EP3795885B1 - Gas discharge system with lng generating system - Google Patents

Gas discharge system with lng generating system Download PDF

Info

Publication number
EP3795885B1
EP3795885B1 EP20190940.5A EP20190940A EP3795885B1 EP 3795885 B1 EP3795885 B1 EP 3795885B1 EP 20190940 A EP20190940 A EP 20190940A EP 3795885 B1 EP3795885 B1 EP 3795885B1
Authority
EP
European Patent Office
Prior art keywords
gas
vortex tube
outlet
fraction
expansion system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20190940.5A
Other languages
German (de)
French (fr)
Other versions
EP3795885B9 (en
EP3795885A1 (en
Inventor
Steffen Päßler
Holger Sprung
Karsten Skorzus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ontras Gastransport GmbH
Original Assignee
Ontras Gastransport GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ontras Gastransport GmbH filed Critical Ontras Gastransport GmbH
Publication of EP3795885A1 publication Critical patent/EP3795885A1/en
Application granted granted Critical
Publication of EP3795885B1 publication Critical patent/EP3795885B1/en
Publication of EP3795885B9 publication Critical patent/EP3795885B9/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/02Pipe-line systems for gases or vapours
    • F17D1/04Pipe-line systems for gases or vapours for distribution of gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • F25J1/0202Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration in a quasi-closed internal refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0225Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using other external refrigeration means not provided before, e.g. heat driven absorption chillers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0232Coupling of the liquefaction unit to other units or processes, so-called integrated processes integration within a pressure letdown station of a high pressure pipeline system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0242Waste heat recovery, e.g. from heat of compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/068Distribution pipeline networks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/02Pipe-line systems for gases or vapours
    • F17D1/065Arrangements for producing propulsion of gases or vapours
    • F17D1/075Arrangements for producing propulsion of gases or vapours by mere expansion from an initial pressure level, e.g. by arrangement of a flow-control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/10Processes or apparatus using other separation and/or other processing means using combined expansion and separation, e.g. in a vortex tube, "Ranque tube" or a "cyclonic fluid separator", i.e. combination of an isentropic nozzle and a cyclonic separator; Centrifugal separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/908External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by regenerative chillers, i.e. oscillating or dynamic systems, e.g. Stirling refrigerator, thermoelectric ("Peltier") or magnetic refrigeration

