EP3783120B1 - Fil de ressort, pince de serrage formée à partir dudit fil de ressort et procédé de fabrication d'un tel fil de ressort - Google Patents
Fil de ressort, pince de serrage formée à partir dudit fil de ressort et procédé de fabrication d'un tel fil de ressort Download PDFInfo
- Publication number
- EP3783120B1 EP3783120B1 EP19193224.3A EP19193224A EP3783120B1 EP 3783120 B1 EP3783120 B1 EP 3783120B1 EP 19193224 A EP19193224 A EP 19193224A EP 3783120 B1 EP3783120 B1 EP 3783120B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- spring wire
- weight
- content
- steel
- spring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 229910000831 Steel Inorganic materials 0.000 claims description 41
- 239000010959 steel Substances 0.000 claims description 41
- 238000005098 hot rolling Methods 0.000 claims description 18
- 239000012535 impurity Substances 0.000 claims description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 14
- 238000001816 cooling Methods 0.000 claims description 13
- 238000001953 recrystallisation Methods 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 10
- 229910052720 vanadium Inorganic materials 0.000 claims description 10
- 238000004804 winding Methods 0.000 claims description 10
- 229910052748 manganese Inorganic materials 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 229910052717 sulfur Inorganic materials 0.000 claims description 9
- 229910052758 niobium Inorganic materials 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- 229910052698 phosphorus Inorganic materials 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 238000005266 casting Methods 0.000 claims description 2
- 238000002844 melting Methods 0.000 claims description 2
- 230000008018 melting Effects 0.000 claims description 2
- 238000009864 tensile test Methods 0.000 claims description 2
- 238000010924 continuous production Methods 0.000 claims 1
- 230000008602 contraction Effects 0.000 claims 1
- 229910000639 Spring steel Inorganic materials 0.000 description 24
- 239000010955 niobium Substances 0.000 description 14
- 229910052799 carbon Inorganic materials 0.000 description 13
- 239000011572 manganese Substances 0.000 description 13
- 239000011651 chromium Substances 0.000 description 10
- 238000005096 rolling process Methods 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 9
- 230000000930 thermomechanical effect Effects 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910000734 martensite Inorganic materials 0.000 description 3
- 230000008092 positive effect Effects 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000005261 decarburization Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000004881 precipitation hardening Methods 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- DBIMSKIDWWYXJV-UHFFFAOYSA-L [dibutyl(trifluoromethylsulfonyloxy)stannyl] trifluoromethanesulfonate Chemical compound CCCC[Sn](CCCC)(OS(=O)(=O)C(F)(F)F)OS(=O)(=O)C(F)(F)F DBIMSKIDWWYXJV-UHFFFAOYSA-L 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000007571 dilatometry Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- -1 vanadium nitrides Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/525—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
- C21D8/065—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/02—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/25—Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/02—Hardening by precipitation
Definitions
- the invention relates to a spring wire which is made from a spring steel with a carbon content of 0.35-0.42% by weight.
- the invention relates to a tension clamp for holding down a rail for rail vehicles in a rail fastening point, which is formed from such a spring wire, and to a method for producing a spring wire of the type in question here.
- a "rail fastening point” the rail to be fastened is attached to the ground that supports the track to which the rail belongs.
- the subsurface can be formed by a conventional threshold made of wood or by thresholds or plates that are formed from a concrete or plastic material.
- the rail fastening point typically comprises at least one guide plate, which rests laterally on the rail and, during use, diverts the transverse forces acting on the rail into the ground, and a tension clamp, which is braced against the surface of the tension clamps. With the end of at least one spring arm, the tension clamp exerts an elastically resilient hold-down force on the rail base, through which the rail is held pressed against the ground.
- the hold-down forces can be applied particularly effectively using W- or ⁇ -shaped tension clamps, which act on the rail base with the free ends of their two spring arms.
- tension clamps shaped like this are the products explained at URL https://www.vossloh.com/de/ effort-undloesungen/ etc. (found on August 12, 2019).
- the spring wires required to produce tension clamps typically have circular diameters of 9 - 15 mm.
- the individual sections of a tension clamp are either predominantly subjected to bending or torsion stress, whereby more or less strong components of the other form of stress can be added to the dominant stress.
