EP3794060A1 - Copolymère séquencé de polydiméthylsiloxane et de polyoxyalkylène à structure linéaire de type aba - Google Patents

Copolymère séquencé de polydiméthylsiloxane et de polyoxyalkylène à structure linéaire de type aba

Info

Publication number
EP3794060A1
EP3794060A1 EP19721304.4A EP19721304A EP3794060A1 EP 3794060 A1 EP3794060 A1 EP 3794060A1 EP 19721304 A EP19721304 A EP 19721304A EP 3794060 A1 EP3794060 A1 EP 3794060A1
Authority
EP
European Patent Office
Prior art keywords
reaction
polyether
acid
sioc
equilibrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19721304.4A
Other languages
German (de)
English (en)
Inventor
Wilfried Knott
Horst Dudzik
Frauke Henning
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Operations GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP18189074.0A external-priority patent/EP3611216A1/fr
Application filed by Evonik Operations GmbH filed Critical Evonik Operations GmbH
Publication of EP3794060A1 publication Critical patent/EP3794060A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/10Equilibration processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/46Block-or graft-polymers containing polysiloxane sequences containing polyether sequences

Definitions

  • the invention relates to equilibrated trifluoromethanesulfonic acid a, w-diacetoxypolydimethylsiloxanes, to processes for their preparation and to SiOC-linked, linear polydimethylsiloxane-polyoxyalkylene block copolymers of the structure type ABA and to processes for their preparation.
  • SiOC-linked polyether siloxanes also referred to as silicone polyethers or siloxane-polyether copolymers
  • use is made according to the current state of the art of several process variants.
  • SiOC linkages are formed by the reaction of a siloxane with a leaving group attached to the silicon atom (e.g., halogen) and an alcohol or polyetherol.
  • a siloxane with a leaving group attached to the silicon atom (e.g., halogen) and an alcohol or polyetherol.
  • the latter is usually obtained beforehand by alkoxylation of monohydroxy-functional starter compounds such as butanol with alkylene oxides.
  • monohydroxy-functional starter compounds such as butanol with alkylene oxides.
  • chlorosiloxanes are used as starting compounds for this type of reaction.
  • chlorosiloxanes are difficult to handle because they are extremely reactive.
  • Their use is further associated with the disadvantage that the hydrogen chloride formed in the course of the reaction limits handling to corrosion-resistant equipment and leads to ecological problems.
  • chlorosiloxanes and alcohols or Polyetheroien organic chlorine compounds arise which are not desirable for toxicological reasons.
  • EP-A-0475440 describes a process in which hydrogen siloxanes are reacted with an alcohol with the addition of an organic acid in the presence of a Pt salt.
  • a Pt salt for the reaction it is indispensable that both large Amounts of organic acid (0.1 to 1 mol based on alcohol), toluene can be used as a solvent and a platinum salt. Since both toluene and acid in the final product are undesirable, they must be separated again after the end of the reaction.
  • Platinum salts are not only expensive, but from a physiological point of view also not safe. Especially in the field of the cosmetic industry, there is a desire for products free of platinum.
  • the technical problem to be solved is to enable the provision of linear SiOC-linked polydimethylsiloxane-polyoxyalkylene block copolymers of the structure type ABA, overcoming the difficulties discussed.
  • the relevant linear, SiOC-linked polyether siloxanes of the structure type ABA correspond to a further object of the invention and are advantageously characterized by a particularly high purity.
  • the a, w-acetoxysiloxanes obtained as a precursor according to this teaching are in no way equilibrates, as is evident from Example 2 of the document, since the gas chromatographic analysis for the entire reaction mixture a share of 14.20% D 4 or after deduction of a salary of 19.04% acetic acid contained in the mixture has a content of 17.53% D 4 based on the pure siloxane matrix.
  • US3346610 also discloses access to acetoxy group-bearing, short-chain siloxanes which is based on the metal halide-induced acetoxy modification of strained cyclic siloxanes by reacting them with acetoxy group-containing silicone compounds.
  • a variety of Friedel-Crafts active metal halides act as a catalyst, with zinc chloride being preferred.
  • a specific objective of US3346610 is the acetoxy modification of strained diorganosiloxane cycles, with deliberate avoidance of equilibration events.
  • the prior art thus relates to work which provide the opening of cyclic siloxanes - here sometimes strained cyclosiloxanes - with reactants containing acyloxy groups and whose objective is to obtain defined linear short-chain and siloxane species which are still to be separated by fractional distillation.
  • the molecular weight-defined, chain-pure, acetoxy-modified siloxane compounds synthesized in this way are not suitable for the preparation of organomodified siloxanes, in particular polyethersiloxanes, which are used in demanding technical applications, such as, for example. in the PU foam stabilization or in the defoaming of fuels, etc. take.
  • Agents that effectively address such a field of application are always characterized by a broad polymer distribution comprising high, medium and low molecular weights, as the oligomers contained in them depending on their molecular weight and thus their diffusion behavior very often attributed differentiated surfactant tasks in different time windows of the respective process are.
  • Older routes for example for the preparation of branched SiOC-linked silicone polyethers, include, among others, the acid-catalyzed reaction of chlorosilanes with acetic acid in the presence of siloxane cycles (US Pat. No. 4,380,451).
  • this process has its own property that the replacement of silicon-bonded chlorine by Acetoxy is a more imperfect, as is apparent from the (in ibid., Column 4, 1st line) proposed siloxane intermediate formula.
  • EP0000328B1 describes a process for the preparation of linear and branched equilibrated organopolysiloxanes by reacting a chlorosilane or partial hydrolyzates thereof with organosiloxanes and monobasic carboxylic acids in the presence of an acidic equilibration catalyst.
  • a chlorosilane or partial hydrolyzates thereof with organosiloxanes and monobasic carboxylic acids in the presence of an acidic equilibration catalyst.
  • acyloxyorganopolysiloxanes and in particular organosiloxanes having terminal acyloxy groups as starting materials for subsequent reactions.
  • the acyloxy groups can be hydrolyzed in a diorganosiloxane, whereupon the hydrolyzate can be dehydrated and the dehydrated hydrolyzate polymerized to form a flowable diorganopolysiloxane.
  • These flowable polysiloxanes are useful as starting materials for the preparation of viscous oils and rubbers which can be cured to silicone elastomers.
  • Organosiloxanes provided with terminal acyloxy groups can be obtained, for example, by reacting an alkylsiloxane and an organic acid and / or anhydride thereof in the presence of sulfuric acid as a catalyst. Such a process is described in US Pat. No. 2,910,496 (Bailey et al.). Although in principle organosiloxanes having terminal acyloxy groups are also obtained by this process, the disadvantage of the process is that the reaction product consists of a mixture of acyloxy-containing siloxanes and acyl-containing silanes of different composition.
  • alkylsiloxane copolymers composed of M, D and T units are cleaved by the process into trimethylacyloxysilane, di-acyloxydimethylsiloxane and methyltriacacylsilane.
  • No. 3,595,885 teaches a process for preparing equilibrated acyloxy-functionalized siloxanes starting from equilibrated chlorosiloxanyl sulfates by reaction with carboxylic acids and / or carboxylic acid salts and / or carboxylic acid anhydrides.
  • the teaching teaches (column 5 / lines 72-74) that you must expect sulfuric acid-containing products (-SO4- and / or -OSO3H bonded to Si), if you use pure carboxylic acids and / or carboxylic anhydrides.
  • acyloxy-functionalized siloxanes are not applicable. If, for example, bridging sulfato groups incorporated in the silicone scaffolds are dissolved out by treatment with carboxylic acid salts, then shorter scission products closed with acyloxy groups are always formed, so that the resulting mixture, and in particular in comparison with the starting material, is by no means a true equilibrate.