Definitions

  • the invention relates to a gas expansion system for expansion and quantity control of gas for use between a first gas source located upstream of the gas, such as a gas tank, a medium-pressure gas network or high-pressure gas network or a cavern storage and a second gas sink located downstream of the gas, such as a consumer, a low-pressure gas network or a gas supply line, comprising at least one first vortex tube, which is in flow communication with the first gas source located upstream of the gas, the gas from the gas source flowing into the at least one first vortex tube in a tangential inlet, and from two outlets in the form of a first outlet for a first cold fraction of the Gas and flows out in the form of a second outlet for a second warm fraction of the gas.
  • a first gas source located upstream of the gas such as a gas tank, a medium-pressure gas network or high-pressure gas network or a cavern storage and a second gas sink located downstream of the gas, such as a consumer, a low-pressure gas network or a gas
  • wet natural gas i.e. methane (CH 4 ) with admixtures of nitrogen (N 2 ), possibly acidic gases such as hydrogen sulfide (H 2 S) and carbon dioxide (CO 2 ) as well as moisture in the form of water vapor (H 2 O) and small amounts of ethane (C 2 H 6 , 1% to 15%), propane (C 3 H 8 , 1% to 10%), butane (C 4 H 10 ), ethene (C 2 H 4 ) and pentanes (C 5 H 12 ) , tends to freeze when cooled significantly due to the Joule-Thomson effect. During freezing, methane hydrate (CH 4 • 5.75 H 2 O) in particular precipitates from wet natural gas.
  • methane hydrate CH 4 • 5.75 H 2 O
  • Methane hydrate is a clathrate compound in which water and methane form a cage compound.
  • Methane hydrate has the external appearance of snow or hoarfrost and, once formed in the cold, can be present at temperatures of up to 20°C.
  • room temperature i.e. around 20°C
  • methane hydrate is thermodynamically unstable; However, the clathrate compound tends to remain in a superheated state before it breaks down again into the gas components.
  • the hydrate can clog the gas line, narrow the gas line cross-section, block or immobilize valves or pressure control valves, block the mechanical control path of membranes of pressure regulators and block access to the gas flow for flow meters.
  • the formation of ice, methane hydrate or other gas hydrates in a gas supply line can quickly lead to a dangerous accident in the line, which is dangerous to life and limb.
  • DD 108 146 In the East German patent specification DD 108 146 a device for liquefaction or refrigeration is disclosed. According to the main idea in DD 108 146 is intended to pass gas from a high-pressure source through a vortex tube. The warm fraction that flows out of the vortex tube is either fed to another process or returned to the high-pressure side via a heat exchanger and recompressor. The cold gas stream, on the other hand, is sent for further liquefaction. Although this process is suitable for liquefying gas, it is quite energy inefficient.
  • the document WO2019090885A1 discloses a gas expansion system.
  • the object of the invention is to provide an energy-efficient and at the same time robust and therefore seasonally insensitive method for gas expansion.
  • the cold fraction of the gas flowing from the first outlet of the at least one vortex tube is in flow connection with an inlet of at least one second vortex tube and from two outlets in the form of a first outlet for a first cold fraction of the gas and in the form a second outlet for a second warm fraction of the gas flows out, wherein the warm fraction of the at least one second vortex tube is in flow connection with the second gas sink located downstream of the gas, and wherein the cold fraction of the at least one second vortex tube is in flow connection with an outlet for liquefied gas.
  • This circuit is a cascade of at least two vortex tubes, which are connected to each other as a cascade on their cold fraction side.
  • the outlets of the vortex tubes for the warm fraction are each connected to a gas drainage network with a corresponding pressure.
  • the last vortex tube leads to a liquefaction of the gas in the cascade.
  • the liquid gas is stored and intended for further use by liquid gas customers.
  • This cascade connection is rather energy inefficient for producing liquid gas.
  • the aim of the invention is not to produce liquid gas, but rather to expand gas that is under high pressure and comes, for example, from a pipeline, a gas supply line or a gas storage facility, so that the temperature of the expanded gas meets the requirements State variables for fulfilled in gas supply lines.
  • the liquefied gas produced during gas expansion only amounts to approximately 2% to 5% of the total gas flowing through the system in the gas expansion system according to the invention.
  • the heat from 5% of the gas flowing through the gas expansion system is transferred to the remaining 95% of the gas flowing into the further gas extraction networks, without it being necessary to heat the gas flowing into the further gas extraction networks or to warm it up using atmospheric heat exchangers.
  • the gas expansion system therefore works in summer and also in winter, regardless of the installation location or the climatic region of the installation Gas expansion system. It is advantageous here that only around 5% is produced as a by-product as liquid gas, since this proportion is approximately the part that is purchased from the market as liquid gas.
  • At least a third vortex tube is connected between the at least one second vortex tube and the outlet for liquefied gas, the second outlet of the at least one first vortex tube being connected to a high-pressure gas network as a sink, the second The outlet of the at least one second vortex tube is connected to a medium-pressure gas network as a sink, and the second outlet of the at least one third vortex tube is connected to a low-pressure gas network as a sink.
  • This optional gas expansion system has three vortex tube stages and distributes and expands the gas from the high-pressure side into three different gas discharge networks with different pressures.
  • At least one refrigeration machine is connected to the at least one second vortex tube and the outlet for liquefied gas, the waste heat from the refrigeration machine being passed via a heat exchanger into the gas stream, which is fed as a warm fraction from the second Outlet of the at least one second vortex tube flows and is connected to a gas medium pressure network as a sink.
  • This optional gas expansion system has two vortex tube stages and distributes and expands the gas on the high-pressure side into two different gas discharge networks with different pressures. Depending on the desired pressure on the medium and low pressure side, it may be possible that the volume work on the vortex tubes, which act as throttles, is not sufficient to generate a temperature that liquefies the cold fraction.
  • a refrigeration machine can be used, with the waste heat from the refrigeration machine in this example being fed into the gas discharge stream of the second Vortex tube stage is directed.
  • This gas expansion system also works independently of the climatic atmospheric conditions.
  • the at least one first vortex tube is in flow connection with its second output for the warm fraction via a compressor to the inlet of the gas expansion system.
  • a compressor and a refrigeration machine are connected in parallel to one another and transport gas and heat from the second outlet of a vortex tube stage, which leaves the at least one vortex tube as a warm fraction, from a lower pressure level to a higher pressure level .
  • This parallel connection of compressor and refrigeration machine makes it possible to vary the amount of gas and heat that is transported from one pressure level to another in large relative ratio intervals, which is advantageous for setting an optimal working point of the vortex tubes of the gas expansion system.
  • FIG 1 is a sectional drawing through the vortex tube 10 according to Ranque-Hielsch with the vertebrae W1 and W2 shown, the outer vortex W1 leads the warm fraction and the inner vortex W2 leads the cold fraction.
  • the exact functionality of a vortex tube according to Ranque-Hielsch has not yet been scientifically clarified.
  • the Ranque-Hielsch effect is reproducible and can also be optimized empirically for different volume flows and average operating pressures.
  • pressurized gas GH flows into a tangential inlet 11 in the vortex tube 10.
  • the inflowing gas GH forms different vortices W1 and W2 in the vortex tube, with gas that is warmer than the gas flowing in inlet 11 emerging from the tube end at outlet 13 as a warm fraction WF.
  • Outlet 13 is located at the pipe end opposite the pipe end at which the tangential inlet 11 is located.
  • Gas that is significantly colder than the gas flowing into inlet 11 exits as cold fraction KF at outlet 12, which is arranged at the pipe end at which the tangential inlet 11 is also arranged.
  • the amount of heat of the combined warm fraction WF and cold fraction KF corresponds approximately to the amount of heat of the incoming gas GH minus the volume work V • ⁇ P as heat equivalent that the incoming pressurized gas GH did when passing through the vortex tube 10.
  • a cold fraction KF with a temperature below the temperature is formed in a Ranque-Hielsch pipe , which would be observable through the Joule-Thomson effect and a warm fraction WF with a temperature that is higher than the temperature of the inflowing gas GH.
  • the present invention makes use of the fact that with the vortex tube 10 according to Ranque-Hielsch a cold fraction KF is obtained which has a temperature below the temperature that would be achievable according to Joule-Thomson.
  • the heat extracted goes to the warm fraction, which is used in the context of this invention to heat the gas in the drainage network.
  • thermometers Three different thermometers are shown under a shaded square, each of which can be assigned to a shade of the vortices W1 and W2.
  • Black means cold and corresponds to the temperature of the emerging cold fraction KF.
  • a medium-dark shading corresponds approximately to the temperature of the pressurized incoming gas GH and a lighter shading (right) corresponds approximately to the temperature of the emerging warm fraction WF.
  • FIG 2 a sectional drawing is shown through a variant of the Ranque-Hielsch tube as a vortex tube 20.
  • the outlet 23 for the warm fraction WF is completely closed.
  • the Ranque-Hielsch effect does not collapse as a result, but the heat of the warm fraction WF is conducted via the tube wall RW onto the cooling fins 27 into a housing 24 of the vortex tube 20, where a partial flow TS of the pressurized gas GH, which passes through the flow inlet 25 has entered the housing 24, absorbs the heat and leaves the housing 24 via the flow outlet 26.
  • this second variant of the Ranque-Hielsch tube differs from the Ranque-Hielsch tube Figure 1 through the path of heat.
  • the heat is transported with the warm fraction WF in the vortex W1 and with the warm fraction WF from the vortex tube 10 through the outlet 13, whereas the heat is transported in the variant of the Ranque-Hielsch tube in Figure 2 transported through the tube wall RW outwards into the housing 24 and transported away via a partial flow TS of the inflowing gas GH as a warm fraction WF, which leaves the housing 24 through the outlet 26.
  • thermometers Three different thermometers are shown under a shaded square, each of which can be assigned to a shade of the vortices W1 and W2.
  • Black means cold and corresponds to the temperature of the emerging cold fraction KF.
  • a medium dark shade corresponds approximately to the temperature of the pressurized incoming gas GH and a lighter shade (right) approximately corresponds to the temperature of the emerging warm fraction WF.
  • vortex tube that are similar to the vortex tube 10 in Figure 10, in which the outlet 13 for the warm fraction WF is closed and the heat flows through the tube wall RW into the atmospheric environment.
  • vortex tubes work like a throttle, which produces additional cooling of the gas flowing through the vortex tube by releasing heat.
  • the object of the invention is to conduct this heat, which is unused in the prior art, into the gas stream directed downstream.
  • FIG 3 a sketch of a first and simple variant of the gas expansion system according to the invention is shown.
  • Gas from a source Q flows from the gas high-pressure side GH via an inlet 101 into the gas expansion system 100. After passing through a check/control valve 104, the gas flows under high pressure, such as 80 bar, into at least one vortex tube 10, 20.
  • the vortex tube 10 , 20 can be the in Figure 1 and 2 have the structure shown.
  • Two vortex tubes, but also five, ten or one hundred, even a thousand first stage vortex tubes can be connected in parallel.
  • the gas of the warm fraction WF from the second outlet 13, 23 of the vortex tube 10, 20 can have a pressure of 67 bar in this stage.
  • This Colder gas from the cold fraction KF of the vortex tube 10, 20 of the first stage is expanded again, for example to a pressure of 50 bar down to 3 bar.
  • the pressure jump across a vortex tube determines the temperature of the warm fraction and the cold fraction. It always applies that the amounts of heat contained in the warm fraction and the cold fraction, minus the volume work that was done during the expansion of the gas, corresponds to the amount of heat in the gas at the entrance site. By throttling the various outlets of the vortex tube, the temperature of the cold fraction and also the warm fraction can be adjusted, whereby the aforementioned boundary condition always sets itself.
  • the gas of the second cold fraction KF' from the at least one second vortex tube 10', 20' of the second stage in the cascade is then drawn in as liquid gas (LNG) and stored in an insulated tank.
  • LNG liquid gas
  • FIG 4 a sketch of a second variant of the gas expansion system according to the invention is shown as a gas expansion system 200.
  • This gas expansion system 200 corresponds in function to the gas expansion system 100 Figure 3 , although 3 stages of vortex tubes are connected in series.
  • Gas from a source Q flows from the gas high-pressure side GH via an inlet 201 into the gas expansion system 200. After passing through a check/control valve 204, the gas flows under high pressure, such as 80 bar, into at least one vortex tube 10, 20.
  • the vortex tube 10 , 20 can be the in Figure 1 and 2 have the structure shown.
  • vortex tubes of each stage here the first stage, it is also possible in this gas expansion system 200 for vortex tubes of each stage, here the first stage, to be connected in parallel to one another .
  • Two vortex tubes, but also five, ten or one hundred, even a thousand first stage vortex tubes can be connected in parallel become.
  • the gas of the warm fraction WF from the second outlet 13, 23 of the vortex tube 10, 20 can have a pressure of 67 bar in this stage.
  • This colder gas of the cold fraction KF of the vortex tube 10, 20 of the first stage is expanded again, for example to a pressure of 50 bar.
  • the gas of the second cold fraction KF' from the at least one second vortex tube 10', 20' of the second stage in the cascade is then fed to a third vortex tube stage, namely vortex tube 10", 20".
  • a third vortex tube stage namely vortex tube 10", 20".
  • the pressure of the gas for a low pressure line is relaxed to approx. 3 bar, for example.
  • the gas of the third cold fraction KF" from the at least one third vortex tube 10", 20" of the third stage in the cascade is then attracted as liquid gas (LNG) and stored in an insulated tank.
  • LNG liquid gas
  • this gas expansion system for example, a gas with a pressure from 87 bar at the inlet 101 to a pressure of 67 bar at the sink S1 of the first vortex tube stage, to a pressure of 50 bar at the sink S2 of the second vortex tube stage and to a pressure of three bar at the sink S3 of the third vortex tube stage for three different Gas drainage networks relaxed.
  • a third variant of the gas expansion system according to the invention is outlined as a gas expansion system 300.
  • This gas expansion system 300 corresponds to the first two stages of the cascade circuit Figure 1 , however, the output of the second vortex tube stage is fed into a refrigeration machine KM, where the gas is finally liquefied.
  • the waste heat generated in the refrigeration machine KM is transferred to the gas of the second vortex tube stage via a heat exchanger WT, which can also be integrated into the refrigeration machine WM.
  • This system configuration allows, for example, a pressure of 67 in the first vortex tube stage, namely at the depression S1 and to produce a pressure of, for example, 50 bar at the depression S2 of the second vortex tube stage.
  • the first two stages act as precoolers for the refrigeration machine KM, with the warm gas from the warm fractions WF and WF' being diverted into the corresponding gas drainage networks. It should be noted at this point that in this system configuration no waste heat is released into the atmospheric air, but no heat is removed from the atmospheric air either. Like the gas expansion systems already described, this gas expansion system works independently of the atmospheric outside temperature.
  • a fourth variant of the gas expansion system according to the invention is shown as a gas expansion system 400.
  • the circuit of the gas expansion system 400 in Figure 6 initially corresponds to the circuit of the gas expansion system 200, shown in Figure 4 .
  • a first technical feature here is that the warm fraction WF of the first vortex tube stage from the at least one first vortex tube 10, 20 is fed back to the inlet 401 of the gas expansion system 400 via a first compressor VD1.
  • a compressor VD2 is connected with its input to the second output 13, 23 of the at least one first vortex tube 10, 20 and its output is connected to the input 401 of the gas expansion system 101.
  • the gas is heated and thus warms the gas inflow to the system, which also influences the temperatures of the cold fractions KF, KF2', and KF" of the first, second and third vortex tube stages.
  • the aim of the gas expansion system is to ensure that the gas is not too cold on the gas discharge side to produce gas.
  • a technical feature that can be used independently of the first compressor VD1 is that the warm fraction WF of the third vortex tube stage from the at least one third vortex tube 10", 20" via a compressor VD2 to the second output 13 ', 23' of the vortex tube 10', 20' second vortex tube stage is supplied.
  • the combined gases then flow into the gas drainage network connected as a sink S, for example at 50 bar.
  • the gas is heated and thus warms the discharged gas from the gas expansion system. In this gas expansion system, too, no heat is released into the atmosphere and no heat is removed from the atmosphere.
  • This gas expansion system 400 also works independently of the climatic location.
  • the refrigeration machine it is also possible to connect a compressor to the warm fraction of the third vortex tube stage. It can thus be provided that the at least one third vortex tube with its second output for the warm fraction is connected via a compressor to the second output of the at least one second vortex tube, so that the second outputs of the at least one second vortex tube and the at least one third vortex tube are connected to the gas medium pressure network as a sink. Compression also conducts heat into the gas medium pressure network as a sink. The difference between using the chiller as the third stage and the compressor between the third stage and the output of the second stage is the heat and material balance.
  • the flow balance can be adjusted very flexibly by using the refrigeration machine with the dissipation of only the heat into the gas flow of the gas medium pressure side or by supplying the compressed warm fraction to the third vortex tube stage. It is also possible to connect a refrigeration machine and a compressor in parallel to create any desired heat and flow balances in the system.
  • Vortex tube 27 cooling fin 10' Vortex tube 10" Vortex tube 100 Gas expansion system 11 inlet 101 Entrance 11' inlet 104 Shut-off/control valve 11" inlet 12 Outlet, cold fraction 200 Gas expansion system 12' Outlet, cold fraction 204 Shut-off/control valve 12" Outlet, cold fraction 13 outlet, warm fraction 300 Gas expansion system 13' outlet, warm fraction 304 Shut-off/control valve 13" outlet, warm fraction T1 thermometer 20 Vortex tube T2 thermometer 21 Inlet, T2' thermometer 22 Outlet, cold fraction T2" thermometer 23 outlet, warm fraction T3 thermometer 24 Housing T3' thermometer 25 Flow input T3" thermometer 26 Flow exit GH Gas, high pressure side S2 alley valley GM Gas, medium pressure side S3 alley valley GN Gas, low pressure side T.S Partial flow KF Cold fraction VD1 compressor KF' Cold fraction VD2 compressor KF" Cold fraction W1 whirl KM

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

Die Erfindung betrifft eine Gasentspannungsanlage zur Entspannung und Mengensteuerung von Gas zum Einsatz zwischen einer ersten, gastromaufwärts gelegenen Gasquelle, wie ein Gastank, ein Gasmitteldrucknetz oder Gashochdrucknetz oder ein Kavernenspeicher und einer zweiten, gastromabwärts gelegenen Gassenke, wie ein Verbraucher, ein Gasniederdrucknetz oder eine Gasversorgungsleitung, aufweisend mindestens ein erstes Wirbelrohr, das in Strömungsverbindung mit der ersten, gastromaufwärts gelegenen Gasquelle steht, wobei das Gas aus der Gasquelle in das mindestens eine erste Wirbelrohr in einen tangentialen Einlass einströmt, und aus zwei Auslässen in Form eines ersten Auslasses für eine erste Kaltfraktion des Gases und in Form eines zweiten Auslasses für eine zweite Warmfraktion des Gases ausströmt.The invention relates to a gas expansion system for expansion and quantity control of gas for use between a first gas source located upstream of the gas, such as a gas tank, a medium-pressure gas network or high-pressure gas network or a cavern storage and a second gas sink located downstream of the gas, such as a consumer, a low-pressure gas network or a gas supply line, comprising at least one first vortex tube, which is in flow communication with the first gas source located upstream of the gas, the gas from the gas source flowing into the at least one first vortex tube in a tangential inlet, and from two outlets in the form of a first outlet for a first cold fraction of the Gas and flows out in the form of a second outlet for a second warm fraction of the gas.

