EP3782869A1 - Train control system and method for controlling a train within a train control system - Google Patents

Train control system and method for controlling a train within a train control system Download PDF

Info

Publication number
EP3782869A1
EP3782869A1 EP19193069.2A EP19193069A EP3782869A1 EP 3782869 A1 EP3782869 A1 EP 3782869A1 EP 19193069 A EP19193069 A EP 19193069A EP 3782869 A1 EP3782869 A1 EP 3782869A1
Authority
EP
European Patent Office
Prior art keywords
train
accident
route
route reservation
risk assessment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19193069.2A
Other languages
German (de)
French (fr)
Other versions
EP3782869B1 (en
Inventor
Gerhard WIPPLINGER
Maria de los Ángeles DE LA SIERRA APARICIO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GTS Deutschland GmbH
Original Assignee
Thales Management and Services Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES19193069T priority Critical patent/ES2958734T3/en
Application filed by Thales Management and Services Deutschland GmbH filed Critical Thales Management and Services Deutschland GmbH
Priority to EP19193069.2A priority patent/EP3782869B1/en
Priority to DK19193069.2T priority patent/DK3782869T3/en
Priority to PCT/EP2020/072897 priority patent/WO2021032638A1/en
Priority to CA3147820A priority patent/CA3147820A1/en
Priority to KR1020227008740A priority patent/KR20220044842A/en
Priority to AU2020332749A priority patent/AU2020332749A1/en
Publication of EP3782869A1 publication Critical patent/EP3782869A1/en
Priority to IL289872A priority patent/IL289872A/en
Application granted granted Critical
Publication of EP3782869B1 publication Critical patent/EP3782869B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0062On-board target speed calculation or supervision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/10Operations, e.g. scheduling or time tables
    • B61L27/16Trackside optimisation of vehicle or train operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/20Trackside control of safe travel of vehicle or train, e.g. braking curve calculation
    • B61L2027/202Trackside control of safe travel of vehicle or train, e.g. braking curve calculation using European Train Control System [ETCS]

Definitions

  • the invention relates to a method for controlling a train within a train control system and a train control system for performing the method.
  • Track protection and train sequence protection for a railroad system is currently carried out by technical systems, in particular by signal boxes, electronic train control systems such as ETCS (European Train Control System) and operational rules [2].
  • ETCS European Train Control System
  • Bayesian network also called: Bayesian network, decision network, Bayes (ian) model or probabilistically directed acyclic graph model
  • Bayesian network is a probabilistic graph model (statistical model) that contains a set of variables and their conditional dependencies over a directed acyclic Graph (DAG) represents.
  • DAG directed acyclic Graph
  • Bayesian networks are also used in the IT sector to carry out risk assessments in the context of security management [3] [4] [5] [6].
  • [4] describes a real-time safety assessment for performing a dynamic assessment of occupational health and safety conditions on the construction site using a hidden Markov model.
  • the safety risk of the workers is linked to the locations on site.
  • the object of the invention is to propose a method for securing a train within a train control system and a train control system, with the help of which planning, configuration / project planning, approval can be simplified and the route utilization can be optimized with a high safety level (safety integrity level SIL4) .
  • safety integrity level SIL4 safety integrity level
  • the measured process uses a statically created accident model to understand and describe railway accidents.
  • the accident modeling is preferably carried out outside the operation of the train protection system.
  • the following can be defined as accident classes, for example: “Derailment”, “Collision with other trains”, “Collision with people / objects”, “Accidents at level crossings”.
  • Accident influencing factors are factors (elements) that can contribute to the events contained in the accident classes, i.e. influence the accident risk, e.g. B. Environment, driver, driver decision, train, infrastructure, speed, monitoring).
  • the description of the infrastructure and the train must be determined safely (SIL4).
  • a predefined route is not released, but an individual route reservation is created, i.e. H. the route reservation is determined specifically for a selected train at a specific location at a specific time.
  • a route reservation comprises a route section of the route to be traveled by the train that is individually selected / determined for a specific train, but is not pre-configured, i.e. does not affect a specified route section.
  • the route reservation can be requested directly from the train, from the dispatcher or from an operational facility.
  • the dispatcher / operational facility first determines the extent of the route reservation for the selected train and the route profile.
  • the route profile includes a route description for the extension of the route reservation, in particular a gradient profile (altitude difference of the reservation area depending on the distance), a speed profile (within the reservation area, the maximum speed allowed depending on the distance, axle load, curve superelevation, etc.).
  • the maximum speed allowed in the reservation area depends in particular on the maximum line speed (maximum speed allowed), the maximum train speed (e.g. depending on the axle load, freight train, passenger train, braking capacity, ...), curve radius and elevation in the curves, temporary Speed limits.
  • the extent of the route reservation is influenced, for example, by whether / where there are other trains, workers, construction sites, etc. on the route to be traveled.
  • the request is made to the risk assessment device, which carries out a risk assessment in real time for the requested (individually determined) route reservation.
  • the risk assessment is preferably carried out for all accident classes previously determined within the framework of the method.
  • the real-time risk assessment includes the determination of a risk factor for the movement of the selected train within the route reservation.
  • the risk (risk factor) is determined and assessed individually for each train in real time.
  • the risk assessment device uses the real-time risk assessment to assess whether the commands necessary for route reservation (switching of points, driving licenses for trains, ...) are permissible.
  • the route reservation is released when the field elements required for the route reservation are set (e.g. correct switch position, signal position, instruction of the level crossing opening). The release of the route reservation results in a movement authority being issued to a train.
  • the risk assessment device can assess whether the current situation leads to a hazard and, if necessary, take safety measures in the event of fault reports from field elements or position / speed reports from the train.
  • the method according to the invention adapts dynamically to the traffic situation and the commands of the operator, calculates all individual risks and guarantees the highest safety integrity (SIL4) with the highest throughput within a monitored control area before it issues commands to field elements and driving authorizations to trains.
  • SIL4 highest safety integrity
  • the method according to the invention describes a generic solution which does not require any specific project planning and which considerably simplifies the approval process. It does not require any operational rules and no planning of routes or driving licenses.
  • a current position of the train is preferably determined to determine the route reservation.
  • the position is preferably determined using satellites (GNSS).
  • the integrity of the train is preferably determined in order to determine the route reservation.
  • the real-time risk assessment is based solely on physical and / or geometric parameters of the accident influencing factors and on the error probabilities of the accident influencing factors is carried out. This is advantageous because the physical and geometric parameters can be determined easily or are known anyway.
  • the error probability of one accident influencing factor influences the error probability of the other accident influencing factors.
  • a probabilistic graph model (graphic model) is used for the real-time risk assessment, which describes the previously created accident model, a graph with nodes and edges being constructed / instantiated, with conditional probabilities being stored for each node.
  • Probabilistic graphic models are graphs with nodes and edges, with the nodes representing probability variables. The absence of edges between nodes of the graph indicates their independence.
  • a graph is instantiated / generated which represents the topology of the railroad system. The instantiated graph describes the train and the geometric infrastructure of the railroad system.
  • the graph is preferably a directed and / or acyclic graph, e.g. a graph according to a Bayesian network (directed and acyclic) or according to a Markov model.
  • the graph model used according to the invention is a statistical model which represents a set of variables (accident influencing factors / nodes) and their dependencies via a directed, in particular acyclic graph (DAG).
  • the dependencies of the nodes are modeled using conditional probabilities.
  • the graph generically describes the accident model created previously.
  • the graph can be viewed as a dynamic network that is set up to provide accident probability rates to calculate (probability network).
  • the generic graph is generated dynamically, ie depending on the current situation, the route reservation and the geometric description of the route and the train.
  • BN Bayesian network
  • Bayesian networks are ideal for capturing an event that has occurred and for predicting the probability that one of several possible known causes was the decisive factor.
  • the probability distribution of all accident influencing factors involved is represented in compact form using known conditional probabilities.
  • the conditional probabilities for each node are stored in a probability table.
  • the structure of this graph and its probability tables are determined by the accident model.
  • the probability tables include physical and / or geometric parameters of the respective accident influencing factor and their error probabilities.
  • the physical and / or geometric parameters of the train (axle load, braking capacity, ...) can be determined from the train mechanics, for example
  • STAMP Systems-Theoretic Accident Model and Processes
  • STPA Systems Theoretic Process Analysis
  • the nodes are preferably accident class nodes and element nodes, an element node representing an accident influencing factor and an accident class node representing one of the accident classes.
  • a conditional probability distribution (probability table) of the random variables (accident influencing factor) represented by the node is stored for each node.
  • the probability distribution assigns random variables to the parent nodes.
  • the route reservation can comprise a plurality of route reservation subareas, a (preferably directed, in particular acyclic) subgraph being set up / instantiated for each route reservation subarea, which represents a subnet.
  • the route reservation sub-areas are preferably defined (limited) by changes on the route. This means that if a route parameter changes (e.g. due to a new gradient profile, branching of the route through a switch, change in the gradient of the route ...), the previous section ends and the next route reservation section begins. This is particularly advantageous since a change in the route parameters can influence the risk of an accident (risk factor).
  • a partial risk factor is calculated for each route reservation sub-area.
  • the accident risk of the various route reservation sub-areas can depend on different accident influencing factors.
  • the subnetworks of the various route reservation sub-areas can therefore include different types and numbers of nodes.
  • the route reservation is only released if the accident risk (partial risk factor) in each route reservation sub-area is lower than the acceptable risk factor.
  • the risk factor for the entire route reservation is calculated as the sum of the partial risk factors.
  • Position reports of the train are preferably determined at time intervals and transmitted to the risk assessment device. To For each position report, data obtained from the position reports are entered in the graph for route reservation subareas.
  • a position report preferably includes position data, train information (e.g. train integrity, train length) and speed information.
  • train information e.g. train integrity, train length
  • speed information e.g. speed information
  • the subnets are interconnected, so they form a dynamic network so that a change in one subnet can lead to changes in the other subnets.
  • the risk assessment device is set up to use a graph model to calculate a risk factor for a certain route reservation at SIL4 level, to compare this risk factor with a previously defined acceptable risk factor and, if necessary, to to approve the route reservation if the calculated risk factor is less than the acceptable risk factor.
  • the transmission device is preferably arranged in the train.
  • the risk assessment device preferably has interfaces to field elements of the train protection system.
  • the field elements can be controlled and monitored via these interfaces in order to create the conditions for the release of the route reservation (e.g. by changing points, switching signals, etc.).
  • an operational device for determining the individual route reservation for the train, the route reservation comprising a route reservation area and a route profile, the operational device having an interface to the risk assessment device.
  • the operative device is preferably a device with an interface to a train management system.
  • the train management system is set up to provide a timetable, to control and monitor the train traffic according to the timetable, to optimize the current timetable, to recognize and solve conflicts in the event of problems in the current train traffic.
  • the operational facility creates the route reservations with current train and route parameters (train length, braking capacity, route properties, track condition) at SILO level.
  • the risk assessment facility does not make any decision as to where the train is to go and with which speed profile the train may move, so it has no influence on the design of the route reservation.
  • the operational facility is preferably also responsible for inquiring about the route reservation from the risk assessment facility.
  • a request for a route reservation can also be made by the train itself, for example.
  • the device for transmitting train information can be, for example, an on-board unit (OBU) of the train or a trackside device.
  • OBU on-board unit
  • the on-board unit preferably comprises a position determination device.
  • the optimization of operations can be carried out on the SILO level with current parameters, whereas the risk analysis takes place flexibly in real time on the SIL4 level.
  • Figure 1 shows the essential components of the train protection system according to the invention.
  • the core of the control system according to the invention is a risk assessment device MAXd.
  • the MAXd risk assessment system includes elements for route and train sequence protection.
  • the risk assessment device can include elements for protection against rotting and for securing level crossings.
  • the risk assessment device MAXd receives from a transmission device OBS via an interface train information I z relating to a train for which a route reservation RES is to be released (selected train).
  • the train information I Z can include train position, speed, train length, mass, ..., for example.
  • the train position is determined by means of a train detection device VD .
  • the train detection device VD and the transmission device OBS can (but do not have to) be arranged in the train.
  • the transmission device OBS can, for example, be a control device on the vehicle act.
  • the train formations I Z are transmitted from an (train) external transmission device to the risk assessment device MAXd and / or that the train detection device VD is arranged on the track side.
  • the risk assessment device MAXd receives information I FE from field elements FE relating to the current states of the field elements FE via a further interface.
  • the risk assessment device MAXd is set up to pass on commands K to the field elements in order to create the conditions for a route reservation (RES) to be released.
  • the risk assessment device MAXd can be set up to transmit driving permits MA to trains.
  • the MA driving license can also be communicated to the train via trackside signals (not shown).
  • Figure 1 it is assumed that the transmission device OBS is arranged within the train, so that the transmission device OBS can also receive the driving license MA.
  • the route reservation RES is created outside of the SIL 4 area of the train protection system according to the invention.
  • This can be done by an operative facility OP , as in Figure 2 shown.
  • a computer with business logic for motion control, in particular with decision support software (Decision Support System), can serve as the "operational facility”. Instead, a dispatcher can also take over part of the tasks of the operational unit.
  • the operational facility OP is responsible for operational optimization (optimization of train journeys). This operational optimization takes place at the SILO level with current parameters (train length, braking capacity, route properties, track condition).
  • the operational facility OP knows the national requirements and the operating rules.
  • the system status is obtained from the risk assessment device MAXd SYS (ie field element states, position, speed of trains stc.) Transmitted to the operational facility OP.
  • the operational facility OP can generate a route reservation RES individually for a special train, ie individually define the extent of the route reservation RES, determine a route profile including a speed profile MP and put the switches in the correct position for the route reservation RES.
  • the operational facility OP thus creates a route reservation RES individually for a selected train.
  • a request A for the route reservation (request for approval of a previously created route reservation RES) is sent to the risk assessment device MAXd, likewise via the operative device OP.
  • the operational facility communicates with a train management unit TMS, which is responsible for planning train journeys.
  • the system status SYS is transmitted to the train management unit TMS, since this is required so that the train management unit TMS can possibly intervene for dispatch purposes; z. B. for rerouting subsequent trains in the event of a train fault on the route
  • the main task of the risk assessment device MAXd is to calculate a risk assessment for a requested route reservation RES on the basis of a previously established accident model AccM and on the basis of the train information I Z and the field element information I FE .
  • the risk assessment device MAXd decides whether the requested route reservation RES is released and the train in question receives the corresponding driving license MA.
  • the real-time risk assessment takes place at SIL4 level.
  • Figure 3 shows the sequence of the method according to the invention: If the risk assessment device MAXd receives a request A for a route reservation RES for a specific train, the risk assessment device calculates MAXd based on the accident model AccM and the train information I Z and field element information I FE available to it, a risk factor RF for the requested route reservation RES, or several partial risk factors for route reservation subareas of the route reservation RES, in real time. If the risk factor RF is below a previously established acceptable limit value Lim, the risk assessment device MAXd transmits commands K to the field elements FE for setting the field element settings necessary for the route reservation RES.
  • the risk assessment device issues the driving license MA. If the determined risk factor RF is above the acceptable limit value Lim, no commands K and no driving license MA are issued. Instead, information relating to the rejection of request A can be transmitted to the operational unit OP so that it can create an alternative route reservation.
  • accident classes for example derailment, collisions with other trains, collisions with people / objects, accidents at level crossings
  • train and route properties for example derailment, collisions with other trains, collisions with people / objects, accidents at level crossings
  • the accident model is represented by a directed graph G of a graph model, for example by a Bayesian network.
  • Figure 4 shows a corresponding graph for the accident class "derailment" D.
  • the accident class D represents a node (accident class node - shown oval) of graph G.
  • the graph G also includes element nodes (shown around), each element node representing an accident influencing factor (here: Driver VD, driver decisions VDDE, on- board system (monitoring) S, speed V, infrastructure INF, train RS, environmental influences E ).
  • the accident influencing factors taken into account in the present case have the following associated geometric / physical parameters / error rates that are taken into account when creating the probability tables:
  • Accident influencing factor network node
  • Geometric / physical parameters / error rate ETCS mode Probability for different security modes (route monitoring by the driver (staff responsibility SR), driving on sight (OS), full supervision (FS) driver Error rate of the corresponding driver
  • Driver decision Probabilities of braking, accelerating, no action train Error rate of the train, speed, axle load, curve radius, superelevation in curves Environment
  • the edges of the graph G (shown by arrows) indicate which accident influencing factors influence other accident influencing factors.
  • a probability table is stored for each node, the probability table not comprising "trained data", but route data, train data and error rates of elements and their conditional probabilities (depending on other accident class nodes).
  • the graph forms a "probability network", which depends on the topology of the railway system (i.e. on the geometric description the infrastructure and the train).
  • a change in the train or route properties e.g. maximum permitted speed also changes the probability table.
  • the calculation of the probabilities stored in the probability table is deterministic.
  • Figure 5 shows a speed profile MP of a train of a train length LT within a 260 m long route reservation RES.
  • the route reservation RES is divided into route reservation subareas, with a subnet in the form of a subgraph for each route reservation subarea, analogous to Figure 4 , is created.
  • a multiplicity of subgraphs / subnetworks are created which together form a graph for the route reservation RES to be assessed.
  • a subnet is in Figure 5 shown as an example with nodes filled in black.
  • the individual subnets are in Figure 5 on the respective route sections (distance d) within the route reservation RES.
  • the route reservation sub-areas are defined by changes on the route (e.g. changing the switch position, changing the maximum permissible speed). Due to these changes on the route, the probabilities of the accident influencing factors change and thus the influence of the individual accident influencing factors on the accident probability of the accident class to which the accident influencing factors are linked. In areas in which the train is to be braked, the subnets are therefore strung closer together.
  • the subnets are interconnected (Dynamic Bayesian Network) so that a change in one subnet can also lead to changes in the other subnets.
  • An accident influencing factor influences a reservation sub-area i.e. the corresponding accident influencing factor of a subsequent reservation sub-area.
  • the probability table for a specific accident influencing factor therefore differs for different reservation subareas, so that the probability tables for the different reservation subareas and thus also the risk factors must be calculated separately.
  • the subnets can differ in the number and type of nodes and / or in the probability tables stored for the nodes.
  • the subdivision into reservation subareas is preferably carried out such that the length of a reservation subarea is at most as long as the length LT of the train for which the route reservation RES applies.
  • the probability of the nodes can be updated / recalculated, for example as soon as a current position report of the train is available.
  • a position report includes e.g. B. position data, train data, speed information, information regarding train integrity.
  • the data of the new position report is entered in the graph and the data is re-entered for all reservation subareas (with regard to the current train position). This means that, for example, at a speed node that previously only had a probability of a certain speed, the specific reported speed is entered. This of course influences the probabilities of the subsequent nodes. These probabilities are calculated using the probability tables.
  • a node can therefore either represent a probability (e.g. for a certain speed) or have entered a specific value (e.g. a certain speed).
  • the invention enables a holistic view of all relevant elements of the SIL4 safety logic, assessing the risk for each train individually and in real time, in particular whether the current situation does not lead to a hazard and whether safety measures need to be taken.
  • a Bayesian network is used as a mathematical approach, which is generated dynamically depending on the current situation.
  • the geometric description of the infrastructure and the train is used for the structure of this network and its probability tables.
  • the train dynamics are calculated using known physical laws.
  • the safety concept according to the invention adapts dynamically to the traffic situation and the commands of the operator, calculates all individual risks and guarantees the highest safety integrity (SIL4) with the highest throughput for all relevant elements within the control area before it issues commands to field elements and movement authorizations to trains.
  • the approach according to the invention is a generic solution that does not require any specific project planning and that significantly simplifies the approval process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Steuerung eines Zugs innerhalb eines Zugsicherungssystems, umfassend folgende Verfahrensschritte• Erstellung eines Unfallmodells (AccM), wobei Unfallklassen und Unfalleinflussfaktoren bestimmt werden;• Ermittlung einer für den Zug individuellen Streckenreservierung (RES) umfassend einen Streckenreservierungsbereich und ein Streckenprofil;• Versenden einer Anfrage (A) zur Freigabe der ermittelten Streckenreservierung (RES) an eine Risikobewertungseinrichtung (MAXd);• Durchführen einer Echtzeitrisikobewertung für die Streckenreservierung (RES) mittels der Risikobewertungseinrichtung (MAXd) für zumindest einen Teil der ermittelten verschiedenen Unfallklassen, wobei ein Risikofaktor (RF) für die Streckenreservierung (RES) ermittelt wird, und als Ergebnis ermittelt wird ob der Risikofaktor (RF) akzeptabel ist;• Freigabe oder Ablehnung der Streckenreservierung (RES) in Abhängigkeit vom Ergebnis der Risikobewertung.Somit kann die Planung, Konfiguration/Projektierung, Zulassung vereinfacht werden und die Streckenauslastung kann mit einem hohen Sicherheitslevel (safety integrity level SIL4) optimiert werden.The invention relates to a method for controlling a train within a train control system, comprising the following process steps • Creation of an accident model (AccM), with accident classes and accident influencing factors being determined; Sending a request (A) to release the determined route reservation (RES) to a risk assessment device (MAXd); RF) for the route reservation (RES) is determined, and the result is determined whether the risk factor (RF) is acceptable; • Approval or rejection of the route reservation (RES) depending on the result of the risk assessment / Project planning, approval can be simplified and the route utilization can be optimized with a high safety level (safety integrity level SIL4).