- the usual manufacturing route for their production includes the steps of "pouring a molten steel into ingots”, “heating the ingots” and “hot rolling the ingots into a spring wire”, “cooling the hot-rolled spring wire” and “laying down or winding the spring wire into a coil”, wherein the hot rolling is usually carried out in several steps, which include rough rolling, intermediate rolling and finish rolling of the slab into the spring wire.
- the work steps to be carried out and the influencing factors to be taken into account are known to the person skilled in the art (see for example Stahl Primer, 2015, Verlag Stahleisen GmbH, Düsseldorf, ISBN 978-3-514-00815-1 )...
- the tension clamps are cold formed from the spring wires produced in this way.
- rods are cut from the spring wires, which are then usually bent in several steps to form the tension clamp.
- the tension clamps obtained are then subjected to a heat treatment in which they are heated to a temperature above Ac3 and then quenched in order to optimize their mechanical properties through hardening.
- the aim is to achieve high tensile strengths Rm and high yield strengths Rp0.2.
- the aim is to achieve a ratio Rm/Rp0.2 of ⁇ 1 in order to be able to apply high resilient hold-down forces with the tension clamps on the one hand and to ensure that on the other hand To maximize the range of elastic deformability of the tension clamp and thus its fatigue strength.
- the tensile strength Rm and yield strength Rp0.2 for tension clamps of the type in question are in the range of 1200 - 1400 MPa.
- a steel that has proven itself in practice for the production of spring wires for tension clamps and is standardized in accordance with DIN EN 10089:2002 under the name "38Si7" and listed with the material number 1.5023 in the StahlEisen list therefore consists of, in wt.%, 0. 35 - 0.42% C, 1.50 - 1.80% Si, 0.50 - 0.80% Mn and the balance of iron and unavoidable impurities, whereby the unavoidable impurities include up to 0.025% P and up to 0.025 %S count.
- thermomechanical rolling In addition to the alloying measures, the mechanical properties of a spring wire intended for the production of spring elements can also be improved by so-called “thermomechanical rolling”.
- thermomechanical rolling which is particularly aimed at spring wire, which is intended for the production of bending-loaded springs, the spring wire is hot-rolled in a temperature range in which its structure is not yet completely recrystallized, but which is above the Ar3 temperature of the steel. In this way, spring wires with a particularly fine structure can be produced, which contributes to high strength and optimized spring behavior of the tension clamp ( DE 195 46 204 C1 ).
- thermomechanical forming particularly for the treatment of spring wire, which is intended for the production of torsion-loaded springs
- the rod-shaped starting material is heated to a temperature above at a rate of at least 50 Kls heated to the recrystallization temperature and then formed at a temperature at which dynamic and/or static recrystallization of the austenite results.
- the austenite of the formed product recrystallized in this way is quenched and tempered ( DE 198 39 383 A1 ).
- this well-known spring steel consists of, in% by weight, 0.15 - 0.50% C, 0.30 - 2.00% Si, 0.60 - 2.50% Mn, up to 0.020% S, up to to 0.025% P, 0.0005 - 0.0035% B and the balance Fe.
- the steel composed in this way After the steel composed in this way has been heated to 900 - 1050 °C and kept at this temperature, it acquires a structure through controlled cooling, the main components of which are bainite and martensite and which can also contain small amounts of retained austenite.
- the properties of the steel can be further improved by low-temperature tempering.
- the steel treated in this way should have a tensile strength Rm of at least 1350 MPa, a yield strength Rp0.2 of at least 1050 MPa and an elongation A of at least 10%.
- the task was to create a spring wire that can be easily cold-formed even with diameters of at least 9 mm, but has improved mechanical properties.
- a spring wire that solves this problem has at least the features specified in claim 1.
- a tension clamp for holding down rails for rail vehicles in a rail fastening point which solves this problem, is formed from a spring wire according to the invention.
- a method that solves the above task comprises, according to the invention, at least the work steps and features specified in claim 14. It goes without saying that when carrying out the method according to the invention, the person skilled in the art not only completes the method steps mentioned in the claims and explained in detail here, but also carries out all other steps and activities that are required in the practical implementation of such methods in the state of the art Technology should be carried out regularly when the need arises.