Bei der Verteilung von Gasen, beispielsweise aus einem Gasmittel- oder Gashochdrucknetz in ein Verteilungsnetz mit geringerem Druck, oder bei der Abnahme von Gasen aus einem Druckspeicher, wie ein Aquiferspeicher, einem Kavernenspeicher oder einem Gastank in ein Leitungsnetz, ist es notwendig, das unter Druck stehende Gas zu entspannen, um den Druck für den Leitungstransport anzupassen. Im Unterschied zu idealen Gasen zeigen reale Gase beim Übergang über eine Drossel den bekannten Joule-Thomson-Effekt. Der Joule-Thomson-Effekt zeichnet sich durch eine beobachtbare Temperaturänderung eines Gases bei einer isenthalpen Druckminderung aus, dabei wird die Richtung (Abkühlung oder gar Erwärmung) und Stärke des Effekts durch die Stärke der anziehenden und abstoßenden Kräfte (van der Waals-Kräfte) zwischen den Gasmolekülen bestimmt. Unter Normalbedingungen zeigen die meisten geläufigen Gase und Gasgemische, z. B. auch Luft, eine Temperaturverringerung bei der Entspannung, also bei einer Druckminderung beim Fluss durch eine Drossel. In Leitungsnetzen, die hohe Volumenströme leiten, wie zum Beispiel kommunale Gasversorgungsleitungen, regionale Gasversorgungsleitungen oder längere Gaspipelines, ist es notwendig, dass sowohl der Druck in der Versorgungsleitung als auch die Temperatur des strömenden Gases in bestimmten Grenzen liegt. Die in den Versorgungsleitungen vorhandenen Aggregate, wie Druckregler, Ventile, Wärmetauscher und Verdichter haben häufig schmale Intervalle, in denen die Zustandsgrößen des transportierten Gases vorliegen können, um sicher und in vorbestimmter Weise zu funktionieren.When distributing gases, for example from a medium or high-pressure gas network into a distribution network with lower pressure, or when removing gases from a pressure storage facility, such as an aquifer storage facility, a cavern storage facility or a gas tank into a pipeline network, it is necessary to do so under pressure to relax the standing gas in order to adjust the pressure for the line transport. In contrast to ideal gases, real gases show the well-known Joule-Thomson effect when passing through a throttle. The Joule-Thomson effect is characterized by an observable change in the temperature of a gas when there is an isenthalpic pressure reduction; the direction (cooling or even warming) and strength of the effect are determined by the strength of the attractive and repulsive forces (van der Waals forces). determined by the gas molecules. Under normal conditions, most common gases and gas mixtures, e.g. B. also air, a reduction in temperature during expansion, i.e. a reduction in pressure when flowing through a throttle. In pipe networks that carry high volume flows, such as municipal gas supply pipes, regional gas supply pipes or longer ones Gas pipelines, it is necessary that both the pressure in the supply line and the temperature of the flowing gas are within certain limits. The units present in the supply lines, such as pressure regulators, valves, heat exchangers and compressors, often have narrow intervals in which the state variables of the transported gas can be present in order to function safely and in a predetermined manner.

Nasses Erdgas, also Methan (CH4) mit Beimengungen von Stickstoff (N2), ggf. sauren Gasen wie Schwefelwasserstoff (H2S) und Kohlendioxid (CO2) sowie Feuchtigkeit in Form von Wasserdampf (H2O) und geringe Mengen Ethan (C2H6, 1% bis 15 %), Propan (C3H8,1% bis 10%), Butan (C4H10), Ethen (C2H4) und Pentanen (C5H12), neigt bei einer starken Abkühlung durch den Joule-Thomson-Effekt zum Vereisen. Beim Vereisen fällt aus nassem Erdgas insbesondere Methanhydrat (CH4 • 5,75 H2O) aus. Methanhydrat ist eine Klathratverbindung, in dem Wasser und Methan eine Käfigverbindung bilden. Methanhydrat hat äußerlich die Erscheinung wie Schnee oder Raureif und kann, wenn es einmal in der Kälte entstanden ist, bis zu Temperaturen von 20°C vorliegen. Bei Raumtemperatur, also etwa bei 20°C, ist Methanhydrat zwar thermodynamisch instabil; die Klathratverbindung neigt aber dazu, im überhitzten Zustand zu verweilen, bevor sie wieder in die Gasbestandteile zerfällt. Bildet sich Methanhydrat, Eis oder ein anderes Gashydrat, so kann das Hydrat die Gasleitung verstopfen, den Gasleitungsquerschnitt verengen, Ventile oder Druckregelventile verstopfen oder unbeweglich machen, den mechanischen Regelweg von Membranen von Druckreglern versperren und Durchflussmessern den Zugang zum Gasstrom versperren. Die Bildung von Eis, Methanhydrat oder anderen Gashydraten in einer Gasversorgungsleitung kann damit schnell zu einer gefährlichen Havarie der Leitung führen, die gefährlich ist für Leib und Leben.Wet natural gas, i.e. methane (CH 4 ) with admixtures of nitrogen (N 2 ), possibly acidic gases such as hydrogen sulfide (H 2 S) and carbon dioxide (CO 2 ) as well as moisture in the form of water vapor (H 2 O) and small amounts of ethane (C 2 H 6 , 1% to 15%), propane (C 3 H 8 , 1% to 10%), butane (C 4 H 10 ), ethene (C 2 H 4 ) and pentanes (C 5 H 12 ) , tends to freeze when cooled significantly due to the Joule-Thomson effect. During freezing, methane hydrate (CH 4 • 5.75 H 2 O) in particular precipitates from wet natural gas. Methane hydrate is a clathrate compound in which water and methane form a cage compound. Methane hydrate has the external appearance of snow or hoarfrost and, once formed in the cold, can be present at temperatures of up to 20°C. At room temperature, i.e. around 20°C, methane hydrate is thermodynamically unstable; However, the clathrate compound tends to remain in a superheated state before it breaks down again into the gas components. If methane hydrate, ice or another gas hydrate forms, the hydrate can clog the gas line, narrow the gas line cross-section, block or immobilize valves or pressure control valves, block the mechanical control path of membranes of pressure regulators and block access to the gas flow for flow meters. The formation of ice, methane hydrate or other gas hydrates in a gas supply line can quickly lead to a dangerous accident in the line, which is dangerous to life and limb.

Um die Vereisung von Gasen bei der Entspannung zu verhindern, ist es bekannt, das Gas vor der Drossel stark zu erwärmen, wobei das Gas bei der Passage der Drossel wieder abkühlt. Auch ist es bekannt, das zu drosselnde Gas durch eisfreie Drosseln zu leiten und das erkaltete Gas wieder zu erwärmen. Die Erwärmung findet statt durch elektrische Heizungen oder durch Gasheizung, denn Gas als Heizgas ist in der Umgebung einer Gasversorgungsleitung zu genüge vorhanden.In order to prevent gases from freezing during expansion, it is known to heat the gas strongly in front of the throttle, with the gas cooling down again as it passes through the throttle. It is also known that the gas to be throttled is free of ice To conduct throttles and to heat the cooled gas again. The heating takes place using electric heaters or gas heating, because there is enough gas as heating gas in the vicinity of a gas supply line.

Mit zunehmendem Bewusstsein der möglichen Energieeinsparung, aber auch mit zunehmendem Bewusstsein der Schädlichkeit von größeren Mengen Kohlendioxid in der freien Atmosphäre für das Weltklima, das beim Verbrennen von Heizgas entsteht, besteht das Bedürfnis, die Entspannung von Gasen, insbesondere in kommunalen oder regionalen Versorgungsleitungen aber auch in Pipelines klimaneutral durchzuführen. Ein weiteres Bedürfnis ist es, die Entspannung von Gas in Abwesenheit von Zündquellen, wie elektrische Heizungen oder Gasheizungen durchzuführen, um die kommunalen oder regionalen Versorgungsleitungen vor einer Havarie zu sichern.With increasing awareness of possible energy savings, but also with increasing awareness of the harmfulness of large amounts of carbon dioxide in the free atmosphere for the global climate, which is created when burning heating gas, there is a need to reduce the release of gases, especially in municipal or regional supply lines carried out in pipelines in a climate-neutral manner. Another need is to carry out the expansion of gas in the absence of ignition sources such as electric heaters or gas heaters in order to protect the municipal or regional supply lines from an accident.

In der ostdeutschen Patentschrift DD 108 146 wird eine Einrichtung zur Verflüssigung oder Kälteerzeugung offenbart. Nach dem Leitgedanken in DD 108 146 ist vorgesehen, Gas aus einer Hochdruckquelle durch ein Wirbelrohr zu leiten. Die Warmfraktion, die aus dem Wirbelrohr strömt, wird entweder einem weiteren Prozess zugeführt oder aber über einen Wärmetauscher und Rückverdichter wieder der Hochdruckseite zugeleitet. Der Kaltgasstrom hingegen wird der weiteren Verflüssigung zugeleitet. Zwar eignet sich dieses Verfahren zur Verflüssigung von Gas, ist aber recht energieineffizient. Das Dokument WO2019090885A1 offenbart eine Gasentspannungsanlage.In the East German patent specification DD 108 146 a device for liquefaction or refrigeration is disclosed. According to the main idea in DD 108 146 is intended to pass gas from a high-pressure source through a vortex tube. The warm fraction that flows out of the vortex tube is either fed to another process or returned to the high-pressure side via a heat exchanger and recompressor. The cold gas stream, on the other hand, is sent for further liquefaction. Although this process is suitable for liquefying gas, it is quite energy inefficient. The document WO2019090885A1 discloses a gas expansion system.

Aufgabe der Erfindung ist es, ein energieeffizientes und gleichzeitig robustes und daher jahreszeitenunempfindliches Verfahren zur Gasentspannung zur Verfügung zu stellen.The object of the invention is to provide an energy-efficient and at the same time robust and therefore seasonally insensitive method for gas expansion.

