdän-Kohlenstoff-Cluster bis hin zu ultrafeinen
Molybdänkarbiden auf den Komgrenzen, welche die Beweglichkeit der
Komgrenze und somit diffusive Phasenumwandlungen effektiv verhindern.
Zudem wird die Komgrenzenenergie und damit einhergehend die
Nukleationsrate von Ferrit verringert. Bei Gehalten von mehr als 1 ,0 Gew.-% tritt keine wesentliche Steigerung der hier genutzten Wirkungen von Mo mehr ein.
Auch Wolfram („W“) kann optional im Stahl eines erfindungsgemäßen
Blechbauteils vorhanden sein. Es wirkt hier ähnlich wie Mo, wird jedoch schon bei kleineren Gehalten wirksam. So ergibt sich ein positiver Effekt auf die Härtbarkeit bereits bei einem W-Gehalt von 0,001 Gew.-%. Ab einem Gehalt von 1 ,0 Gew.-% lässt sich keine wesentliche Steigerung der Wirksamkeit von W auf die hier Im Mittelpunkt stehenden Eigenschaften beobachten.
Stickstoff („N“) und Schwefel („S“) sind grundsätzlich unerwünscht, da sie die Eigenschaften des Stahls eines erfindungsgemäßen Blechformteils negativ beeinflussen. Herstellungsbedingt gelangen N und S jedoch unvermeidbar in den Stahl. Sie sind daher den unvermeidbaren Verunreinigungen des Stahls zugeordnet, die per se so gering gehalten (N-Gehalt < 0,01 Gew.-%; S-Gehalt < 0,05 Gew.-%) werden sollen, dass sie keine die Eigenschaften des Stahls negativ beeinflussende Wirkung haben.
Den voranstehenden Erläuterungen entsprechend sind bei einem Stahl, aus dem das Stahlflachprodukt besteht, aus dem das Blechformteil geformt ist, die C-, Si-, Mn-, AI- und Cr-Gehalte so eingestellt, dass sie in folgende
Gehaltsbereiche fallen (in Gew.-%):
Beim erfindungsgemäßen Verfahren zum Herstellen eines in der voranstehend erläuterten Weise beschaffenen erfindungsgemäßen Blechbauteils werden mindestens folgende Arbeitsschritte durchlaufen: a) Bereitstellen eines Blechzuschnitts, der aus einem Stahl folgender
Zusammensetzung besteht (in Gew.-%) : C: 0,10 - 0,30 %, Si: 0,5 - 2,0 %, Mn: 0,5 - 2,4 %, AI: 0,01 - 0,2 %, Cr. 0,005 - 1 ,5 %, P: 0,01 - 0,1 %, sowie jeweils optional zusätzlich aus einem Element oder mehreren Elementen aus der Gruppe„Ti, Nb, V, B, Ni, Cu, Mo, W" mit der Maßgabe Ti: 0,005 - 0,1 %, Nb: 0,005 - 0,1 %, V: 0,001 - 0,2 %, B: 0,0005 - 0,01 %, Ni: 0,05 - 0,4 %, Cu: 0,01 - 0,8 %, Mo: 0,01 - 1 ,0 %, W: 0,001 - 1 ,0 %, und als Rest aus Eisen sowie unvermeidbaren Verunreinigungen besteht, wobei zu den Verunreinigungen weniger als 0,05 % S und weniger als 0,01 % N gehören; b) Erwärmen des Zuschnitts derart, dass mindestens 30 % des Volumens des Zuschnitts beim Einlegen in ein für ein Warmpressformen vorgesehenes Umformwerkzeug (Arbeitsschritt c)) eine oberhalb der Ac1 -Temperatur liegende Temperatur T_Aust aufweisen, wobei die Ac1 -Temperatur gemäß der Formel
Ac1 = [739 - 22* %C - 7*%Mn + 2*%Si + 14*%Cr + 13*%Mo + 13*%NI ]°C mit %C = C-Gehalt, %Si = Si-Gehalt, %Mn = Mn-Gehalt, %Cr = Cr-Gehalt, %Mo = Mo-Gehalt und %Ni = Ni-Gehatt des jeweiligen Stahls des Zuschnitts, bestimmt wird;
c) Einlegen des erwärmten Zuschnitts in das auf eine Werkzeugtemperatur T_WZ von 200 - 430 °C temperierte Umformwerkzeug, wobei die für das Entnehmen und das Einlegen des Zuschnitts benötigte Transferdauer t_Trans höchstens 20 s beträgt;
d) Warmpressformen des Zuschnitts zu dem Blechformteil, wobei der
Zuschnitt im Zuge des Warmpressformens über eine Dauer t_WZ von 1 - 50 s mit einer mehr als 10 K/s betragenden Abkühlgeschwindigkeit r_WZ auf die Kühlstopptemperatur T_Kühlstopp abgekühlt und optional dort gehalten wird; e) Entnehmen des auf die Kühlstopptemperatur T_Kühlstopp abgekühlten Blechformteils aus dem Werkzeug; fl ) optional: Halten des Blechformteils bei einer 300 - 450 °C betragenden Haltetemperatur T_Halt für eine Haltedauer t_Halt von bis zu 100 s; f2) optional: Erwärmen des Blechformteils Innerhalb von 1 - 10 s auf eine
Homogenisierungstemperatur von 380 - 500 °C; f3) optional: weiteres Umformen des Blechformteils, wobei die Umformung insbesondere als Kalibrierschritt zur Verbesserung der Maßhaltigkeit des Blechformteils ausgeführt werden kann; g) optional: Beschneiden des Blechformteils; h) Abkühlen des Blechformteils auf eine Abkühltemperatur T_AB von weniger als 200 °C innerhalb einer Abkühldauer t_AB von 0,5 - 200 s.