- a spring wire according to the invention is therefore made from a steel which, in% by weight, C: 0.35 - 0.42%, Si: 1.5 - 1.8%, Mn: 0.5 - 0.8%, CR: 0.05 - 0.25%, Nb: 0.020 - 0.10%, V: 0.020 - 0.10%, N: 0.0040 - 0.0120%, Al: ⁇ 0.03%, and the balance consists of iron and unavoidable impurities, whereby the content of the sum of impurities is limited to a maximum of 0.2% and the impurities include up to 0.025% P and up to 0.025% S.
- the alloy concept provided for the spring wire according to the invention is based on the fact that the tensile strength Rm and the yield strength Rp0.2 are increased by adding additional alloy elements. This makes it possible to keep the carbon content and the associated cold formability of the spring wire at an optimally low level for practical processing, but at the same time to significantly increase the strength Rm and yield strength Rp0.2 compared to the state of the art.
- the individual alloy components and their contents in the alloy of a spring wire according to the invention were determined as follows: Carbon (“C") is present in the spring steel of a spring wire according to the invention in amounts of 0.35 - 0.42% by weight to ensure good formability, high toughness, good corrosion resistance and low sensitivity to stress or hydrogen-induced cracking to ensure. C contents of at most 0.40% by weight, in particular less than 0.40% by weight, have proven particularly useful with regard to optimized ductility and the associated optimized deformability at room temperature.
- Si Silicon
- the high Si content ensures good resistance ("relaxation resistance") against a decrease in the strength values of the spring wire in the course of the heat treatment, which clamps formed from spring wire according to the invention regularly undergo after their cold forming.
- Si contents of at least 1.5% by weight are required.
- too high Si contents would reduce the toughness, resulting in the risk of decarburization during heat treatment and also contribute to the formation of coarse grains. Therefore, according to the invention, the Si content remains limited to 1.8% by weight.
- Manganese is present in the steel of a spring wire according to the invention in amounts of 0.5 - 0.8% by weight in order to ensure sufficient hardenability of the spring steel.
- Mn binds the sulfur in steel, which is usually unavoidable during production, to form MnS and thus prevents its harmful effects.
- at least 0.5% by weight, in particular at least 0.50% by weight, of Mn is required in the steel, with an optimized effect at levels of at least 0.6% by weight, in particular at least 0.60% by weight. -% or at least 0.7% by weight.
- Mn contents that are too high would worsen the brittle-ductile transition temperature (Ductile-Brittle Temperature "DBTT"), which is why the Mn content is limited to a maximum of 0.8% by weight, in particular 0.80% by weight, limited.
- DBTT Ductile-Brittle Temperature
- Chromium is present in the spring steel of a spring wire according to the invention in amounts of 0.05 - 0.25% in order to further improve the hardenability of the steel.
- the presence of Cr in the steel according to the invention ensures that the structure of a tension clamp formed from a spring wire according to the invention consists of more than 95 area% martensite after hardening.
- a C content of at least 0.05% by weight can also reduce carbon activity and the risk of surface layer decarburization during heat treatment.
- the positive effects of Cr in the spring steel of a spring wire according to the invention can be used particularly safely by having a Cr content of at least 0.1% by weight, in particular at least 0.10% by weight or in particular at least 0.18% by weight. -%, is provided. However, if Cr contents are above 0.25% by weight, there is a risk that the toughness and relaxation resistance of the spring steel would be impaired.
- Aluminum is not required in the steel according to the invention for deoxidation during steel production, but can optionally be added to the spring steel in amounts of up to 0.03% by weight in order to support the development of a fine-grained structure.
- higher Al contents would impair the purity of the steel of a steel according to the invention and thus its toughness due to excessive formation of Al oxides or nitrides.
- Niobium is of particular importance for the invention and is present in the spring steel of a spring wire according to the invention in amounts of 0.02 - 0.1% by weight. Nb delays the recrystallization during thermomechanical rolling carried out in the temperature range recrystallization stop temperature - Ar3 temperature of the spring steel, through which a particularly fine-grained structure of the spring wire according to the invention is obtained. At the same time, the presence of Nb limits grain growth when the spring wire according to the invention is heated to austenitization temperature and held there during the heat treatment of the tension clamp formed from it.
- the Nb content of the spring steel of a spring wire according to the invention can be at least 0.0250% by weight, at least 0.0280% by weight or at least 0.030% by weight.
- Nb can be used particularly effectively at levels of up to 0.070% by weight, in particular up to 0.050% by weight.