Description

Hintergrund der ErfindungBackground of the invention

Die Erfindung betrifft ein Verfahren zur Steuerung eines Zugs innerhalb eines Zugsicherungssystems und ein Zugsicherungssystem zur Durchführung des Verfahrens.The invention relates to a method for controlling a train within a train control system and a train control system for performing the method.

Zur Vermeidung von Unfällen im Eisenbahnbetrieb ist es bekannt, automatische Zugsicherungssysteme (Fahrwegsicherung und Zugfolgesicherung) einzusetzen [1][7][8].To avoid accidents in railway operations, it is known to use automatic train protection systems (route protection and train sequence protection) [1] [7] [8].

Fahrwegsicherung und Zugfolgesicherung für ein Eisenbahnsystem erfolgt derzeit durch technische Anlagen, insbesondere durch Stellwerke, elektronische Zugsicherungssysteme, wie bspw. ETCS (European Train Control System) und operative Regeln [2].Track protection and train sequence protection for a railroad system is currently carried out by technical systems, in particular by signal boxes, electronic train control systems such as ETCS (European Train Control System) and operational rules [2].

Für die Auslegung eines Eisenbahnsystems gemäß dem Stand der Technik wird vorab einmalig eine statische Gefahrenanalyse und eine Risikobewertung für die Planung von Infrastruktur und operativen Betrieb durchgeführt.For the design of a railway system in accordance with the state of the art, a static hazard analysis and a risk assessment for the planning of infrastructure and operational operation are carried out in advance.

offenbart die Verwendung eines Bayes'schen Netzwerks für die probabilistische Sicherheitsanalyse (PSA) von Eisenbahnlinien.discloses the use of a Bayesian network for probabilistic safety analysis (PSA) of railroad lines.

Ein Bayes'sches Netzwerk (auch genannt: Bayes'sches Netzwerk, Entscheidungsnetzwerk, Bayes(ian)-Modell oder probabilistisch gerichtetes azyklisches Graphenmodell) ist ein probabilistisches Graphenmodell (statistisches Modell), das einen Satz von Variablen und ihre bedingten Abhängigkeiten über einen gerichteten azyklischen Graphen (DAG) darstellt.A Bayesian network (also called: Bayesian network, decision network, Bayes (ian) model or probabilistically directed acyclic graph model) is a probabilistic graph model (statistical model) that contains a set of variables and their conditional dependencies over a directed acyclic Graph (DAG) represents.

Damit ein Eisenbahnsystem, bei dem eine Risikoanalyse bei der Infrastrukturplanung durchgeführt wird, sicher betrieben werden kann, wird es so ausgelegt, dass auch der langsamste und längste Zug sicher geleitet werden kann. Dies führt jedoch dazu, dass das System für die meisten Züge zu defensiv ausgelegt ist (zu lange Gleisabschnitte, zu große Bremsabstände ...), so dass in der Regel keine optimale Streckenauslastung erreicht wird. Darüber hinaus werden statische Fahrstraßen und statische Fahrerlaubnisse erstellt. Aufgrund verschiedener Zugtypen und verschiedener Fahrstraßen erfordert dies einen hohen Projektierungs- und Verifikationsaufwand.To ensure that a railway system for which a risk analysis is carried out during infrastructure planning can be operated safely, it is designed in such a way that even the slowest and longest train can be guided safely. However, this means that the system is designed too defensively for most trains (too long track sections, too large braking distances ...), so that optimal route utilization is usually not achieved. In addition, static routes and static driving permits are created. Because of the different train types and different routes, this requires a high level of planning and verification effort.

Bayes'sches Netzwerke werden auch im IT-Bereich eingesetzt, um Risikobewertungen im Rahmen von Security-Management durchzuführen [3][4][5][6].Bayesian networks are also used in the IT sector to carry out risk assessments in the context of security management [3] [4] [5] [6].

[4] beschreibt eine Echtzeit-Sicherheitsbewertung zur Durchführung einer dynamischen Bewertung von Arbeitsschutzzuständen auf der Baustelle mithilfe eines Hidden Markov-Modells. Dabei wird das Sicherheitsrisiko der Arbeiter mit den Standorten vor Ort verknüpft.[4] describes a real-time safety assessment for performing a dynamic assessment of occupational health and safety conditions on the construction site using a hidden Markov model. The safety risk of the workers is linked to the locations on site.

Aufgabe der ErfindungObject of the invention

Es ist Aufgabe der Erfindung, ein Verfahren zur Sicherung eines Zugs innerhalb eines Zugsicherungssystems und ein Zugsicherungssystem vorzuschlagen, mit deren Hilfe die Planung, Konfiguration/Projektierung, Zulassung vereinfacht werden kann und die Streckenauslastung mit einem hohen Sicherheitslevel (safety integrity level SIL4) optimiert werden kann.The object of the invention is to propose a method for securing a train within a train control system and a train control system, with the help of which planning, configuration / project planning, approval can be simplified and the route utilization can be optimized with a high safety level (safety integrity level SIL4) .

