DE1815010A1 - Process for liquefying natural gas - Google Patents

Process for liquefying natural gas

Info

Publication number
DE1815010A1
DE1815010A1 DE19681815010 DE1815010A DE1815010A1 DE 1815010 A1 DE1815010 A1 DE 1815010A1 DE 19681815010 DE19681815010 DE 19681815010 DE 1815010 A DE1815010 A DE 1815010A DE 1815010 A1 DE1815010 A1 DE 1815010A1
Authority
DE
Germany
Prior art keywords
natural gas
mixture
cooled
heat exchanger
circuits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE19681815010
Other languages
German (de)
Inventor
Streich Dipl-Phys Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Messer Griesheim GmbH
Original Assignee
Messer Griesheim GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messer Griesheim GmbH filed Critical Messer Griesheim GmbH
Priority to DE19681815010 priority Critical patent/DE1815010A1/en
Priority to NL6916760A priority patent/NL6916760A/xx
Priority to GB1296696D priority patent/GB1296696A/en
Priority to FR6941843A priority patent/FR2026322B1/fr
Publication of DE1815010A1 publication Critical patent/DE1815010A1/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0217Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as at least a three level refrigeration cascade with at least one MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0217Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as at least a three level refrigeration cascade with at least one MCR cycle
    • F25J1/0218Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as at least a three level refrigeration cascade with at least one MCR cycle with one or more SCR cycles, e.g. with a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0219Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. using a deep flash recycle loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/42Quasi-closed internal or closed external nitrogen refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/60Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

HESSEE GRIESHEIM GMBH MG 463HESSEE GRIESHEIM GMBH MG 463

Kennwort: Sonatrach II
ErfInder; M. Streich
Password: Sonatrach II
Inventor; M. prank

Verfahren zum Verflüssigen von ErdgasProcess for liquefying natural gas

Die Erfindung betrifft ein Verfahren zum Verflüssigen von Erdgas durch Wärmeentzug mittels geschlossener Kühlmittelkreislauf e bis zur vollständigen Verflüssigung, wobei die Kühlmittelkreislauf e durch eine Kaskadenschaltung miteinander verbunden sind» Das Erdgas wird dabei stufenweise in Gegenstromwärmeaus- ^ t&iisehern mit den Kühlmittelkreislauf en in Kontakt gebracht.The invention relates to a method for liquefying natural gas by extracting heat by means of a closed coolant circuit e until complete liquefaction, with the coolant circuit e are connected to each other by a cascade connection »The natural gas is gradually dissipated in countercurrent heat t & iis brought into contact with the coolant circuits.

ist bekannt, zwecks Einsparung von Kreisläufen und Druckstufea als Kühlmittel in den Kreisläufen Mehrkomponentengemische au verwenden, di© aus Bestandteilen des zu verflüssigenden Erdgases g^sasmengesetzt sind* Um sich dabei der Verflüssigungskurve dea Erdgases anzupassen, wird gemäß des? holländischen Patentschrift 108 6?8 die Zusammensetzung der Mehrkomponentengemisehe so gewählt, daß in ^eder Värmeaustauschstufe die !Demperaturdifferena ^T -zwischen dea abzukühlenden Erdgas und dea verdampfenden Mehrkomponentengemisch über die ganze Länge des Wärmeaustauschers in efcua konstant ist.»is known for the purpose of saving circuits and pressure stagesea as a coolant in the circuits, multicomponent mixtures use, di © from components of the natural gas to be liquefied g ^ sasmensatz are * To thereby the liquefaction curve dea Natural gas will be adjusted according to the? Dutch patent specification 108 6? 8 the composition of the multicomponent mixture is chosen so that in every heat exchange stage the temperature differences ^ T -between the natural gas to be cooled and the evaporating multi-component mixture over the entire length of the heat exchanger in efcua is constant. "

Der Erfindung liegt die Aufgabe zugrunde, die Wirtschaftlichkeit dieses Verfahrens durch eine verbesserte temperaturführung in dea Wärmeaustauschern zu erhöhen.»The invention has for its object to increase the efficiency of this process through improved temperature management in dea heat exchangers. "