Beim erfindungsgemäßen Verfahren wird somit ein Zuschnitt, der aus einem entsprechend den voranstehenden Erläuterungen in geeigneter Weise zusammengesetzten Stahl besteht, bereitgestellt (Arbeitsschritt a)), der dann in an sich bekannter Weise so erwärmt wird, dass mindestens 30 %,
insbesondere mindestens 60 %, seines Volumens beim anschließenden Einlegen in das jeweilige Umformwerkzeug ein austenitisches Gefüge besitzt (Arbeitsschritt b)). D.h., die Umwandlung vom ferritischen ins austenitische Gefüge muss beim Einlegen in das Umformwerkzeug noch nicht abgeschlossen
sein. Vielmehr können bis zu 70 % des Volumens des Zuschnitts beim
Einlegen in das Umformwerkzeug aus anderen Gefügebestandteilen, wie
angelassenem Bainit, angelassenem Martensit und/oder nicht bzw. teilweise rekristallisiertem Ferrit bestehen. Zu diesem Zweck können bestimmte Bereiche des Zuschnitts während der Erwärmung gezielt auf einem niedrigeren
Temperatumiveau gehalten werden als andere. Hierzu kann die Wärmezufuhr gezielt nur auf bestimmte Abschnitte des Zuschnitts gerichtet werden oder die Teile, die weniger erwärmt werden sollen, gegen die Wärmezufuhr abgeschirmt werden. In dem Teil des Zuschnittmaterials, dessen Temperatur unterhalb der für die Temperatur T_Aust vorgegebenen Mindesttemperatur bleibt, entsteht im Zuge der Umformung im Werkzeug kein oder nur deutlich weniger Bainit, so dass das Gefüge dort deutlich weicher ist als in den jeweils anderen Teilen, In denen ein bainitisches Gefüge vorliegt. Auf diese Weise kann im jeweils
geformten Blechformteil gezielt ein weicherer Bereich eingestellt werden, in dem beispielsweise eine für den jeweiligen Verwendungszweck optimale
Zähigkeit voriiegt, während die anderen Bereiche des Blechformteils eine
maximierte Festigkeit besitzen.
Maximale Festigkeitseigenschaften des erhaltenen Blechformteils können dadurch ermöglicht werden, dass der Zuschnitt im Arbeitsschritt b) auf eine
Austenitisierungstemperatur T_Aust erwärmt wird, für die gilt
wobei die bei dieser Variante von der Temperatur T_Aust zu überschreitende Mindesttemperatur Ac3 gemäß der von HOUGARDY, H.P. in Werkstoffkunde Stahl Band 1 : Grundlagen, Verlag Stahleisen GmbH, Düsseldorf, 1984, p. 229., angegebenen Formel
mit %C = jeweiliger C-Gehalt, %Si = jeweiliger Si-Gehalt, %Mn = jeweiliger Mn- Gehalt, %Cr = jeweiliger Cr-Gehalt, %Mo = jeweiliger Mo-Gehalt, %Ni = jeweiliger Ni-Gehalt und %V = jeweiliger V-Gehalt des Stahls, aus dem der Zuschnitt besteht, bestimmt wird.
Eine optimal gleichmäßige Eigenschaftsverteilung lässt sich dadurch erreichen, dass der Zuschnitt im Arbeitsschritt b) vollständig durcherwärmt wird.
Dazu kann die Dauer der im Arbeitsschritt b) durchgeführten
Austenitisierungsbehandlung so eingestellt werden, dass einerseits durch eine Begrenzung auf 1000 s eine Komvergröberung vermieden wird, andererseits aber auch die Geschwindigkeit der austenitischen Umwandlung berücksichtigt wird, die insbesondere bei einer über die Ac3-Temperatur hinausgehenden Erhitzung des Stahlzuschnitts deutlich ansteigt. Bei einer Erwärmung oberhalb der Ac3-Temperatur liegt die Austenitisierungstemperatur T_Aust
optimalerweise um mindestens 30 °C, insbesondere mindestens 50 °C, über der jeweiligen Ac3-Temperatur des Stahls, aus dem der zu verformende Zuschnitt jeweils besteht. Bei einer derart hohen Austenitisierungstemperatur läuft die austenitische Umwandlung so schnell ab, dass nach Erreichen der betreffenden Temperatur kein Halten mehr auf dieser Temperatur erforderlich ist, um die vollständige Umwandlung des Gefüges in Austenit zu erzielen.