- Vanadium is present in the spring steel of a spring wire according to the invention in amounts of 0.020 - 0.10% by weight.
- V forms carbides and nitrides with carbon and nitrogen, which are typically present as fine carbonitride precipitates, for example 8 - 12 nm, in particular about 10 nm, and are essential for increasing strength through precipitation hardening of a spring wire according to the invention.
- V contributes in this way to the relaxation resistance of the spring steel from which a spring wire according to the invention is made.
- the V content of the spring steel of a spring wire according to the invention can be at least 0.0250% by weight, at least 0.0280% by weight or at least 0.030% by weight.
- V can be used particularly effectively at levels of up to 0.070% by weight, in particular up to 0.060% by weight.
- Nb and V according to the invention leads to high tensile strengths Rm and regularly approximately equally high yield strengths Rp0.2, so that in a tension clamp made from spring wire according to the invention, the ratio Rm/Rp0.2 is regularly in the optimal range for its service life and spring behavior from 1 - 1.2.
- N Nitrogen
- N Nitrogen
- levels of 0.0040 - 0.0120% by weight (40 - 120 ppm) in order to enable the formation of vanadium nitrides or vanadium carbonitrides.
- too high N contents would promote stretch aging of the spring wire according to the invention, which would diametrically oppose the toughness of the spring wire according to the invention and the fatigue strength required of a tension clamp.
- Negative effects of the presence of N in the spring steel of a spring wire according to the invention can be particularly reliably excluded by limiting the N content to a maximum of 0.0100% by weight (100 ppm).
- a spring wire consisting of a spring steel composed in accordance with the invention achieves a fracture constriction Z of at least 55%, determined in the tensile test in accordance with DIN EN ISO 6892-1, and is therefore regularly higher than the fracture constriction that can be determined for spring wires made from a conventionally alloyed 38Si7 steel.
- the spring wire is thus subjected to a thermomechanical rolling step in the course of hot rolling, in which it is rolled at temperatures which are below the recrystallization stop temperature and above the Ar3 temperature of the steel.
- the “recrystallization stop temperature” is the temperature at which the spring wire has cooled down to such an extent that its previously austenitic structure no longer recrystallizes.
- the cooling of the hot-rolled spring wire at the cooling speeds specified according to the invention and by maintaining the winding temperatures of 550 - 650 ° C prescribed according to the invention ensure that a maximum hardness of the spring wire according to the invention is achieved as a result of precipitation hardening.
- the hot rolling sub-step "thermomechanical rolling” in a separate operation, which is carried out after the actual hot rolling of the spring wire.
- the spring wire that is then hot-rolled is first opened Austenitizing temperature, then cooled to a temperature below the recrystallization stop temperature but above the Ar3 temperature of the spring steel and hot rolled at this temperature with a sufficient degree of deformation. This is followed by cooling and laying down or winding of the spring wire as specified in steps d) and e) of the method according to the invention.
- a technologically and economically optimized variant of the method according to the invention provides that all sub-steps of hot rolling (work step c)) are completed in a continuous cycle, so that a spring wire that has also been hot-rolled thermomechanically is present when the spring wire leaves the hot rolling section used in each case.
- alloyed melts E1-E5 were melted, the compositions of which are given in Table 1.
- a reference melt V1 was melted whose contents of C, Si, Mn, P, S and N corresponded to the requirements applicable to the known steel 38Si7, but which also had Cr in an effective content.
- the composition of the comparison melt V1 is also given in Table 1.
- the recrystallization stop temperature of the respective spring steel from which the respective spring wire E1 - E5, V1 is produced can be determined experimentally in a manner known per se or estimated using empirically determined formulas.
- the Ar3 and Ar1 temperatures of the respective spring steel from which the respective spring wire E1 - E5, V1 is produced can be determined experimentally in a manner known per se, for example by means of dilatometry in a thermomechanical simulator.
- the hot-rolled spring wires obtained were cooled at a cooling rate of 1 - 5 ° C / s to a winding temperature of 550 - 650 ° C, at which they were wound into a coil.
- the spring wires in the coil were then cooled to room temperature.
- Rods were cut to length from the hot-rolled spring wires consisting of the spring steels E1 - E5, V1 and, after pickling and straightening in a conventional manner, were bent in several stages cold, ie at room temperature, into a conventionally shaped, ⁇ -shaped tension clamp .