Beschreibung der ErfindungDescription of the invention

Diese Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren gemäß Anspruch 1 und einem Zugsicherungssystem gemäß Anspruch 8.This object is achieved according to the invention by a method according to claim 1 and a train protection system according to claim 8.

Das erfindungsgemäße Verfahren umfasst folgende Verfahrensschritte:

  • Erstellung eines Unfallmodells, wobei Unfallklassen und Unfalleinflussfaktoren bestimmt werden;
  • Ermittlung einer für den Zug individuellen Streckenreservierung umfassend einen Streckenreservierungsbereich und ein Streckenprofil;
  • Versenden einer Anfrage zur Freigabe der ermittelten Streckenreservierung an eine Risikobewertungseinrichtung;
  • Durchführen einer Echtzeitrisikobewertung für die Streckenreservierung mittels der Risikobewertungseinrichtung für zumindest einen Teil der ermittelten Unfallklassen, wobei ein Risikofaktor für die Streckenreservierung ermittelt wird, und als Ergebnis ermittelt wird, ob der Risikofaktor akzeptabel ist;
  • Freigabe oder Ablehnung der Streckenreservierung in Abhängigkeit vom Ergebnis der Risikobewertung.
The method according to the invention comprises the following method steps:
  • Creation of an accident model, whereby accident classes and accident influencing factors are determined;
  • Determination of an individual route reservation for the train, comprising a route reservation area and a route profile;
  • Sending a request to release the determined route reservation to a risk assessment device;
  • Carrying out a real-time risk assessment for the route reservation by means of the risk assessment device for at least some of the determined accident classes, with a risk factor for the Route reservation is determined, and as a result it is determined whether the risk factor is acceptable;
  • Approval or rejection of the route reservation depending on the result of the risk assessment.

Das gemessene Verfahren verwendet ein statisch erstelltes Unfallmodell, um Eisenbahnunfälle zu verstehen und zu beschreiben. Die Unfallmodellierung erfolgt vorzugsweise außerhalb des Betriebs des Zugsicherungssystems. Als Unfallklassen können beispielsweise definiert werden: "Entgleisung", "Kollision mit anderen Zügen", "Kollision mit Personen/Objekten", "Unfälle auf Eisenbahnkreuzungen". Unter Unfalleinflussfaktoren versteht man Faktoren (Elemente), die zu den in den Unfallklassen enthaltenen Ereignissen beitragen können, also das Unfallrisiko beeinflussen, z. B. Umwelt, Fahrer, Fahrerentscheidung, Zug, Infrastruktur, Geschwindigkeit, Überwachung). Die Beschreibung u.a. der Infrastruktur und des Zugs muss dazu sicher (SIL4) ermittelt werden.The measured process uses a statically created accident model to understand and describe railway accidents. The accident modeling is preferably carried out outside the operation of the train protection system. The following can be defined as accident classes, for example: "Derailment", "Collision with other trains", "Collision with people / objects", "Accidents at level crossings". Accident influencing factors are factors (elements) that can contribute to the events contained in the accident classes, i.e. influence the accident risk, e.g. B. Environment, driver, driver decision, train, infrastructure, speed, monitoring). The description of the infrastructure and the train, among other things, must be determined safely (SIL4).

Gemäß der Erfindung wird nicht eine vordefinierte Fahrstraße freigegeben, sondern es wird eine individuelle Streckenreservierung erstellt, d. h. die Streckenreservierung wird speziell für einen ausgewählten Zug an einem bestimmten Ort zu einem bestimmten Zeitpunkt ermittelt. Eine Streckenreservierung umfasst einen individuell für einen bestimmten Zug angewählten/ermittelten Streckenabschnitt der vom Zug zu befahrenden Strecke, ist jedoch nicht vorprojektiert, betrifft also keinen vorgegebenen Streckenabschnitt.According to the invention, a predefined route is not released, but an individual route reservation is created, i.e. H. the route reservation is determined specifically for a selected train at a specific location at a specific time. A route reservation comprises a route section of the route to be traveled by the train that is individually selected / determined for a specific train, but is not pre-configured, i.e. does not affect a specified route section.

Die Streckenreservierung kann vom Zug direkt, vom Fahrdienstleiter oder von einer operativen Einrichtung angefragt werden. Dazu ermittelt der Fahrdienstleiter/die operative Einrichtung zunächst die Ausdehnung die Streckenreservierung für den ausgewählten Zug und das Streckenprofil. Das Streckenprofil umfasst eine Streckenbeschreibung für die Ausdehnung der Streckenreservierung, insbesondere ein Gradientenprofil (Höhenmeter des Reservierungsbereichs in Abhängigkeit von der Distanz), ein Geschwindigkeitsprofil (innerhalb des Reservierungsbereichs erlaubte maximale Geschwindigkeit abhängig von der Distanz erlaubte Achslast, Kurvenüberhöhung usw.). Die im Reservierungsbereich maximal erlaubte Geschwindigkeit ist insbesondere abhängig von der maximalen Streckengeschwindigkeit (erlaubte Höchstgeschwindigkeit), der maximalen Zuggeschwindigkeit (abhängig z. B. von der Achslast, Güterzug, Personenzug, Bremsvermögen, ...), Kurvenradius und Überhöhung in den Kurven, temporäre Langsamfahrstellen. Die Ausdehnung der Streckenreservierung wird bspw. davon beeinflusst, ob/wo sich weitere Züge, Arbeiter, Baustellen usw. auf der zu befahrenden Strecke befinden.The route reservation can be requested directly from the train, from the dispatcher or from an operational facility. To do this, the dispatcher / operational facility first determines the extent of the route reservation for the selected train and the route profile. The route profile includes a route description for the extension of the route reservation, in particular a gradient profile (altitude difference of the reservation area depending on the distance), a speed profile (within the reservation area, the maximum speed allowed depending on the distance, axle load, curve superelevation, etc.). The maximum speed allowed in the reservation area depends in particular on the maximum line speed (maximum speed allowed), the maximum train speed (e.g. depending on the axle load, freight train, passenger train, braking capacity, ...), curve radius and elevation in the curves, temporary Speed limits. The extent of the route reservation is influenced, for example, by whether / where there are other trains, workers, construction sites, etc. on the route to be traveled.

Die Anfrage erfolgt an die Risikobewertungseinrichtung, welche in Echtzeit eine Risikobewertung für die angefragte (individuell ermittelte) Streckenreservierung durchführt. Vorzugsweise wird die Risikobewertung für alle zuvor im Rahmen des Verfahrens ermittelten Unfallklassen durchgeführt. Die Echtzeitrisikobewertung umfasst die Ermittlung eines Risikofaktors für die Bewegung des ausgewählten Zugs innerhalb der Streckenreservierung. Das Risiko (Risikofaktor) wird also für jeden Zug individuell und in Echtzeit ermittelt und bewertet.The request is made to the risk assessment device, which carries out a risk assessment in real time for the requested (individually determined) route reservation. The risk assessment is preferably carried out for all accident classes previously determined within the framework of the method. The real-time risk assessment includes the determination of a risk factor for the movement of the selected train within the route reservation. The risk (risk factor) is determined and assessed individually for each train in real time.

Die Risikobewertungseinrichtung verwendet die Echtzeit-Risikobewertung, um zu beurteilen, ob die für Streckenreservierung notwendigen Kommandos (Umstellen von Weichen, Fahrerlaubnis für Züge, ...) zulässig sind. Dazu wird die Unfallwahrscheinlichkeit (Risikofaktor) für die vordefinierten Unfallklassen ermittelt. Wenn der Risikofaktor unter einem zuvor festgelegten Grenzwert bleibt (Risikofaktor = akzeptabel), werden die für die Streckenreservierung notwendigen Kommandos (z. B. Stellung von Weichen, Signalen usw.) ausgeführt und die Streckenreservierung wird freigegeben. Die Freigabe der Streckenreservierung erfolgt also, wenn die für die Streckenreservierung benötigten Feldelemente gestellt sind (z. B. korrekte Weichenstellung, Signalstellung, Anweisung der Bahnübergangsöffnung). Die Freigabe der Streckenreservierung bewirkt eine Ausgabe einer Fahrberechtigung (movement authority) an einen Zug.The risk assessment device uses the real-time risk assessment to assess whether the commands necessary for route reservation (switching of points, driving licenses for trains, ...) are permissible. For this purpose, the accident probability (risk factor) is determined for the predefined accident classes. If the risk factor remains below a previously defined limit value (risk factor = acceptable), the commands necessary for the route reservation (e.g. setting of points, signals, etc.) are carried out and the route reservation is released. The route reservation is released when the field elements required for the route reservation are set (e.g. correct switch position, signal position, instruction of the level crossing opening). The release of the route reservation results in a movement authority being issued to a train.

Mit der erfindungsgemäßen Risikobewertung kann die Risikobewertungseinrichtung bei Störungsmeldungen von Feldelementen oder Positions-/Geschwindigkeitsmeldungen des Zuges beurteilen, ob die aktuelle Situation zu einer Gefährdung führt und, wenn nötig, Sicherheitsmaßnahmen unternehmen.With the risk assessment according to the invention, the risk assessment device can assess whether the current situation leads to a hazard and, if necessary, take safety measures in the event of fault reports from field elements or position / speed reports from the train.

Das erfindungsgemäße Verfahren passt sich dynamisch der Verkehrssituation und den Befehlen des Betreibers an, berechnet alle individuellen Risiken und garantiert höchste Sicherheitsintegrität (SIL4) bei gleichzeitig höchstem Durchsatz innerhalb eines überwachten Kontrollbereichs, bevor es Befehle an Feldelemente und Fahrberechtigungen an Züge erteilt.The method according to the invention adapts dynamically to the traffic situation and the commands of the operator, calculates all individual risks and guarantees the highest safety integrity (SIL4) with the highest throughput within a monitored control area before it issues commands to field elements and driving authorizations to trains.

Das erfindungsgemäße Verfahren beschreibt eine generische Lösung, die keine spezifische Projektierung benötigt und das Zulassungsverfahren wesentlich vereinfacht. Es benötigt keine operativen Regeln und keine Projektierung von Fahrstraßen oder Fahrerlaubnissen.The method according to the invention describes a generic solution which does not require any specific project planning and which considerably simplifies the approval process. It does not require any operational rules and no planning of routes or driving licenses.

Vorzugsweise wird zur Ermittlung der Streckenreservierung eine aktuelle Position des Zugs bestimmt. Die Positionsbestimmung erfolgt vorzugsweise mittels Satelliten (GNSS).A current position of the train is preferably determined to determine the route reservation. The position is preferably determined using satellites (GNSS).

Um zu vermeiden, dass ein Zugteil auf der Strecke liegen bleibt und eine Gefahr für andere Züge darstellt, wird zur Ermittlung der Streckenreservierung vorzugsweise die Integrität des Zugs bestimmt.In order to avoid that a part of the train remains on the route and poses a danger to other trains, the integrity of the train is preferably determined in order to determine the route reservation.

Besonders vorteilhaft ist es, wenn die Echtzeitrisikobewertung ausschließlich auf Grundlage von physikalischen und/oder geometrischen Parametern der Unfalleinflussfaktoren und von Fehlerwahrscheinlichkeiten der Unfalleinflussfaktoren durchgeführt wird. Dies ist vorteilhaft, da die physikalischen und geometrischen Parameter einfach ermittelt werden können oder sowieso bekannt sind.It is particularly advantageous if the real-time risk assessment is based solely on physical and / or geometric parameters of the accident influencing factors and on the error probabilities of the accident influencing factors is carried out. This is advantageous because the physical and geometric parameters can be determined easily or are known anyway.

Die Fehlerwahrscheinlichkeit eines Unfalleinflussfaktors beeinflusst die Fehlerwahrscheinlichkeit der anderen Unfalleinflussfaktoren.The error probability of one accident influencing factor influences the error probability of the other accident influencing factors.

Bei einer besonderen Variante des erfindungsgemäßen Verfahrens wird für die Echtzeitrisikobewertung ein probabilistisches Graphenmodell (graphisches Modell) verwendet, welches das zuvor erstellt Unfallmodell beschreibt, wobei ein Graph mit Knoten und Kanten aufgebaut/instanziiert wird, wobei für jeden Knoten bedingte Wahrscheinlichkeiten hinterlegt sind. Probabilistische Graphische Modelle (PGM) sind Graphen mit Knoten und Kanten, wobei die Knoten Wahrscheinlichkeitsvariablen repräsentieren. Die Abwesenheit von Kanten zwischen Knoten des Graphen zeigt deren Unabhängigkeit an. Erfindungsgemäß wird ein Graph instanziiert/generiert, der die Topologie des Eisenbahnsystems repräsentiert. Der instanziierte Graph beschreibt also den Zug und die geometrische Infrastruktur des Eisenbahnsystems.In a special variant of the method according to the invention, a probabilistic graph model (graphic model) is used for the real-time risk assessment, which describes the previously created accident model, a graph with nodes and edges being constructed / instantiated, with conditional probabilities being stored for each node. Probabilistic graphic models (PGM) are graphs with nodes and edges, with the nodes representing probability variables. The absence of edges between nodes of the graph indicates their independence. According to the invention, a graph is instantiated / generated which represents the topology of the railroad system. The instantiated graph describes the train and the geometric infrastructure of the railroad system.