Stattdessen kann der Zuschnitt unmittelbar nach Erreichen der
Austenitisierungstemperatur der Weiterverarbeitung zugeführt werden.
Der so erwärmte Zuschnitt wird aus der jeweiligen Erwärmungseinrichtung, bei der es sich beispielsweise um einen konventionellen Erwärmungsofen, eine ebenso an sich bekannte Induktionserwärmungseinrichtung oder eine konventionelle Einrichtung zum Warmhalten von Stahlbauteilen handeln kann, entnommen und so schnell in das Umformwerkzeug transportiert, dass seine Temperatur beim Eintreffen in dem Werkzeug mit 600 - 900 °C noch deutlich
oberhalb der für die Erfindung kritischen Temperatur von mindestens 450 °C liegt.
Im Arbeitsschritt c) wird der Transfer des austenitisierten Zuschnitts von der jeweils zum Einsatz kommenden Erwärmungseinrichtung zum
Umformwerkzeug innerhalb von vorzugsweise weniger als 20 s absolviert. Ein derart schneller Transport ist erforderlich, um eine zu starke Abkühlung vor der Verformung zu vermeiden.
Das Werkzeug ist beim Einlegen des Zuschnitts auf eine Temperatur von 200 - 430 °C, bevorzugt 300 - 400 °C, besonders bevorzugt 320 - 380 °C, temperiert, die unterhalb der Kühlstopptemperatur T_Kühlstopp liegt. Dabei kann die beim Einlegen des Zuschnitts jeweils konkret zu wählende Werkzeugtemperatur
T_WZ in Abhängigkeit von der Kühlstopptemperatur T_Kühlstopp, mit welcher das Blechformteil aus dem Werkzeug entnommen wird, und der Blechdicke D des zu dem Blechformteil umzuformenden Zuschnitts wie folgt bestimmt werden:
Bei der anschließend während der Umformung des Zuschnitts zu dem
Blechformteil erfolgenden Abkühlung ist eine Abkühlgeschwindigkeit von mindestens 10 K/s, insbesondere mindestens 20 K/s oder mindestens 30 K/s, erforderlich, um eine Umwandlung des Austenits vor Erreichen der
Haltetemperatur zu verhindern. Unerwünscht ist sowohl eine Umwandlung in Ferrit, als auch in Bainit bei einer Temperatur, die mehr als 100°C über der angezielten Haltetemperatur T_Halt von 300 - 450 °C, insbesondere 320 - 430°C, insbesondere 320 - 400 °C, liegt, da die Umwandlungsprodukte eine deutlich geringere Festigkeit aufweisen würden. Dies würde zu einer geringeren
Gesamtfestigkeit wie auch zu einer verringerten Biegsamkeit führen.
Im Werkzeug wird der Zuschnitt somit nicht nur zu dem Blechformteil geformt, sondern gleichzeitig auch auf eine im Bereich von 450 - 300 °C liegende, bevorzugt 430 - 320 °C, besonders bevorzugt 400 - 320 °C betragende
Kühlstopptemperatur abgeschreckt. Zu diesem Zweck ist das Werkzeug auf eine 200 - 430 °C betragende Werkzeugtemperatur T_WZ temperiert. Bei der Kühlstopptemperatur hat sich möglicherweise schon etwas Martensit im Gefüge des Blechformteils gebildet, der als Keimstelle fungieren kann. Der größte Teil des Gefüges besteht Jedoch an diesem Punkt noch aus instabilem Austenit, welcher sich nachfolgend äußerst schnell zu feinem Bainit umwandelt. Durch die erfindungsgemäße Zulegierung von Si, AI, P wird die Bildung von Karbiden verlangsamt, so dass sich entweder keine oder nur feine Karbide ausscheiden. Dabei erfolgt die Umwandlung, ermöglicht durch die von der Erfindung speziell bestimmte Legierung, so schnell, dass keine lange Haltezeit im
Temperaturbereich von 450 - 300 °C, insbesondere 430 - 320 °C,
insbesondere 400 - 320 °C, nötig ist. Konkret sieht die Erfindung für die
Abkühlung und ein gegebenenfalls Im Umformwerkzeug erfolgendes Halten bei der nach der Abkühlung erreichten Temperatur T_Kühlstopp in dem noch geschlossenen Werkzeug eine Dauer t_WZ von 1 - 50 s vor. Der
erfindungsgemäße Herstellungsprozess kann sich als solcher problemlos in einen kurz getakteten Arbeitszyklus eingegliedert werden.
Nach der Abkühlung wird das erhaltene Blechformteil optional über eine für die Umwandlung in das angestrebte Gefüge ausreichende Zeitdauer t_Halt bei einer Haltetemperatur von 300 - 450 °C, insbesondere 320 - 430 °C, insbesondere 320 - 400 °C, gehalten. Dieses Halten kann sowohl im Umformwerkzeug vor der Entnahme oder in einer separaten Vorrichtung nach der Entnahme aus dem Umformwerkzeug durchgeführt werden.