- the tension clamps obtained were subjected to a heat treatment in which they were heated to an austenitizing temperature of 850 - 950 ° C so that their structure was completely austenitic. The austenitized tension clamps were then quenched in water so that their structure was more than 95% martensitic.
- the tension clamps After quenching, the tension clamps underwent annealing in which they were heated to a tempering temperature of 400 - 450 °C over a period of 60 - 120 minutes and held there. The tension clamps tempered in this way were then cooled in air to room temperature.
- the tensile strength Rm and the yield strength Rp0.2 were determined on the tension clamps obtained in this way in accordance with DIN EN ISO 6892-1.
- the notched impact energy KV-20 was determined in accordance with DIN EN ISO 148-1 as a characteristic value for toughness.
- the measured values obtained are listed in Table 2. It was shown that not only the tensile strength Rm and the yield strength Rp0.2 of the tension clamps produced in the manner according to the invention from spring steel E1 composed according to the invention could be significantly increased with unchanged notch impact work KV-20 compared to the tension clamps made from the comparison steel V1, but that The ratio Rm/Rp0.2 also remained practically the same.
- the tension clamps produced from the spring steels E1 - E5 according to the invention had a significantly better fine-grained structure "ASTM" determined according to ASTM E112 than the tension clamps made from the comparison steel V1.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
- Springs (AREA)
Claims (15)
- Serpentin fabriqué en acier qui, en % en poids, est constitué de
C : 0,35 - 0,42 %, Si: 1,5 - 1,8%, Mn: 0,5 - 0,8%, Cr: 0,05 - 0,25%, Nb: 0,020 - 0,10%, V: 0,020 - 0,10%, N: 0,0040 - 0,0120 %, AL : ≤ 0,03 %, - Serpentin selon la revendication 1, caractérisé en ce que sa teneur en C est au maximum de 0,40 % en poids.
- Serpentin selon l'une des revendications précédentes, caractérisé en ce que sa teneur en Cr est d'au moins 0,1 % en poids.
- Serpentin selon la revendication 2, caractérisé en ce que sa teneur en Cr est d'au moins 0,18 % en poids.
- Serpentin selon l'une des revendications précédentes, caractérisé en ce que sa teneur en Mn est d'au moins 0,6 % en poids.
- Serpentin selon la revendication 5, caractérisé en ce que sa teneur en Mn est d'au moins 0,7 % en poids.
- Serpentin selon l'une des revendications précédentes, caractérisé en ce que sa teneur en Nb est d'au moins 0,030 % en poids.
- Serpentin selon l'une des revendications précédentes, caractérisé en ce que sa teneur en Nb est au maximum de 0,070 % en poids.
- Serpentin selon l'une des revendications précédentes, caractérisé en ce que sa teneur en V est au maximum de 0,060 % en poids.
- Serpentin selon l'une des revendications précédentes, caractérisé en ce que sa teneur en N est d'au moins 0,0060 % en poids.
- Serpentin selon l'une des revendications précédentes, caractérisé en ce qu'il atteint une striction à la rupture Z d'au moins 55 % déterminée lors d'un essai de traction selon DIN EN ISO 6892-1.
- Serpentin selon l'une des revendications précédentes, caractérisé en ce que la granulométrie de sa structure déterminée selon ASTM E112 est au moins conforme à ASTM 10.
- Pince d'amarrage pour maintenir un rail pour véhicules ferroviaires à un point de fixation de rail, fabriquée à partir d'un serpentin conformément à l'une des revendications précédentes.