Die erfindungsgemäße Aufgabe wird gelöst durch eine Gasentspannungsanlage mit den Merkmalen in Anspruch 1. Weitere vorteilhafte Ausgestaltungen sind in den Unteransprüchen zu Anspruch 1 angegeben.The object according to the invention is solved by a gas expansion system with the features in claim 1. Further advantageous refinements are specified in the subclaims to claim 1.

Nach dem Gedanken der Erfindung ist vorgesehen, dass die aus dem ersten Auslass des mindestens einen Wirbelrohres strömende Kaltfraktion des Gases in Strömungsverbindung mit einem Einlass mindestens eines zweiten Wirbelrohrs steht und aus zwei Auslässen in Form eines ersten Auslasses für eine erste Kaltfraktion des Gases und in Form eines zweiten Auslasses für eine zweite Warmfraktion des Gases ausströmt, wobei die Warmfraktion des mindestens einen zweiten Wirbelrohres mit der zweiten, gastromabwärts gelegenen Gassenke in Strömungsverbindung steht, und wobei die Kaltfraktion des mindestens einen zweiten Wirbelrohres mit einem Ausgang für verflüssigtes Gas in Strömungsverbindung steht. Diese Schaltung ist eine Kaskade von mindestens zwei Wirbelrohren, die auf ihrer Seite der Kaltfraktion als Kaskade miteinander verbunden sind. In der Kaskade sind die Ausgänge der Wirbelrohre für die Warmfraktion mit je einem im Druck korrespondierenden Gasableitungsnetz verbunden. Das letzte Wirbelrohr führt in der Kaskade zu einer Verflüssigung des Gases. Das flüssige Gas wird eingelagert und ist für die weitere Nutzung durch Kunden für flüssiges Gas gedacht. Diese Kaskadenschaltung ist zur Erzeugung von flüssigem Gas eher energieineffizient. Das Ziel der Erfindung ist es aber nicht, flüssiges Gas herzustellen, sondern Gas, das unter hohem Druck steht und beispielsweise aus einer Pipeline, aus einer Gasversorgungsleitung oder aus einem Gasspeicher stammt, so zu entspannen, dass die Temperatur des entspannten Gases die Erfordernisse an die Zustandsgrößen für in Gasversorgungsleitungen erfüllt. Das bei der Gasentspannung anfallende, verflüssigte Gas erreicht in der erfindungsgemäßen Gasentspannungsanlage nur etwa 2% bis 5% des gesamten, durch die Anlage strömenden Gases. Die Wärme aus 5% des durch die Gasentspannungsanlage strömenden Gases wird auf die restlichen 95% des in die weiterführenden Gasableitungsnetze strömenden Gases übertragen, ohne dass es notwendig ist, das in die weiterführenden Gasableitungsnetze strömenden Gas zu erwärmen oder durch atmosphärische Wärmetauscher aufzuwärmen. Die Gasentspannungsanlage funktioniert somit im Sommer und auch im Winter, unabhängig vom Aufstellungsort oder der klimatischen Aufstellungsregion der Gasentspannungsanlage. Hierbei ist es vorteilhaft, dass nur etwa 5% als flüssiges Gas als Nebenprodukt anfallen, da dieser Anteil etwa der Teil ist, der als flüssiges Gas vom Markt gekauft wird.According to the idea of the invention, it is provided that the cold fraction of the gas flowing from the first outlet of the at least one vortex tube is in flow connection with an inlet of at least one second vortex tube and from two outlets in the form of a first outlet for a first cold fraction of the gas and in the form a second outlet for a second warm fraction of the gas flows out, wherein the warm fraction of the at least one second vortex tube is in flow connection with the second gas sink located downstream of the gas, and wherein the cold fraction of the at least one second vortex tube is in flow connection with an outlet for liquefied gas. This circuit is a cascade of at least two vortex tubes, which are connected to each other as a cascade on their cold fraction side. In the cascade, the outlets of the vortex tubes for the warm fraction are each connected to a gas drainage network with a corresponding pressure. The last vortex tube leads to a liquefaction of the gas in the cascade. The liquid gas is stored and intended for further use by liquid gas customers. This cascade connection is rather energy inefficient for producing liquid gas. The aim of the invention is not to produce liquid gas, but rather to expand gas that is under high pressure and comes, for example, from a pipeline, a gas supply line or a gas storage facility, so that the temperature of the expanded gas meets the requirements State variables for fulfilled in gas supply lines. The liquefied gas produced during gas expansion only amounts to approximately 2% to 5% of the total gas flowing through the system in the gas expansion system according to the invention. The heat from 5% of the gas flowing through the gas expansion system is transferred to the remaining 95% of the gas flowing into the further gas extraction networks, without it being necessary to heat the gas flowing into the further gas extraction networks or to warm it up using atmospheric heat exchangers. The gas expansion system therefore works in summer and also in winter, regardless of the installation location or the climatic region of the installation Gas expansion system. It is advantageous here that only around 5% is produced as a by-product as liquid gas, since this proportion is approximately the part that is purchased from the market as liquid gas.

In einer ersten Ausgestaltung der erfindungsgemäßen Gasentspannungsanlage kann vorgesehen sein, dass zwischen dem mindestens einen zweiten Wirbelrohr und dem Ausgang für verflüssigtes Gas mindestens ein drittes Wirbelrohr geschaltet ist, wobei der zweite Auslass des mindestens einen ersten Wirbelrohres mit einem Gashochdrucknetz als Senke verbunden ist, der zweite Auslass des mindestens einen zweiten Wirbelrohres mit einem Gasmitteldrucknetz als Senke verbunden ist, und wobei der zweite Auslass des mindestens einen dritten Wirbelrohres mit einem Gasniederdrucknetz als Senke verbunden ist. Diese optionale Gasentspannungsanlage weist drei Wirbelrohrstufen aus und verteilt und entspannt das Gas der Hochdruckseite in drei unterschiedliche Gasableitungsbenetze mit unterschiedlichem Druck.In a first embodiment of the gas expansion system according to the invention, it can be provided that at least a third vortex tube is connected between the at least one second vortex tube and the outlet for liquefied gas, the second outlet of the at least one first vortex tube being connected to a high-pressure gas network as a sink, the second The outlet of the at least one second vortex tube is connected to a medium-pressure gas network as a sink, and the second outlet of the at least one third vortex tube is connected to a low-pressure gas network as a sink. This optional gas expansion system has three vortex tube stages and distributes and expands the gas from the high-pressure side into three different gas discharge networks with different pressures.

In einer zweiten Ausgestaltung der der erfindungsgemäßen Gasentspannungsanlage kann vorgesehen sein, dass dem mindestens einen zweiten Wirbelrohr und dem Ausgang für verflüssigtes Gas mindestens eine Kältemaschine geschaltet ist, wobei die Abwärme der Kältemaschine über einen Wärmetauscher in den Gasstrom geleitet ist, der als Warmfraktion aus dem zweiten Auslass des mindestens einen zweiten Wirbelrohres strömt und mit einem Gasmitteldrucknetz als Senke verbunden ist. Diese optionale Gasentspannungsanlage weist zwei Wirbelrohrstufen aus und verteilt und entspannt das Gas der Hochdruckseite in zwei unterschiedliche Gasableitungsbenetze mit unterschiedlichem Druck. Je nach erwünschtem Druck auf der Mittel- und Niederdruckseite kann es möglich sein, dass die Volumenarbeit an den als Drosseln wirkenden Wirbelrohren nicht genügt, um eine Temperatur zu erzeugen, welche die Kaltfraktion verflüssigt. In diesem Fall kann mit einer Kältemaschine nachgeholfen werden, wobei die Abwärme der Kältemaschine in diesem Beispiel in den Gasableitungsstrom der zweiten Wirbelrohrstufe geleitet wird. Auch diese Gasentspannungsanlage arbeitet unabhängig von den klimatisch bedingten atmosphärischen Bedingungen.In a second embodiment of the gas expansion system according to the invention, it can be provided that at least one refrigeration machine is connected to the at least one second vortex tube and the outlet for liquefied gas, the waste heat from the refrigeration machine being passed via a heat exchanger into the gas stream, which is fed as a warm fraction from the second Outlet of the at least one second vortex tube flows and is connected to a gas medium pressure network as a sink. This optional gas expansion system has two vortex tube stages and distributes and expands the gas on the high-pressure side into two different gas discharge networks with different pressures. Depending on the desired pressure on the medium and low pressure side, it may be possible that the volume work on the vortex tubes, which act as throttles, is not sufficient to generate a temperature that liquefies the cold fraction. In this case, a refrigeration machine can be used, with the waste heat from the refrigeration machine in this example being fed into the gas discharge stream of the second Vortex tube stage is directed. This gas expansion system also works independently of the climatic atmospheric conditions.

Schließlich ist es in einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Gasentspannungsanlage möglich, dass das mindestens eine erste Wirbelrohr mit seinem zweiten Ausgang für die Warmfraktion über einen Verdichter mit dem Eingang der Gasentspannungsanlage in Strömungsverbindung steht.Finally, in a further advantageous embodiment of the gas expansion system according to the invention, it is possible for the at least one first vortex tube to be in flow connection with its second output for the warm fraction via a compressor to the inlet of the gas expansion system.

In einer besonderen Ausgestaltung der erfindungsgemäßen Gasentspannungsanlage kann vorgesehen sein, dass ein Verdichter und eine Kältemaschine parallel zueinander geschaltet sind und Gas und Wärme aus dem zweiten Auslass einer Wirbelrohrstufe, das als Warmfraktion das mindestens eine Wirbelrohr verlässt, von einem geringeren Druckniveau auf ein höheres Druckniveau transportiert. Diese Parallelschaltung von Verdichter und Kältemaschine ermöglicht es, die Menge von Gas und Wärme, die von einem Druckniveau zum anderen transportiert wird, in großen relativen Verhältnisintervallen zueinander zu variieren, was für die Einstellung eines optimalen Arbeitspunktes der Wirbelrohre der Gasentspannungsanlage von Vorteil ist.In a special embodiment of the gas expansion system according to the invention, it can be provided that a compressor and a refrigeration machine are connected in parallel to one another and transport gas and heat from the second outlet of a vortex tube stage, which leaves the at least one vortex tube as a warm fraction, from a lower pressure level to a higher pressure level . This parallel connection of compressor and refrigeration machine makes it possible to vary the amount of gas and heat that is transported from one pressure level to another in large relative ratio intervals, which is advantageous for setting an optimal working point of the vortex tubes of the gas expansion system.