Ein besonderer Vorteil der Kombination aus dem erfindungsgemäßen Werkstoff mit dem erfindungsgemäßen Verfahren ist dabei die Kürze der zur Bildung des bainitischen Gefüges praktisch benötigten Haltezeit t_Halt. Versuche haben hier gezeigt, dass bereits nach wenigen Sekunden mehr als 50% des Austenits
umgewandelt sind. Dies führt zu einer hohen Maßhaltigkeit des erfindungsgemäß erzeugten Blechformteils bei kurzen Prozesszeiten und ausgezeichneten mechanischen Eigenschaften. Eine längere Haltezelt t_Halt als 100 s wäre zum einen unwirtschaftlich und zum anderen auch nachteilig für die Konstitution des Gefüges. Bei zu langen Haltezeiten t_Halt würde es zur vermehrten Umwandlung von Restaustenit zu Zementit kommen, was vor allem die Zugeigenschaften verschlechtern würde, indem es die Bruchdehnung verringert.
Insbesondere im Fall, dass Arbeitsschritt f1 ) durchgeführt wird, kann es
zweckmäßig sein, optional als weiteren Arbeitsschritt eine zusätzliche
Umformung durchzuführen, die beispielsweise zur Verbesserung der
Maßhaltigkeit des Blechformteils beiträgt.
Im Fall, dass kein gesondertes Halten erfolgt, der Arbeitsschritt f1 ) also nicht absolviert wird (t_Halt = 0 Sekunden) findet ein erster Teil der Umwandlung bereits Im Werkzeug statt, wogegen ein zweiter Teil der Umwandlung während der Abkühlung im Arbeitsschritt h) stattfindet, die in diesem Fall bevorzugt als
Luftabkühlung durchgeführt wird.
Mit der Erfindung steht somit ein Verfahren zur Verfügung, mit dem sich
Blechformteile erzeugen lassen, deren Gefüge durch eine plattenartige Struktur gekennzeichnet sind. Das derart plattenartige Gefüge ergibt eine Kombination aus hoher Zugfestigkeit (>1000 MPa, insbesondere >1100 MPa) mit sehr hohem Biegewinkel (unbeschichtet >80°). Dabei lassen sich Blechbauteile durch
Anwendung des erfindungsgemäßen Verfahrens in besonders kurzer Zeit hersteilen. So können bei erfindungsgemäßer Vorgehensweise Blechbauteile von hoher Festigkeit und optimalem Energieaufnahmevermögen innerhalb von
Gesamtzeiten erzeugen, die unter einer Minute liegen.
Um die erfindungsgemäß genutzten Umwandlungsprozesse betriebssicher zu initiieren, kann die Zusammensetzung des Stahls so eingestellt werden, dass die Aktivierungsenergie zur Bainitbildung Qb ausreichend gering ist. Hierzu lassen
sich innerhalb der erfindungsgemäß vorgegebenen, oben erläuterten Grenzen der C-Gehalt %C, der Mn-Gehalt %Mn, der Mo-Gehalt %Mo, der Cr-Gehalt %Cr, der Ni-Gehalt %Ni und der Cu-Gehalt %Cu in Abhängigkeit vom B-Gehalt des Stahls jeweils in Gew.-% derart einstellen, dass die Aktivierungsenergie Qb der
Bainitbildung weniger als 45 kJ, insbesondere weniger als 40kJ, besonders bevorzugt weniger als 35 kJ, beträgt, um eine ausreichend schnelle
Bainitumwandlung zu erzielen. Qb lässt sich dabei für B-Gehalte von bis zu 0,0005 Gew.-% gemäß der Formel
Qb [kJ] = (90 * %C + 10* (%Mn+%Mo) +2* (%Cr + %Ni) + 1*%Cu) [kJ/Gew.-%], und bei B-Gehalten von mehr 0,0005 Gew.-% gemäß der Formel
Qb [kJ] = (90 * %C + 10* (%Mn+%Mo) +2* (%Cr + %Ni) + 1*%Cu +2) [kJ/Gew.-%] berechnen, wobei die C-Gehalte %C, der Mn-Gehalt %Mn, der Mo-Gehalt
%Mo, der Cr-Gehalt %Cr, der Ni-Gehalt %Ni und der Cu-Gehalt %Cu jeweils in Gew.-% in diese Formeln eingesetzt werden.
Für Blechdicken größer 2 mm haben sich Qb-Werte kleiner 40 kJ, für
Blechdicken von 1-2 mm haben sich Qb-Werte kleiner 35 kJ und für
Blechdicken kleiner 1 mm haben sich Qb-Werte kleiner 34 kJ als günstig erwiesen.