  • equilibrated a, w-diacetoxy-polydimethylsiloxanes can be prepared by the reaction of siloxane cycles (in particular comprising D4 and / or Ds) with acetic anhydride in the presence of trifluoromethanesulfonic acid and preferably acetic acid.
  • Another object of the invention is thus a process for preparing trifluoromethanesulfonsaurer equilibrated a, w-Diacetoxypolydimethylsiloxane, wherein cyclic siloxanes, in particular comprising D4 and / or Ds, using trifluoromethanesulfonic acid as a catalyst and preferably acetic acid with acetic anhydride.
  • An exemplary, but also preferred embodiment in the context of the abovementioned process according to the invention provides, with good mixing of the reactants, to apply it with preferably 0.1 to 0.3% by weight of trifluoromethanesulfonic acid based on the entire reaction mass and then preferably to temperatures of 140 to 160 ° C for a period of 4 to 8 hours to heat.
  • reaction products can advantageously be used after prolonged storage with good success for the production of SiOC-linked, linear polydimethylsiloxane-polyoxyalkylene block copolymers of the structure type ABA in the context of this invention. Understand the expert, under normal pressure conditions (1013.25 hPa) and at a constant ratio of acetic anhydride to cyclic siloxanes both the selected reaction temperature, and the selected amount of added catalyst (trifluoromethanesulfonic) and the selected reaction time affect the degree of acetylation achieved and thus the individual position of the equilibrium equilibrium which occurs under these conditions.
  • the amount of substance in Val corresponds to the amount of substance in moles multiplied by the respective stoichiometric valence.
  • Acetanhydride has a stoichiometric valence of 2 because it is formally the source of two acetoxy groups.
  • acetic acid in the process according to the invention for the preparation of trifluoromethanesulfonic acid-equilibrated a, w-diacetoxypolydimethylsiloxanes makes it possible to further improve the equilibration quality.
  • the additional use of acetic acid therefore corresponds to a very particularly preferred embodiment of the invention.
  • it has a positive effect on the achievement of the acetoxy functionalization and, in this respect, makes it possible to improve the yield based on the acetic anhydride used, but, above all, it ensures outstanding equilibration results even after a very short reaction time (for example after 4 hours / example 6).
  • the total cyanogen content determined by gas chromatography can be defined as the sum of the T 4 , Ds, D 6 contents based on the siloxane matrix and determined after the derivatization of the ⁇ , ⁇ -diacetoxypolydimethylsiloxanes to the corresponding ⁇ , ⁇ -diisopropoxypolydimethylsiloxanes be used.
  • acetic acid according to the invention allows the problem-free falling below otherwise usual equilibrium proportions of about 13 weight percent.
  • Another object of the invention are trifluoromethanesulfonic acid, equilibrated a, w-Diacetoxypolydimethylsiloxane, the general formula
  • a, w-diacetoxypolydimethylsiloxane contain chemically bound acetic anhydride equivalent.
  • purity used in the context of this invention in relation to the ABA-structured, SiOC-linked silicone polyethers relates in particular to their degree of halide and, in particular, their chloride freedom.
  • Chloride-free is always desirable and particularly required when the ABA-structured, SiOC-linked silicone polyethers as surfactant component, for example, to take in cleaning formulations for the cleaning of magnetic heads.
  • the payment by credit cards brings with the skin fats, cosmetics, dust but also in particular with moisture (for example, skin swelling) afflicted credit cards in contact with a magnetic head or with Chip reading contacts.
  • the permanent use of the credit card machine with a large number of credit cards and the concomitant buildup of soiling increase the likelihood of malfunctioning up to the non-acceptance of the credit card used. If the contact surfaces covered with metal oxide residues are cleaned with a cleaning fluid, the application of corrosion-promoting chloride ions must be avoided at all costs.
  • Particularly preferably usable buffer mixtures consist of sodium trichloroacetate and acetic acid or of sodium acetate and acetic acid.
  • the use of these liquid buffer mixtures, in particular the buffer mixtures particularly preferred according to the invention, is advantageous from the point of view of production, in particular over the use of simple solid bases, since the metering of a liquid is always simpler than the handling of pulverulent solids.
  • the use of the buffer mixtures according to the invention, especially of the preferred buffer mixtures makes it possible to provide colorless or virtually colorless polyether siloxanes.
  • the linear ABA-structured, SiOC-linked polydimethylsiloxane-polyoxyalkylene block copolymers obtainable by the process according to the invention are of high purity and preferably have chloride contents ⁇ 10 ppm and are particularly suitable, inter alia, for applications of the type described above.
  • the determination of the chloride content can be carried out with Help established methods via potentiometric argentometry or ion chromatography (here in particular following the rule of ASTM D 7319-07 standard) done. Since corrosion phenomena are known to be caused both by the presence of inorganic chloride and by the presence of organochlorine compounds, chloride content within the scope of the inventive teaching always means the analytically detectable total chlorine content.
  • the process for producing SiOC-linked, linear polydimethylsiloxane-polyoxyalkylene block copolymers of the structure type ABA is characterized in that
  • the polyethermonool is initially charged, if appropriate in the presence of an inert solvent, with buffer mixtures and, if appropriate, an additional condensation catalyst and then admixed with equilibrated a, w-diacetoxypolydimethylsiloxane trifluoromethanesulfonic acid, and then thermally separating the released and optionally present in the system acetic acid optionally using an azeotrope-forming solvent together with the solvent and the obtained SiOC-linked, linear polydimethylsiloxane-polyoxyalkylene block copolymer neutralized by the addition of an auxiliary base, filtered and optionally endstabilome.
  • the amount of base used to charge the polyether monool in the buffer mixture is preferably such that it corresponds to at least the stoichiometric equivalent, preferably at least twice the stoichiometric equivalent of the trifluoromethanesulfonic acid contained in the ⁇ , ⁇ -diacetoxypolydimethylsiloxane (see also Examples 2 and 3 ).
  • the buffer mixtures used already contain fractions of the condensation catalyst and in this case particularly preferably the condensation catalyst in the form of a salt.
  • the present in trifluoromethanesulfonic a, w-Diacetoxypolydimethylsiloxan existing trifluoromethanesulfonic acid is neutralized in this way and sets the condensation catalyst from its salt in freedom.
  • the buffer mixtures particularly preferably used according to the invention comprise sodium trichloroacetate and acetic acid or comprise sodium acetate and acetic acid.
  • the amount of the base used for charging the polyethermonool in the buffer mixture as described above is based on the trifluoromethanesulfonic acid equivalent derived from the ⁇ , ⁇ -diacetoxypolydimethylsiloxane
  • the amount of trichloroacetic acid preferably used according to the invention depends on the total amount of the reactants a provided for the SiOC linking reaction a, w-diacetoxypolydimethylsiloxane plus polyethermonool).
  • the amount of trichloroacetic acid to be used in the context of a preferred embodiment is in the range of preferably 0.1 to 0.7 percent by mass, preferably between 0.2 and 0.5 percent by mass, based on the total amount of the reactants a, w-diacetoxypolydimethylsiloxane provided for the SiOC linking reaction plus polyether monool).
  • the amount of acetic acid used in a preferred embodiment for dissolving the buffer mixture is preferably chosen so that it is sufficient to produce a clear, free of solid salt buffer solution, which can be dosed lossless in the reaction matrix.