Vorzugsweise handelt es sich bei dem Graphen um einen gerichteten und/oder azyklischen Graphen, z.B. ein Graph gemäß Bayes'schen Netzwerk (gerichtet und azyklisch) oder gemäß einem Markov Modell.The graph is preferably a directed and / or acyclic graph, e.g. a graph according to a Bayesian network (directed and acyclic) or according to a Markov model.

Das erfindungsgemäß verwendete Graphenmodell ist ein statistisches Modell, das einen Satz von Variablen (Unfalleinflussfaktoren/Knoten) und ihre Abhängigkeiten über einen gerichteten, insbesondere azyklischen Graphen (DAG) darstellt. Die Abhängigkeiten der Knoten werden über bedingte Wahrscheinlichkeiten modelliert Der Graph beschreibt generisch das zuvor erstellte Unfallmodell. Der Graph kann als ein dynamisches Netzwerk betrachtet werden, das dazu eingerichtet ist, Unfallwahrscheinlichkeitsraten zu berechnen (Wahrscheinlichkeitsnetzwerk). Der generische Graph wird dynamisch, d.h. abhängig von der aktuellen Situation, der Streckenreservierung und der geometrischen Beschreibung der Strecke und des Zuges erzeugt. Idealerweise wird als Graph ein Bayes'sches Netzwerk (BN) verwendet, da Bayes'sche Netzwerke ideal sind, um ein aufgetretenes Ereignis zu erfassen und die Wahrscheinlichkeit vorherzusagen, das eine von mehreren möglichen bekannten Ursachen der entscheidende Faktor war. Dabei wird die Wahrscheinlichkeitsverteilung aller beteiligten Unfalleinflussfaktoren unter Ausnutzung bekannter bedingter Wahrscheinlichkeiten kompakt repräsentiert. Die bedingten Wahrscheinlichkeiten für jeden Knoten sind in einer Wahrscheinlichkeitstabelle hinterlegt. Die Struktur dieses Graphen und dessen Wahrscheinlichkeitstabellen werden durch das Unfallmodell bestimmt. Die Wahrscheinlichkeitstabellen umfassen physikalisch und/oder geometrische Parameter des jeweiligen Unfalleinflussfaktors sowie deren Fehlerwahrscheinlichkeiten. Die physikalischen und/oder geometrischen Parameter des Zuges (Achslast, Bremsvermögen, ...) können beispielsweise aus der Zugmechanik ermittelt werdenThe graph model used according to the invention is a statistical model which represents a set of variables (accident influencing factors / nodes) and their dependencies via a directed, in particular acyclic graph (DAG). The dependencies of the nodes are modeled using conditional probabilities. The graph generically describes the accident model created previously. The graph can be viewed as a dynamic network that is set up to provide accident probability rates to calculate (probability network). The generic graph is generated dynamically, ie depending on the current situation, the route reservation and the geometric description of the route and the train. Ideally, a Bayesian network (BN) is used as the graph, since Bayesian networks are ideal for capturing an event that has occurred and for predicting the probability that one of several possible known causes was the decisive factor. The probability distribution of all accident influencing factors involved is represented in compact form using known conditional probabilities. The conditional probabilities for each node are stored in a probability table. The structure of this graph and its probability tables are determined by the accident model. The probability tables include physical and / or geometric parameters of the respective accident influencing factor and their error probabilities. The physical and / or geometric parameters of the train (axle load, braking capacity, ...) can be determined from the train mechanics, for example

Zur Erstellung des Unfallmodells wird vorzugsweise ein systemtheoretischer Ansatz STAMP (Systems-Theoretic Accident Model and Processes) mit einer systemtheoretische Prozessanalyse STPA (Systems Theoretic Process Analysis) verwendet. Das Unfallmodell stellt die kausalen Abhängigkeiten zwischen Unfalleinflussfaktoren und Unfallklassen dar und dient als Basis für die Struktur des Graphen. Statt STAMP/STPA können auch andere Methoden verwendet werden.A system-theoretical approach STAMP (Systems-Theoretic Accident Model and Processes) with a system-theoretical process analysis STPA (Systems Theoretic Process Analysis) is preferably used to create the accident model. The accident model shows the causal dependencies between accident influencing factors and accident classes and serves as the basis for the structure of the graph. Other methods can also be used instead of STAMP / STPA.

Bei den Knoten handelt es sich vorzugsweise um Unfallklasseknoten und Elementknoten, wobei ein Elementknoten einen Unfalleinflussfaktor und wobei ein Unfallklassenknoten eine der Unfallklassen repräsentiert.The nodes are preferably accident class nodes and element nodes, an element node representing an accident influencing factor and an accident class node representing one of the accident classes.

Für jeden Knoten ist eine bedingte Wahrscheinlichkeitsverteilung (Wahrscheinlichkeitstabelle) der durch den Knoten repräsentierten Zufallsvariablen (Unfalleinflussfaktor) hinterlegt. Die Wahrscheinlichkeitsverteilung ordnet Zufallsvariablen den Elternknoten zu.A conditional probability distribution (probability table) of the random variables (accident influencing factor) represented by the node is stored for each node. The probability distribution assigns random variables to the parent nodes.

Die Streckenreservierung kann mehrere Streckenreservierungsteilbereiche umfassen, wobei für jeden Streckenreservierungsteilbereich ein (vorzugsweise gerichteter, insbesondere azyklischer) Teilgraph aufgebaut/instanziiert wird, der ein Subnetz darstellt.The route reservation can comprise a plurality of route reservation subareas, a (preferably directed, in particular acyclic) subgraph being set up / instantiated for each route reservation subarea, which represents a subnet.

Die Streckenreservierungsteilbereiche sind vorzugsweise definiert (begrenzt) durch Änderungen auf der Strecke. D. h., dass wenn sich ein Streckenparameter ändert (z. B. aufgrund eines neuen Gradientenprofils, Aufzweigung der Strecke durch eine Weiche, Änderung der Steigung der Strecke ...), endet der vorherige und beginnt der nächste Streckenreservierungsteilbereich. Dies ist insbesondere vorteilhaft, da eine Änderung der Streckenparameter das Unfallrisiko (Risikofaktor) beeinflussen kann. Es wird also für jeden Streckenreservierungsteilbereich ein Teil-Risikofaktor berechnet. Dabei kann das Unfallrisiko der verschiedenen Streckenreservierungsteilbereiche von unterschiedlichen Unfalleinflussfaktoren abhängen. Die Subnetze der verschiedenen Streckenreservierungsteilbereiche können also unterschiedliche Arten und Anzahl von Knoten umfassen. Die Streckenreservierung wird nur dann freigegeben, wenn in jedem Streckenreservierungsteilbereich das Unfallrisiko (Teil-Risikofaktor) kleiner als der akzeptable Risikofaktor ist. Der Risikofaktor für die gesamte Streckenreservierung berechnet sich als Summe der Teil-Risikofaktoren.The route reservation sub-areas are preferably defined (limited) by changes on the route. This means that if a route parameter changes (e.g. due to a new gradient profile, branching of the route through a switch, change in the gradient of the route ...), the previous section ends and the next route reservation section begins. This is particularly advantageous since a change in the route parameters can influence the risk of an accident (risk factor). A partial risk factor is calculated for each route reservation sub-area. The accident risk of the various route reservation sub-areas can depend on different accident influencing factors. The subnetworks of the various route reservation sub-areas can therefore include different types and numbers of nodes. The route reservation is only released if the accident risk (partial risk factor) in each route reservation sub-area is lower than the acceptable risk factor. The risk factor for the entire route reservation is calculated as the sum of the partial risk factors.

Vorzugsweise werden in zeitlichen Abständen Positionsmeldungen des Zugs bestimmt und an die Risikobewertungseinrichtung übermittelt. Nach jeder Positionsmeldung werden für Streckenreservierungsteilbereiche aus den Positionsmeldungen erhaltene Daten in den Graphen eingetragen.Position reports of the train are preferably determined at time intervals and transmitted to the risk assessment device. To For each position report, data obtained from the position reports are entered in the graph for route reservation subareas.

Eine Positionsmeldung umfasst vorzugsweise Positionsdaten, Zuginformationen (z. B. Zugintegrität, Zuglänge) und Geschwindigkeitsinformation. Sobald eine Positionsmeldung des Zuges (OBU) aktualisiert wird, werden die aktuellen Daten der Positionsmeldung in den Graphen eingetragen und es wird zumindest für die vorausliegenden (bezogen auf die aktuelle Position des Zugs) Streckenreservierungsteilbereich der Graph neu berechnet.A position report preferably includes position data, train information (e.g. train integrity, train length) and speed information. As soon as a position report of the train (OBU) is updated, the current data of the position report is entered in the graph and the graph is recalculated at least for the route reservation sub-area ahead (based on the current position of the train).

Die Subnetze sind untereinander verbunden, bilden also ein dynamisches Netzwerk, so dass eine Änderung in einem Subnetz zu Änderungen in den andere Subnetzen führen kann.The subnets are interconnected, so they form a dynamic network so that a change in one subnet can lead to changes in the other subnets.

Die Erfindung betrifft auch ein Zugsicherungssystem zur Durchführung des zuvor beschriebenen Verfahrens. Das erfindungsgemäße Zugsicherungssystem umfasst

  • eine Risikobewertungseinrichtung zur Erstellung einer Echtzeitrisikobewertung für eine zuvor bestimmte Streckenreservierung für einen Zug anhand eines Unfallmodells und zur Übermittlung von Kommandos an Feldelemente; und
  • eine Übermittlungseinrichtung zur Übermittlung von Zuginformationen betreffend den Zug, wobei die Übermittlungseinrichtung eine Schnittstelle zu der Risikobewertungseinrichtung aufweist.
The invention also relates to a train protection system for performing the method described above. The train control system according to the invention comprises
  • a risk assessment device for creating a real-time risk assessment for a previously determined route reservation for a train based on an accident model and for transmitting commands to field elements; and
  • a transmission device for transmitting train information relating to the train, the transmission device having an interface to the risk assessment device.

Die erfindungsgemäße Risikobewertungseinrichtung ist dazu eingerichtet, mithilfe eines Graphenmodells einen Risikofaktor für eine bestimmte Streckenreservierung auf SIL4-Ebene zu berechnen, diesen Risikofaktor mit einem zuvor festgelegten akzeptablen Risikofaktor zu vergleichen und ggf. die Streckenreservierung freizugeben, falls der berechnete Risikofaktor kleiner ist als der akzeptable Risikofaktor.The risk assessment device according to the invention is set up to use a graph model to calculate a risk factor for a certain route reservation at SIL4 level, to compare this risk factor with a previously defined acceptable risk factor and, if necessary, to to approve the route reservation if the calculated risk factor is less than the acceptable risk factor.

Die Übermittlungseinrichtung ist vorzugsweise im Zug angeordnet.The transmission device is preferably arranged in the train.

Vorzugsweise weist die Risikobewertungseinrichtung Schnittstellen zu Feldelementen des Zugsicherungssystems auf. Über diese Schnittstellen können die Feldelemente angesteuert und überwacht werden, um die Voraussetzungen zur Freigabe der Streckenreservierung zu schaffen (z.B. durch Umstellung von Weichen, Schalten von Signalen usw.).The risk assessment device preferably has interfaces to field elements of the train protection system. The field elements can be controlled and monitored via these interfaces in order to create the conditions for the release of the route reservation (e.g. by changing points, switching signals, etc.).

Bei einer speziellen Ausführungsform des erfindungsgemäßen Zugsicherungssystems ist eine operative Einrichtung (OB) vorhanden zur Ermittlung der für den Zug individuellen Streckenreservierung, wobei die Streckenreservierung einen Streckenreservierungsbereich und, ein Streckenprofil umfasst, wobei die operative Einrichtung eine Schnittstelle zur Risikobewertungseinrichtung aufweist.In a special embodiment of the train control system according to the invention, there is an operational device (OB) for determining the individual route reservation for the train, the route reservation comprising a route reservation area and a route profile, the operational device having an interface to the risk assessment device.

Die operative Einrichtung ist vorzugsweise eine Einrichtung mit Schnittstelle zu einem Train Management System. Das Train Management System ist dazu eingerichtet, einen Fahrplan zur Verfügung zu stellen, den Zugverkehr entsprechend dem Fahrplan zu steuern und zu überwachen, den aktuellen Fahrplan zu optimieren, bei Problemen im aktuellen Zugverkehr Konflikte zu erkennen und zu lösen.The operative device is preferably a device with an interface to a train management system. The train management system is set up to provide a timetable, to control and monitor the train traffic according to the timetable, to optimize the current timetable, to recognize and solve conflicts in the event of problems in the current train traffic.

Die operative Einrichtung erstellt die Streckenreservierungen mit aktuellen Zug- und Streckenparametern (Zuglänge, Bremsvermögen, Streckeneigenschaften, Gleiszustand) auf SILO-Ebene.The operational facility creates the route reservations with current train and route parameters (train length, braking capacity, route properties, track condition) at SILO level.