Eine niedrige Aktivierungsenergie Qb ist insbesondere hilfreich, wenn die
Haltezeit t_Halt gering gehalten werden soll, insbesondere wenn die Haltezeit tJHalt 0 Sekunden betragen soll. Insbesondere, wenn Qb weniger als 38 kJ beträgt, ist die Wärmeleistung, das heißt die spezifische Umwandlungswärme pro Zeiteinheit, signifikant und wirkt einer Abkühlung entgegen. Diese
Wärmeabgabe reicht selbst bei geringen Werten von Qb aus, um das Bauteil durch die Umwandlungswärme auf Temperatur zu halten. Es ist auch möglich, dass das Bauteil geringfügig an Temperatur gewinnt und erst nach erfolgter Umwandlung abkühlt, ohne dass von außen Wärme eingebracht wird.
Die Untergrenze des erfindungsgemäß für die Haltetemperatur T_Halt vorgegebenen Bereichs liegt bei 300 °C, weil bei darunter liegenden
Temperaturen die Martensitstarttemperatur MS selbst bei maximaler
Ausnutzung der im Rahmen der Erfindung liegenden Legierungsmöglichkeiten deutlich unterschritten würde. Da aber möglichst viel Bainit gebildet werden soll, muss die Martensitbildung weitestgehend vermieden werden. Martensitanteile von mehr als 30 Flächen-% würden zu einer deutlichen Verschlechterung der Eigenschaften eines erfindungsgemäßen Blechformteils führen. Deshalb sollte die Prozessführung so gewählt werden, dass der Martensitanteil des Gefüges eines erfindungsgemäßen Blechformteils möglichst klein ist. Nach oben hin ist der Bereich der Haltetemperatur T_Halt auf 450°C beschränkt, weil bei höheren Temperaturen die Festigkeit des Bainits zu stark abfallen würde.
Nach CAPDEVILA, C. et al. Determination of Ms Temperature in Steels: A Bayesian Neural Network Model. ISIJ International, 42:8, August 2002, 894- 902, lässt sich die Martensitstafttemperatur eines im Rahmen der
erfindungsgemäßen Vorgaben liegenden Stahls gemäß der Formel:
berechnen, wobei auch hier mit C% der C-Gehalt, mit %Mn der Mn-Gehalt, mit %Mo der Mo-Gehalt, mit %Cr der Cr-Gehalt, mit %Ni der Ni-Gehalt, mit %Cu der Cu-Gehalt, mit %Co der Co-Gehalt (nicht im erfindungsgemäß
zusammengesetzten Stahl enthalten), mit %W der W-Gehalt und mit %Si der Si-Gehalt des jeweiligen Stahls in Gew.-% bezeichnet sind.
Kommt es im Werkzeug bei der Umformung zu dem Blechformteil zu
unterschiedlichen lokalen Anpressdrücken, so kann im Blechformteil bei seiner Entnahme aus dem Werkzeug eine inhomogene Temperaturverteilung vorliegen. Um auch in einem solchen Fall eine gleichmäßige und vollständige bainitische Umwandlung zu gewährleisten, kann durch eine optional zusätzliche
Erwärmung die Temperaturverteilung so homogenisiert werden, dass die Temperatur über das gesamte Blechformteil in einem Temperaturbereich von Ms-20 bis Ms + 100°C, insbesondere Ms bis Ms + 80 °C, liegt.
Bei besonders niedrigen Haltetemperaturen T_Halt kann es passieren, dass die Umwandlung zwar schnell abläuft, was wünschenswert ist, dass aber der Restaustenit aufgrund einer inhomogenen Verteilung des in ihm enthaltenen Kohlenstoffe nicht bis zur Raumtemperatur stabil bleibt. Um dem abzuhelfen und eine homogene C-Verteilung im Restaustenit zu sichern, kann das erhaltene Blechformteil nach der für die Bildung des bainltischen Gefüges benötigten, gegebenenfalls gegen„0“ gehenden Haltezeit auf eine Temperatur von 380 - 500°C erhitzt werden (Arbeitsschritt f2)). Bei der nach Erreichen der betreffenden Homogenisierungstemperatur einsetzenden Abkühlung hat der Kohlenstoff genügend Zeit und thermische Energie zum Umverteilen. Die obere Grenze von 500°C für die Homogenisierungstemperatur ergibt sich daraus, dass bei noch höheren Temperaturen eine zu starke Erweichung eintreten würde. Bei Homogenisierungstemperaturen von weniger als 380°C wäre die Diffusionsrate zu gering. Als besonders günstig für die
Homogenisierungstemperatur hat sich ein Temperaturbereich von 420 - 470°C erwiesen.
Auch Im Anschluss an den optional durchgeführten Arbeitsschritt f2) kann es zweckmäßig sein, eine zusätzliche Umformformung durchzuführen, die beispielsweise als Kalibrierschritt absolviert werden kann, um die Maßhaltigkeit des Blechformteils weiter zu verbessern.
Eine große Kostenbelastung beim Presshärten stellt der Laserbeschnitt der pressgehärteten Bauteile dar. Beim konventionellen Presshärten ist zum Erreichen der Festigkeit nötig, dass das Bauteil erst unterhalb der
Martensitfinishtemperatur, die im allgemeinen unter 200°C liegt aus dem Werkzeug entnommen wird. Im Gegensatz dazu kann beim
erfindungsgemäßen Verfahren das Bauteil oberhalb von 300°C, bevorzugt bei
mindestens 350°C, aus dem Werkzeug entnommen werden. Durch die verringerte Härte und höhere Duktilität bei der höheren Temperatur kann an diesem Punkt des erfindungsgemäßen Verfahrens das Werkstück auch warm beschnitten werden (Arbeitsschritt g)).