Es wurde nun ein Verfahren gum Vorflüssigen von Erdgas gefunden, bei dem das Erdgas in Gegen?? iTomwärmeaustauschern mit mindestens zwei in Kaskade-geschalteten, geschlossenen Mohrkomponentengemischkreisläufen,_ welche jc/vvoils nur ein Druckstufe durchlaufen, verflüssigt und abgekühlt wird. Bach der Erfindung ist dabei aae Kreislaufgemisch ßo zusammengesetzt, daß die Temperaturunterschiede ΔT zwischen dem abzukühlondc3n Erdgas und dem Kreislaufgemisch eatlang dea einzelnen W*}i3?mea\iütauschers in Sichtung* zur tieforon Temperatur im Mit bei kleiner i-jeru.@na It has now been found a method gum Vorliquid of natural gas, in which the natural gas in counter ?? iTom heat exchangers with at least two cascade-connected, closed Mohr component mixture circuits, which only pass through one pressure stage, are liquefied and cooled. According to the invention, a circuit mixture is composed in such a way that the temperature differences ΔT between the natural gas to be cooled down and the circuit mixture eatlang the individual W * } i3? Mea \ iütauschers in sighting * to the deepforon temperature in the with with less i-jeru. @ N a

Der Vorteil dea erfindungsgemäßen Verfahrens besteht vor allem darin, daß bei gleichem Aufwand an Wärmeaustauschern der Energiebedarf wegen der kleineren Exergieverluste verringert wirdtThe main advantage of the method according to the invention is in that with the same expenditure on heat exchangers, the energy requirement is reduced because of the smaller exergy losses

Eine vorteilhafte Ausführungsform der Erfindung ergibt sich bei einer solchen Zusammenset zrung des Kreislauf gemisches, daß die QuotientenAt , gebildet aus dem Temperaturunterschied Δ Τ zwischen dem abzukühlenden Erdgas und dem jeweiligen Kreislauf gemisch und der absoluten Temperatur des Erdgases an allen Stellen eines Wärmeaustauschers im Mittel konstant ist.An advantageous embodiment of the invention results from such a composition of the circuit mixture that the QuotientAt, formed from the temperature difference Δ Τ between the natural gas to be cooled and the respective cycle mixture and the absolute temperature of the natural gas at all points of a heat exchanger is constant on average.

Eine weitere Erhöhung der Wirtschaftlichkeit des Verfahrens ergibt sich dadurch, daß die Entspannung der Kreisläufe auf größere Drücke als 2 Atmosphären, vorzugsweise auf 3 bis 5 Atmosphären, erfolgt. Bei gleichen Wärmeaustauscherquerschnitten, also in etwa gleichen Wärmeaustauscherf lachen, ergeben sich dann geringere Druckverluste. Es ist zweckmäßig, jedoch nicht notwendig, die Mehr komponent engend sehe der Kreisläufe aus Bestandteilen des zu verflüssigenden Erdgases zusammenzusetzen*A further increase in the economic efficiency of the process results in that the relaxation of the circuits to pressures greater than 2 atmospheres, preferably to 3 to 5 atmospheres, he follows. With the same heat exchanger cross-sections, that is to say in approximately the same heat exchanger areas, the result is then smaller Pressure drops. It is useful, but not necessary, to see the multi-component narrowly the circuits from components of the to be composed of natural gas to be liquefied *

Eine besonders vorteilhafte Ausführung ergibt sich, wenn das Erdgas nach dem erfindungsgemäßen Verfahren auf etwa - 14-0° C abgekühlt wird und danach seine Temperatur bis auf seine Speichertemperatur, etwa - 160° C, erniedrigt wird. Dies erfolgt zweckmäßigerweise durch einen zusätzlichen offenen oder geschlossenen Kreislauf. Besteht dieser Kreislauf aus einem Gemisch von Stickstoff, Methan und evtl. Äthan, so wird er vorteilhafterweise wie die vorangegangenen Kreisläufe auf Drücke zwi schen 3 1^Id 5 Atmosphären entspannt. Dieser Kreislauf kann aber auch, aus lediglich einer Komponente, Stickstoff oder Methan, bestehen» Weiter kann zur Tiefkühlung ss. B» auch bereits verflüssigtes, auf etwa atmosphärischen Druck entspanntes Erdgas verwendet werden.A particularly advantageous embodiment is obtained when the natural gas is cooled to about -14-0 ° C. by the method according to the invention and then its temperature is lowered to its storage temperature, about-160 ° C. This is expediently done by an additional open or closed circuit. If this circuit consists of a mixture of nitrogen, methane and possibly ethane, then it is advantageously relaxed, like the previous circuits, to pressures between 3 1 ^ Id 5 atmospheres. This cycle can also consist of just one component, nitrogen or methane. B »already liquefied natural gas expanded to around atmospheric pressure can also be used.