- Procédé de fabrication d'un serpentin obtenu selon l'une des revendications 11 ou 12 comprenant les étapes de travail suivantes :a) fonte d'un acier constitué de, en % en poids, C : 0,35 - 0,42 %, Si : 1,5 - 1,8 %, Mn : 0,50 - 0,80 %, Cr : 0,05 - 0,25 %, Nb : 0,020-0,10 %, V : 0,020 - 0,10 %, N : 0,0040 - 0,0120 %, AL : ≤ 0,03 %, et le reste étant constitué de fer et d'impuretés inévitables, la quantité de la somme des impuretés étant limitée tout au plus à 0,2 % et les impuretés comprenant jusqu'à 0,025 % de P et jusqu'à 0,025 % de S ;b) coulée de l'acier en un produit intermédiaire ;c) laminage à chaud du produit intermédiaire pour former un serpentin laminé à chaud d'un diamètre final de 9 à 15 mm, le laminage à chaud étant effectué en deux étapes partielles au moins, le serpentin étant soumis à un laminage de finition à chaud thermomécaniquement lors de la dernière étape du laminage à chaud, à une température inférieure à la température d'arrêt de recristallisation de l'acier du serpentin et supérieure à la température Ar3 de l'acier du serpentin ;d) refroidissement du serpentin laminé à chaud thermomécaniquement avec une vitesse de refroidissement de 1- 5 °C/s à une température d'enroulement de 550- 650 °C ;e) dépôt ou enroulement du serpentin refroidi à la température d'enroulement pour former une bobine ;f) refroidissement du serpentin dans la bobine à température ambiante.
- Procédé selon la revendication 14, caractérisé en ce que les étapes partielles du laminage à chaud (étape de travail c)) sont effectuées en continu.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FIEP19193224.3T FI3783120T3 (fi) | 2019-08-23 | 2019-08-23 | Jousilanka, siitä muodostettu puristin ja menetelmä tällaisen jousilangan valmistamiseksi |
EP19193224.3A EP3783120B1 (fr) | 2019-08-23 | 2019-08-23 | Fil de ressort, pince de serrage formée à partir dudit fil de ressort et procédé de fabrication d'un tel fil de ressort |
ES19193224T ES2963989T3 (es) | 2019-08-23 | 2019-08-23 | Alambre de resorte, pinza de sujeción formada a partir del mismo y procedimiento para producir un alambre de resorte de este tipo |
PL19193224.3T PL3783120T3 (pl) | 2019-08-23 | 2019-08-23 | Drut sprężynowy, zacisk napinający uformowany z niego i sposób wytwarzania takiego drutu sprężynowego |
CN202080059418.3A CN114341387B (zh) | 2019-08-23 | 2020-08-12 | 张力夹以及生产这种张力夹的方法 |
US17/636,964 US20220275490A1 (en) | 2019-08-23 | 2020-08-12 | Spring Wire, Tension Clamp Formed Therefrom and Method for Manufacturing Such a Spring Wire |
PCT/EP2020/072650 WO2021037567A1 (fr) | 2019-08-23 | 2020-08-12 | Serpentin, pince d'amarrage formée à partir de ce dernier et procédé de production d'un tel serpentin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19193224.3A EP3783120B1 (fr) | 2019-08-23 | 2019-08-23 | Fil de ressort, pince de serrage formée à partir dudit fil de ressort et procédé de fabrication d'un tel fil de ressort |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3783120A1 EP3783120A1 (fr) | 2021-02-24 |
EP3783120B1 true EP3783120B1 (fr) | 2023-09-27 |
Family
ID=67742174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19193224.3A Active EP3783120B1 (fr) | 2019-08-23 | 2019-08-23 | Fil de ressort, pince de serrage formée à partir dudit fil de ressort et procédé de fabrication d'un tel fil de ressort |
Country Status (7)
Country | Link |
---|---|
US (1) | US20220275490A1 (fr) |
EP (1) | EP3783120B1 (fr) |
CN (1) | CN114341387B (fr) |
ES (1) | ES2963989T3 (fr) |
FI (1) | FI3783120T3 (fr) |
PL (1) | PL3783120T3 (fr) |
WO (1) | WO2021037567A1 (fr) |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01116031A (ja) * | 1987-10-29 | 1989-05-09 | Nippon Steel Corp | 靭性に優れた高Si高炭素熱延鋼板の製造方法 |
JP2932943B2 (ja) * | 1993-11-04 | 1999-08-09 | 株式会社神戸製鋼所 | 高耐食性高強度ばね用鋼材 |
DE19546204C1 (de) | 1995-12-11 | 1997-03-20 | Max Planck Inst Eisenforschung | Verfahren zur Herstellung von hochfesten Gegenständen aus einem Vergütungsstahl und Anwendung dieses Verfahrens zur Erzeugung von Federn |