  • additional amounts of acetic acid are of little significance for successfully carrying out the process according to the invention, but large amounts are also not advantageous, since they must then be removed again from the reaction matrix.
  • all the process variants which make it possible to prefer the condensation catalyst in the form of a solution and not as a solid, and most preferably together with the buffer mixture, in the industrial practice are to be preferred Reaction system bring.
  • the eventuality of the occurrence of discoloration is also related to the temperatures to which the reaction mixture is exposed, thus resulting in several preferred embodiments of the process according to the invention.
  • a further preferred embodiment provides that the trifluoromethanesulfonic acid, equilibrated a, w-diacetoxypolydimethylsiloxane with Polyethermonool (s) at temperatures of ⁇ 25 ° C with stirring presents, and by a subsequent entries of a buffer mixture and optionally an additional condensation catalyst before heating the Reaction mixture of an undesirable discoloration of the reaction product effectively counteracted.
  • buffer mixtures should be initially introduced into the polyetherol or polyetherol mixture intended for linking before the trifluoromethanesulfonic acid, equilibrated ⁇ , w-diacetoxypolydimethylsiloxane is added (cf., in particular, Examples 2 and 3).
  • further condensation catalysts such as, for example, preferably trichloroacetic acid, a rapid reaction of the reactants is ensured. This reaction is preferably carried out at temperatures between 50 to 90 ° C and preferably for a period of 2 to 6 hours.
  • Example 4 shows, a non-inventive implementation of the trifluoromethanesulfonic a, w-diacetoxypolydimethylsiloxane can lead to strongly dark brown colored products.
  • the polyethersiloxanes prepared according to the invention have excellent storage stability.
  • the viscosity is monitored as a function of time at constant storage temperature by sampling, since possible degradation and / or build-up processes are sensitively manifested herein.
  • condensation catalysts are preferably used.
  • all Brönstedt acids in this case preferably the simple mineral acids and methanesulfonic acid, phosphoric acid, phosphonic acids and / or acidic salt-like compounds such as triflate salts
  • bismuth triflate and / or all Lewis acidic compounds such as tin and organotin compounds, titanate esters, tetraalkoxy titanates, zinc acetylacetonate, zinc acetate and trispentafluorophenylborane are capable of catalyzing the reaction of the acetoxysiloxane with polyether monools.
  • trichloroacetic acid as the condensation catalyst.
  • the corresponding use of condensation catalysts, in particular trichloroacetic acid corresponds to a particularly preferred embodiment of the invention.
  • Another object and another preferred embodiment of this invention is the salt-free exchange of acetoxy groups bound to linear siloxanes by polyetheroxy radicals by reacting the trifluoromethanesulfonic acid bearing acetoxy groups, linear siloxane in the presence of buffer mixtures and optionally an additional condensation catalyst and optionally in an inert Solvent brings together with the polyetherol with stirring to the reaction and then removed in the course of a distillation, the resulting acetic acid and residues used Acetanhydrids optionally together with portions of the solvent used.
  • toluene is most preferred.
  • the use of toluene therefore corresponds to a preferred embodiment of the invention.
  • the boiling points of toluene and acetic acid are given as 1.10.6 and 1.18.5 ° C, respectively, and the boiling point of the binary azeotrope as 105.4 ° C.
  • the azeotrope has a composition of 72 weight percent toluene and 28 weight percent acetic acid (Source: Handbook of Chemistry and Physics, 58th Edition, page D2, CRC-Press (1977-1978), West Palm Beach).
  • the thermal circling of the acetic acid accompanying the azeotrope formation ensures complete exchange of the acetoxy functions bound to the siloxane skeleton with polyetheroxy radicals and therefore corresponds to a particularly preferred embodiment of the invention.
  • auxiliary vacuum is very particularly preferred since it minimizes the thermal stress on the resulting SiOC-linked, linear polyethersiloxane (compare Examples 2 and 3). This corresponds to a further preferred embodiment of the invention.
  • trifluoromethanesulfonic acid is preferably used in concentrations of 0.1 to 0.3 percent by weight (w%) based on the total mass of the reaction mixture. This corresponds to a particularly preferred embodiment of the invention.
  • the SiOC-linked polyether siloxane remaining in the distillation bottoms is preferably added by adding an auxiliary base such as, for example Sodium carbonate and subsequent filtration completely free from traces of residual acid (see Examples 2 and 3).
  • an auxiliary base such as, for example Sodium carbonate and subsequent filtration completely free from traces of residual acid (see Examples 2 and 3).
  • linear polyethersiloxanes prepared by the process according to the invention can also be mixed with small amounts of organic amines, such as N-methylmorpholine. This corresponds to a preferred embodiment of the invention.
  • polyether monools which can be used according to the invention are preferably those of the formula (I)
  • A is a saturated or unsaturated organic radical having at least one carbon atom, preferably an organic radical of an organic starting compound having at least one carbon atom for preparing the compound, particularly preferably a linear or branched saturated or unsaturated hydrocarbon radical having 1-18 C atoms, preferably a methyl , Ethyl, propyl, butyl, vinyl or allyl group,
  • R 'independently of one another is a saturated alkyl group having 2-18 C atoms or an aromatic radical, or preferably an ethyl group or a phenyl radical,
  • m is 0 to 50, preferably 0 to 30, more preferably 0 to 20
  • n is 0 up to 250, preferably 3 up to 220, more preferably 5 up to 200 o is 0 to 250, preferably 3 to 220, more preferably 5 to 200, a is equal to 1
  • index numbers reproduced here and the value ranges of the specified indices can be understood as mean values (weight average) of the possible statistical distribution of the actual structures present and / or their mixtures. This also applies to as such per se exactly reproduced structural formulas, such as for formula (I).
  • the units denoted by m, n and o can optionally be mixed randomly or else in blocks in the chain.
  • Statistical distributions can be constructed block by block with an arbitrary number of blocks and an arbitrary sequence or a randomized distribution, they can also be of alternating construction or also form a gradient over the chain, in particular they can also form all mixed forms in which optionally groups of different Distributions can follow one another. Special designs may cause statistical distributions to be constrained by execution. For all areas that are not affected by the restriction, the statistical distribution does not change.
  • the radical A is preferably understood as meaning radicals of substances which form the beginning of the compound of the formula (I) to be prepared, which is obtained by the addition of alkylene oxides.
  • the starting compound is preferably selected from the group of alcohols, polyethers or phenols.
  • the starting compound containing the group A is preferably a monohydric polyether alcohol and / or a monohydric alcohol, or any desired mixtures thereof.
  • the monomers used in the alkoxylation reaction are preferably ethylene oxide, propylene oxide, butylene oxide and / or styrene oxide, as well as any desired mixtures of these epoxides.
  • the different monomers can be used in pure form or mixed.
  • the metered addition of another epoxide to an epoxide already present in the reaction mixture can be continuous over time so that an increasing concentration gradient of the continuously added epoxide is produced.
  • the resulting polyoxyalkylenes are thus subject to a statistical distribution in the final product, with restrictions by the dosage can be determined.
  • a structure gradient can then be expected over the chain length.
  • the relationships between dosage and product structure are known in the art.