Die Erfindung wird anhand der folgenden Figuren näher erläutert. Es zeigt:

Fig. 1
eine erste Ausführungsform eines eingesetzten Wirbelrohres nach Ranque-Hielsch,
Fig. 2
eine Variante eines eingesetzten Wirbelrohres,
Fig. 3
eine erste und einfache Variante der erfindungsgemäßen Gasentspannungsanlage,
Fig. 4
eine zweite Variante der erfindungsgemäßen Gasentspannungsanlage,
Fig. 5
eine dritte Variante der erfindungsgemäßen Gasentspannungsanlage,
Fig. 6
eine vierte Variante der erfindungsgemäßen Gasentspannungsanlage.
The invention is explained in more detail using the following figures. It shows:
Fig. 1
a first embodiment of a vortex tube according to Ranque-Hielsch,
Fig. 2
a variant of an inserted vortex tube,
Fig. 3
a first and simple variant of the gas expansion system according to the invention,
Fig. 4
a second variant of the gas expansion system according to the invention,
Fig. 5
a third variant of the gas expansion system according to the invention,
Fig. 6
a fourth variant of the gas expansion system according to the invention.

In Figur 1 ist eine Schnittzeichnung durch Wirbelrohr 10 nach Ranque-Hielsch mit eingezeichneten Wirbeln W1 und W2 dargestellt, wobei der äußere Wirbel W1 die Warmfraktion führt und der innere Wirbel W2 die Kaltfraktion führt. Die exakte Funktionsweise eines Wirbelrohres nach Ranque-Hielsch ist trotz der Entdeckung dieses Effektes vor etwa 90 Jahren heute noch nicht exakt wissenschaftlich geklärt. Der Effekt nach Ranque-Hielsch ist aber wohl reproduzierbar und lässt sich auch empirisch für verschiedene Volumenströme und mittlere Betriebsdrücke optimieren. Soweit die Funktion des Wirbelrohrs 10 objektiv verstanden ist, strömt unter Druck stehendes Gas GH in einen tangentialen Einlass 11 in das Wirbelrohr 10 ein. Dort bildet das einströmende Gas GH in dem Wirbelrohr verschiedene Wirbel W1 und W2, wobei Gas, das wärmer ist als das in Einlass 11 einströmende Gas, als Warmfraktion WF aus dem Rohrende bei Auslass 13 austritt. Auslass 13 ist an dem Rohrende angeordnet, das dem Rohrende gegenüberliegt, an dem der tangentiale Einlass 11 angeordnet ist. Gas, das deutlich kälter ist, als das in Einlass 11 einströmende Gas, tritt als Kaltfraktion KF bei Auslass 12 aus, der an dem Rohrende angeordnet ist, an dem auch der tangentiale Einlass 11 angeordnet ist. Die Wärmemenge der vereinten Warmfraktion WF und Kaltfraktion KF entspricht etwa der Wärmemenge des eintretenden Gases GH abzüglich der Volumenarbeit V • ΔP als Wärmeäquivalent, die das eintretende unter Druck stehendes Gas GH bei Passage des Wirbelrohres 10 geleistet hat.In Figure 1 is a sectional drawing through the vortex tube 10 according to Ranque-Hielsch with the vertebrae W1 and W2 shown, the outer vortex W1 leads the warm fraction and the inner vortex W2 leads the cold fraction. Despite the discovery of this effect around 90 years ago, the exact functionality of a vortex tube according to Ranque-Hielsch has not yet been scientifically clarified. However, the Ranque-Hielsch effect is reproducible and can also be optimized empirically for different volume flows and average operating pressures. As far as the function of the vortex tube 10 is objectively understood, pressurized gas GH flows into a tangential inlet 11 in the vortex tube 10. There, the inflowing gas GH forms different vortices W1 and W2 in the vortex tube, with gas that is warmer than the gas flowing in inlet 11 emerging from the tube end at outlet 13 as a warm fraction WF. Outlet 13 is located at the pipe end opposite the pipe end at which the tangential inlet 11 is located. Gas that is significantly colder than the gas flowing into inlet 11 exits as cold fraction KF at outlet 12, which is arranged at the pipe end at which the tangential inlet 11 is also arranged. The amount of heat of the combined warm fraction WF and cold fraction KF corresponds approximately to the amount of heat of the incoming gas GH minus the volume work V • ΔP as heat equivalent that the incoming pressurized gas GH did when passing through the vortex tube 10.

Im Gegensatz zu einer einfachen Drossel in Form einer Lochblende oder einer Stahlfritte in einem Rohr, bei dem eine Temperaturabsenkung durch den beobachtbaren Joule-Thomson-Effekt messbar ist, bildet sich in einem Ranque-Hielsch-Rohr eine Kaltfraktion KF mit einer Temperatur unterhalb der Temperatur, die durch den Joule-Thomson-Effekt beobachtbar wäre und eine Warmfraktion WF mit einer Temperatur, die höher ist, als die Temperatur des einströmenden Gases GH. Die vorliegende Erfindung macht sich zu Nutze, dass mit dem Wirbelrohr 10 nach Ranque-Hielsch eine Kaltfraktion KF erhalten wird, die eine Temperatur unterhalb der Temperatur aufweist, die nach Joule-Thomson erreichbar wäre. Die dabei entzogene Wärme geht der Warmfraktion zu, die im Rahmen dieser Erfindung für die Erwärmung des Gases im Ableitungsnetz genutzt wird.In contrast to a simple throttle in the form of a pinhole or a steel frit in a pipe, in which a temperature drop can be measured by the observable Joule-Thomson effect, a cold fraction KF with a temperature below the temperature is formed in a Ranque-Hielsch pipe , which would be observable through the Joule-Thomson effect and a warm fraction WF with a temperature that is higher than the temperature of the inflowing gas GH. The present invention makes use of the fact that with the vortex tube 10 according to Ranque-Hielsch a cold fraction KF is obtained which has a temperature below the temperature that would be achievable according to Joule-Thomson. The heat extracted goes to the warm fraction, which is used in the context of this invention to heat the gas in the drainage network.

In der Legende zu Figur 1 sind drei verschiedene Thermometer unter je einem schattierten Quadrat dargestellt, die die je einer Schattierung der Wirbel W1 und W2 zugeordnet werden können. Schwarz (links) bedeutet kalt und entspricht der Temperatur der austretenden Kaltfraktion KF. Eine mitteldunkle Schattierung (Mitte) entspricht etwa der Temperatur des unter Druck stehenden, eintretenden Gases GH und eine hellere Schattierung (rechts) entspricht etwa der Temperatur der austretenden Warmfraktion WF.In the legend too Figure 1 Three different thermometers are shown under a shaded square, each of which can be assigned to a shade of the vortices W1 and W2. Black (left) means cold and corresponds to the temperature of the emerging cold fraction KF. A medium-dark shading (middle) corresponds approximately to the temperature of the pressurized incoming gas GH and a lighter shading (right) corresponds approximately to the temperature of the emerging warm fraction WF.

In Figur 2 ist eine Schnittzeichnung durch eine Variante des Ranque-Hielsch-Rohres als Wirbelrohr 20 dargestellt. Anders als bei dem zuvor beschriebenen Wirbelrohr 10 nach Ranque-Hielsch in Figur 1 ist der Auslass 23 für die Warmfraktion WF vollkommen verschlossen. Der Ranque-Hielsch-Effekt bricht dadurch nicht zusammen, sondern die Wärme der Warmfraktion WF wird über die Rohrwand RW auf die Kühlrippen 27 in ein Gehäuse 24 des Wirbelrohres 20 abgeleitet, wo ein Teilstrom TS des unter Druck stehenden Gases GH, der durch den Strömungseingang 25 in das Gehäuse 24 eingetreten ist, die Wärme aufnimmt und über den Strömungsausgang 26 das Gehäuse 24 verlässt. Von außen gesehen unterscheidet sich diese zweite Variante des Ranque-Hielsch-Rohres vom Ranque-Hielsch-Rohr nach Figur 1 durch den Weg der Wärme. In dem zuvor beschriebenen Wirbelrohr 10 nach Ranque-Hielsch in Figur 1 wird die Wärme mit der Warmfraktion WF im Wirbel W1 transportiert und mit der Warmfraktion WF aus dem Wirbelrohr 10 durch den Auslass 13 transportiert, hingegen wird die Wärme in der Variante des Ranque-Hielsch-Rohres in Figur 2 durch die Rohrwand RW nach außen in das Gehäuse 24 transportiert und über einen Teilstrom TS des einströmenden Gases GH als Warmfraktion WF abtransportiert, welche durch Auslass 26 das Gehäuse 24 verlässt.In Figure 2 a sectional drawing is shown through a variant of the Ranque-Hielsch tube as a vortex tube 20. Unlike the previously described vortex tube 10 according to Ranque-Hielsch in Figure 1 the outlet 23 for the warm fraction WF is completely closed. The Ranque-Hielsch effect does not collapse as a result, but the heat of the warm fraction WF is conducted via the tube wall RW onto the cooling fins 27 into a housing 24 of the vortex tube 20, where a partial flow TS of the pressurized gas GH, which passes through the flow inlet 25 has entered the housing 24, absorbs the heat and leaves the housing 24 via the flow outlet 26. Seen from the outside, this second variant of the Ranque-Hielsch tube differs from the Ranque-Hielsch tube Figure 1 through the path of heat. In the previously described vortex tube 10 according to Ranque-Hielsch in Figure 1 the heat is transported with the warm fraction WF in the vortex W1 and with the warm fraction WF from the vortex tube 10 through the outlet 13, whereas the heat is transported in the variant of the Ranque-Hielsch tube in Figure 2 transported through the tube wall RW outwards into the housing 24 and transported away via a partial flow TS of the inflowing gas GH as a warm fraction WF, which leaves the housing 24 through the outlet 26.

In der Legende zu Figur 2 sind drei verschiedene Thermometer unter je einem schattierten Quadrat dargestellt, die die je einer Schattierung der Wirbel W1 und W2 zugeordnet werden können. Schwarz (links) bedeutet kalt und entspricht der Temperatur der austretenden Kaltfraktion KF. Eine mitteldunkle Schattierung (Mitte) entspricht etwa der Temperatur des unter Druck stehenden, eintretenden Gases GH und eine hellere Schattierung (rechts) entspricht etwa der Temperatur der austretenden Warmfraktion WF.In the legend too Figure 2 Three different thermometers are shown under a shaded square, each of which can be assigned to a shade of the vortices W1 and W2. Black (left) means cold and corresponds to the temperature of the emerging cold fraction KF. A medium dark shade (middle) corresponds approximately to the temperature of the pressurized incoming gas GH and a lighter shade (right) approximately corresponds to the temperature of the emerging warm fraction WF.