Letzteres ist im Vergleich zum Laserbeschnitt sehr kostengünstig und führt zu einer deutlich vereinfachten Logistik. So lassen sich mit der erfindungsgemäßen Vorgehensweise Taktzeiten von 1 - 20 s, insbesondere 1 - 10 s erreichen. Sollten zur Temperaturhomogenisierung (Arbeitsschritte d) - f2)) mehr als 20 s benötigt werden, so können die betreffenden Arbeitsschritte in mehrere Schritte unterteilt werden, die in unterschiedlichen Aggregaten nacheinander ausgeführt werden.
Bei der Abkühlung im abschließenden Schritt h) des erfindungsgemäßen Verfahrens wird das erhaltene Blechformteil innerhalb einer Dauer t_AB von 0,5 - 200 s auf eine weniger als 200 °C betragende Abkühltemperatur T_AB abgekühlt. Dabei wird die für die Abkühlung notwendige Dauer t_AB und damit einhergehend die Geschwindigkeit, mit der die Abkühlung erfolgt, in
Abhängigkeit vom Fortschritt der Gefügeumwandlung in den vorangegangenen Arbeitsschritten eingestellt. Im Fall, dass ein Teil der Umwandlung noch während der Luftabkühlung folgen soll, wird die Abkühlung unter einem
Medium, wie beispielsweise ruhender oder bewegter Luft, vorgenommen, bei der vergleichbar niedrige Abkühlraten erzielt werden. Hierbei ist zu beachten, dass die abschließende Abkühlung mitentscheidend für eine homogene
Kohlenstoffverteilung im Restaustenit ist. Während die Bainitumwandlung beim erfindungsgemäßen Stahl so schnell abläuft, dass sich eine sehr gute
Maßhaltigkeit ergibt, reicht die Verweildauer t_WZ im Schnitt häufig nicht aus, um eine homogene Kohlenstoffverteilung zu erreichen. Bei lokalen
Kohlenstoffgehalten < 0,8% im Restaustenit besteht vielmehr die Gefahr einer martensitischen Umwandlung vor Erreichen der Raumtemperatur. Dieser dann im Gefüge vorhandene Martensit ist aufgrund seines Kohlenstoffgehalts sehr hart, sorgt für ein sehr schlechtes Biegeverhalten und muss daher verhindert
werden. Deshalb sieht die Erfindung hier vorzugsweise eine vergleichbar langsame, innerhalb einer Abkühldauer von mindestens 5 Sekunden
ablaufende Abkühlung vor. Die langsameren, mindestens 5 s betragenden Abkühlzeiten t_AB tragen auch zur Maßhaltigkeit des Bauteils bei, in dem Verzug vermieden wird. Die Obergrenze von 200 s für den Bereich, über den sich die Abkühldauer t_AB erstreckt, gewährleistet akzeptable Taktzeit bei der Bauteilfertigung.
Um eine Zunderbildung während der Austenitisierung zu verhindern und das erfindungsgemäße Blechformteil gegen Korrosion zu schützen, kann auf das Stahlflachprodukt, aus dem das Blechbauteil geformt wird, eine metallische Korrosionsschutzbeschichtung aufgebracht sein. Hierzu besonders geeignet sind Überzüge auf Aluminiumbasis, wobei solche Überzüge typischerweise Gehalte an Si aufweisen, um ihre Schutzwirkung zu optimieren (so genannte „AS-Überzüge“). Al-baslerte Schutzüberzüge lassen sich besonders
wirtschaftlich auf ein erfindungsgemäß verarbeitetes Stahlflachprodukt durch Schmelztauchbeschichten aufbringen. Ein für den Schutz eines
erfindungsgemäß verarbeiteten Stahlflachprodukts und damit einhergehend eines erfindungsgemäßen Blechformteils besonders geeigneter
Aluminiumbasis-Überzug hat beispielsweise folgende Zusammensetzung (in Gew.-%): 3 - 15 % Si, 1 - 15 % Fe, optional bis zu 40 % Zn, insbesondere bis zu 10 % Zn, optional bis zu 1 % Mg, bevorzugt 0,11-0,5% Mg, sowie als Rest AI und unvermeidbare Verunreinigungen. Typische Auflagendicken eines solchen Überzugs betragen beim erfindungsgemäß zu dem Blechformteil umgeformten Zuschnitt vor der Warmformgebung 2 mm - 40 mm, insbesondere 10 mm - 35 mm.