DE19839383C2 (de) | 1998-07-20 | 2001-04-19 | Muhr & Bender | Verfahren zur thermomechanischen Behandlung von Stahl für torsionsbeanspruchte Federelemente |
EP0974676A3 (fr) * | 1998-07-20 | 2003-06-04 | Firma Muhr und Bender | Procédé de traitement thermomécanique d'acier pour éléments de ressort de torsion |
JP2001049337A (ja) * | 1999-08-05 | 2001-02-20 | Kobe Steel Ltd | 疲労強度に優れた高強度ばねの製造方法 |
EP1589124B1 (fr) * | 2003-01-27 | 2010-05-05 | Nippon Steel Corporation | Fil d'acier a forte teneur en carbone, a haute resistance et de grande durete, et procede de fabrication |
JP4393467B2 (ja) * | 2006-02-28 | 2010-01-06 | 株式会社神戸製鋼所 | 強伸線加工用の熱間圧延線材およびその製造方法 |
CN101716721B (zh) * | 2009-12-23 | 2011-12-07 | 南京钢铁股份有限公司 | 一种弹簧钢盘条的生产工艺 |
BR112013004944A2 (pt) * | 2010-08-30 | 2016-08-16 | Kobe Steel Ltd | vergalhão de arame de aço para mola de alta resistência excelente na capacidade de trefilação do arame, método de fabricação para ele e mola de alta resistência |
JP5250609B2 (ja) * | 2010-11-11 | 2013-07-31 | 日本発條株式会社 | 高強度ばね用鋼、高強度ばねの製造方法及び高強度ばね |
CN102719759B (zh) * | 2012-07-12 | 2014-03-26 | 南车戚墅堰机车车辆工艺研究所有限公司 | 高速铁路扣件用弹条用钢及其冶炼生产方法 |
RU2512695C1 (ru) * | 2012-12-26 | 2014-04-10 | Общество с ограниченной ответственностью "Мультимодальный центр МИИТ" | Способ изготовления упругой клеммы для рельсового скрепления и упругая клемма |
CN105112774B (zh) * | 2015-08-28 | 2017-12-01 | 浙江美力科技股份有限公司 | 高强韧性低中碳微合金风冷硬化弹簧钢及其成形和热处理工艺 |
CN105401072B (zh) * | 2015-12-18 | 2018-01-02 | 马鞍山钢铁股份有限公司 | 含铌12.9级轨道交通移动装备用紧固件用钢及其热处理工艺 |
CN109082592B (zh) * | 2018-08-27 | 2020-08-18 | 河钢股份有限公司 | 一种综合性能良好耐腐蚀弹簧钢热轧盘条及其生产工艺 |
CN109735765B (zh) * | 2019-01-17 | 2020-05-05 | 江苏利淮钢铁有限公司 | 一种大规格、超细晶、高强韧性弹簧钢及其生产方法 |
-
2019
- 2019-08-23 FI FIEP19193224.3T patent/FI3783120T3/fi active
- 2019-08-23 EP EP19193224.3A patent/EP3783120B1/fr active Active
- 2019-08-23 PL PL19193224.3T patent/PL3783120T3/pl unknown
- 2019-08-23 ES ES19193224T patent/ES2963989T3/es active Active
-
2020
- 2020-08-12 US US17/636,964 patent/US20220275490A1/en active Pending
- 2020-08-12 WO PCT/EP2020/072650 patent/WO2021037567A1/fr active Application Filing
- 2020-08-12 CN CN202080059418.3A patent/CN114341387B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN114341387A (zh) | 2022-04-12 |
US20220275490A1 (en) | 2022-09-01 |
FI3783120T3 (fi) | 2023-11-15 |
CN114341387B (zh) | 2023-06-23 |
WO2021037567A1 (fr) | 2021-03-04 |
ES2963989T3 (es) | 2024-04-03 |
PL3783120T3 (pl) | 2024-02-19 |
EP3783120A1 (fr) | 2021-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3305935B9 (fr) | Produit plat en acier haute résistance et l'usage d'un produit plat en acier haute résistance | |
EP3504349B1 (fr) | Procédé de fabrication d'une bande d'acier à résistance très élevée présentant des propriétés améliorées lors du traitement ultérieur et une telle bande d'acier | |
EP2855717B1 (fr) | Tôle d'acier et méthode pour son obtention | |
DE4040355C2 (de) | Verfahren zur Herstellung eines dünnen Stahlblechs aus Stahl mit hohem Kohlenstoffgehalt | |
EP3535431B1 (fr) | Produit d'acier à teneur en manganèse intermédiaire pour application à basse température et son procédé de fabrication | |
EP2690184B1 (fr) | Cold rolled steel flat product and method for its production | |
DE19610675C1 (de) | Mehrphasenstahl und Verfahren zu seiner Herstellung | |
DE60300561T3 (de) | Verfahren zur Herstellung eines warmgewalzten Stahlbandes | |
EP3512968B1 (fr) | Procédé pour fabriquer un produit plat en acier à partir d'un acier au manganèse et produit plat en acier résultant | |
EP3724359B1 (fr) | Produit plat en acier laminé à chaud, à rigidité élevée, doté d'une résistance à la fissuration de bords élevée ainsi que d'une capacité de durcissement à la cuisson élevée et procédé de fabrication d'un tel produit plat en acier | |
EP1319725B1 (fr) | Procédé pour la fabrication d'une bande à chaud | |
EP1052296B1 (fr) | Utilisation d'un acier pour la fabrication de plaques de blindage | |