Schließlich gibt es Varianten eines Wirbelrohres, die dem Wirbelrohr 10 in Figur 10 ähneln, bei denen der Auslass 13 für die Warmfraktion WF verschlossen ist und die Wärme durch die Rohrwand RW in die atmosphärische Umgebung strömt. Solche Wirbelrohre arbeiten wie eine Drossel, die durch Wärmeabgabe eine zusätzliche Abkühlung des durch das Wirbelrohr strömenden Gases erzeugen. Gegenstand der Erfindung ist es, diese im Stand der Technik ungenutzte Wärme in den stromabwärts gerichteten Gasstrom zu leiten.Finally, there are variants of a vortex tube that are similar to the vortex tube 10 in Figure 10, in which the outlet 13 for the warm fraction WF is closed and the heat flows through the tube wall RW into the atmospheric environment. Such vortex tubes work like a throttle, which produces additional cooling of the gas flowing through the vortex tube by releasing heat. The object of the invention is to conduct this heat, which is unused in the prior art, into the gas stream directed downstream.

In Figur 3 ist eine Skizze einer ersten und einfachen Variante der erfindungsgemäßen Gasentspannungsanlage dargestellt. Gas aus einer Quelle Q strömt von der Gashochdruckseite GH über einen Eingang 101 in die Gasentspannungsanlage 100. Nach Passage eines Sperr-/Regelventils 104 strömt das Gas unter hohem Druck, wie zum Beispiel 80 bar in mindestens ein Wirbelrohr 10, 20. Das Wirbelrohr 10, 20 kann dabei die in Figur 1 und 2 dargestellten Aufbau haben. Um den hohen Durchsatz von 50.000 Nm3/ und noch weit mehr zu erreichen, der in einer solchen Gasentspannungsanlage 100 entspannt werden muss, ist es möglich, dass Wirbelrohre je einer Stufe, hier der ersten Stufe, parallel zueinander verschaltet sind. Dabei können zwei Wirbelrohre, aber auch fünf, zehn oder einhundert, gar eintausend Wirbelrohre der ersten Stufe parallel miteinander verschaltet werden. Das Gas der Warmfraktion WF aus dem zweiten Auslass 13, 23 des Wirbelrohres 10, 20 kann in dieser Stufe einen Druck von 67 bar aufweisen.In Figure 3 a sketch of a first and simple variant of the gas expansion system according to the invention is shown. Gas from a source Q flows from the gas high-pressure side GH via an inlet 101 into the gas expansion system 100. After passing through a check/control valve 104, the gas flows under high pressure, such as 80 bar, into at least one vortex tube 10, 20. The vortex tube 10 , 20 can be the in Figure 1 and 2 have the structure shown. In order to achieve the high throughput of 50,000 Nm 3 / and much more that must be expanded in such a gas expansion system 100, it is possible for vortex tubes of one stage, here the first stage, to be connected in parallel to one another. Two vortex tubes, but also five, ten or one hundred, even a thousand first stage vortex tubes can be connected in parallel. The gas of the warm fraction WF from the second outlet 13, 23 of the vortex tube 10, 20 can have a pressure of 67 bar in this stage.

Die Kaltfraktion KF aus dem ersten Auslass 12, 22 des mindestens einen ersten Wirbelrohres 10, 20, das eine deutlich geringere Temperatur, dargestellt durch Thermometer T3, hat als das Eingangsgas, das die Temperatur hat, die durch Thermometer T1 dargestellt ist, strömt in den Einlass 11', 21' mindestens eines Wirbelrohres 10', 20' der zweiten Stufe in der Kaskade aus Wirbelrohren. Dieses kältere Gas der Kaltfraktion KF des Wirbelrohres 10, 20 der ersten Stufe wird erneut entspannt, zum Beispiel auf einen Druck von 50 bar bis hinunter auf 3 bar.The cold fraction KF from the first outlet 12, 22 of the at least one first vortex tube 10, 20, which has a significantly lower temperature, represented by thermometer T3, than the input gas, which has the temperature, represented by thermometer T1, flows into the Inlet 11', 21' of at least one vortex tube 10', 20' of the second stage in the cascade of vortex tubes. This Colder gas from the cold fraction KF of the vortex tube 10, 20 of the first stage is expanded again, for example to a pressure of 50 bar down to 3 bar.

An dieser Stelle sei angemerkt, dass der Drucksprung über ein Wirbelrohr die Temperatur der Warmfraktion und der Kaltfraktion bestimmt. Dabei gilt stets, dass die Wärmemengen, die in der Warmfraktion und in der Kaltfraktion enthalten sind, abzüglich der Volumenarbeit, die bei der Entspannung vom Gas geleistet worden ist, der Wärmemenge in dem Gas auf der Eingangssite entspricht. Durch drosseln der verschiedenen Auslässe des Wirbelrohres kann die Temperatur der Kaltfraktion und auch der Warmfraktion eingestellt werden, wobei sich die zuvor genannte Randbedingung stets von selbst einstellt.At this point it should be noted that the pressure jump across a vortex tube determines the temperature of the warm fraction and the cold fraction. It always applies that the amounts of heat contained in the warm fraction and the cold fraction, minus the volume work that was done during the expansion of the gas, corresponds to the amount of heat in the gas at the entrance site. By throttling the various outlets of the vortex tube, the temperature of the cold fraction and also the warm fraction can be adjusted, whereby the aforementioned boundary condition always sets itself.

Das Gas der zweiten Kaltfraktion KF' aus dem mindestens einen zweiten Wirbelrohr 10', 20' der zweiten Stufe in der Kaskade wird sodann als flüssiges Gas (LNG) angezogen und in einem isolierten Tank gelagert.The gas of the second cold fraction KF' from the at least one second vortex tube 10', 20' of the second stage in the cascade is then drawn in as liquid gas (LNG) and stored in an insulated tank.

In Figur 4 ist eine Skizze einer zweiten Variante der erfindungsgemäßen Gasentspannungsanlage als Gasentspannungsanlage 200 dargestellt. Diese Gasentspannungsanlage 200 entspricht in ihrer Funktion etwa der Gasentspannungsanlage 100 aus Figur 3, wobei jedoch 3 Stufen von Wirbelrohren hintereinandergeschaltet sind.In Figure 4 a sketch of a second variant of the gas expansion system according to the invention is shown as a gas expansion system 200. This gas expansion system 200 corresponds in function to the gas expansion system 100 Figure 3 , although 3 stages of vortex tubes are connected in series.

Gas aus einer Quelle Q strömt von der Gashochdruckseite GH über einen Eingang 201 in die Gasentspannungsanlage 200. Nach Passage eines Sperr-/Regelventils 204 strömt das Gas unter hohem Druck, wie zum Beispiel 80 bar in mindestens ein Wirbelrohr 10, 20. Das Wirbelrohr 10, 20 kann dabei die in Figur 1 und 2 dargestellten Aufbau haben. Um den hohen Durchsatz von 50.000 Nm3/ und noch weit mehr zu erreichen, der in einer solchen Gasentspannungsanlage 200 entspannt werden muss, ist es auch in dieser Gasentspannungsanlage 200 möglich, dass Wirbelrohre je einer Stufe, hier der ersten Stufe, parallel zueinander verschaltet sind. Dabei können zwei Wirbelrohre, aber auch fünf, zehn oder einhundert, gar eintausend Wirbelrohre der ersten Stufe parallel miteinander verschaltet werden. Das Gas der Warmfraktion WF aus dem zweiten Auslass 13, 23 des Wirbelrohres 10, 20 kann in dieser Stufe einen Druck von 67 bar aufweisen.Gas from a source Q flows from the gas high-pressure side GH via an inlet 201 into the gas expansion system 200. After passing through a check/control valve 204, the gas flows under high pressure, such as 80 bar, into at least one vortex tube 10, 20. The vortex tube 10 , 20 can be the in Figure 1 and 2 have the structure shown. In order to achieve the high throughput of 50,000 Nm 3 / and much more, which must be expanded in such a gas expansion system 200, it is also possible in this gas expansion system 200 for vortex tubes of each stage, here the first stage, to be connected in parallel to one another . Two vortex tubes, but also five, ten or one hundred, even a thousand first stage vortex tubes can be connected in parallel become. The gas of the warm fraction WF from the second outlet 13, 23 of the vortex tube 10, 20 can have a pressure of 67 bar in this stage.

Die Kaltfraktion KF aus dem ersten Auslass 12, 22 des mindestens einen ersten Wirbelrohres 10, 20, das eine deutlich geringere Temperatur, dargestellt durch Thermometer T3, hat als das Eingangsgas, das die Temperatur hat, die durch Thermometer T1 dargestellt ist, strömt in den Einlass 11', 21' mindestens eines Wirbelrohres 10', 20' der zweiten Stufe in der Kaskade aus Wirbelrohren. Dieses kältere Gas der Kaltfraktion KF des Wirbelrohres 10, 20 der ersten Stufe wird erneut entspannt, zum Beispiel auf einen Druck von 50 bar.The cold fraction KF from the first outlet 12, 22 of the at least one first vortex tube 10, 20, which has a significantly lower temperature, represented by thermometer T3, than the input gas, which has the temperature, represented by thermometer T1, flows into the Inlet 11', 21' of at least one vortex tube 10', 20' of the second stage in the cascade of vortex tubes. This colder gas of the cold fraction KF of the vortex tube 10, 20 of the first stage is expanded again, for example to a pressure of 50 bar.

Das Gas der zweiten Kaltfraktion KF' aus dem mindestens einen zweiten Wirbelrohr 10', 20' der zweiten Stufe in der Kaskade wird sodann einer dritten Wirbelrohrstufe, nämlich Wirbelrohr 10", 20" zugeführt. In diesem Wirbelrohr 10", 20" wird der Druck des Gases für eine Niederdruckleitung zum Beispiel auf ca. 3 bar entspannt. Das Gas der dritten Kaltfraktion KF" aus dem mindestens einen dritten Wirbelrohr 10", 20" der dritten Stufe in der Kaskade wird sodann als flüssiges Gas (LNG) angezogen und in einem isolierten Tank gelagert. In dieser Gasentspannungsanlage wird beispielhaft ein Gas mit einem Druck von 87 bar am Eingang 101 auf einen Druck von 67 bar an der Senke S1 der ersten Wirbelrohrstufe, auf einen Druck von 50 bar an der Senke S2 der zweiten Wirbelrohrstufe und auf einen Druck von drei bar an der Senke S3 der dritten Wirbelrohrstufe für drei verschiedene Gasableitungsnetze entspannt.The gas of the second cold fraction KF' from the at least one second vortex tube 10', 20' of the second stage in the cascade is then fed to a third vortex tube stage, namely vortex tube 10", 20". In this vortex tube 10", 20" the pressure of the gas for a low pressure line is relaxed to approx. 3 bar, for example. The gas of the third cold fraction KF" from the at least one third vortex tube 10", 20" of the third stage in the cascade is then attracted as liquid gas (LNG) and stored in an insulated tank. In this gas expansion system, for example, a gas with a pressure from 87 bar at the inlet 101 to a pressure of 67 bar at the sink S1 of the first vortex tube stage, to a pressure of 50 bar at the sink S2 of the second vortex tube stage and to a pressure of three bar at the sink S3 of the third vortex tube stage for three different Gas drainage networks relaxed.