Durch das plattenartige Gefüge ergibt sich eine Kombination aus hoher
Zugfestigkeit (>1100MPa) mit sehr hohem Biegewinkel (unbeschichtet deutlich > 80°, siehe Anwendungsbeispiele). Während plattenartige bainltlsche Gefüge schon hinlänglich im Stand der Technik beschrieben werden, ist absolut neu, dass sich dadurch sehr gute Biegeeigenschaften ergeben. Außerdem ist
absolut neu, dass sich ein zementitarmes, plattenartiges Bainitgefüge mit Zugfestigkeiten > 1000 MPa und hervorragenden Biegeeigenschaften in sehr kurzen Haltezeiten oder nur in Luftabkühlung darstellen und innerhalb von Zeiten < 1 Minute einstellen lässt.
Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert. Die Figuren zeigen:
Fig. 1a - 1b jeweils eine aus einem Schliffbild gewonnene schematische
Darstellung des Gefüges einer erfindungsgemäßen Probe
Fig. 2 eine lichtmikroskopische Aufnahme eines Schliffs einer Probe eines erfindungsgemäß verarbeiteten und
zusammengesetzten Stahls in 1000-facher Vergrößerung;
Fig. 3 eine rasterelektronenmlkroskopische Aufnahme eines
Schliffbilds einer erfindungsgemäß erzeugten Probe;
Fig. 4 eine lichtmikroskopische Abbildung eines Schliffbilds einer
erfindungsgemäß erzeugten Probe;
Fig. 5 ein Diagramm, das den zeitlichen Verlauf der aus dem
Austenit erfolgenden Bainitumwandlung einer
erfindungsgemäß zusammengesetzten Legierung bei 400 °C im Dilatometer zeigt.
Zur Erprobung der Erfindung sind Schmelzen A - 0 erzeugt worden, die jeweils den Maßgaben der Erfindung entsprechend zusammengesetzt waren und deren Zusammensetzung in Tabelle 1 angegeben sind.
Aus den so zusammengesetzten Schmelzen sind in konventioneller Weise kaltgewalzte Stahlbänder erzeugt worden. Ein Teil der Stahlbänder ist In
ebenfalls konventioneller Weise mit einem so genannten AS-Überzug
schmelztauchbeschichtet worden. Die AS-Beschichtung bestand jeweils aus 3 - 15 Gew.-% Si, 3 Gew.-% Fe und als Rest AI und unvermeidbaren
Verunreinigungen bei einer Beschichtungsdicke von jeweils 22 mm pro Seite des Zuschnitts.
Von den Stahlbändern sind jeweils Zuschnitte abgeteilt worden, die für die weiteren Versuche verwendet worden sind. Bei diesen Versuchen sind aus den jeweiligen Zuschnitten Blechformteil-Proben 1 - 24 in Form von 200 x 300 mm2 großen Platten warmpressgeformt worden. Dazu sind die Zuschnitte in einer Erwärmungseinrichtung, beispielsweise einem konventionellen
Erwärmungsofen, von Raumtemperatur auf eine Austenitisierungstemperatur T_Aust erwärmt worden, bei der sie über eine Austenitisierungsdauer t_Aust erwärmt und gehalten worden sind. Anschließend sind die Zuschnitte aus der Erwärmungseinrichtung entnommen und in ein auf eine Werkzeugtemperatur T_WZ erwärmtes Umformwerkzeug eingelegt worden. Die sich aus der für das Entnehmen aus der Erwärmungseinrichtung, den Transport zum Werkzeug und das Einlegen ins Werkzeug zusammensetzende Transferzeit betrug jeweils 7 s.
Im Umformwerkzeug sind die Zuschnitte zum jeweiligen Blechformteil umgeformt worden.
Bis auf die Proben 5, 22 und 23 sind die erhaltenen Blechfbrmteile dann aus dem Umformwerkzeug entnommen und in einem Temperierwerkzeug auf eine Haltetemperatur T_Halt temperiert und bei der Temperatur T_Halt über eine Haltedauer t_Halt gehalten worden, um eine Homogenisierung der
Temperaturverteilung und eine gleichmäßige Bainitumwandlung zu
gewährleisten.
Die Probe 5 ist keiner Temperaturhomogenisierung (Arbeitsschritt f1 des erfindungsgemäßen Verfahrens), sondern nach einem Innerhalb einer
Transferzeit t_Trans durchgeführten Transfer in ein
Schnellerwärmungswerkzeug einer schnellen Erwärmung unterzogen worden, bei der sie mit einer Erwärmungsgeschwindigkeit HR auf eine
Homogenisierungstemperatur T_HOM erwärmt worden ist.
Abschließend sind die Proben auf Raumtemperatur abgekühlt worden. Die Abkühlung erfolgte dabei entweder an ruhender Luft mit einer Abkühlrate von 7 K/s oder an Druckluft mit 30 K/s.
Die Proben 22 und 23 wurden nach Erreichen der Kühlstopptemperatur aus dem Werkzeug entnommen und an ruhender Luft abgekühlt.