„ 5 -"5 -

0 0 9 8 2 9/13150 0 9 8 2 9/1315

Die Erfindung wird nun anhand der Zeichnungen näher erläutert. Bs geigen:The invention will now be explained in more detail with reference to the drawings. B-flat violins:

· 1 den Verlauf der Temperaturdifferenz Δ Τ in. einem Wärmeaustauscher gemäß der Erfindung.· 1 the course of the temperature difference Δ Τ in one Heat exchanger according to the invention.

. 2 das Sehaltschema eines Ausführungsbeispiels des erfindungsgemäßen Verfahrens.. 2 shows the layout diagram of an exemplary embodiment of FIG method according to the invention.

In Figur 1 ist in einem Diagramm der beispielsweise Verlauf der Temperaturdifferenz ΔΤ zwischen dem au verflüssigenden Erdgas und dem Kreislaufgemisch über die Ljänge 1 des Wärmeaustauschers aufgetragen und zwar vom warmen zum kalten Ende. Kurve a gibt den tatsächlichen Verlauf wieder, Kurve b den Verlauf im. Mittel. Das Kreislaufgemisch wird so zusammengesetzt, daß die Kurve a möglichst gut der Kurve b angepaßt ist.In Figure 1 is a diagram of the example of the course of the Temperature difference ΔΤ between the natural gas to be liquefied and the cycle mixture over length 1 of the heat exchanger applied from the warm to the cold end. Curve a there the actual course again, curve b the course in. Middle. The circuit mixture is composed so that the curve a is adapted as well as possible to curve b.

Figur 2 zeigt das Schaltscheraa eines Ausführungsbeispiels der Erfindung, wobei das Erdgas erfindungsgemäß zunächst auf - 142°C abgekühlt und dann mittels eines dritten offenen Kreislaufs auf - 160° C tiefgekühlt wird. 'Figure 2 shows the Schaltscheraa an embodiment of the Invention, wherein the natural gas according to the invention is initially cooled to -142 ° C and then by means of a third open circuit - 160 ° C is frozen. '

Das über Leitung 1 unter etwa 40 at und Umgebungstemperatur in die Anlage eintretende stickstoffhaltige Erdgas wird in den Wär-τ meaustauBchern 2, 3 und 4 verflüssigt und auf - 142° C abgekühlt. Bevor es in den Wärmeaustauscher 4 eintritt, wird ihm £n der Stickstoffkolonne 6 der Stickstoff entzogen-, wobei es den Sumpf dieser Kolonne mittels der ersten Sumpf schlange 5 beheizt, über das Drosselventil 7 wird es dann in die Stickstoffkolonne 6 entspannt, die unter einem Druck von 21 at arbeitet. In ihr wird das Erdgas in drei Fraktionen zerlegt. Aus.dem Sumpf wird stickstofffreies, flüssiges Erdgas abgezogen* Über den Kopf geht reiner Stickstoff weg. In der Mitte der Kolonne wird eine Methan-Stickstoff -Fraktion abgenommen, die in ihrer Menge und Zusammensetzung so gehalten ist, daß damit die Tiefkühlung des flüssigen Erdgases auf - 160° 0 günstig durchgeführt werden kann. Das stickstofffreie, flüssige Erdgas wird übor Leitung 8 aus demThe via line 1 under about 40 at and ambient temperature in the plant entering nitrogenous natural gas is in the heat τ MeaustauBchern 2, 3 and 4 are liquefied and cooled to - 142 ° C. Before it enters the heat exchanger 4, it is £ n the Nitrogen column 6 of the nitrogen removed, it heated the bottom of this column by means of the first bottom coil 5, over the throttle valve 7, it is then expanded into the nitrogen column 6, which works under a pressure of 21 at. In it, the natural gas is broken down into three fractions. The swamp becomes nitrogen-free, Liquefied natural gas withdrawn * Pure nitrogen escapes through the head. In the middle of the column is a methane nitrogen Fraction decreased in terms of their amount and composition is held in such a way that the liquid natural gas can be cooled down to - 160 ° 0. That nitrogen-free, liquid natural gas is via line 8 from the