In Figur 5 eine dritte Variante der erfindungsgemäßen Gasentspannungsanlage als Gasentspannungsanlage 300 skizziert. Diese Gasentspannungsanlage 300 entspricht in die ersten beiden Stufen der Kaskade der Schaltung aus Figur 1, jedoch wird der Ausgang der zweiten Wirbelrohrstufe in eine Kältemaschine KM geleitet, wo das Gas endgültig verflüssigt wird. Die in der Kältemaschine KM anfallende Abwärme wird über einen Wärmetauscher WT, der auch in die Kältemaschine WM integriert sein kann, auf das Gas der zweiten Wirbelrohrstufe übertragen. Diese Anlagenkonfiguration erlaubt es, zum Beispiel einen Druck von 67 in der ersten Wirbelrohrstufe, nämlich an der Senke S1 herzustellen und einen Druck von beispielsweise 50 bar an der Senke S2 der zweiten Wirbelrohrstufe herzustellen. Da die Drucksprünge hier nicht besonders groß sind, ist es möglich, dass die Temperatur der Kaltfraktion KF' der zweiten Wirbelrohrstufe nicht ausreicht, um flüssiges Gas zu erzeugen. In dieser Anlagenkonfiguration wirken die ersten beiden Stufen als Vorkühler für die Kältemaschine KM, wobei das Warmgas der Warmfraktionen WF und WF' in die entsprechenden Gasableitungsnetze abgeleitet wird. Es ist an dieser Stelle anzumerken, dass in dieser Anlagenkonfiguration keine Abwärme an die atmosphärische Luft abgegeben wird, aber auch keine Wärme aus der atmosphärischen Luft entnommen wird. Diese Gasentspannungsanlage arbeitet wie die bereits beschriebenen Gasentspannungsanlagen unabhängig von der atmosphärischen Außentemperatur.In Figure 5 a third variant of the gas expansion system according to the invention is outlined as a gas expansion system 300. This gas expansion system 300 corresponds to the first two stages of the cascade circuit Figure 1 , however, the output of the second vortex tube stage is fed into a refrigeration machine KM, where the gas is finally liquefied. The waste heat generated in the refrigeration machine KM is transferred to the gas of the second vortex tube stage via a heat exchanger WT, which can also be integrated into the refrigeration machine WM. This system configuration allows, for example, a pressure of 67 in the first vortex tube stage, namely at the depression S1 and to produce a pressure of, for example, 50 bar at the depression S2 of the second vortex tube stage. Since the pressure jumps here are not particularly large, it is possible that the temperature of the cold fraction KF' of the second vortex tube stage is not sufficient to produce liquid gas. In this system configuration, the first two stages act as precoolers for the refrigeration machine KM, with the warm gas from the warm fractions WF and WF' being diverted into the corresponding gas drainage networks. It should be noted at this point that in this system configuration no waste heat is released into the atmospheric air, but no heat is removed from the atmospheric air either. Like the gas expansion systems already described, this gas expansion system works independently of the atmospheric outside temperature.

In Figur 6 ist schließlich eine vierte Variante der erfindungsgemäßen Gasentspannungsanlage als Gasentspannungsanlage 400 dargestellt. In dieser Gasentspannungsanlage 400 sind zwei voneinander unabhängige und unterschiedliche technische Merkmale umgesetzt. Die Schaltung der Gasentspannungsanlage 400 in Figur 6 entspricht zunächst der Schaltung der Gasentspannungsanlage 200, dargestellt in Figur 4. Ein erstes technisches Merkmal ist hier, dass die Warmfraktion WF der ersten Wirbelrohrstufe aus dem mindestens einen ersten Wirbelrohr 10, 20 über einen ersten Verdichter VD1 wieder dem Eingang 401 der Gasentspannungsanlage 400 zugeführt wird. Hier ist also ein Verdichter VD2 mit seinem Eingang an den zweiten Ausgang 13, 23 des mindestens einen ersten Wirbelrohres 10, 20 angeschlossen und mit seinem Ausgang mit dem Eingang 401 der Gasentspannungsanlage 101 verbunden. Beim Verdichten wird das Gas erwärmt und wärmt somit den Gaszustrom der Anlage, wodurch auch die Temperaturen der Kaltfraktionen KF, KF2', und KF" der ersten, zweiten und dritten Wirbelrohrstufe beeinflusst werden. Ziel der Gasentspannungsanlage ist es, auf der Gasableitungsseite kein zu kaltes Gas zu erzeugen.In Figure 6 Finally, a fourth variant of the gas expansion system according to the invention is shown as a gas expansion system 400. Two independent and different technical features are implemented in this gas expansion system 400. The circuit of the gas expansion system 400 in Figure 6 initially corresponds to the circuit of the gas expansion system 200, shown in Figure 4 . A first technical feature here is that the warm fraction WF of the first vortex tube stage from the at least one first vortex tube 10, 20 is fed back to the inlet 401 of the gas expansion system 400 via a first compressor VD1. Here, a compressor VD2 is connected with its input to the second output 13, 23 of the at least one first vortex tube 10, 20 and its output is connected to the input 401 of the gas expansion system 101. During compression, the gas is heated and thus warms the gas inflow to the system, which also influences the temperatures of the cold fractions KF, KF2', and KF" of the first, second and third vortex tube stages. The aim of the gas expansion system is to ensure that the gas is not too cold on the gas discharge side to produce gas.

Ein von dem ersten Verdichter VD1 unabhängig einsetzbares technisches Merkmal ist, dass die Warmfraktion WF der dritten Wirbelrohrstufe aus dem mindestens einen dritten Wirbelrohr 10", 20" über einen Verdichter VD2 dem zweiten Ausgang 13', 23' des Wirbelrohres 10', 20' der zweiten Wirbelrohrstufe zugeführt wird. Die vereinten Gase strömen sodann in das als Senke S angeschlossene Gasableitungsnetz, von zum Beispiel 50 bar. Beim Verdichten wird das Gas erwärmt und wärmt somit das abgeleitete Gas der Gasentspannungsanlage. Auch in dieser Gasentspannungsanlage wird keine Wärme an die Atmosphäre abgegebene und auch keine Wärme der Atmosphäre entzogen. Auch diese Gasentspannungsanlage 400 arbeitet unabhängig vom klimatischen Aufstellungsort.A technical feature that can be used independently of the first compressor VD1 is that the warm fraction WF of the third vortex tube stage from the at least one third vortex tube 10", 20" via a compressor VD2 to the second output 13 ', 23' of the vortex tube 10', 20' second vortex tube stage is supplied. The combined gases then flow into the gas drainage network connected as a sink S, for example at 50 bar. During compression, the gas is heated and thus warms the discharged gas from the gas expansion system. In this gas expansion system, too, no heat is released into the atmosphere and no heat is removed from the atmosphere. This gas expansion system 400 also works independently of the climatic location.

Anstelle der Kältemaschine ist es auch möglich, einen Verdichter der Warmfraktion der dritten Wirbelrohrstufe nachzuschalten. So kann vorgesehen sein, dass das mindestens eine dritte Wirbelrohr mit seinem zweiten Ausgang für die Warmfraktion über einen Verdichter mit dem zweiten Ausgang des mindestens einen zweiten Wirbelrohres verbunden ist, so dass die zweiten Ausgänge des mindestens einen zweiten Wirbelrohres und des mindestens einen dritten Wirbelrohres mit dem Gasmitteldrucknetz als Senke verbunden sind. Auch durch die Verdichtung wird Wärme in das Gasmitteldrucknetz als Senke geleitet. Der Unterschied des Einsatzes der Kältemaschine als dritte Stufe und des Verdichters zwischen dritter Stufe und dem Ausgang der zweiten Stufe ist die Wärme- und Stoffbilanz. Da die Wirbelrohre einen relativ schmalbandigen Parametersatz aufweisen, innerhalb derer sie arbeiten, kann durch den Einsatz der Kältemaschine mit Ableitung nur der Wärme in den Gasstrom der Gasmitteldruckseite oder durch Zuleitung der verdichteten Warmfraktion der dritten Wirbelrohrstufe die Strömungsbilanz sehr flexibel eingestellt werden. So ist es auch möglich, eine Kältemaschine und einen Verdichter parallel zu schalten, um beliebige Wärme- und Strömungsbilanzen in der Anlage zu erzeugen. BEZUGSZEICHENLISTE 10 Wirbelrohr 27 Kühlrippe 10' Wirbelrohr 10" Wirbelrohr 100 Gasentspannungsanlage 11 Einlass 101 Eingang 11' Einlass 104 Sperr-/Regelventil 11" Einlass 12 Auslass, Kaltfraktion 200 Gasentspannungsanlage 12' Auslass, Kaltfraktion 204 Sperr-/Regelventil 12" Auslass, Kaltfraktion 13 Auslass, Warmfraktion 300 Gasentspannungsanlage 13' Auslass, Warmfraktion 304 Sperr-/Regelventil 13" Auslass, Warmfraktion T1 Thermometer 20 Wirbelrohr T2 Thermometer 21 Einlass, T2' Thermometer 22 Auslass, Kaltfraktion T2" Thermometer 23 Auslass, Warmfraktion T3 Thermometer 24 Gehäuse T3' Thermometer 25 Strömungseingang T3" Thermometer 26 Strömungsausgang GH Gas, Hochdruckseite S2 Gassenke GM Gas, Mitteldruckseite S3 Gassenke GN Gas, Niederdruckseite TS Teilstrom KF Kaltfraktion VD1 Verdichter KF' Kaltfraktion VD2 Verdichter KF" Kaltfraktion W1 Wirbel KM Kältemaschine W2 Wirbel Q Gasquelle WF Warmfraktion RW Rohrwand WF' Warmfraktion S Gassenke WF" Warmfraktion S1 Gassenke WT Wärmetauscher Instead of the refrigeration machine, it is also possible to connect a compressor to the warm fraction of the third vortex tube stage. It can thus be provided that the at least one third vortex tube with its second output for the warm fraction is connected via a compressor to the second output of the at least one second vortex tube, so that the second outputs of the at least one second vortex tube and the at least one third vortex tube are connected to the gas medium pressure network as a sink. Compression also conducts heat into the gas medium pressure network as a sink. The difference between using the chiller as the third stage and the compressor between the third stage and the output of the second stage is the heat and material balance. Since the vortex tubes have a relatively narrow set of parameters within which they work, the flow balance can be adjusted very flexibly by using the refrigeration machine with the dissipation of only the heat into the gas flow of the gas medium pressure side or by supplying the compressed warm fraction to the third vortex tube stage. It is also possible to connect a refrigeration machine and a compressor in parallel to create any desired heat and flow balances in the system. <b><i>REFERENCE CHARACTER LIST</i></b> 10 Vortex tube 27 cooling fin 10' Vortex tube 10" Vortex tube 100 Gas expansion system 11 inlet 101 Entrance 11' inlet 104 Shut-off/control valve 11" inlet 12 Outlet, cold fraction 200 Gas expansion system 12' Outlet, cold fraction 204 Shut-off/control valve 12" Outlet, cold fraction 13 outlet, warm fraction 300 Gas expansion system 13' outlet, warm fraction 304 Shut-off/control valve 13" outlet, warm fraction T1 thermometer 20 Vortex tube T2 thermometer 21 Inlet, T2' thermometer 22 Outlet, cold fraction T2" thermometer 23 outlet, warm fraction T3 thermometer 24 Housing T3' thermometer 25 Flow input T3" thermometer 26 Flow exit GH Gas, high pressure side S2 alley valley GM Gas, medium pressure side S3 alley valley GN Gas, low pressure side T.S Partial flow KF Cold fraction VD1 compressor KF' Cold fraction VD2 compressor KF" Cold fraction W1 whirl KM Refrigeration machine W2 whirl Q Gas source WF warm fraction RW pipe wall WF' warm fraction S alley valley WF" warm fraction S1 alley valley WT Heat exchanger