  • the compounds of the formula (I) used are preferably those which have a weight average molecular weight of from 76 to 10,000 g / mol, preferably from 100 to 8,000 g / mol and more preferably from 200 to 6,000 g / mol.
  • compounds of the formula (I) it is possible with preference to use those compounds which are prepared from a compound of the formula (II)
  • the radical A is derived from compounds selected from the group of monovalent monomeric, oligomeric or polymeric alcohols, phenols, carbohydrates or carbohydrate derivatives, particularly preferably those compounds are used in which the radical A of one or more alcohols deriving from the group of butanol, 1-hexenol, octanol, dodecanol, stearyl alcohol, vinyloxybutanol, 2-ethylhexanol, cyclohexanol, benzyl alcohol, allyl alcohol, vinyl alcohol, or naturally-based compounds bearing monovalent hydroxyl groups.
  • Particularly preferred compounds are those which are liquid at a pressure of 101325 Pa and a temperature of 23 ° C.
  • a low molecular weight that is, having a molecular weight of less than 200 g / mol
  • hydroxy-functional starters such as butanol, allyl alcohol, propylene glycol in the presence of the alkaline catalyst with an alkylene oxide such as ethylene oxide, propylene oxide, butylene oxide or a mixture of different alkylene oxides a polyoxyalkylene polyether reacted.
  • alkylene oxide such as ethylene oxide, propylene oxide, butylene oxide or a mixture of different alkylene oxides a polyoxyalkylene polyether reacted.
  • the strongly alkaline reaction conditions in this so-called living polymerization promote various side reactions.
  • the compounds of formula (II) may also be prepared by double metal cyanide catalysis.
  • Polyethers prepared by double metal cyanide catalysis generally have a particularly low level of unsaturated end groups of less than or equal to 0.02 meq / gram of polyether compound (meq / g), preferably less than or equal to 0.015 meq / g, more preferably less than or equal to 0.01 meq / g (method of determination ASTM D2849-69), contain significantly fewer monols and usually have a low polydispersity of less than 1.5.
  • the preparation of such polyethers z. For example, in US-A5158922 and EP-A0654302 described.
  • the polyether monools to be used according to the invention may have a primary or secondary OH function.
  • the use of such polyether monools which have a secondary alcohol function is preferred within the scope of the inventive teaching.
  • the exchange according to the invention of the acetoxy groups bonded to the ⁇ , ⁇ -diacetoxypolydimethylsiloxane by reaction with polyethermonools to form SiOC-linear polyethersiloxanes can be carried out in the presence of solvents or preferably without solvent by intimate mixing of the reactants with stirring at reaction temperatures of 20 ° C. to 90 ° C. be carried out at reaction temperatures of 30 ° C to 80 ° C. This corresponds to a preferred embodiment of the invention.
  • the molar ratio of the reactants is preferably such that at least 1 mol of OH functionality bound to the polyether per mole of acetoxy group of the ⁇ , ⁇ -diacetoxy-polydimethylsiloxane, preferably 1 to 2 moles of OH functionality bonded to the polyether, more preferably 1, 1 to 1, 6 moles of polyether-bonded OH functionality, preferably 1, 1 to 1, 4 moles of polyether-bonded OH functionality per mole of acetoxy group of a, w-Diacetoxypolydimethylsiloxans used.
  • the SiOC-linked, branched polyether siloxanes used in a large number of surface-active applications are frequently characterized as containing polyether radicals of different composition and / or molecular weight.
  • a person skilled in the art is familiar with the sometimes different reaction behavior of the polyetheroie employed, so that the aim is to induce a special interfacial activity, make some orienting hand tests with polyetherol mixtures and then evaluate these products in each case in terms of performance, in order to achieve an optimum result.
  • the replacement of the acetoxy groups by reaction with polyether alcohols is carried out according to the invention preferably in the course of 30 minutes to 8 hours. This corresponds to a preferred embodiment of the invention.
  • Another object of the invention is the use of this preparation, prepared by the novel process as described above, as a surfactant additive in non-corrosive cleaning solutions, as defoamers, as foam stabilizers, wetting agents, coating and leveling additives and as a demulsifier.
  • TMS tetramethylsilane
  • the GPC 's (gel permeation chromatography) are carried out using THF as the mobile phase on a column combination SDV 1000 / 10000A, length 65 cm, ID 0.80 at a temperature of 30 ° C on a SECcurity 2 GPC System 1260 ( PSS Polymer Standards Service GmbH).
  • the gas chromatograms are fitted on a GC 7890B GC machine from Agilent Technologies with an HP-1 column; 30m x 0.32mm ID x 0.25pm dF (Agilent Technologies # 19091Z-413E) and hydrogen as the carrier gas with the following parameters:
  • the total cyanogen content determined by gas chromatography is defined as the sum of the D4, D5, D6 contents based on the siloxane matrix and determined after the derivatization of the ⁇ , ⁇ -diacetoxypolydimethylsiloxanes to the corresponding ⁇ , ⁇ -diisopropoxypolydimethylsiloxanes ,
  • the derivatization to the ⁇ , ⁇ -diisopropoxypolydimethylsiloxanes is deliberately chosen in order to prevent a thermally induced cleavage reaction of the ⁇ , ⁇ -diacetoxy-polydimethylsiloxanes which may occur under the conditions of the gas chromatographic analysis (for the cleavage reaction see, inter alia, J.
  • the polyether monools used have water contents of about 0.2 percent by mass and are used without further predrying.
  • the acetoxysiloxanes prepared according to the invention are not stored explicitly in glass bottles at 23 ° C. storage temperature for a period of 3 weeks unless they are explicitly described differently in the respective synthesis examples before they are combined with the polyether alcohols to form the corresponding SiOC-linked linear polydimethylsiloxane-polyoxyalkylene block copolymers or to the corresponding aw-Diisopropoxypolvdimethylsiloxanen be implemented.
  • Example 1 (according to the invention)
  • a buffer solution consisting of 0.32 g of sodium trichloroacetate (224% by weight excess based on the trifluoromethanesulfonic acid present in the acetoxysilane), 0.37 g of trichloroacetic acid (0.2% based on the reaction mixture consisting of polyetherol and acetoxysiloxane) dissolved in 5 g acetic acid added.
  • 80.0 g of an acetoxy-terminated, linear siloxane prepared according to Example 1 are added. The reaction mixture is heated with further stirring to 70 ° C and holds this reaction temperature for 3 hours.
  • the reflux condenser is replaced by a distillation bridge and the volatiles are distilled off at 70 ° C. and an applied auxiliary vacuum of ⁇ 1 mbar.
  • the distillation bottom is treated with 3.68 g of sodium carbonate Na 2 C 3 O in the heat and the batch is allowed to continue stirring at 70 ° C. for 2 hours. After cooling to 23 ° C, the solid with the aid of a filter press (filter disk Seitz K 300) separated.
  • the reflux condenser is replaced by a distillation bridge and the volatiles are distilled off at 70 ° C. and an applied auxiliary vacuum of ⁇ 1 mbar.
  • the distillation bottom is treated with 3.68 g of sodium carbonate Na 2 C 3 O in the heat and the batch is allowed to continue stirring at 70 ° C. for 2 hours. After cooling to 23 ° C, the solid with the aid of a filter press (filter disk Seitz K 300) separated.
  • the reflux condenser is replaced by a distillation bridge and the volatiles are distilled off at 70 ° C. and an applied auxiliary vacuum of ⁇ 1 mbar. After breaking the vacuum, the distillation bottom is treated with 3.68 g of sodium carbonate Na 2 C 3 O in the heat and the batch is allowed to continue stirring at 70 ° C. for 2 hours. After cooling to 23 ° C, the solid with the aid of a filter press (filter disk Seitz K 300) separated.
  • a colorless, clear liquid is isolated whose accompanying 29 Si NMR spectrum demonstrates the quantitative conversion of the ⁇ , ⁇ -diacetoxypolydimethylsiloxane to an ⁇ , ⁇ -diisopropoxypolydimethylsiloxane.
  • a colorless, clear liquid is isolated whose accompanying 29 Si NMR spectrum demonstrates the quantitative conversion of the ⁇ , ⁇ -diacetoxypolydimethylsiloxane to an ⁇ , ⁇ -diisopropoxypolydimethylsiloxane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Silicon Polymers (AREA)