00 98 29/1315 - 4 -00 98 29/1315 - 4 -

Sumpf der Stickstoffkolonne 6 abgezogen und durchströmt danr» die beiden Wärmeaustauscher 4 und 9, in denen es auf - 142° C bzw. - 160° C tiefgekühlt wird. Nach Zwischenentspannung gelangt es denn in die Speichertanks. Der über Leitung 10 abgezogene Stickstoff durchläuft nacheinander die Wärmeaustauscher 9i 4, 3 und und wird so auf Umgebungstemperatur angewärmt. Ehe das Erdgas in den Wärmeaustauscher 2 gelangt, können ihm noch die schweren Kohlenwasserstoffe entzogen werden.The bottom of the nitrogen withdrawn column 6 and flows through danr "the two heat exchangers 4 and 9, in which it on - is frozen 160 ° C - 142 ° C respectively. After intermediate expansion because it enters into the storage tanks. The nitrogen withdrawn via line 10 passes through heat exchangers 9i, 4, 3 and in succession and is thus warmed to ambient temperature. Before the natural gas reaches the heat exchanger 2, the heavy hydrocarbons can still be removed from it.

■'"'S■ '"' S

Die Kälteerzeugung geschieht über zwei zur Kaskade geschaltete, geschlossene Mehrkomponentengemischkreisläufe sowie einen nachgeschalteten offenen Methan-Stickstoff-Gemisch-Kreislauf *The cold is generated via two closed multi-component mixed circuits connected to a cascade and one downstream open methane-nitrogen mixture cycle *

Der erste Kreislauf liefert die zwischen Umgebungstemperatur und etwa - yo° 0 benötigte Kälte. Er besteht aus einem Gemisch von Methan, Äthan, Propan und Butan und kann durch Kompression auf 42 at bei Umgebungstemperatur vollständig verflüssigt werden.The first circuit supplies the cooling required between ambient temperature and around -yo ° 0. It consists of a mixture of methane, ethane, propane and butane and can be completely liquefied by compression to 42 atm at ambient temperature.

Das im Kompressor 10 auf 42 at verdichtete Gemisch wird im Nachkühler 11 durch Kühlwasser vollständig verflüssigt und gelangt über Leitung 12 in den Wärmeaustauscher 2« Hier wird es gegen sich selbst tiefgekühlt,und gibt nach Entspannung auf 3 at im Entspannungsventil 13 seinen Kälteinhalt an das Erdgas sowie an den zweiten Kreislauf ab. Die Zusammensetzung des Kreislaufgemisches ist erfindungsgemäß derart, daß im Wärmeaustauscher 2 die Temperaturdifferenz Δ Τ zwischen dem Kreislaufgemisch und dem Erdgas zum kalten Ende hin im Mittel kleiner wird. Über Leitung 14 gelangt das Kreislaufgemisch schließlich zurück zum Kompressor 10.The mixture compressed to 42 atm in the compressor 10 is in the aftercooler 11 completely liquefied by cooling water and reaches the heat exchanger 2 via line 12. Here it is counteracted self-frozen, and gives after relaxation to 3 at im Relief valve 13 from its cold content to the natural gas and to the second circuit. The composition of the cycle mixture is according to the invention such that in the heat exchanger 2, the temperature difference Δ Τ between the circuit mixture and the Natural gas becomes smaller on average towards the cold end. The cycle mixture finally returns to the compressor via line 14 10.

Das Mehrkomponentengemisch des zweiten Kreislaufes in Leitung wird in den Wärmeau3tauschorn .2 und 3 verflüssigt und gekühlt. Danach durchströmt Θ3 die zweite Sumpfachlange 16 der Stickstoff-.kolonne 6 und den Wärmeaustauscher 4. Das auf diesem Wege tiefgekühlte Gemisch wird im Entspannungsventil 17 auf 3 bis 4 at entspannt. Über Leitung 18 gelangt es nacheinander in die Wärme-The multi-component mixture of the second circuit in line is liquefied and cooled in the heat exchanger tubes .2 and 3. Then Θ3 flows through the second sump line 16 of the nitrogen column 6 and the heat exchanger 4. The mixture frozen in this way is adjusted to 3 to 4 at in the expansion valve 17 relaxed. Via line 18 it successively enters the heat

009829/1315009829/1315

austausche:"? 4-, 3 und 2, wobei es sich auf Umgebungstemperatur erwärmt und verdampft. Erfindungsgemäß ist seine Zusammensetzung Wiederum derart, daß ΔT zum kalten Ende der Wärmeaustauscher hin im Mittel kleiner wird. Im Kompressor 19 wird das Kreislaufgemisch dann erneut verdichtet und im Nachkühler 20 auf etwa Umgebungstemperatur gekühlt.swap: "? 4-, 3 and 2, referring to ambient temperature heated and evaporated. According to the invention, its composition is again such that .DELTA.T to the cold end of the heat exchanger becomes smaller on average. In the compressor 19, the cycle mixture then compressed again and cooled in the aftercooler 20 to approximately ambient temperature.