Die Risikobewertungseinrichtung übernimmt keine Entscheidung, wo der Zug hinfahren soll, und mit welchem Geschwindigkeitsprofil sich der Zug bewegen darf, hat also keinen Einfluss auf die Ausgestaltung der Streckenreservierung.The risk assessment facility does not make any decision as to where the train is to go and with which speed profile the train may move, so it has no influence on the design of the route reservation.

Vorzugsweise ist die operative Einrichtung auch dafür zuständig, die Streckenreservierung bei der Risikobewertungseinrichtung anzufragen. Alternativ hierzu kann eine Anfrage für eine Streckenreservierung beispielsweise auch vom Zug selbst erfolgen.The operational facility is preferably also responsible for inquiring about the route reservation from the risk assessment facility. Alternatively, a request for a route reservation can also be made by the train itself, for example.

Bei der Einrichtung zur Übermittlung von Zuginformationen kann es sich beispielsweise um eine On-Board-Unit (OBU) des Zuges oder eine streckenseitige Einrichtung handeln.The device for transmitting train information can be, for example, an on-board unit (OBU) of the train or a trackside device.

Vorzugsweise umfasst die On-Board-Unit (OBU) eine Positionsbestimmungseinrichtung.The on-board unit (OBU) preferably comprises a position determination device.

Mit dem erfindungsgemäßen Verfahren bzw. dem erfindungsgemäßen Zugsicherungssystem kann die Betriebsoptimierung (Optimierung der Zugfahrten, Konfliktlösung) auf SILO-Ebene mit aktuellen Parametern erfolgen, wohingegen die Risikoanalyse flexibel in Echtzeit auf SIL4-Ebene erfolgt.With the method according to the invention and the train control system according to the invention, the optimization of operations (optimization of train journeys, conflict resolution) can be carried out on the SILO level with current parameters, whereas the risk analysis takes place flexibly in real time on the SIL4 level.

Weitere Vorteile der Erfindung ergeben sich aus der Beschreibung und der Zeichnung. Ebenso können die vorstehend genannten und die noch weiter ausgeführten Merkmale erfindungsgemäß jeweils einzeln für sich oder zu mehreren in beliebigen Kombinationen Verwendung finden. Die gezeigten und beschriebenen Ausführungsformen sind nicht als abschließende Aufzählung zu verstehen, sondern haben vielmehr beispielhaften Charakter für die Schilderung der Erfindung.Further advantages of the invention emerge from the description and the drawing. The features mentioned above and below can also be used according to the invention individually or collectively in any combination. The embodiments shown and described are not to be understood as an exhaustive list, but rather have an exemplary character for describing the invention.

Detaillierte Beschreibung der Erfindung und ZeichnungDetailed description of the invention and drawing

Fig. 1Fig. 1
zeigt eine schematische Darstellung des SIL4-Bereichs einer bevorzugten Ausführungsform eines erfindungsgemäßen Sicherungssystems.shows a schematic representation of the SIL4 area of a preferred embodiment of a security system according to the invention.
Fig. 2Fig. 2
zeigt eine schematische Darstellung einer bevorzugten Ausführungsform eines erfindungsgemäßen Sicherungssystems mit SILO-Bereich.shows a schematic representation of a preferred embodiment of a security system according to the invention with a SILO area.
Fig. 3Fig. 3
zeigt den Ablauf der verschiedenen Verfahrensschritte des erfindungsgemäßen Verfahrens.shows the sequence of the various method steps of the method according to the invention.
Fig. 4Fig. 4
zeigt einen Graphen eines probabilistischen Graphenmodells basierend auf einem Unfallmodell mit einem Unfallklasseknoten und einer Vielzahl von Elementknoten.shows a graph of a probabilistic graph model based on an accident model with an accident class node and a plurality of element nodes.
Fig. 5Fig. 5
zeigt ein Geschwindigkeitsprofil einer Streckenreservierung sowie Subnetze des für die Risikobewertung erstellten Graphen für die Streckenreservierung.shows a speed profile of a route reservation as well as subnetworks of the graph created for the risk assessment for the route reservation.

Figur 1 zeigt die wesentlichen Komponenten des erfindungsgemäßen Zugsicherungssystems. Das Kernstück des erfindungsgemäßen Steuerungssystems ist eine Risikobewertungseinrichtung MAXd. Figure 1 shows the essential components of the train protection system according to the invention. The core of the control system according to the invention is a risk assessment device MAXd.

Die Risikobewertungseinrichtung MAXd umfasst Elemente zur Fahrwegsicherung und Zugfolgesicherung. Darüber hinaus kann die Risikobewertungseinrichtung Elemente zum Rottenschutz und zur Sicherung von Eisenbahnkreuzungen umfassen.The MAXd risk assessment system includes elements for route and train sequence protection. In addition, the risk assessment device can include elements for protection against rotting and for securing level crossings.

Die Risikobewertungseinrichtung MAXd erhält von einer Übermittlungseinrichtung OBS über eine Schnittstelle Zuginformationen Iz betreffend einen Zug, für den eine Streckenreservierung RES freigegeben werden soll (ausgewählter Zug). Die Zuginformationen IZ können beispielsweise Zugposition, Geschwindigkeit, Zuglänge, Masse, ... umfassen. Die Zugposition wird mittels einer Zugdetektionseinrichtung VD ermittelt. Die Zugdetektionseinrichtung VD und die Übermittlungseinrichtung OBS können (müssen aber nicht) im Zug angeordnet sein. Bei der Übermittlungseinrichtung OBS kann es sich beispielsweise um eine fahrzeugseitige Steuereinrichtung handeln. Es ist jedoch auch möglich, dass die Zugformationen IZ von einer (Zug)externen Übermittlungseinrichtung an die Risikobewertungseinrichtung MAXd übermittelt werden und/oder dass die Zugdetektionseinrichtung VD streckenseitig angeordnet ist.The risk assessment device MAXd receives from a transmission device OBS via an interface train information I z relating to a train for which a route reservation RES is to be released (selected train). The train information I Z can include train position, speed, train length, mass, ..., for example. The train position is determined by means of a train detection device VD . The train detection device VD and the transmission device OBS can (but do not have to) be arranged in the train. The transmission device OBS can, for example, be a control device on the vehicle act. However, it is also possible that the train formations I Z are transmitted from an (train) external transmission device to the risk assessment device MAXd and / or that the train detection device VD is arranged on the track side.

Die Risikobewertungseinrichtung MAXd erhält über eine weitere Schnittstelle Informationen IFE von Feldelementen FE betreffend die momentanen Zustände der Feldelemente FE.The risk assessment device MAXd receives information I FE from field elements FE relating to the current states of the field elements FE via a further interface.

Die Risikobewertungseinrichtung MAXd ist dazu eingerichtet, Kommandos K an die Feldelemente weiterzugeben, um die Voraussetzungen für eine Freigabe einer Streckenreservierung (RES) zu schaffen. Darüber hinaus kann die Risikobewertungseinrichtung MAXd dazu eingerichtet sein, Fahrerlaubnisse MA an Züge zu übermitteln. Alternativ kann die Fahrerlaubnis MA auch über streckenseitige Signale dem Zug mitgeteilt werden (nicht dargestellt). In Figur 1 wird davon ausgegangen, dass die Übermittlungseinrichtung OBS innerhalb des Zuges angeordnet ist, sodass die Übermittlungseinrichtung OBS auch die Fahrerlaubnis MA entgegennehmen kann.The risk assessment device MAXd is set up to pass on commands K to the field elements in order to create the conditions for a route reservation (RES) to be released. In addition, the risk assessment device MAXd can be set up to transmit driving permits MA to trains. Alternatively, the MA driving license can also be communicated to the train via trackside signals (not shown). In Figure 1 it is assumed that the transmission device OBS is arranged within the train, so that the transmission device OBS can also receive the driving license MA.

Erfindungsgemäß wird die Streckenreservierung RES außerhalb des SIL 4 Bereichs des erfindungsgemäßen Zugsicherungssystems erstellt. Dies kann durch eine operative Einrichtung OP erfolgen, wie in Figur 2 gezeigt. Als "operative Einrichtung" kann ein Rechner mit einer Businesslogik zur Bewegungssteuerung, insbesondere mit einer Entscheidungsunterstützungs-Software (Decision Support System) dienen. Stattdessen kann aber auch ein Fahrdienstleiter einen Teil der Aufgaben der operativen Einheit übernehmen. Die operative Einrichtung OP ist zuständig für die Betriebsoptimierung (Optimierung der Zugfahrten). Diese Betriebsoptimierung findet auf SILO-Ebene mit aktuellen Parametern (Zuglänge, Bremsvermögen, Streckeneigenschaften, Gleiszustand).According to the invention, the route reservation RES is created outside of the SIL 4 area of the train protection system according to the invention. This can be done by an operative facility OP , as in Figure 2 shown. A computer with business logic for motion control, in particular with decision support software (Decision Support System), can serve as the "operational facility". Instead, a dispatcher can also take over part of the tasks of the operational unit. The operational facility OP is responsible for operational optimization (optimization of train journeys). This operational optimization takes place at the SILO level with current parameters (train length, braking capacity, route properties, track condition).

Die operative Einrichtung OP kennt die nationalen Anforderungen und die Betriebsregeln. Von der Risikobewertungseinrichtung MAXd wird der Systemzustand SYS (d.h. Feldelementzustände, Position, Geschwindigkeit von Zügen stc.) an die operative Einrichtung OP übertragen. Auf dieser Basis kann die operative Einrichtung OP individuell für einen speziellen Zug eine Streckenreservierung RES generieren, d. h. die Ausdehnung der Streckenreservierung RES individuell festlegen, ein Streckenprofil umfassend ein Geschwindigkeitsprofil MP ermitteln und die Weichen in die richtige Lage für die Streckenreservierung RES bringen.The operational facility OP knows the national requirements and the operating rules. The system status is obtained from the risk assessment device MAXd SYS (ie field element states, position, speed of trains stc.) Transmitted to the operational facility OP. On this basis, the operational facility OP can generate a route reservation RES individually for a special train, ie individually define the extent of the route reservation RES, determine a route profile including a speed profile MP and put the switches in the correct position for the route reservation RES.

Die operative Einrichtung OP erstellt also individuell für einen ausgewählten Zug eine Streckenreservierung RES. In der in Figur 2 gezeigten Ausführungsform erfolgt eine Anfrage A der Streckenreservierung (Bitte um Freigabe einer zuvor erstellten Streckenreservierung RES) an die Risikobewertungseinrichtung MAXd ebenfalls über die operative Einrichtung OP.The operational facility OP thus creates a route reservation RES individually for a selected train. In the in Figure 2 In the embodiment shown, a request A for the route reservation (request for approval of a previously created route reservation RES) is sent to the risk assessment device MAXd, likewise via the operative device OP.

Die operative Eirichtung kommuniziert mit einer Zugmanagementeinheit TMS, die für die Planung der Zugfahrten zuständig ist. Insbesondere wird der Systemzustand SYS an die die Zugmanagementeinheit TMS übertragen, da dieser benötigt wird, damit die Zugmanagementeinheit TMS eventuell dispositiv eingreifen kann; z. B. zum Umleiten von nachfolgenden Zügen bei Störung eines Zuges auf der Strecke.The operational facility communicates with a train management unit TMS, which is responsible for planning train journeys. In particular, the system status SYS is transmitted to the train management unit TMS, since this is required so that the train management unit TMS can possibly intervene for dispatch purposes; z. B. for rerouting subsequent trains in the event of a train fault on the route

Hauptaufgabe der Risikobewertungseinrichtung MAXd ist es, eine Risikobewertung für eine angefragte Streckenreservierung RES auf Basis eines zuvor aufgestellten Unfallmodells AccM sowie auf Basis der Zuginformationen IZ und der Feldelementinformationen IFE zu berechnen. Anhand der Risikobewertung entscheidet die Risikobewertungseinrichtung MAXd, ob die angefragte Streckenreservierung RES freigegeben wird und der betreffende Zug die entsprechende Fahrerlaubnis MA erhält. Die Echtzeitrisikobewertung findet auf SIL4-Ebene statt.The main task of the risk assessment device MAXd is to calculate a risk assessment for a requested route reservation RES on the basis of a previously established accident model AccM and on the basis of the train information I Z and the field element information I FE . On the basis of the risk assessment, the risk assessment device MAXd decides whether the requested route reservation RES is released and the train in question receives the corresponding driving license MA. The real-time risk assessment takes place at SIL4 level.