Einige der Proben sind darüber hinaus einer kathodischen Tauchlackierung (KTL) unterzogen worden, um einerseits ihre Lackierbarkeit zu erproben und andererseits zu untersuchen, ob sich die mechanischen Eigenschaften durch die KTL-Behandlung verändern. Ein Vergleich der Proben 3 und 4 zeigt, dass die KTL selbst bei an ruhender Luft abgekühlten Proben kaum einen Einfluss auf die mechanischen Eigenschaften hat
Die bei der Verarbeitung der Proben 1 -24 vorgesehenen bzw. eingestellten Parameter„Beschichtung“, Austenitisierungstemperatur„T_Aust“,
Austenitisierungsdauer„t_Aust“, Werkzeugtemperatur„T_WZ“, Dauer des Abkühlvorgangs„t_WZ“ im Umformwerkzeug, Kühlstopptemperatur
T_Kühlstopp, Haltetemperatur„T_Halt“, Haltedauer„tJHalt“, Transferzeit „t_Trans“, Erwärmungsgeschwindigkeit„HR“, Homogenisierungstemperatur „T_HOM“,„Luftabkühlung“ und kathodische Tauchlackierung„KTL“ sind in Tabelle 2 angegeben.
In Tabelle 3 sind zudem die Blechdicke D der Zuschnitte, aus denen die einzelnen Proben 1 - 24 erzeugt worden sind, sowie die an den erhaltenen Proben 1 - 24 jeweils gemäß DIN EN ISO 6892 - 1 :2009 ermittelten
Streckgrenze Rp02, Zugfestigkeit Rm und Bruchdehnung A50, die Richtung der Zugprobe relativ zur Walzrichtung bzw. der Biegeachse relativ zur Walzrichtung
(„Q“ = quer), der gemäß VDA-Norm 238-100 ermittelte Biegewinkel BW_Fmax, der jeweils nach der in der Norm angegebenen Formel aus dem Stempelweg errechnet worden ist (der Winkel BW_Fmax ist der Biegewinkel, bei welchem die Kraft im Biegeversuch ihr Maximum hat), und der korrigierte Biegewinkel BW angegeben. Der korrigierte Biegewinkel BW_korr berechnet sich nach der Formel:
und berücksichtigt, dass der Biegewinkel sehr stark von der Dicke abhängt. Beim korrigierten Biegewinkel Ist der Einfluss der Dicke eliminiert.
In Tabelle 4 sind schließlich die an den erhaltenen Proben 1 - 24 bestimmten Gefügeanteile angegeben, wobei in der Spalte„Bainit gesamt“ der gesamte Bainitanteil, in der Spalte„plattenartiger Bainit“ der Anteil des im Sinne der Erfindung plattenartig ausgeprägten Bainits, in der Spalte„Martensit“ der Anteil der martensitischen Bestandteile und in der Spalte RA der Anteil des gesamten Restaustenits im Gesamtgefüge angegeben sind.
Die Figuren 1 a, 1 b und 2 sind oben schon erläutert worden.
Beim Beispiel der Fig. 3, bei dem es sich um eine Raster-Elektronen- Mikroskop-Aufnahme eines Ausschnitts eines Gefügeschlifls einer aus der Legierung der Schmelze A, Ausführungsbeispiel 1 , gewonnenen Probe handelt, sind die durch Ätzen entfernten Bereiche bainitlscher Ferrit (bF). Die noch überstehenden Bereiche sind eine der kohlenstoffreichen Phasen Restaustenit (RA) oder Zementit (Z). Diese haben gemein, dass sie aus mindestens
85 Gew.-% Fe und mindestens 0.6 Gew.-% C bestehen. Durch den hohen Kohlenstoffgehalt lassen sie sich kaum anätzen und stehen noch fast bis zur Polierebene hoch. Beide kohlenstoffreichen Phasen behindern
Versetzungsbewegungen im bainitischen Ferrit und bewirken somit eine
Festigkeitssteigerung. Bei noch höherer Auflösung ließen sich Restaustenit und
Zementit dadurch unterscheiden, dass Zementit durch seinen höheren
Kohlenstoffgehalt einen noch höheren Widerstand gegen das Ätzmittel als der Restaustenit besitzt, so dass die Zementitanteile eine glatte Oberfläche aufweisen, während die Oberfläche von Austenit eher rau erscheinen.
Aus Fig. 5 ist anhand des Beispiels der Legierung„O“ ersichtlich, dass bei einem nach dem erfindungsgemäßen Legierungskonzept legierten Stahl die Umwandlung vom Austenit in den Bainit besonders schnell abläuft. Dies hat nicht nur prozesstechnische Vorteile, sondern ermöglicht es auch, sehr geringe Si-Gehalte zu verwenden.
Letzteres erlaubt eine AS-Beschichtung, die gut auf dem jeweiligen
Stahlsubstrat haftet, wie aus Fig. 4 anhand einer lichtmikroskopischen
Abbildung eines Schliffbilds ersichtlich ist, das von dem Blechzuschnitt stammt, aus dem die Blechformteil-Probe Nr. 7 erzeugt worden ist.
Fig. 5 zeigt dazu die am Beispiel der Legierung„Ou ermittelte Dilatometerkurve der bainitischen Umwandlung bei 400°C. Demnach ist bereits nach 10s die bainitische Umwandlung zu 25% und nach weiteren 10s bereits zu 66% fortgeschritten.
Tabelle 2
Tabelle 3