Der zweite Kreislauf kann bei den gewählten Betriebsbedingungen, also Zusammensetzung und Druck nach der Entspannung, praktisch keine Kälte unterhalb - 14-2° C an.das Erdgas abgeben. Es ist zwar möglich, aber thermodynamisch nicht günstig, seinen Arbeitsbereich über ein noch, größeres Temperaturintervall auszudehnen. Deshalb wird dem zweiten Kreislauf eine dritte Kaskadenstufe nachgeschaltet. Diese dritte Stufe ist offen und arbeitet mit einem Gemisch aus Stickstoff und Methan und beliefert das Erdgas mit der zwischen - 142° 0 und - 160° C zur Tiefkühlung benötigten Kälte. Dieser Kreislauf kann auch etwas Äthan enthalten.*Er kann aber auch ein reiner Stickstoff- oder Methankreislauf sein. Es kann z. B. verlüssigtes Erdgas für den Methankreislauf benutzt werden. Schließlich kann der Kreislauf auch geschlossen ausgeführt werden. .The second circuit can be practical under the selected operating conditions, i.e. composition and pressure after the expansion no cold below - 14-2 ° C. give off the natural gas. It is his working area is possible, but thermodynamically not favorable to extend over an even larger temperature interval. That is why a third cascade stage is connected downstream of the second circuit. This third level is open and cooperates a mixture of nitrogen and methane and supplies the natural gas with the temperatures between - 142 ° 0 and - 160 ° C required for freezing Cold. This cycle can also contain some ethane. * But it can also be a pure nitrogen or methane cycle. It can e.g. B. Liquefied natural gas can be used for the methane cycle. Finally, the cycle can also be closed are executed. .

In der Mitte der Stickstoffkolonne 6 wird über Leitung 21 das gasförmige Methan-Stickstoff-Gemisch für die dritte Kaskadenstufe abgezogen und im Wärmeaustauscher 4- gegen den zweiten Kreislauf verflüssigt. Das Gemisch gelangt weiter zum WärmeaustauGcher 9, wo es unterkühlt wird und zum Entspannungsventil 22, wo es auf 3,8 at entspannt wird. Es gibt dann zunächst einen Teil seiner Kälte zwecks Rücklauferzeugung in der Kühlschlange 23 der Stickstoffkolonne 6 ab. Danach strömt es über Leitung 24- zurück zum Wärmeaustauscher 9» v/o es den überwiegenden Teil seiner Kälte zur Tiefkühlung des Erdgases auf - 160° C abgibt, nachdem ea die V/ärmeaustauscher 4, 3 und 2 durchströmt hat und auf Umgebungstemperaturen angewärmt worden ist, wird es zus? Energie- und Wärmeerzeugung verbraucht. · . .In the middle of the nitrogen column 6, the gaseous methane-nitrogen mixture for the third cascade stage is drawn off via line 21 and liquefied in the heat exchanger 4- against the second circuit. The mixture passes on to the heat exchanger 9, where it is supercooled, and to the expansion valve 22, where it is expanded to 3.8 at. It then first gives off some of its coldness in the cooling coil 23 of the nitrogen column 6 for the purpose of generating reflux. It then flows back to the heat exchanger 9 via line 24- v / o it gives off most of its coldness to freeze the natural gas to - 160 ° C after it has flowed through heat exchangers 4, 3 and 2 and has been warmed to ambient temperatures is it going to be? Energy and heat generation consumed. ·. .

009829/1315009829/1315

Der beschriebene Verflüssigungsprozess ist seinem Wesen nach eine dreistufige Kaskade mit dem hohen thermodynamischen Wirkungsgrad einer mehrstufigen Kaskade, jedoch geringem Materialaufwand. Iharch die erf indungsgemäße .Temperaturführung in den Wärmeaustauschern gelingt es, den Energiebedarf zu verringern und somit die Wirtschaftlichkeit des Verfahrens zu erhöhen.The liquefaction process described is essentially a three-stage cascade with high thermodynamic efficiency a multi-stage cascade, but with little material expenditure. Iharch the inventive .Temperature control in the Heat exchangers succeed in reducing the energy requirement and thus increasing the efficiency of the process.