Claims (7)

  1. Gas expansion system (100, 200, 300, 400) for the expansion and volume control of gas for use between
    - a first gas source upstream (Q), such as a gas tank, a medium-pressure gas network or a high-pressure gas network or a cavern storage facility, and
    - a second downstream gas sink (S), such as a consumer, a low-pressure gas network or a gas supply pipeline,
    comprising
    - at least one first vortex tube (10, 20) which is in flow connection with the first gas source (Q) upstream via an inlet (101),
    wherein the gas flows from the gas source (Q) into at least one first vortex tube (10, 20) into a tangential inlet (11, 21) and from two outlets in the form of a first outlet (12, 22) for a first cold fraction (KF) of the gas and in the form of a second outlet (13, 23) for a second hot fraction (WF) of the gas,
    characterized in that
    the cold fraction (KF) of the gas flowing from the first outlet (12, 22) of at least one vortex tube (10, 20) is in a flow connection with an inlet (11', 21') of at least one second vortex tube (10', 20') and flows out from two outlets in the form of a first outlet (12', 22') for a first cold fraction (KF') of the gas and in the form of a second outlet (13', 23') for a second hot fraction (WF') of the gas,
    wherein the warm fraction (WF') of at least one second vortex tube (10', 20') is in flow connection with the second downstream gas sink (S, S2), and
    wherein the cold fraction (KF') of at least one second vortex tube (10', 20') with a liquefied gas (LNG) outlet is in flow connection.
  2. Gas expansion system according to Claim 1,
    characterized in that
    at least one third vortex tube (10", 20") is connected between at least one second vortex tube (10', 20') and the liquefied natural gas (LNG) output, wherein:
    the second outlet (13, 23) of at least one first vortex tube (10, 20) is connected to a high-pressure gas network as a sink (S1),
    the second outlet (13', 23') of at least one second vortex tube (10', 20') is connected to a medium-pressure gas network as a sink (S2), and wherein
    the second outlet (13, 23) of at least one third vortex tube (10", 20") is connected to a low-pressure gas network as a sink (S3).
  3. Gas expansion system according to Claim 1,
    characterized in that
    at least one chiller (KM) is connected between at least one second vortex tube (10', 20') and the liquefied natural gas (LNG) output, wherein
    the waste heat from the chiller (KM) is fed into the gas stream via a heat exchanger (WT), which flows as a hot fraction (WF') from the second outlet (13, 23) of at least one second vortex tube (10', 20') and is connected to a medium-pressure gas network as a sink (S2).
  4. Gas expansion system according to Claim 2,
    characterized in that
    the at least one third vortex tube (10", 20") with its second outlet (13", 23") for the hot fraction (WF") is connected to the second outlet (13', 13") of at least one second vortex tube (10', 20') via a compressor (VD2) so that the second outlets (13', 13", 23', 23") of at least one second vortex tube (10', 20') and of at least one third vortex tube (10", 20") are connected to the medium-pressure gas network as a sink (S2).
  5. A gas expansion system according to any one of the Claims 1 to 4,
    characterized in that
    the at least one first vortex tube (10, 20) with its second outlet (13, 23) for the hot fraction (WF) is connected to the inlet (101, 201, 301, 401) of the gas expansion system (100, 200, 300, 400) via a compressor (VD1).
  6. A gas expansion system according to any one of the Claims 1 to 4,
    characterized in that
    at least one of the vortex tubes (10, 20, 10', 20', 10", 20") is connected as a battery of more than one vortex tube, wherein at least two vortex tubes are connected in parallel to each other within a battery.
  7. A gas expansion system according to any one of the Claims 1 to 4,
    characterized in that
    a compressor and a chiller are connected in parallel to each other and transport gas and heat from the second outlet of a vortex tube stage, which leaves at least one vortex tube as a hot fraction, from a lower pressure level to a higher pressure level.
EP20190940.5A 2019-08-14 2020-08-13 Gas discharge system with lng generating system Active EP3795885B9 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019121925.6A DE102019121925B4 (en) 2019-08-14 2019-08-14 Gas expansion plant with LNG generation plant

Publications (3)

Publication Number Publication Date
EP3795885A1 EP3795885A1 (en) 2021-03-24
EP3795885B1 true EP3795885B1 (en) 2023-09-27
EP3795885B9 EP3795885B9 (en) 2023-12-13

Family

ID=72086776

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20190940.5A Active EP3795885B9 (en) 2019-08-14 2020-08-13 Gas discharge system with lng generating system

Country Status (4)

Country Link
EP (1) EP3795885B9 (en)
DE (1) DE102019121925B4 (en)
DK (1) DK3795885T3 (en)
PL (1) PL3795885T3 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020123406A1 (en) 2020-09-08 2022-03-10 Ontras Gastransport Gmbh gas expansion system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3775988A (en) * 1969-05-23 1973-12-04 L Fekete Condensate withdrawal from vortex tube in gas liquification circuit
GB1268069A (en) * 1969-08-06 1972-03-22 Struthers Scient & Internat Co Gas liquefaction apparatus
DD108146A1 (en) * 1973-11-12 1974-09-05
US6932858B2 (en) * 2003-08-27 2005-08-23 Gas Technology Institute Vortex tube system and method for processing natural gas
US8613201B2 (en) * 2009-09-08 2013-12-24 Questar Gas Company Methods and systems for reducing pressure of natural gas and methods and systems of delivering natural gas
CN107940235B (en) * 2017-11-09 2018-10-16 大连理工大学 Ultra-low temperature surroundings based on recycling incoming-flow pressure energy take hot day right controlled atmosphere temperature voltage-regulating system

Also Published As

Publication number Publication date
DK3795885T3 (en) 2024-01-02
PL3795885T3 (en) 2024-03-18
EP3795885B9 (en) 2023-12-13
EP3795885A1 (en) 2021-03-24
DE102019121925A1 (en) 2021-02-18
DE102019121925B4 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
EP3771869B1 (en) Gas discharge system comprising at least one vortex tube
EP1509702A1 (en) Method for operating a compressor
DE1960515B1 (en) Method and device for liquefying a gas
DE1626325B1 (en) Process and device for liquefying low-boiling gases
EP0874188B2 (en) Process for the treatment of cryogenic liquefied gas
EP3795885B1 (en) Gas discharge system with lng generating system
DE102005029275A1 (en) Method for liquefying hydrocarbon-rich flow, in particular flow of natural gas first and second refrigerant-mixture circuits for precooling hydrocarbon-rich flow and third refrigerant-mixture circuit for liquefying and supercooling flow
EP1892457B1 (en) Method and device for storing fuel gas, in particular natural gas
DE3429420C2 (en)
DE102012017654A1 (en) Process and apparatus for nitrogen liquefaction
DE4223160C2 (en) Process and plant for gas compression
DE102006021620A1 (en) Method for liquefying hydrocarbon-rich flow, particularly natural gas flow, involves subjecting hydrocarbon-rich flow to absorptive water separation, before its liquefaction, where cooling of liquefied hydrocarbon-rich flow is up streamed
DE102005038266A1 (en) Process for liquefying a hydrocarbon-rich stream
DE102005010053A1 (en) Helium recovery in LNG plants
EP3964780A1 (en) Gas discharge system
WO2018029371A1 (en) Heat exchanger for use in a heating part of a liquid-air energy storage power plant, heating part, and method for operating such a heat exchanger in such a heating part
WO2005111522A1 (en) Method and device for liquefying a hydrocarbon-enriched flow
WO2017008910A1 (en) Method for cooling a process flow
DE602004001004T2 (en) Nitrogen liquefaction process by exploiting the evaporative coldness of liquid methane
DE102004036708A1 (en) Process for liquefying a hydrocarbon-rich stream
DE19653244A1 (en) Refrigeration system
DE102005008059A1 (en) Separating nitrogen from nitrogen-containing hydrocarbon fractions, comprises removing nitrogen-free hydrocarbons from nitrogen separation process, before heating and mixing streams of warmed fractions; and cooling/heating the fractions
DE102021104052B3 (en) Hot water tank loading method at a district heating connection and hot water loading arrangement as well as hot water loading heat pump
DE102010055448A1 (en) Method and apparatus for the cryogenic separation of air
DE1815010A1 (en) Process for liquefying natural gas

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210915

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: F17D 1/075 20060101ALI20230317BHEP

Ipc: F17D 1/04 20060101AFI20230317BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230509

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SKORZUS, KARSTEN

Inventor name: SPRUNG, HOLGER

Inventor name: PAESSLER, STEFFEN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020005378

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNG B9

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20231215

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231227

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231228

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240127

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240129