Abstract

L'invention concerne des α,ω-diacétoxypolydiméthylsiloxanes à l'acide triflique équilibrés, leur procédé de production et des copolymères séquencés de polydiméthylsiloxane et de polyoxyalkylène à liaison SiOC, de structure linéaire de type ABA ainsi que leur procédé de production, la production de copolymères séquencés de polydiméthylsiloxane et de polyoxyalkylène à liaison SiOC, de structure linéaire de type ABA étant réalisée en faisant réagir de l'acétoxysiloxane à l'acide triflique avec des huiles de polyéther en présence éventuellement de mélanges tampons et éventuellement d'un catalyseur de condensation supplémentaire et éventuellement d'un solvant inerte.
EP19721304.4A 2018-05-17 2019-05-07 Copolymère séquencé de polydiméthylsiloxane et de polyoxyalkylène à structure linéaire de type aba Pending EP3794060A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP18172876 2018-05-17
EP18189074.0A EP3611216A1 (fr) 2018-08-15 2018-08-15 Copolymères bloc de polydiméthylsiloxane-polyoxyalkylène linéaires de type de structure aba
PCT/EP2019/061655 WO2019219452A1 (fr) 2018-05-17 2019-05-07 Copolymère séquencé de polydiméthylsiloxane et de polyoxyalkylène à structure linéaire de type aba

Publications (1)

Publication Number Publication Date
EP3794060A1 true EP3794060A1 (fr) 2021-03-24

Family

ID=66379935

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19721304.4A Pending EP3794060A1 (fr) 2018-05-17 2019-05-07 Copolymère séquencé de polydiméthylsiloxane et de polyoxyalkylène à structure linéaire de type aba

Country Status (5)

Country Link
US (1) US11359056B2 (fr)
EP (1) EP3794060A1 (fr)
CN (1) CN112119111A (fr)
CA (1) CA3099861A1 (fr)
WO (1) WO2019219452A1 (fr)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017076856A1 (fr) * 2015-11-05 2017-05-11 Basf Se Procédé de préparation de polysiloxanes à modification éther de polyalkylène et leur utilisation
EP3470475B1 (fr) 2017-10-13 2021-01-27 Evonik Operations GmbH Composition durcissable pour revêtements à propriété antiadhésive
EP3492513B1 (fr) 2017-11-29 2021-11-03 Evonik Operations GmbH Procédé de fabrication de polyéthersiloxanes liés au sioc ramifiés dans la partie siloxane
CA3099860A1 (fr) 2018-05-17 2019-11-21 Evonik Operations Gmbh Copolymeres sequences de polydimethylsiloxane et de polyoxyalkylene de structure lineaire de type aba
EP3611214A1 (fr) 2018-08-15 2020-02-19 Evonik Operations GmbH Copolymères bloc polydiméthylsiloxane-polyoxyalkylène linéaires à liaisons sioc
EP3611215A1 (fr) 2018-08-15 2020-02-19 Evonik Operations GmbH Procédé de production de siloxanes portant des groupes acétoxy
EP3663346B1 (fr) 2018-12-04 2023-11-15 Evonik Operations GmbH Siloxane réactif
EP3744760A1 (fr) 2019-05-28 2020-12-02 Evonik Operations GmbH Procédé de fabrication de polyéthersiloxanes liés au sioc ramifiés dans la partie siloxane
EP3744774B1 (fr) 2019-05-28 2021-09-01 Evonik Operations GmbH Procédé de recyclage des silicones
EP3744753B1 (fr) 2019-05-28 2022-04-06 Evonik Operations GmbH Procédé de purification d'acétoxysiloxanes
EP3744754B1 (fr) 2019-05-28 2024-10-02 Evonik Operations GmbH Procédé de production de siloxanes portant des groupes acétoxy
EP3744759B1 (fr) 2019-05-28 2024-07-17 Evonik Operations GmbH Procédé de fabrication de polyéthersiloxanes liés au sioc ramifiés dans la partie siloxane
EP3744756B1 (fr) 2019-05-28 2024-07-03 Evonik Operations GmbH Systèmes acétoxy
EP3744745A1 (fr) 2019-05-28 2020-12-02 Evonik Operations GmbH Fabrication de mousses de polyuréthane
EP3744755B1 (fr) 2019-05-28 2024-10-09 Evonik Operations GmbH Procédé de production de siloxanes portant des groupes acétoxy
EP3744763B1 (fr) 2019-05-28 2024-08-14 Evonik Operations GmbH Polyethérsiloxanes à base de sioc conçus sur mesure
EP3865531A1 (fr) 2020-02-14 2021-08-18 Evonik Operations GmbH Copolymères blocs polydiméthylsiloxane-polyoxyalkylènes linéaires à liaisons sioc
ES2977903T3 (es) 2020-03-27 2024-09-02 Evonik Operations Gmbh Reciclaje de materiales de estructuras planas siliconizadas
EP3919550A1 (fr) * 2020-06-02 2021-12-08 Evonik Operations GmbH Siloxanes linéaires transportant des groupes acetoxy et produits dérivés
US11732092B2 (en) 2020-10-19 2023-08-22 Evonik Operations Gmbh Upcycling process for processing silicone wastes
US12060460B2 (en) 2021-04-29 2024-08-13 Evonik Operations Gmbh Process for producing endcapped, liquid siloxanes from silicone wastes
CN113956487A (zh) * 2021-11-23 2022-01-21 湖南松井新材料股份有限公司 一种硅烷改性聚醚及其制备方法和应用
CN114736378A (zh) * 2022-05-13 2022-07-12 湛江嘉力手套制品有限公司 一种橡胶手套生产用隔离剂组份及其合成方法和应用