Figur 3 zeigt den Ablauf des erfindungsgemäßen Verfahrens: Erhält die Risikobewertungseinrichtung MAXd eine Anfrage A für eine Streckenreservierung RES für einen bestimmten Zug, berechnet die Risikobewertungseinrichtung MAXd anhand des Unfallmodells AccM und der ihr zur Verfügung stehenden Zuginformationen IZ und Feldelementinformationen IFE in Echtzeit einen Risikofaktor RF für die angefragte Streckenreservierung RES, bzw. mehrere Teil-Risikofaktoren für Streckenreservierungsteilbereiche der Streckenreservierung RES. Liegt der Risikofaktor RF unterhalb eines zuvor festgelegten akzeptablen Grenzwertes Lim, übermittelt die Risikobewertungseinrichtung MAXd Kommandos K an die Feldelemente FE zur Einstellung der für die Streckenreservierung RES notwendigen Feldelementeinstellungen. Sobald die notwendigen Feldelementeinstellungen vorgenommen wurden (die Streckenreservierung RES also "befahrbar" ist), erteilt die Risikobewertungseinrichtung die Fahrerlaubnis MA. Liegt der ermittelte Risikofaktor RF oberhalb des akzeptablen Grenzwertes Lim, werden keine Kommandos K und keine Fahrerlaubnis MA erteilt. Stattdessen kann eine Information bezüglich der Ablehnung der Anfrage A an die operative Einheit OP übermittelt werden, sodass diese eine alternative Streckenreservierung erstellen kann. Figure 3 shows the sequence of the method according to the invention: If the risk assessment device MAXd receives a request A for a route reservation RES for a specific train, the risk assessment device calculates MAXd based on the accident model AccM and the train information I Z and field element information I FE available to it, a risk factor RF for the requested route reservation RES, or several partial risk factors for route reservation subareas of the route reservation RES, in real time. If the risk factor RF is below a previously established acceptable limit value Lim, the risk assessment device MAXd transmits commands K to the field elements FE for setting the field element settings necessary for the route reservation RES. As soon as the necessary field element settings have been made (the route reservation RES is therefore "passable"), the risk assessment device issues the driving license MA. If the determined risk factor RF is above the acceptable limit value Lim, no commands K and no driving license MA are issued. Instead, information relating to the rejection of request A can be transmitted to the operational unit OP so that it can create an alternative route reservation.

Zur Erstellung des Unfallmodell AccM, welches für die erfindungsgemäße Echtzeitrisikobewertung verwendetet wird, werden auf Basis von Zug- und Streckeneigenschaften Unfallklassen (beispielsweise Entgleisung, Kollisionen mit anderen Zügen, Kollision mit Personen/Objekten, Unfälle auf Eisenbahnkreuzungen) definiert.To create the AccM accident model, which is used for the real-time risk assessment according to the invention, accident classes (for example derailment, collisions with other trains, collisions with people / objects, accidents at level crossings) are defined on the basis of train and route properties.

Das Unfallmodell wird durch einen gerichteten Graphen G eines Graphenmodells dargestellt, bspw. durch ein Bayes'sches Netzwerk. Figur 4 zeigt einen entsprechenden Graphen für die Unfallklasse "Entgleisung" D. Die Unfallklasse D stellt einen Knoten (Unfallklassenknoten - oval dargestellt) des Graphen G dar. Der Graph G umfasst des Weiteren Elementknoten (rund dargestellt), wobei jeder Elementknoten einen Unfalleinflussfaktor darstellt (hier: Fahrer VD, Fahrerentscheidungen VDDE, fahrzeugseitige System (Überwachung) S, Geschwindigkeit V, Infrastruktur INF, Zug RS, Umwelteinflüsse E).The accident model is represented by a directed graph G of a graph model, for example by a Bayesian network. Figure 4 shows a corresponding graph for the accident class "derailment" D. The accident class D represents a node (accident class node - shown oval) of graph G. The graph G also includes element nodes (shown around), each element node representing an accident influencing factor (here: Driver VD, driver decisions VDDE, on- board system (monitoring) S, speed V, infrastructure INF, train RS, environmental influences E ).

Die im vorliegenden Fall berücksichtigten Unfalleinflussfaktoren weisen folgende zugehörigen geometrischen/physikalischen Parameter/Fehlerraten auf, die bei der Erstellung der Wahrscheinlichkeitstabellen berücksichtigt werden: Unfalleinflussfaktor (Netzwerkknoten) Geometrische/physikalische Parameter/Fehlerrate ETCS Mode Wahrscheinlichkeit für verschiedene Sicherungsmodi (Fahrwegbeobachtung durch Triebfahrzeugführer (staff responsibility SR), Fahren auf Sicht (on sight - OS), Vollüberwachung (full supervision - FS) Fahrer Fehlerrate des entsprechenden Fahrers Fahrerentscheidung Wahrscheinlichkeiten für Bremsen, Beschleunigen, keine Aktion Zug Fehlerrate des Zuges, Geschwindigkeit, Achslast, Kurvenradius, Überhöhung in Kurven Umwelt Wahrscheinlichkeit für Erdrutsch, Lawinen, Steinschlag Geschwindigkeit Bremsleistung des Zuges, Beschleunigungsvermögen des Zuges Infrastruktur Fehlerrate des Gleises, Art des Zuges, Geschwindigkeit des Zuges Überwachung (OBU) Wahrscheinlichkeit des Überwachungsmodus (SR, OS, FS); hängt von den Verfügbarkeitsraten des Onboard Systems ab The accident influencing factors taken into account in the present case have the following associated geometric / physical parameters / error rates that are taken into account when creating the probability tables: Accident influencing factor (network node) Geometric / physical parameters / error rate ETCS mode Probability for different security modes (route monitoring by the driver (staff responsibility SR), driving on sight (OS), full supervision (FS) driver Error rate of the corresponding driver Driver decision Probabilities of braking, accelerating, no action train Error rate of the train, speed, axle load, curve radius, superelevation in curves Environment Probability of landslide, avalanche, rock fall speed Braking performance of the train, acceleration capacity of the train Infrastructure Error rate of the track, type of train, speed of the train Monitoring (OBU) Probability of monitoring mode (SR, OS, FS); depends on the availability rates of the onboard system

Die Kanten des Graphen G (durch Pfeile dargestellt) zeigen an, welche Unfalleinflussfaktoren andere Unfalleinflussfaktoren beeinflussen. Pro Knoten ist eine Wahrscheinlichkeitstabelle hinterlegt, wobei die Wahrscheinlichkeitstabelle keine "trainierten Daten", sondern Streckendaten, Zugdaten sowie Fehlerraten von Elementen und deren bedingte Wahrscheinlichkeiten (in Abhängigkeit von anderen Unfallklasseknoten) umfasst.The edges of the graph G (shown by arrows) indicate which accident influencing factors influence other accident influencing factors. A probability table is stored for each node, the probability table not comprising "trained data", but route data, train data and error rates of elements and their conditional probabilities (depending on other accident class nodes).

Der Graph bildet ein "Wahrscheinlichkeitsnetzwerk", welches von der Topologie des Eisenbahnsystems abhängt (also von der geometrischen Beschreibung der Infrastruktur und des Zuges). Eine Veränderung der Zug- oder Streckeneigenschaften (z.B. maximal erlaubte Geschwindigkeit) ändert auch die Wahrscheinlichkeitstabelle. Die Berechnung der in der Wahrscheinlichkeitstabelle hinterlegten Wahrscheinlichkeiten ist deterministisch.The graph forms a "probability network", which depends on the topology of the railway system (i.e. on the geometric description the infrastructure and the train). A change in the train or route properties (e.g. maximum permitted speed) also changes the probability table. The calculation of the probabilities stored in the probability table is deterministic.

Figur 5 zeigt ein Geschwindigkeitsprofil MP eines Zuges einer Zuglänge LT innerhalb einer 260m langen Streckenreservierung RES. Die Streckenreservierung RES ist in Streckenreservierungsteilbereiche aufgeteilt, wobei für jeden Streckenreservierungsteilbereich ein Subnetz in Form eines Teilgraphen, analog zu Figur 4, erstellt wird. Für eine Streckenreservierung RES werden also eine Vielzahl von Teilgraphen/Subnetzen erstellt, die zusammen einen Graphen für die zu beurteilende Streckenreservierung RES bilden. Ein Subnetz ist in Figur 5 beispielhaft mit schwarz ausgefüllten Knoten dargestellt. Die einzelnen Subnetze sind in Figur 5 an den jeweiligen Streckenabschnitten (Distanz d) innerhalb der Streckenreservierung RES eingezeichnet. Es werden also für mehrere Streckenreservierungsteilbereiche (reservation sub areas) entlang des Verlaufs des Reservierungsbereichs Subnetze erstellt und instanziiert (Instanziierung = Berechnung der konkreten Wahrscheinlichkeitstabellen für einzelnen Knoten). Die Streckenreservierungsteilbereiche sind definiert durch Änderungen auf der Strecke (z. B. Änderung der Weichenstellung, Änderung der maximal zulässigen Geschwindigkeit). Aufgrund dieser Änderungen auf der Strecke ändert sich Wahrscheinlichkeiten der Unfalleinflussfaktoren und somit der Einfluss der einzelnen Unfalleinflussfaktoren auf die Unfallwahrscheinlichkeit der Unfallklasse, mit der die Unfalleinflussfaktoren verknüpft sind. In Bereichen, in denen der Zug abgebremst werden soll, sind daher die Subnetze enger aneinandergereiht. Darüber hinaus sind die Subnetze untereinander verbunden (Dynamic Bayesian Network), so dass eine Änderung in einem Subnetz auch zu Änderungen in den anderen Subnetzen führen kann. Ein Unfalleinflussfaktor eines Reservierungsteilbereichs beeinflusst also den entsprechenden Unfalleinflussfaktor eines nachfolgenden Reservierungsteilbereichs. Figure 5 shows a speed profile MP of a train of a train length LT within a 260 m long route reservation RES. The route reservation RES is divided into route reservation subareas, with a subnet in the form of a subgraph for each route reservation subarea, analogous to Figure 4 , is created. For a route reservation RES, a multiplicity of subgraphs / subnetworks are created which together form a graph for the route reservation RES to be assessed. A subnet is in Figure 5 shown as an example with nodes filled in black. The individual subnets are in Figure 5 on the respective route sections (distance d) within the route reservation RES. Subnets are therefore created and instantiated for several route reservation sub-areas along the course of the reservation area (instantiation = calculation of the specific probability tables for individual nodes). The route reservation sub-areas are defined by changes on the route (e.g. changing the switch position, changing the maximum permissible speed). Due to these changes on the route, the probabilities of the accident influencing factors change and thus the influence of the individual accident influencing factors on the accident probability of the accident class to which the accident influencing factors are linked. In areas in which the train is to be braked, the subnets are therefore strung closer together. In addition, the subnets are interconnected (Dynamic Bayesian Network) so that a change in one subnet can also lead to changes in the other subnets. An accident influencing factor influences a reservation sub-area i.e. the corresponding accident influencing factor of a subsequent reservation sub-area.

Für verschiedene Reservierungsteilbereiche unterscheidet sich daher die Wahrscheinlichkeitstabelle für einen bestimmten Unfalleinflussfaktor, so dass die Wahrscheinlichkeitstabellen für die verschiedenen Reservierungsteilbereiche und somit auch die Risikofaktoren separat berechnet werden müssen. Die Subnetze können sich durch die Anzahl und Art der Knoten und/oder durch die zu den Knoten hinterlegten Wahrscheinlichkeitstabellen unterscheiden. Die Unterteilung in Reservierungsteilbereiche erfolgt vorzugsweise so, dass die Länge eines Reservierungsteilbereichs höchstens so lang ist wie die Länge LT des Zuges, für den die Streckenreservierung RES gilt.The probability table for a specific accident influencing factor therefore differs for different reservation subareas, so that the probability tables for the different reservation subareas and thus also the risk factors must be calculated separately. The subnets can differ in the number and type of nodes and / or in the probability tables stored for the nodes. The subdivision into reservation subareas is preferably carried out such that the length of a reservation subarea is at most as long as the length LT of the train for which the route reservation RES applies.

Die Wahrscheinlichkeit der Knoten können aktualisiert/neu berechnet werden, beispielsweise sobald eine aktuelle Positionsmeldung des Zuges vorliegt. Eine Positionsmeldung umfasst z. B. Positionsdaten, Zugdaten, Geschwindigkeitsinformation, Information betreffend Zugintegrität. Dazu werden die Daten der neuen Positionsmeldung in den Graphen eingetragen und es wird für alle (bezüglich der aktuellen Zugposition vorausliegenden) Reservierungsteilbereiche die Daten neu eingetragen. D.h. dass z.B. bei einem Geschwindigkeitsknoten, der vorher nur eine Wahrscheinlichkeit für eine gewisse Geschwindigkeit hatte, die konkrete gemeldete Geschwindigkeit eingetragen wird. Die beeinflusst dann natürlich die Wahrscheinlichkeiten der nachfolgenden Knoten. Diese Wahrscheinlichkeiten werden mit Hilfe der Wahrscheinlichkeitstabellen berechnet. Ein Knoten kann also entweder eine Wahrscheinlichkeit (z.B. für eine bestimmte Geschwindigkeit) darstellen oder einen konkreten Wert (z.B. eine bestimmte Geschwindigkeit) eingetragen haben.The probability of the nodes can be updated / recalculated, for example as soon as a current position report of the train is available. A position report includes e.g. B. position data, train data, speed information, information regarding train integrity. For this purpose, the data of the new position report is entered in the graph and the data is re-entered for all reservation subareas (with regard to the current train position). This means that, for example, at a speed node that previously only had a probability of a certain speed, the specific reported speed is entered. This of course influences the probabilities of the subsequent nodes. These probabilities are calculated using the probability tables. A node can therefore either represent a probability (e.g. for a certain speed) or have entered a specific value (e.g. a certain speed).