6. 11. 1968November 6, 1968

00 9 8 2.9/131500 9 8 2.9 / 1315

Claims (1)

HESSER GRIESHEIM GMBH MG 463HESSER GRIESHEIM GMBH MG 463 AnsprücheExpectations 1. Verfahren zum Verflüssigen von Erdgas, bei dem das Erdgas in Gegenstromwärmeaustauschern mit mindestens zwei zur Kaskade geschalteten, geschlossenen Mehrkomponenten-Gemischkreisläufen, welche jeweils nur eine Druckstufe durchlaufen, verflüssigt und abgekühlt wird, gekennzeichnet durch eine solche Zusammensetzung der Kreislaufgemische, daß die Tempe~ raturunterschiede Δ Τ zwischen dem abzukühlenden Erdgas und dem Kreislaufgemisch entlang des einzelnen Wärmeaustauschers in Richtung zur tieferen !Temperatur im Mittel kleiner werden.1. Process for liquefying natural gas, in which the natural gas in countercurrent heat exchangers with at least two cascaded, closed multicomponent mixture circuits, which only go through one pressure stage, liquefy and cool down, indicated by a such a composition of the cycle mixtures that the tempe ~ temperature differences Δ Τ between the natural gas to be cooled and the circuit mixture along the individual heat exchanger in the direction of the lower! temperature become smaller on average. 2. Verfahren nach Anspruch 1, gekennzeichnet durch eine solche Zusammensetzung der Kreislaufgemische, daß die Quotienten ΔΤ , gebildet aus dem Temperaturunterschied ΔΎ zwischen dem abzukühlenden Erdgas und dem jeweiligen Kreislaufgemisch und der absoluten Temperatur des Erdgases* an allen Stellen eines Wärmeaustauschers im Mittel konstant ist.2. The method according to claim 1, characterized by such a composition of the cycle mixtures that the quotient ΔΤ, formed from the temperature difference ΔΎ between the natural gas to be cooled and the respective cycle mixture and the absolute temperature of the natural gas * is constant on average at all points of a heat exchanger. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Entspannung der Kreisläufe auf größere Drücke als 2 Atmosphären erfolgt, vorzugsweise auf 3 bis 5 Atmosphären.3. The method according to claim 1 or 2, characterized in that the relaxation of the circuits to pressures greater than 2 atmospheres takes place, preferably to 3 to 5 atmospheres. 4» Verfahren nach einem der Ansprüche 1 bis 3> dadurch gekennzeichnet, daß.die Mehrkomponentengend.sehe der Kreisläufe aus Bestandteilen des zu verflüssigenden Erdgases zusammengesetzt sind.4 »Method according to one of Claims 1 to 3> characterized in that.the multicomponent.se the circuits Components of the natural gas to be liquefied composed are. 5· Verfahren nach einem der Ansprüche 1 bis 4, wobei das Erdgas auf etvra - 140° C abgekühlt wird, dadurch gekennzeichnet, daß eine weitere Abkühlung des Erdgases bis auf etwa - 160° C durch einen zusätzlichen offenen oder geschlossenen Kreislauf erfolgt, der im wesentlichen aus Stickstoff, Methan oder einer Mischung von beiden zusammengesetzt ist«5 · The method according to any one of claims 1 to 4, wherein the natural gas is cooled to about - 140 ° C, characterized in that that a further cooling of the natural gas down to about - 160 ° C by an additional open or closed circuit which is essentially composed of nitrogen, methane or a mixture of both « Ba/BtBa / Bt 0098 29/13150098 29/1315 22. 11. 1968November 22, 1968
DE19681815010 1968-12-17 1968-12-17 Process for liquefying natural gas Pending DE1815010A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE19681815010 DE1815010A1 (en) 1968-12-17 1968-12-17 Process for liquefying natural gas
NL6916760A NL6916760A (en) 1968-12-17 1969-11-06
GB1296696D GB1296696A (en) 1968-12-17 1969-12-01
FR6941843A FR2026322B1 (en) 1968-12-17 1969-12-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19681815010 DE1815010A1 (en) 1968-12-17 1968-12-17 Process for liquefying natural gas