Family Cites Families (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB635733A (en) 1947-08-26 1950-04-12 Dow Corning Improvements in or relating to the manufacture of organo silicon esters
BE558554A (fr) 1956-06-26
NL128599C (fr) 1963-08-07 1970-04-15
US3356758A (en) 1963-08-07 1967-12-05 Union Carbide Corp Siloxane-oxyalkylene block copolymers and process therefor
US3595885A (en) 1964-02-12 1971-07-27 Goldschmidt Ag Th Organopolysiloxanes and the process for their preparation
JPS4819941B1 (fr) 1968-06-18 1973-06-18
US3775452A (en) 1971-04-28 1973-11-27 Gen Electric Platinum complexes of unsaturated siloxanes and platinum containing organopolysiloxanes
US4066680A (en) * 1976-10-18 1978-01-03 Sws Silicones Corporation Process for making alpha,omega-siloxanediols
DE2731842C3 (de) 1977-07-14 1983-12-22 Heidelberger Druckmaschinen Ag, 6900 Heidelberg Verfahren zum Ermitteln von durch Schieben und/oder Dublieren hervorgerufenen Veränderungen im Rastertonwert einer Farbe bedruckter Bogen oder Bahnen
DE2802668A1 (de) 1978-01-21 1979-07-26 Bayer Ag Verfahren zur herstellung von siliciumfunktionellen polyorganosiloxanen
DE2929588A1 (de) 1979-07-21 1981-02-05 Bayer Ag Verfahren zur herstellung von polysiloxan-polyoxyalkylen-mischpolymerisaten und deren verwendung bei der herstellung von polyurethan-schaumstoffen
DE3038984A1 (de) 1980-10-15 1982-05-27 Bayer Ag, 5090 Leverkusen Verfahren zum kontinuierlichen faerben und gleichzeitigen ausruesten von textilen materialien
DE3133869C1 (de) 1981-08-27 1983-05-05 Th. Goldschmidt Ag, 4300 Essen Verfahren zur Addition von organischen Siliciumverbindungen mit SiH-Gruppen an Verbindungen mit olefinischen Doppelbindungen
JP2580379B2 (ja) 1990-09-14 1997-02-12 信越化学工業株式会社 アルコキシ変性シリコ―ンの製造方法
JP3187444B2 (ja) * 1991-02-22 2001-07-11 東レ・ダウコーニング・シリコーン株式会社 オルガノポリシロキサンの製造方法
US5158922A (en) 1992-02-04 1992-10-27 Arco Chemical Technology, L.P. Process for preparing metal cyanide complex catalyst
CN1126476A (zh) 1993-07-10 1996-07-10 纽恩希里茨化工厂有限公司 制备有机硅氧烷或聚有机硅氧烷用的催化剂
US5420221A (en) * 1993-07-15 1995-05-30 General Electric Company Process for the production of linear organosiloxane polymers by disproportionation
US5470813A (en) 1993-11-23 1995-11-28 Arco Chemical Technology, L.P. Double metal cyanide complex catalysts
CA2298240C (fr) 1999-02-24 2007-08-21 Goldschmidt Ag Systeme catalytique synergique et procede permettant d'effectuer des reactions d'hydrosilylation
US6284906B1 (en) * 1999-10-12 2001-09-04 University Of Southern California Cyclotrisiloxanes, new siloxane polymers and their preparation
FR2802540B1 (fr) 1999-12-17 2002-05-24 Rhodia Chimie Sa Procede de preparation de polyorganosiloxanes par polymerisation catalysee par un systeme catalytique a base d'acide triflique ou de derives de l'acide triflique
FR2837825B1 (fr) * 2002-03-26 2005-02-25 Rhodia Chimie Sa Procede de preparation de resines polyorganosiloxane fonctionnalisees par redistribution en presence d'acide triflique et/ou d'au moins l'un de ses derives et de charge inerte non basique
DE10301355A1 (de) 2003-01-16 2004-07-29 Goldschmidt Ag Äquilibrierung von Siloxanen
DE10312636A1 (de) 2003-03-21 2004-09-30 Goldschmidt Ag Verfahren zur Umsetzung von Polyorganosiloxanen
DE10359764A1 (de) 2003-12-19 2005-07-14 Goldschmidt Ag Polysiloxane mit über SiOC-Gruppen gebundenen (Meth)acrylsäureestergruppen, Verfahren zu deren Herstellung sowie deren Verwendung als strahlenhärtbare abhäsive Beschichtung
JP2006160706A (ja) * 2004-12-10 2006-06-22 Dow Corning Toray Co Ltd オルガノポリシロキサンの製造方法
DE102005001039B4 (de) 2005-01-07 2017-11-09 Evonik Degussa Gmbh Verfahren zur Herstellung von Äquilibrierungsprodukten von Organosiloxanen und die so erhältlichen Organopolysiloxane
DE102005039398A1 (de) 2005-08-20 2007-02-22 Goldschmidt Gmbh Verfahren zur Herstellung von Anlagerungsprodukten aus SiH-Gruppen enthaltenden Verbindungen an Olefingruppen aufweisende Reaktionspartner in wässrigen Medien
DE102005039931A1 (de) 2005-08-24 2007-03-01 Goldschmidt Gmbh Verfahren zur Herstellung von SiOC-verknüpften, linearen Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymeren
DE102006061351A1 (de) * 2006-12-22 2008-06-26 Evonik Goldschmidt Gmbh Verfahren zur Herstellung von SiOC-verknüpften, linearen Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymeren und ihre Verwendung
DE102006061353A1 (de) 2006-12-22 2008-06-26 Evonik Goldschmidt Gmbh Verfahren zur Umsetzung von Polyorganosiloxanen und deren Verwendung
DE102006061350A1 (de) 2006-12-22 2008-06-26 Evonik Goldschmidt Gmbh Verfahren zur Herstellung von SiOC-verknüpften, linearen Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymeren und ihre Verwendung
CN101386722B (zh) * 2007-09-11 2011-05-04 嘉兴联合化学有限公司 一种有机硅涂料流平剂
DE102007055485A1 (de) 2007-11-21 2009-06-04 Evonik Goldschmidt Gmbh Verfahren zur Herstellung verzweigter SiH-funktioneller Polysiloxane und deren Verwendung zur Herstellung SiC- und SiOC-verknüpfter, verzweigter organomodifizierter Polysiloxane
RU2357978C1 (ru) * 2008-02-04 2009-06-10 Общество с ограниченной ответственностью "Пента-91" (ООО "Пента-91") Способ получения полиорганоацетоксисилоксанов
CN101570601B (zh) * 2008-04-30 2011-02-09 中国石油天然气股份有限公司 一种低分子量羟基硅油的制备方法
DE102008041601A1 (de) 2008-08-27 2010-03-04 Evonik Goldschmidt Gmbh Verfahren zur Herstellung verzweigter SiH-funtioneller Polysiloxane und deren Verwendung zur Herstellung flüssiger, SiC- oder SiOC-verknüpfter, verzweigter organomodifizierter Polysiloxane
DE102008043245A1 (de) 2008-10-29 2010-05-06 Evonik Goldschmidt Gmbh Siliconpolyether-Copolymersysteme sowie Verfahren zu deren Herstellung durch Alkoxylierungsreaktion
DE102008043343A1 (de) 2008-10-31 2010-05-06 Evonik Goldschmidt Gmbh Silikonpolyetherblock-Copolymere mit definierter Polydispersität im Polyoxyalkylenteil und deren Verwendung als Stabilisatoren zur Herstellung von Polyurethanschäumen
WO2010063531A1 (fr) 2008-12-05 2010-06-10 Evonik Goldschmidt Gmbh Nouveaux polyéthersiloxanes à groupes alcoxysilyle et leur procédé de production
DE102009003274A1 (de) 2009-05-20 2010-11-25 Evonik Goldschmidt Gmbh Zusammensetzungen enthaltend Polyether-Polysiloxan-Copolymere