WO2018050637A1 (fr) | Procédé de fabrication d'une bande laminée à chaud ou à froid et/ou d'un produit plat en acier laminé de manière flexible constitué par un acier contenant du manganèse, hautement solide et produit plat en acier ainsi obtenu | |
DE102016115618A1 (de) | Verfahren zur Herstellung eines höchstfesten Stahlbandes mit verbesserten Eigenschaften bei der Weiterverarbeitung und ein derartiges Stahlband | |
WO2020038883A1 (fr) | Produit plat en acier laminé à chaud n'ayant pas subi un traitement par trempe et revenu, laminé à chaud ayant subi un traitement par trempe et revenu, ainsi que procédé de production associé | |
EP3469108B1 (fr) | Procédé de fabrication d'une bande d'acier laminée à froid présentant des propriétés trip à partir d'un acier à résistance élevée contenant du manganèse | |
EP3783120B1 (fr) | Fil de ressort, pince de serrage formée à partir dudit fil de ressort et procédé de fabrication d'un tel fil de ressort | |
KR102448753B1 (ko) | 절삭성 및 충격인성이 향상된 중탄소 비조질 선재 및 그 제조방법 | |
WO2017157793A1 (fr) | Pièces élastiques faites d'un alliage d'acier et procédé de réalisation | |
DE19528671C1 (de) | Verwendung eines niedriglegierten hochfesten Feinkornbaustahls für Streckenausbauprofile für Grubenbetriebe und Verfahren zu seiner Herstellung | |
WO2024068957A1 (fr) | Procédé de fabrication d'une bande d'acier à partir d'un acier multiphase à haute résistance et bande d'acier correspondante | |
DE102022102418A1 (de) | Hochfestes schmelztauchbeschichtetes Stahlband mit durch Gefügeumwandlung bewirkter Plastizität und Verfahren zu dessen Herstellung | |
DE1458523A1 (de) | Schweissbarer hochfester Stahl | |
EP4047105A1 (fr) | Produit en acier plat laminé à chaud et procédé de fabrication d'un produit en acier plat laminé à chaud |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200603 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22C 38/34 20060101ALI20230222BHEP Ipc: C22C 38/26 20060101ALI20230222BHEP Ipc: C22C 38/24 20060101ALI20230222BHEP Ipc: E01B 9/28 20060101ALI20230222BHEP Ipc: C22C 38/04 20060101ALI20230222BHEP Ipc: C22C 38/02 20060101ALI20230222BHEP Ipc: C21D 9/52 20060101ALI20230222BHEP Ipc: C21D 9/02 20060101ALI20230222BHEP Ipc: C21D 8/06 20060101AFI20230222BHEP |
|
INTG | Intention to grant announced |
Effective date: 20230313 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230515 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502019009475 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230927 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231227 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230927 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230927 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230927 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231228 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20230927 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230927 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2963989 Country of ref document: ES Kind code of ref document: T3 Effective date: 20240403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230927 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230927 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240127 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230927 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240129 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230927 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502019009475 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230927 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230927 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20240628 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240826 Year of fee payment: 6 Ref country code: FI Payment date: 20240826 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240826 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240827 Year of fee payment: 6 |