Publications (1)

Publication Number Publication Date
DE1815010A1 true DE1815010A1 (en) 1970-07-16

Family

ID=5716394

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19681815010 Pending DE1815010A1 (en) 1968-12-17 1968-12-17 Process for liquefying natural gas

Country Status (4)

Country Link
DE (1) DE1815010A1 (en)
FR (1) FR2026322B1 (en)
GB (1) GB1296696A (en)
NL (1) NL6916760A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2126561A1 (en) * 1971-01-14 1972-07-27 J.F. Pritchard and Co., Kansas City, Ma. (V.StA.) Process for liquefying natural gas
DE3521060A1 (en) * 1984-06-12 1985-12-12 Snamprogetti S.P.A., Mailand/Milano Method for cooling and liquefying gases
EP1144928A2 (en) * 1998-12-18 2001-10-17 Exxonmobil Upstream Research Company Dual multi-component refrigeration cycles for liquefaction of natural gas

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005029275A1 (en) * 2005-06-23 2006-12-28 Linde Ag Method for liquefying hydrocarbon-rich flow, in particular flow of natural gas first and second refrigerant-mixture circuits for precooling hydrocarbon-rich flow and third refrigerant-mixture circuit for liquefying and supercooling flow

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2126561A1 (en) * 1971-01-14 1972-07-27 J.F. Pritchard and Co., Kansas City, Ma. (V.StA.) Process for liquefying natural gas
DE3521060A1 (en) * 1984-06-12 1985-12-12 Snamprogetti S.P.A., Mailand/Milano Method for cooling and liquefying gases
EP1144928A2 (en) * 1998-12-18 2001-10-17 Exxonmobil Upstream Research Company Dual multi-component refrigeration cycles for liquefaction of natural gas
EP1144928A4 (en) * 1998-12-18 2002-05-22 Exxonmobil Upstream Res Co Dual multi-component refrigeration cycles for liquefaction of natural gas

Also Published As

Publication number Publication date
FR2026322B1 (en) 1974-02-01
FR2026322A1 (en) 1970-09-18
GB1296696A (en) 1972-11-15
NL6916760A (en) 1970-06-19

Similar Documents

Publication Publication Date Title
DE69920147T2 (en) Natural gas liquefaction with the help of two coolant mixture cycles
DE2023614A1 (en) Process for liquefying a consumption gas stream
DE2163139C2 (en) Method for operating a closed refrigeration circuit and device for carrying out the method
DE2438443A1 (en) METHOD OF LIQUIFYING NATURAL GAS
DE2628007C2 (en)
DE2543291A1 (en) PROCESS FOR PROCESSING A NATURAL GAS FLOW
DE1939114A1 (en) Liquefaction process for gases and gas mixtures, especially for natural gas
DE1551612B1 (en) Liquefaction process for gas mixtures by means of fractional condensation
DE2110417A1 (en) Process for liquefying and subcooling natural gas
DE1551562A1 (en) Process for the production of a methane-rich superplasticizer from liquefied natural gas under low initial pressure
DE1501695A1 (en) Process for the liquefaction of a volatile gas
DE4440401A1 (en) Process for liquefying natural gas
DE1915218A1 (en) Method and device for liquefying natural gas
DE1166798B (en) Method and device for liquefying low-boiling gases
DE1626325B1 (en) Process and device for liquefying low-boiling gases
WO2008022689A2 (en) Method for the liquefaction of a hydrocarbon-rich flow
DE1254656B (en) Process for the production of liquid parahydrogen
DE10226596A1 (en) Process for liquefying a hydrocarbon-rich stream with simultaneous recovery of a C3 + -rich fraction with high yield
DE102005029275A1 (en) Method for liquefying hydrocarbon-rich flow, in particular flow of natural gas first and second refrigerant-mixture circuits for precooling hydrocarbon-rich flow and third refrigerant-mixture circuit for liquefying and supercooling flow
DE102006039616B3 (en) Method and device for storing fuel gas, in particular natural gas
DE1126435B (en) Process for liquefying a gas
DE1815010A1 (en) Process for liquefying natural gas
DE2440215A1 (en) Liquefaction of low-boiling gases - by partial liquefaction with mixed liquid coolant and further cooling with expanded gas coolant
DE1170435B (en) Process for the liquefaction of a gas to be stored in the liquid state under low pressure
DE884203C (en) Arrangement for gas separation