DE102009034607A1 (de) 2009-07-24 2011-01-27 Evonik Goldschmidt Gmbh Neuartige Siliconpolyethercopolymere und Verfahren zu deren Herstellung
DE102010029723A1 (de) 2010-06-07 2011-12-08 Evonik Goldschmidt Gmbh Verfahren zur Herstellung von organischen Siliciumverbindungen
DE102011076019A1 (de) 2011-05-18 2012-11-22 Evonik Goldschmidt Gmbh Alkoxylierungsprodukte und Verfahren zu ihrer Herstellung mittels DMC-Katalysatoren
US8735524B2 (en) * 2011-09-09 2014-05-27 Air Products And Chemicals, Inc. Silicone containing compositions and uses thereof
CN102408567A (zh) * 2011-11-11 2012-04-11 杭州师范大学 一种羟基硅油的制备方法
CN102558559B (zh) * 2011-12-30 2014-03-05 蓝星化工新材料股份有限公司江西星火有机硅厂 一种连续法合成小分子羟基硅油的方法
CN102559031B (zh) * 2011-12-30 2013-10-02 江苏创基新材料有限公司 有机硅改性的水性聚氨酯-丙烯酸酯复合涂层剂及其制备方法
BR112014025273B1 (pt) * 2012-04-10 2020-12-22 Momentive Performance Materials Gmbh processos para preparar um polidialquilsiloxano hidroxiarilóxi-funcional linear e um copolímero de bloco de polidiorganosiloxano/poliorgano
CN102643565B (zh) * 2012-05-04 2013-04-10 浙江润禾有机硅新材料有限公司 一种终端改性有机硅涂料流平剂及其制备方法
DE102012210553A1 (de) 2012-06-22 2013-12-24 Evonik Industries Ag Siliconpolyether und Verfahren zu deren Herstellung aus Methylidengruppen tragenden Polyethern
CN103805128B (zh) * 2012-11-15 2015-11-18 烟台德邦先进硅材料有限公司 一种高折射率led封装胶用粘接剂的合成方法
US20150344735A1 (en) 2012-12-28 2015-12-03 Dow Corning Toray Co., Ltd. Curable Silicone Composition, Cured Product Thereof, And Optical Semiconductor Device
JP6059010B2 (ja) 2012-12-28 2017-01-11 東レ・ダウコーニング株式会社 硬化性シリコーン組成物、その硬化物、および光半導体装置
DE102013208328A1 (de) 2013-05-07 2014-11-13 Evonik Industries Ag Polyoxyalkylene mit seitenständigen langkettigen Acyloxyresten und Verfahren zu ihrer Herstellung mittels DMC-Katalysatoren
CN104419006A (zh) * 2013-08-26 2015-03-18 上海凯众材料科技股份有限公司 聚酯/聚醚-聚硅氧烷嵌段共聚物二元醇的制备方法
JP6621739B2 (ja) * 2013-10-08 2019-12-18 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag 弱酸の塩を用いてポリシロキサン−ポリカーボネートブロック共縮合物を調製する方法
EP3036279B1 (fr) * 2013-10-08 2019-05-08 Momentive Performance Materials GmbH Compositions de siloxane fonctionnel réactif
KR101615544B1 (ko) 2014-04-01 2016-04-26 한국과학기술원 가수분해-축합반응을 이용한 투명 실록산 경화물의 제조방법
JP6655066B2 (ja) * 2015-04-14 2020-02-26 ダウ・東レ株式会社 ポリエーテル−ポリシロキサンブロック共重合体組成物、それを含む界面活性剤、整泡剤、ポリウレタン発泡体形成組成物、化粧料およびその製造方法
CN105175729B (zh) * 2015-09-23 2018-01-12 浙江中天氟硅材料有限公司 一种短链羟基硅油的制备方法
CN106750311A (zh) * 2015-11-20 2017-05-31 扬州宏远化工新材料有限公司 废旧硅橡胶生产羟基硅油的合成方法
US11006429B2 (en) * 2016-05-04 2021-05-11 Apple Inc. Antenna panel switching and beam indication
CN105885051A (zh) * 2016-06-06 2016-08-24 湖北新海鸿化工有限公司 羟基硅油的制备方法
EP3530703A4 (fr) * 2016-10-18 2020-06-10 Dow Toray Co., Ltd. Composition de silicone modifiée par un polyéther, tensio-actif contenant celle-ci, stabilisateur de mousse, composition de formation de mousse de polyuréthane, et produit cosmétique ainsi que procédé de fabrication de celui-ci
EP3321304B1 (fr) 2016-11-15 2019-06-19 Evonik Degussa GmbH Mélanges de siloxanes ramifiés-cycliques de type d/t et leurs produits secondaires
EP3401353B1 (fr) 2017-05-08 2021-06-23 Evonik Operations GmbH Mélanges de siloxanes ramifiés-cycliques de type d/t et leurs dérivés
EP3415547B1 (fr) 2017-06-13 2020-03-25 Evonik Operations GmbH Procédé de fabrication de polyéthersiloxanes liés par sic
EP3415548B1 (fr) 2017-06-13 2020-03-25 Evonik Operations GmbH Procédé de fabrication de polyéthersiloxanes liés par sic
EP3438158B1 (fr) 2017-08-01 2020-11-25 Evonik Operations GmbH Production de polyéthersiloxanes par une liaison sioc
EP3467006B1 (fr) 2017-10-09 2022-11-30 Evonik Operations GmbH Mélanges de siloxanes ramifiés-cycliques de type d/t et leurs produits secondaires
EP3492513B1 (fr) 2017-11-29 2021-11-03 Evonik Operations GmbH Procédé de fabrication de polyéthersiloxanes liés au sioc ramifiés dans la partie siloxane
CA3099860A1 (fr) 2018-05-17 2019-11-21 Evonik Operations Gmbh Copolymeres sequences de polydimethylsiloxane et de polyoxyalkylene de structure lineaire de type aba
EP3611215A1 (fr) * 2018-08-15 2020-02-19 Evonik Operations GmbH Procédé de production de siloxanes portant des groupes acétoxy
EP3611214A1 (fr) 2018-08-15 2020-02-19 Evonik Operations GmbH Copolymères bloc polydiméthylsiloxane-polyoxyalkylène linéaires à liaisons sioc
EP3744753B1 (fr) 2019-05-28 2022-04-06 Evonik Operations GmbH Procédé de purification d'acétoxysiloxanes
EP3744759B1 (fr) 2019-05-28 2024-07-17 Evonik Operations GmbH Procédé de fabrication de polyéthersiloxanes liés au sioc ramifiés dans la partie siloxane
EP3744774B1 (fr) 2019-05-28 2021-09-01 Evonik Operations GmbH Procédé de recyclage des silicones
EP3744754B1 (fr) 2019-05-28 2024-10-02 Evonik Operations GmbH Procédé de production de siloxanes portant des groupes acétoxy
EP3744760A1 (fr) 2019-05-28 2020-12-02 Evonik Operations GmbH Procédé de fabrication de polyéthersiloxanes liés au sioc ramifiés dans la partie siloxane
EP3744756B1 (fr) 2019-05-28 2024-07-03 Evonik Operations GmbH Systèmes acétoxy
EP3744755B1 (fr) 2019-05-28 2024-10-09 Evonik Operations GmbH Procédé de production de siloxanes portant des groupes acétoxy
EP3744745A1 (fr) 2019-05-28 2020-12-02 Evonik Operations GmbH Fabrication de mousses de polyuréthane
EP3744764A1 (fr) 2019-05-28 2020-12-02 Evonik Operations GmbH Fabrication de polyéthersiloxanes par une liaison sioc
EP3744761B1 (fr) 2019-05-28 2021-06-30 Evonik Operations GmbH Polyethérsiloxanes à base de sioc
EP3744763B1 (fr) 2019-05-28 2024-08-14 Evonik Operations GmbH Polyethérsiloxanes à base de sioc conçus sur mesure
EP3744762A1 (fr) 2019-05-28 2020-12-02 Evonik Operations GmbH Procédé de fabrication de polymères séquencés de polyoxyalkylène polysiloxane
EP4065625A1 (fr) 2019-11-28 2022-10-05 Evonik Operations GmbH Polybutadiènes modifiés par polyéther et leur procédé de préparation
EP3865531A1 (fr) 2020-02-14 2021-08-18 Evonik Operations GmbH Copolymères blocs polydiméthylsiloxane-polyoxyalkylènes linéaires à liaisons sioc
EP3865527A1 (fr) 2020-02-14 2021-08-18 Evonik Operations GmbH Fabrication de mousses de polyuréthane
ES2977903T3 (es) 2020-03-27 2024-09-02 Evonik Operations Gmbh Reciclaje de materiales de estructuras planas siliconizadas