Bevor der Zug aufgrund des herannahenden Endes der Streckenreservierung RES zu bremsen beginnt, besteht die Möglichkeit, dass eine neue/erweiterte Streckenreservierung angefragt wird, um ein Abbremsen des Zuges zu vermeiden. Eine solche Anfrage kann beispielsweise von einem zugseitigen Gerät (On Board Unit) gestellt werden.Before the train begins to brake due to the approaching end of the route reservation RES, there is the possibility that a new / extended route reservation is requested in order to avoid braking the train. Such a request can be made, for example, by an on-board unit on the train.

Durch die individuelle Generierung von Streckenreservierungen und der Durchführung von Echtzeitrisikoanalysen ist es möglich, den Durchsatz der Strecke erheblich zu erhöhen: Befinden sich beispielsweise auf der von Zug A zu befahrenen Strecke noch ein weiterer Zug B innerhalb eines Bereichs, der nach dem Stand der Technik zu einer bestimmten Fahrstraße gehört, dürfte Zug A in diesem Bereich nicht einfahren, solange sich Zug B innerhalb der Fahrstraße befindet. Gemäß der Erfindung hingegen kann für Zug A trotzdem eine individuelle Streckenreservierung festgelegt werden. Die Länge der Streckenreservierung wird dann so festgelegt, dass sie vor Erreichen des Zuges B endet. Im Geschwindigkeitsprofil der Streckenreservierung für Zug A muss Zug A entsprechend abgebremst werden. Gemäß der Erfindung reicht der erfindungsgemäße Reservierungsbereich dann zwar nicht so weit wie die Fahrstraße gemäß dem Stand der Technik. Der Zug A kann aber innerhalb der Streckenreservierung zumindest langsam fahren. Spätestens vor Erreichen der in der Streckenreservierung hinterlegten Bremskurve wird eine neue Streckenreservierung von der operativen Einheit angefragt (da inzwischen vermutlich der Grund für die geplante Bremsung nicht mehr existiert - z. B. Zug B ist weitergefahren).By generating route reservations individually and performing real-time risk analyzes, it is possible to significantly increase the throughput of the route: For example, if there is another train B on the route to be traveled by train A within an area that is subject to the state of the art belongs to a certain route, train A should not enter this area as long as train B is within the route. According to the invention, however, an individual route reservation can still be made for train A. The length of the route reservation is then set so that it ends before train B arrives. In the speed profile of the route reservation for train A, train A must be braked accordingly. According to the invention, the reservation area according to the invention then does not extend as far as the route according to the prior art. However, train A can at least travel slowly within the route reservation. Before reaching the braking curve stored in the route reservation at the latest, a new route reservation is requested by the operational unit (since the reason for the planned braking no longer exists - e.g. train B has continued).

Die Erfindung ermöglicht eine ganzheitliche Sicht auf alle relevanten Elemente der SIL4-Sicherheitslogik, das Risiko für jeden Zug individuell und in Echtzeit zu bewerten, insbesondere ob die aktuelle Situation zu keiner Gefährdung führt und ob Sicherheitsmaßnahmen ergriffen werden müssen. Als mathematischer Ansatz wird dazu ein Bayes'sches Netz verwendet, das dynamisch abhängig von der aktuellen Situation erzeugt wird. Für die Struktur dieses Netzes und dessen Wahrscheinlichkeitstabellen wird die geometrische Beschreibung der Infrastruktur und des Zuges verwendet. Die Zugdynamik wird mit Hilfe bekannter physikalischer Gesetze berechnet. Das erfindungsgemäße Sicherheitskonzept passt sich dynamisch der Verkehrssituation und den Befehlen der Betreiber an, berechnet alle individuellen Risiken und garantiert höchste Sicherheitsintegrität (SIL4) bei gleichzeitig höchstem Durchsatz für alle relevanten Elemente innerhalb des Kontrollbereichs, bevor es Befehle an Feldelemente und Bewegungsbefugnisse an Züge erteilt. Bei dem erfindungsgemäßen Ansatz handelt es sich um eine generische Lösung die keine spezifische Projektierung benötigt und das Zulassungsverfahren wesentlich vereinfacht.The invention enables a holistic view of all relevant elements of the SIL4 safety logic, assessing the risk for each train individually and in real time, in particular whether the current situation does not lead to a hazard and whether safety measures need to be taken. A Bayesian network is used as a mathematical approach, which is generated dynamically depending on the current situation. The geometric description of the infrastructure and the train is used for the structure of this network and its probability tables. The train dynamics are calculated using known physical laws. The safety concept according to the invention adapts dynamically to the traffic situation and the commands of the operator, calculates all individual risks and guarantees the highest safety integrity (SIL4) with the highest throughput for all relevant elements within the control area before it issues commands to field elements and movement authorizations to trains. The approach according to the invention is a generic solution that does not require any specific project planning and that significantly simplifies the approval process.

BezugszeichenlisteList of reference symbols

AA.
Anfrage zur Freigabe einer StreckenreservierungRequest for approval of a route reservation
AccMAccM
UnfallmodellAccident model
DD.
Unfallklasse "Entgleisung"Accident class "derailment"
FEFE
FeldelementenField elements
GG
gerichteter Graphdirected graph
IFE I FE
Informationeninformation
IZ I Z
ZuginformationenTrain information
KK
Kommandos an FeldelementeCommands to field elements
LimLim
Grenzwert für RisikobewertungRisk assessment limit
LTLT
ZuglängeTrain length
MAMA
Fahrerlaubnisdriving licence
MPMP
GeschwindigkeitsprofilSpeed profile
MAXdMAXd
RisikobewertungseinrichtungRisk assessment facility
OBSOBS
ÜbermittlungseinrichtungTransmission device
OPOP
operative Einrichtungoperational establishment
RESRES
StreckenreservierungRoute reservation
RFRF
RisikofaktorRisk factor
SYSSYS
SystemzustandSystem state
TMSTMS
ZugmanagementeinheitTrain management unit
VDVD
ZugdetektionseinrichtungTrain detection device
DD.
Unfalleinflussfaktor: Zuverlässigkeit des FahrersAccident influencing factor: reliability of the driver
VDDEVDDE
Unfalleinflussfaktor: FahrerentscheidungenAccident influencing factor: driver decisions
EE.
Unfalleinflussfaktor: Gefahren in der Umgebung (z.B. Erdrutsch, Lawine, Überschwemmung)Accident influencing factor: Hazards in the area (e.g. landslide, avalanche, flood)
INFINF
Unfalleinflussfaktor: Schäden der Infrastruktur (z.B. Gleisbruch)Accident influencing factor: damage to the infrastructure (e.g. broken track)
RSRS
Unfalleinflussfaktor: Schäden des ZugesAccident influencing factor: damage to the train
SS.
Unfalleinflussfaktor: Modus des fahrzeugseitigen SystemsAccident influencing factor: mode of the on-board system
VV
Unfalleinflussfaktor: erwartete oder aktuelle Geschwindigkeit des ZugesAccident influencing factor: expected or current speed of the train
LiteraturlisteReading list

  1. [1] J. Pachl "Systemtechnik des Schienenverkehrs" Vieweg+Teubner Verlag, 2011 [1] J. Pachl "System technology of rail traffic" Vieweg + Teubner Verlag, 2011
  2. [2] Z. Grande et al. "Probabilistic Safety Analysis of High Speed and Conventional Lines Using Bayesian Networks" XII Congreso de Ingenieria del Transporte, Valencia, 2016 DOI: http://dx.coi.org/10.4995/CIT2016.2016.3428 [2] Z. Grande et al. "Probabilistic Safety Analysis of High Speed and Conventional Lines Using Bayesian Networks" XII Congreso de Ingenieria del Transporte, Valencia, 2016 DOI: http://dx.coi.org/10.4995/CIT2016.2016.3428
  3. [3] D. Lopez "Dynamic Risk Assessment in Information Systems: State-of-the-art" The 6th International Conference on Information Technology, 2013 [3] D. Lopez "Dynamic Risk Assessment in Information Systems: State-of-the-art" The 6th International Conference on Information Technology, 2013
  4. [4] H. Jiang et al. "Real-Time safety Risk Assesment Based on a Real-Time Location System for Hydropower Construction Sites" Hindawi Publishing Corporation The Scientific World Journal Article ID 235970, 2014, DOI: http://dx.doi.org/10.1155/2014/235970 [4] H. Jiang et al. "Real-Time safety Risk Assesment Based on a Real-Time Location System for Hydropower Construction Sites" Hindawi Publishing Corporation The Scientific World Journal Article ID 235970, 2014, DOI: http://dx.doi.org/10.1155/2014/235970
  5. [5] K. Haslum "A Framework for Distributed Intrusion Prediction and Prevention UsingHidden Markov Models and Online Fuzzy Risk Assessment" Third International Symposium on Information Assurance and Security, 2007 DOI: 10.1109/IAS.2007.67 [5] K. Haslum "A Framework for Distributed Intrusion Prediction and Prevention Using Hidden Markov Models and Online Fuzzy Risk Assessment" Third International Symposium on Information Assurance and Security, 2007 DOI: 10.1109 / IAS.2007.67
  6. [6] N. Poolsappasit "Dynamic Security Risk Management Using Bayesian Attack Graphs" IEEE Transactions on Dependable and secure computing, Vol. 9, No. 1 January/February 2012 [6] N. Poolsappasit "Dynamic Security Risk Management Using Bayesian Attack Graphs" IEEE Transactions on Dependable and Secure Computing, Vol. 9, No. 1 January / February 2012
  7. [7] G. Theeg, S. Vlasenko "Railway Signalling & Interlocking" Eurailpress, 2009 [7] G. Theeg, S. Vlasenko "Railway Signaling &Interlocking" Eurailpress, 2009
  8. [8] P. Stanley "ETCS for Engineers" Eurailpress, 2011 [8th] P. Stanley "ETCS for Engineers" Eurailpress, 2011

Claims (15)

Verfahren zur Steuerung eines Zugs innerhalb eines Zugsicherungssystems, umfassend folgende Verfahrensschritte • Erstellung eines Unfallmodells (AccM), wobei Unfallklassen und Unfalleinflussfaktoren bestimmt werden; • Ermittlung einer für den Zug individuellen Streckenreservierung (RES) umfassend einen Streckenreservierungsbereich und ein Streckenprofil; • Versenden einer Anfrage (A) zur Freigabe der ermittelten Streckenreservierung (RES) an eine Risikobewertungseinrichtung (MAXd) ; • Durchführen einer Echtzeitrisikobewertung für die Streckenreservierung (RES) mittels der Risikobewertungseinrichtung (MAXd) für zumindest einen Teil der ermittelten verschiedenen Unfallklassen, wobei ein Risikofaktor (RF) für die Streckenreservierung (RES) ermittelt wird, und als Ergebnis ermittelt wird ob der Risikofaktor (RF) akzeptabel ist; • Freigabe oder Ablehnung der Streckenreservierung (RES) in Abhängigkeit vom Ergebnis der Risikobewertung. Method for controlling a train within a train protection system, comprising the following method steps • Creation of an accident model (AccM), whereby accident classes and accident influencing factors are determined; • Determination of an individual route reservation (RES) for the train, comprising a route reservation area and a route profile; • Sending a request (A) to release the determined route reservation (RES) to a risk assessment device (MAXd); • Carrying out a real-time risk assessment for the route reservation (RES) by means of the risk assessment device (MAXd) for at least some of the determined different accident classes, whereby a risk factor (RF) for the route reservation (RES) is determined and as a result it is determined whether the risk factor (RF ) is acceptable; • Approval or rejection of the route reservation (RES) depending on the result of the risk assessment. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zur Ermittlung der Streckenreservierung (RES) eine aktuelle Position des Zugs bestimmt wird.Method according to Claim 1, characterized in that a current position of the train is determined to determine the route reservation (RES). Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zur Ermittlung der Streckenreservierung (RES) die Integrität des Zugs bestimmt wird.Method according to Claim 1 or 2, characterized in that the integrity of the train is determined in order to determine the route reservation (RES). Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Echtzeitrisikobewertung ausschließlich auf Grundlage von physikalischen und/oder geometrischen Parametern und von Fehlerwahrscheinlichkeiten der Unfalleinflussfaktoren durchgeführt wird.Method according to one of the preceding claims, characterized in that the real-time risk assessment is carried out exclusively on the basis of physical and / or geometric parameters and of the error probabilities of the accident influencing factors. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass für die Echtzeitrisikobewertung ein probabilistisches Graphenmodell verwendet wird, welches das zuvor erstellte Unfallmodell (AccM) beschreibt, wobei ein Graph (G) mit Knoten und Kanten aufgebaut/instanziiert wird, wobei für jeden Knoten bedingte Wahrscheinlichkeiten hinterlegt sindMethod according to one of the preceding claims, characterized in that a probabilistic graph model is used for the real-time risk assessment, which describes the previously created accident model (AccM), a graph (G) with nodes and edges being built / instantiated, with conditional for each node Probabilities are stored Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Knoten Unfallklasseknoten und Elementknoten umfassen, wobei ein Elementknoten einen der physikalischen und/oder geometrischen Parameter eines der Unfalleinflussfaktoren und ein Unfallklassenknoten eine der Unfallklassen repräsentiert.Method according to claim 5, characterized in that the nodes comprise accident class nodes and element nodes, an element node representing one of the physical and / or geometric parameters of one of the accident influencing factors and an accident class node representing one of the accident classes. Verfahren nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, dass es sich bei dem Graphen (G) um einen gerichteten und/oder azyklischen Graph (G) handelt.Method according to one of Claims 5 or 6, characterized in that the graph (G) is a directed and / or acyclic graph (G). Verfahren nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die Knoten Unfallklasseknoten und Elementknoten umfassen, wobei ein Elementknoten einen der Unfalleinflussfaktoren und wobei ein Unfallklassenknoten eine der Unfallklassen repräsentiert.Method according to one of Claims 5 to 7, characterized in that the nodes comprise accident class nodes and element nodes, an element node being one of the accident influencing factors and wherein an accident class node represents one of the accident classes. Verfahren nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass die Streckenreservierung (RES) mehrere Streckenreservierungsteilbereiche umfasst, wobei für jeden Streckenreservierungsteilbereich ein Teilgraph aufgebaut/instanziiert wird, der ein Subnetz darstellt.Method according to one of Claims 5 to 8, characterized in that the route reservation (RES) comprises a plurality of route reservation subareas, a subgraph being set up / instantiated for each route reservation subarea which represents a subnet. Verfahren nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass in zeitlichen Abständen Positionsmeldungen des Zugs bestimmt und an die Risikobewertungseinrichtung (MAXd) übermittelt werden und dass nach jeder Positionsmeldung für Streckenreservierungsteilbereiche aus den Positionsmeldungen erhaltene Daten in den Graphen (G) eingetragen werden.Method according to one of Claims 5 to 9, characterized in that position reports of the train are determined at time intervals and transmitted to the risk assessment device (MAXd) and that data obtained from the position reports are entered in the graph (G) after each position report for route reservation subareas. Zugsicherungssystem zur Durchführung des Verfahrens gemäß einem der vorhergehenden Ansprüche mit • einer Risikobewertungseinrichtung (MAXd) zur Erstellung einer Echtzeitrisikobewertung für eine zuvor bestimmte Streckenreservierung (RES) für einen Zug anhand eines Unfallmodells (AccM) und zur Übermittlung von Kommandos (K) an Feldelemente (FE); • einer Übermittlungseinrichtung (OBS) zur Übermittlung von Zuginformationen (Iz) betreffend den Zug, wobei die Übermittlungseinrichtung (OBS) eine Schnittstelle zu der Risikobewertungseinrichtung (MAXd) aufweist; Train protection system for performing the method according to one of the preceding claims • a risk assessment device (MAXd) for creating a real-time risk assessment for a previously determined route reservation (RES) for a train based on an accident model (AccM) and for transmitting commands (K) to field elements (FE); • a transmission device (OBS) for transmitting train information (I z ) relating to the train, the transmission device (OBS) having an interface to the risk assessment device (MAXd); Zugsicherungssystem nach Anspruch 11 dadurch gekennzeichnet, dass die Risikobewertungseinrichtung (MAXd) Schnittstellen zu Feldelementen (FE) aufweist.Train protection system according to Claim 11, characterized in that the risk assessment device (MAXd) has interfaces to field elements (FE). Zugsicherungssystem nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass eine operative Einrichtung (OP) vorhanden ist zur Ermittlung der für den Zug individuellen Streckenreservierung (RES), wobei die Streckenreservierung (RES) einen Streckenreservierungsbereich und ein Streckenprofil umfasst, wobei die operative Einrichtung (OP) eine Schnittstelle zur Risikobewertungseinrichtung (MAXd) aufweist.Train protection system according to Claim 11 or 12, characterized in that an operative device (OP) is present for determining the individual route reservation (RES) for the train, the route reservation (RES) comprising a route reservation area and a route profile, the operative device (OP ) has an interface to the risk assessment device (MAXd). Zugsicherungssystem nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass es sich bei der Übermittlungseinrichtung um eine On-Board-Unit des Zuges oder eine streckenseitige Einrichtung handelt.Train protection system according to one of Claims 11 to 13, characterized in that the transmission device is an on-board unit of the train or a track-side device. Zugsicherungssystem nach Anspruch 14, dadurch gekennzeichnet, dass die On-Board-Unit eine Positionsbestimmungseinrichtung umfasst.Train protection system according to Claim 14, characterized in that the on-board unit comprises a position determination device.
EP19193069.2A 2019-08-22 2019-08-22 Train control system and method for controlling a train within a train control system Active EP3782869B1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP19193069.2A EP3782869B1 (en) 2019-08-22 2019-08-22 Train control system and method for controlling a train within a train control system
DK19193069.2T DK3782869T3 (en) 2019-08-22 2019-08-22 PROCEDURE FOR CONTROLLING A TRAIN WITHIN A TRAIN SECURITY SYSTEM AND TRAIN SECURITY SYSTEM
ES19193069T ES2958734T3 (en) 2019-08-22 2019-08-22 Train control system and procedure for controlling a train within a train control system
CA3147820A CA3147820A1 (en) 2019-08-22 2020-08-14 Method for controlling a train within a train control system, and train control system
PCT/EP2020/072897 WO2021032638A1 (en) 2019-08-22 2020-08-14 Method for controlling a train within a train control system, and train control system
KR1020227008740A KR20220044842A (en) 2019-08-22 2020-08-14 A method of controlling a train within a train control system, and a train control system
AU2020332749A AU2020332749A1 (en) 2019-08-22 2020-08-14 Method for controlling a train within a train control system, and train control system
IL289872A IL289872A (en) 2019-08-22 2022-01-16 Method for controlling a train within a train control system, and train control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19193069.2A EP3782869B1 (en) 2019-08-22 2019-08-22 Train control system and method for controlling a train within a train control system

Publications (2)

Publication Number Publication Date
EP3782869A1 true EP3782869A1 (en) 2021-02-24
EP3782869B1 EP3782869B1 (en) 2023-07-12

Family

ID=67742162

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19193069.2A Active EP3782869B1 (en) 2019-08-22 2019-08-22 Train control system and method for controlling a train within a train control system

Country Status (8)

Country Link
EP (1) EP3782869B1 (en)
KR (1) KR20220044842A (en)
AU (1) AU2020332749A1 (en)
CA (1) CA3147820A1 (en)
DK (1) DK3782869T3 (en)
ES (1) ES2958734T3 (en)
IL (1) IL289872A (en)
WO (1) WO2021032638A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4098508A1 (en) * 2021-06-03 2022-12-07 Siemens Mobility AG Method for optimised entry into a target section by dynamically determining release speed

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114355941A (en) * 2022-01-04 2022-04-15 北京石油化工学院 Vehicle path tracking method based on improved Stanley control
CN115729210A (en) * 2022-11-17 2023-03-03 华侨大学 Rail transit train control system danger analysis method and equipment based on communication

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140257659A1 (en) * 2013-03-11 2014-09-11 Honda Motor Co., Ltd. Real time risk assessments using risk functions
DE102016203695A1 (en) * 2016-03-07 2017-09-07 Siemens Aktiengesellschaft Railway installation and method for operating a railway installation
EP3323693A1 (en) * 2016-11-21 2018-05-23 Siemens Schweiz AG Train-oriented route securing logic for train safety installations

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140257659A1 (en) * 2013-03-11 2014-09-11 Honda Motor Co., Ltd. Real time risk assessments using risk functions
DE102016203695A1 (en) * 2016-03-07 2017-09-07 Siemens Aktiengesellschaft Railway installation and method for operating a railway installation
EP3323693A1 (en) * 2016-11-21 2018-05-23 Siemens Schweiz AG Train-oriented route securing logic for train safety installations

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
D. LOPEZ: "Dynamic Risk Assessment in Information Systems: State-of-the-art", THE 6TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY, 2013
G. THEEGS. VLASENKO: "Railway Signalling & Interlocking", 2009, EURAILPRESS
H. JIANG ET AL.: "Real-Time safety Risk Assesment Based on a Real-Time Location System for Hydropower Construction Sites", HINDAWI PUBLISHING CORPORATION THE SCIENTIFIC WORLD JOURNAL, 2014
K. HASLUM: "A Framework for Distributed Intrusion Prediction and Prevention UsingHidden Markov Models and Online Fuzzy Risk Assessment", THIRD INTERNATIONAL SYMPOSIUM ON INFORMATION ASSURANCE AND SECURITY, 2007
N. POOLSAPPASIT: "Dynamic Security Risk Management Using Bayesian Attack Graphs", IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, vol. 9, no. 1, January 2012 (2012-01-01), XP011398064, doi:10.1109/TDSC.2011.34
P. STANLEY: "Systemtechnik des Schienenverkehrs", 2011, VIEWEG+TEUBNER VERLAG
Z. GRANDE ET AL.: "Probabilistic Safety Analysis of High Speed and Conventional Lines Using Bayesian Networks", XII CONGRESO DE INGENIERIA DEL TRANSPORTE, VALENCIA, 2016, Retrieved from the Internet <URL:http://dx.coi.org/10.4995/CIT2016.2016.3428>

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4098508A1 (en) * 2021-06-03 2022-12-07 Siemens Mobility AG Method for optimised entry into a target section by dynamically determining release speed
EP4098509A1 (en) * 2021-06-03 2022-12-07 Siemens Mobility AG Method for optimised entry into a target section by dynamically determining release speed

Also Published As

Publication number Publication date
IL289872A (en) 2022-03-01
EP3782869B1 (en) 2023-07-12
WO2021032638A1 (en) 2021-02-25
AU2020332749A1 (en) 2022-03-10
ES2958734T3 (en) 2024-02-14
CA3147820A1 (en) 2021-02-25
KR20220044842A (en) 2022-04-11
DK3782869T3 (en) 2023-10-02

Similar Documents

Publication Publication Date Title
DE19726542B4 (en) Process for controlling and securing a timetable-based traffic system
EP3782869B1 (en) Train control system and method for controlling a train within a train control system
DE102014210190A1 (en) Driving license for a rail vehicle
EP2870047B1 (en) Operation of a rail vehicle
WO2018091186A1 (en) Train-oriented line safety logic for railway safety systems
EP3782870B1 (en) Method and route control centre for operating a railway track
EP3787950B1 (en) Method and device for detecting vehicles travelling behind
EP1607300A2 (en) Train Control Method
EP2619067B1 (en) Method for controlling automatically a multitude of railbound vehicles
DE19828878A1 (en) Data traffic reduction method for railway operation
EP4079600A1 (en) Method for optimising occupancy assessment when issuing permission for a railway vehicle / train to proceed with a train ahead
EP2088051B1 (en) Method and device for secure setting of a route for a rail vehicle
DE102019204135A1 (en) Method for the mixed operation of a track-bound route section with a switch as well as a route section and a switch
EP3768567B1 (en) Method for planning or controlling the movements of a plurality of vehicles over a network of routes
DE102016215767A1 (en) Prediction of the train run
EP3312073B1 (en) Method for testing a rail system and rail system
DE102017221555A1 (en) Method and control device for communication-based vehicle control
DE102016217913A1 (en) Monitoring a rail vehicle
WO2017045863A1 (en) Communication device and method for automatically exchanging messages in a railway system
DE102016217905A1 (en) Monitoring a rail vehicle
DE102016217900A1 (en) Monitoring a rail vehicle
EP4071028A1 (en) Preventing collision of a railway vehicle at a junction in a cbtc system
EP4116170A1 (en) Method for operating a train control system
EP4331943A1 (en) Traffic network and method for operating rail vehicles in a traffic network, consisting of a combination of route sections with and without train protection
EP4098509A1 (en) Method for optimised entry into a target section by dynamically determining release speed

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200909

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAV Requested validation state of the european patent: fee paid

Extension state: TN

Effective date: 20210203

Extension state: MA

Effective date: 20210203

RAX Requested extension states of the european patent have changed

Extension state: BA

Payment date: 20210203

Extension state: ME

Payment date: 20210203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502019008467

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B61L0003000000

Ipc: B61L0027160000

Ref country code: DE

Free format text: PREVIOUS MAIN CLASS: B61L0003000000

RIC1 Information provided on ipc code assigned before grant

Ipc: B61L 3/00 20060101ALI20221207BHEP

Ipc: B61L 27/20 20220101ALI20221207BHEP

Ipc: B61L 27/16 20220101AFI20221207BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230201

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GTS DEUTSCHLAND GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019008467

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230728

Year of fee payment: 5

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20230928

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230713

Year of fee payment: 5

Ref country code: ES

Payment date: 20230907

Year of fee payment: 5

Ref country code: CH

Payment date: 20230902

Year of fee payment: 5

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230721

Year of fee payment: 5

Ref country code: DE

Payment date: 20230718

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231113

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231012

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231112

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231013

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231016

Year of fee payment: 5

Ref country code: DK

Payment date: 20231207

Year of fee payment: 5

Ref country code: CZ

Payment date: 20230728

Year of fee payment: 5

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2958734

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019008467

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230822

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20240415