Also Published As

Publication number Publication date
CN112119111A (zh) 2020-12-22
WO2019219452A1 (fr) 2019-11-21
US11359056B2 (en) 2022-06-14
CA3099861A1 (fr) 2019-11-21
US20210171719A1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
EP3794060A1 (fr) Copolymère séquencé de polydiméthylsiloxane et de polyoxyalkylène à structure linéaire de type aba
WO2019219446A1 (fr) Copolymères séquencés de polydiméthylsiloxane et de polyoxyalkylène de structure linéaire de type aba
EP3744759B1 (fr) Procédé de fabrication de polyéthersiloxanes liés au sioc ramifiés dans la partie siloxane
EP3492513B1 (fr) Procédé de fabrication de polyéthersiloxanes liés au sioc ramifiés dans la partie siloxane
EP3744760A1 (fr) Procédé de fabrication de polyéthersiloxanes liés au sioc ramifiés dans la partie siloxane
EP3467006B1 (fr) Mélanges de siloxanes ramifiés-cycliques de type d/t et leurs produits secondaires
EP3744763B1 (fr) Polyethérsiloxanes à base de sioc conçus sur mesure
EP3611214A1 (fr) Copolymères bloc polydiméthylsiloxane-polyoxyalkylène linéaires à liaisons sioc
EP3401353B1 (fr) Mélanges de siloxanes ramifiés-cycliques de type d/t et leurs dérivés
EP3744761B1 (fr) Polyethérsiloxanes à base de sioc
EP2289976B1 (fr) Copolymères de silicone polyéther et leur procédé de fabrication
EP3611216A1 (fr) Copolymères bloc de polydiméthylsiloxane-polyoxyalkylène linéaires de type de structure aba
EP2028213B1 (fr) Procédé de fabrication de polyorganosiloxanes ramifiés
EP3611217B1 (fr) Copolymères bloc de polydiméthylsiloxane-polyoxyalkylène linéaires de type de structure aba
EP2352779B1 (fr) Polyéthersiloxanes à groupes alcoxysilyle et leur procédé de préparation
EP2392608B1 (fr) Procédé destiné à la modification de polysiloxanes organiques
EP2159248B1 (fr) Procédé de fabrication de polysiloxanes fonctionnels SiH ramifiés et leur utilisation pour la fabrication de polysiloxanes organomodifiés ramifiés, connexes SiC ou SiOC et liquides
EP2042542B1 (fr) Utilisation de siloxanes linéaires et leur procédé de fabrication
EP3919550A1 (fr) Siloxanes linéaires transportant des groupes acetoxy et produits dérivés
EP3744762A1 (fr) Procédé de fabrication de polymères séquencés de polyoxyalkylène polysiloxane
DE102005051939A1 (de) Verfahren zur Herstellung von organisch modifizierten Polyorganosiloxanen
EP3744752B1 (fr) Procédé de fabrication de polysiloxanes à fonction alkoxy non cycliques
EP1370601B1 (fr) Procede de production d'hydroxyalkylpolysiloxanes
EP3735435B1 (fr) Procédé de préparation de siloxanes à fonction oxamide
DE102004029259A1 (de) Verfahren zur Herstellung von Hydroxyalkylpolysiloxanen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS