EP3775511B1 - Vorrichtung zur nachbehandlung von abgasen - Google Patents

Vorrichtung zur nachbehandlung von abgasen Download PDF

Info

Publication number
EP3775511B1
EP3775511B1 EP19715848.8A EP19715848A EP3775511B1 EP 3775511 B1 EP3775511 B1 EP 3775511B1 EP 19715848 A EP19715848 A EP 19715848A EP 3775511 B1 EP3775511 B1 EP 3775511B1
Authority
EP
European Patent Office
Prior art keywords
flow
exhaust gas
annular gap
flow path
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19715848.8A
Other languages
English (en)
French (fr)
Other versions
EP3775511A1 (de
Inventor
Oswald HOLZ
Peter ILLHARDT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies GmbH
Original Assignee
Vitesco Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitesco Technologies GmbH filed Critical Vitesco Technologies GmbH
Publication of EP3775511A1 publication Critical patent/EP3775511A1/de
Application granted granted Critical
Publication of EP3775511B1 publication Critical patent/EP3775511B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2053By-passing catalytic reactors, e.g. to prevent overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/16Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric heater, i.e. a resistance heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/36Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an exhaust flap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/14Exhaust treating devices having provisions not otherwise provided for for modifying or adapting flow area or back-pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • F01N2410/03By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device in case of low temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/24Concentric tubes or tubes being concentric to housing, e.g. telescopically assembled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea

Definitions

  • the invention relates to a device for the aftertreatment of exhaust gases from an internal combustion engine, with a housing through which the exhaust gas can flow from an inlet to an outlet, with a flow path that is spatially limited in the radial direction and through which flow can take place in the axial direction, which is arranged inside the housing, with at least a catalytic converter arranged in the flow path for the catalytic conversion of the exhaust gas, and having at least one heating element arranged in the flow path through which the exhaust gas can flow, for electrically heating the exhaust gas.
  • Electrically heatable catalytic converters are used to heat up exhaust gas mass flows more quickly.
  • an amount of heat is supplied to the exhaust gas by the electrical heating. This helps to raise the temperature level of the exhaust gas mass flow more quickly to a level that allows sufficient conversion of the exhaust gas in the exhaust gas catalytic converters.
  • the conversion of the exhaust gas usually starts at a certain minimum temperature at the catalytic converter, which must be reached so that the chemical conversion reactions can begin.
  • An increased temperature of the exhaust gas mass flow also leads to an increase in the temperature at the catalyst due to the heat transport from the exhaust gas to the honeycomb body of the catalyst.
  • the possible heating of the exhaust gas mass flow depends on the one hand on the amount of exhaust gas flowing through the electrically heatable catalytic converter per unit of time and on the other hand on the electrical energy used for heating.
  • the pamphlet DE 10 2012 213187 A1 discloses a method for treating emissions from an internal combustion engine of a hybrid vehicle.
  • the method includes directing airflow generated by the engine when the engine is rotating but not being fueled.
  • the apparatus used to carry out the method includes an electrically heated catalyst which is used to treat an air stream saturated with hydrocarbons and remove the hydrocarbons.
  • the device also has a bypass path in order to guide the air flow past the electrically heatable catalytic converter.
  • a particular disadvantage of the systems known in the prior art for electrically heating the exhaust gas mass flow of an internal combustion engine is that the exhaust gas flow flowing through the electrically heatable catalytic converter can only be regulated poorly or not at all.
  • the mass flow flowing through the electrically heatable catalytic converter is thus determined solely by the respective operating situation of the internal combustion engine, which is why it can happen, particularly in the case of high exhaust gas mass flows, that the exhaust gas mass flow is not heated optimally, which means that there is a time delay before sufficient conversion is achieved of the exhaust gas in the catalytic converters of the exhaust aftertreatment unit.
  • the object with regard to the device is solved by a device having the features of claim 1 .
  • An exemplary embodiment of the invention relates to a device for the aftertreatment of exhaust gases from an internal combustion engine, with a housing through which the exhaust gas can flow from an inlet to an outlet, with a flow path that is spatially limited in the radial direction and through which it can flow in the axial direction, which is arranged inside the housing, with at least one catalyst arranged in the flow path for the catalytic conversion of the exhaust gas, and with at least one heating element arranged in the flow path through which the exhaust gas can flow for electrically heating the exhaust gas, with an annular gap through which the exhaust gas can flow being formed between the flow path and the inner wall of the housing, the distribution of the exhaust gas mass flow to the flow path and the annular gap can be influenced by a control element.
  • a flow-through housing is preferably formed by a tube that is in fluid communication with the exhaust pipe of the internal combustion engine. Exhaust gas can thus flow directly into the device and flow through it.
  • a flow path is formed within the housing, which is also formed by a tube, for example. The tube is delimited in a radial direction by its wall, as a result of which two flow paths are practically formed within the housing.
  • the flow path formed in the housing is preferably arranged concentrically within the housing; an annular gap is therefore formed between the outer wall of the flow path and the inner wall of the housing.
  • the flow section can be fixed in relation to the housing via support elements.
  • Exhaust gas flowing into the housing can thus flow both through the annular gap formed and through the flow path. If no control element were provided, the distribution of the exhaust gas mass flow over the annular gap and the flow path would be influenced essentially by the cross-sectional areas of the two flow paths.
  • control element which can be actively influenced in order to influence the distribution of the exhaust gas mass flow over the annular gap and the flow path.
  • the control element can be designed in different ways. Particularly preferred configurations of the control element are described in the following descriptions.
  • control element is formed by a rotatably mounted perforated diaphragm, in which case the cross section of the annular gap through which flow can flow can be increased or decreased by rotating the perforated diaphragm.
  • a pinhole diaphragm can be formed, for example, by a ring that is arranged in the annular gap.
  • the ring covers the flow cross section of the annular gap and thus blocks the flow of exhaust gas through the annular gap in a possible position. In this case, all of the exhaust gas flowing through the device flows through the flow path, which is arranged inside the housing and is surrounded by the annular gap.
  • the perforated diaphragm has holes which are arranged at a distance from one another in the circumferential direction, for example.
  • the perforated diaphragm has a fixed section and a section which is rotatably mounted relative to this fixed section, both sections having openings which are spaced apart from one another in the circumferential direction.
  • a plurality of openings can be released by rotating the rotatably mounted section relative to the fixed section, or released openings can be closed again by rotating.
  • a particularly large flow cross-section can be released, in particular by rotating the perforated diaphragm in such a way that the openings in the rotatable part are aligned with the openings in the fixed part.
  • the maximum flow cross section that can be released can be defined.
  • a preferred exemplary embodiment is characterized in that the control element is formed by an annular diaphragm that can be displaced in the axial direction of the housing.
  • An axially displaceable ring is particularly suitable for influencing the flow cross section through which the flow can flow if either the inner wall of the housing and/or the outer wall of the housing taper conically or widen conically.
  • the flow cross section through which the annular gap can flow can be enlarged or reduced.
  • annular baffle is arranged within the annular gap between the flow section and the housing.
  • the ring diaphragm can be displaced relative to the housing and/or the flow path, wherein the ring diaphragm has a defined opening cross section.
  • the ring baffle has baffles, with the exhaust gas mass flow flowing through the annular gap being able to be deflected by the baffles.
  • Baffles are advantageous because the flow of exhaust gas flowing through the annular gap can be influenced in a targeted manner. In this way, for example, a vortex can be generated, as a result of which better mixing of the two exhaust gas flows can be achieved after flowing through the flow section and the annular gap.
  • the flow in the annular gap can also become turbulent due to the guide plates, which improves the heat transfer and allows the temperature distribution or the concentrations of the various exhaust gas components to be homogenized.
  • the structure delimiting the flow path in the radial direction has rotatably mounted flaps as a control element.
  • Rotatable flaps can be specifically influenced to open or close openings.
  • the flaps can be actively adjusted, which regulates the overflow between the flow section and the annular gap.
  • the rotatably mounted flaps are mounted so as to be rotatable about axes aligned in the axial direction.
  • In the axial direction means parallel to the main flow direction of the device.
  • An opening in the radial direction can thus be opened up by means of flaps mounted so as to be rotatable about axial axes of rotation, so that the exhaust gas can escape from the flow path in the radial direction outwards into the annular gap can flow.
  • the exhaust gas flows into the flow section arranged concentrically in the housing and from there, with the flaps closed, completely past the heating element into the catalysts arranged in the flow section or after the flow section.
  • openings can be released through the flaps, which allow at least a partial overflow of the exhaust gas mass flow from the flow section into the annular gap. This is advantageous in order to achieve a distribution of the exhaust gas mass flow over the flow section and the annular gap.
  • the flow section is arranged in the housing in such a way that the exhaust gas flow can only flow through the annular gap through the openings that can be released by the flaps. This is advantageous in order to be able to better influence the distribution of the exhaust gas flow from the flow section to the annular gap.
  • swirl flaps mounted rotatably about radially aligned axes are arranged in the annular gap as a control element.
  • a flow cross section of the annular gap can be released by rotating the swirl flaps.
  • Swirl flaps in the annular gap can increase or decrease the throughflow cross-section of the annular gap by rotating the flaps about their respective axes of rotation and can also completely close it depending on the design of the swirl flaps.
  • swirl flaps are spaced apart from one another in the circumferential direction in the annular gap.
  • the number of swirl flaps, their size and distance from one another can also influence the flow cross section that can be released.
  • the flow path is formed by a casing tube which is arranged inside the housing.
  • the figure 1 shows a sectional view through a device for exhaust gas aftertreatment. It is formed from a housing with areas of different diameters. A device 1 for heating the exhaust gas flow is arranged inside the housing, and downstream there is a catalytic converter 2, which is used for the after-treatment of exhaust gases. In addition, the device can have means for adding operating materials 3 in order, for example, to introduce an aqueous urea solution or fuel into the device.
  • the device shown is particularly characterized in that the entire exhaust gas flow, which flows through the device from left to right, flows completely through the heating element 1 and the downstream catalytic converter 2 . If the exhaust gas mass flow does not have the temperature required to heat the catalytic converter 2 to a temperature sufficient for its operation, the entire exhaust gas mass flow must be heated via the heating element in order to also heat the catalytic converter 2 . A large amount of energy is required for this, since the entire mass flow has to be heated.
  • figure 2 shows a sectional view through a device 10 according to the invention. It has a housing 11 and a tube 12 located therein, which forms a flow path with a limitation in the radial direction. An annular gap 13 through which the exhaust gas can flow is formed between the tube 12 and the housing 11 .
  • the direction of flow through the housing 11 and the flow path is from left to right.
  • a heating means 14 for electrically heating the exhaust gas.
  • a catalytic converter 15 is arranged downstream within the pipe 12 and is used for after-treatment of the exhaust gas flowing through it.
  • the catalytic converter 15 is formed in particular by metallic or ceramic honeycomb bodies which are coated with an appropriate surface coating in order to remove unwanted components from the exhaust gas or reduce their concentration by means of a chemical reaction or to convert the added operating materials by means of a chemical reaction. This includes, for example, the conversion of aqueous urea solution into ammonia or the generation of heat from added fuel.
  • catalysts can also be arranged inside the tube.
  • Operating materials such as an aqueous urea solution or fuel, can be added to the device along the arrow provided with reference number 16 .
  • Exhaust gas which flows through the device 10 can flow directly through the annular gap 13 and thus a bypass around the flow path formed by the pipe 12 .
  • the exhaust gas can flow directly into the flow path 12 and flow around or through the elements arranged in the flow path 12 . After flowing through the flow section 12, the two flow paths reunite and continue to flow in a common pipeline.
  • figure 2 shows the basic structure of a device according to the invention for the treatment of exhaust gases.
  • the control element that is used to influence the distribution of the exhaust gas mass flow to the annular gap 13 and the flow path in the pipe 12. Possible embodiments are described in detail in the following figures.
  • figure 3 shows a view of a control element 17, which is designed as a rotatable pinhole.
  • the perforated diaphragm 17 is formed from a rotatably mounted element 18 and a stationary element 19 .
  • the two elements 18, 19 of the perforated diaphragm 17 have openings 20 spaced apart from one another in the circumferential direction. When these openings 20 are aligned with one another by rotating the element 18, exhaust gas can flow directly into the annular gap located behind. If the openings 20 are completely twisted against each other, the flow path into the annular gap is blocked and the exhaust gas flows completely through the flow path inside the central tube.
  • the representation in figure 3 is exploded to ensure better clarity.
  • the tube that forms the flow path can protrude beyond the perforated diaphragm 17 or end flush with the perforated diaphragm 17 .
  • the perforated diaphragm 17 is preferably arranged on the inflow side of the annular gap. However, it can be arranged at any point in the annular gap.
  • the figure 4 shows a possible embodiment of the control element as an axially displaceable annular diaphragm 25.
  • the annular diaphragm 25 is arranged on the outflow side 21 of the tube 12 and is designed in such a way that the section in the center of the diaphragm 25 corresponds to the inner diameter of the tube 12.
  • the ring diaphragm 25 is guided on the inner wall of the housing 11 and can be displaced axially along the main flow direction of the device 10 .
  • the maximum possible opening between the annular gap 13 and the diaphragm 25 can be defined by the maximum distance of the diaphragm 25 that can be achieved in the axial direction from the pipe 12 .
  • Swirl-generating elements 24 such as guide plates, can be arranged on the annular baffle 25 in order to make the flow in the annular gap 13 turbulent and thus achieve better mixing within the annular gap 13 .
  • a turbulent flow also contributes when the exhaust gas flows meet after the pipe 12 or the annular gap 13 contribute to improved mixing.
  • the heat transfer towards the housing 11 is reduced by a turbulent edge flow, which also reduces the heat losses.
  • figure 5 12 shows an alternative device in which the axially displaceable ring diaphragm 21 is arranged at an alternative location within the device 10.
  • FIG. The ring diaphragm 21 is arranged inside the ring gap 13 .
  • the ring diaphragm 21 has a central cutout 22 through which the tube 12 is guided.
  • the ring diaphragm 21 is arranged in an area in which the outer diameter of the pipe 12 widens conically in the direction of flow.
  • annular diaphragm 21 If the annular diaphragm 21 is completely axially displaced to the right, the annular diaphragm 21 comes into contact with the outer wall of the tube 12 and the annular gap 13 is completely closed. The exhaust gas then flows completely through the flow path inside the pipe 12.
  • the annular gap acts as a thermal insulator between the exhaust gas and the elements within the flow path formed by the tube and the housing of the device. This reduces unwanted heat loss to the outside.
  • figure 6 shows an alternative embodiment, which is characterized in that the entire flow of exhaust gas flows completely into the flow path formed by the pipe 30 and from there depending on the position of the control elements shown 31 overflows into the annular gap 32 or continues to flow through the tube 30 .
  • the control elements 31 are formed by rotatably mounted flaps, which each have axes of rotation aligned in the axial direction. Openings in the radial direction can thus be released or closed by turning the flaps 31 , as a result of which an overflow between the pipe 30 and the annular gap 32 is made possible or prevented.
  • flaps 31 can be distributed over the circumference of the tube 30.
  • the flaps 31 can have guide elements which additionally deflect the exhaust gas flowing through the released openings in order to generate a turbulent flow, for example.
  • FIG 7 shows a further alternative embodiment, in which case the control elements 41 are formed by rotatably mounted flaps 41 which are arranged between the tube 40 and the housing 42.
  • the flaps 41 are rotatably mounted about axes running in the radial direction and can thus release openings in the axial direction.
  • the flaps 41 are arranged in the annular gap 43 .
  • flaps 41 can be distributed around the circumference of the annular gap 43 .
  • another element can be arranged in the annular gap 43, which covers the areas lying between the flaps, so that no flow past the flaps through the annular gap 43 can arise.
  • Such an element which can be designed as a ring with corresponding cutouts, is necessary when it is desired that the annular gap 43 can be completely closed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

    Technisches Gebiet
  • Die Erfindung betrifft eine Vorrichtung zur Nachbehandlung von Abgasen eines Verbrennungsmotors, mit einem von dem Abgas von einem Eintritt hin zu einem Austritt durchströmbaren Gehäuse, mit einer in radialer Richtung räumlich begrenzten und in axialer Richtung durchströmbaren Strömungsstrecke, die innerhalb des Gehäuses angeordnet ist, mit zumindest einem in der Strömungsstrecke angeordneten Katalysator zur katalytischen Umwandlung des Abgases, und mit zumindest einem in der Strömungsstrecke angeordneten vom Abgas durchströmbaren Heizelement zur elektrischen Beheizung des Abgases.
  • Stand der Technik
  • Zur schnelleren Erwärmung von Abgasmassenströmen werden elektrisch beheizbare Katalysatoren eingesetzt. Zusätzlich zu der Wärmemenge des Abgases an sich wird dem Abgas so eine Wärmemenge durch die elektrische Aufheizung zugeführt. Dies hilft dabei das Temperaturniveau des Abgasmassenstroms schneller auf ein Niveau zu heben, welches eine ausreichende Umwandlung des Abgases in den Abgaskatalysatoren zulässt. Die Umwandung des Abgases beginnt in der Regel ab einer gewissen Mindesttemperatur am Katalysator, welche erreicht werden muss, damit die chemischen Umwandlungsreaktionen beginnen können. Eine erhöhte Temperatur des Abgasmassenstroms führt durch den Wärmetransport vom Abgas auf die Wabenkörper der Katalysatoren auch zu einer Erhöhung der Temperatur am Katalysator. Die mögliche Erwärmung des Abgasmassenstroms hängt dabei einerseits von der Menge des pro Zeiteinheit durch den elektrisch beheizbaren Katalysator strömenden Abgases ab und andererseits von der eingesetzten elektrischen Energie zur Beheizung.
  • Die Druckschrift DE 10 2012 213187 A1 offenbart ein Verfahren zum Behandeln von Emissionen von einer Brennkraftmaschine eines Hybridfahrzeuges. Das Verfahren umfasst ein Lenken einer Luftströmung, die durch die Brennkraftmaschine erzeugt wird, wenn die Brennkraftmaschine dreht, jedoch nicht mit Kraftstoff beliefert wird. Die zur Ausführung des Verfahrens genutzte Vorrichtung weist einen elektrisch beheizten Katalysator auf, welcher genutzt wird, um eine mit Kohlenwasserstoffen gesättigte Luftströmung zu behandeln und die Kohlenwasserstoffe zu entfernen. Die Vorrichtung weist weiterhin einen Bypasspfad auf, um die Luftströmung an dem elektrisch beheizbaren Katalysator vorbeizuführen.
  • Nachteilig an den im Stand der Technik bekannten Systemen zur elektrischen Beheizung des Abgasmassenstroms eines Verbrennungsmotors ist hierbei insbesondere, dass der durch den elektrisch beheizbaren Katalysator strömende Abgasstrom nur schlecht oder gar nicht reguliert werden kann. Der durch den elektrisch beheizbaren Katalysator strömende Massenstrom ist somit einzig durch die jeweilige Betriebssituation des Verbrennungsmotors bestimmt, weswegen es insbesondere bei hohen Abgasmassenströmen dazu kommen kann, dass eine nicht optimale Beheizung des Abgasmassenstroms erfolgt, wodurch es zu einer zeitlichen Verzögerung bis zum Erreichen der ausreichenden Umwandlung des Abgases in den Katalysatoren der Abgasnachbehandlungseinheit kommen kann.
  • Darstellung der Erfindung, Aufgabe, Lösung, Vorteile
  • Daher ist es die Aufgabe der vorliegenden Erfindung eine Vorrichtung zur Abgasnachbehandlung zu schaffen, welche es erlaubt eine verbesserte Beheizung des Abgasmassenstroms unter Verwendung eines elektrisch beheizbaren Katalysators zu erreichen und so ein schnelleres Erreichen der Mindesttemperatur des Abgasmassenstroms für eine ausreichende Umwandlung des Abgases an den jeweiligen Katalysatoren zu sichern.
  • Die Aufgabe hinsichtlich der Vorrichtung wird durch eine Vorrichtung mit den Merkmalen von Anspruch 1 gelöst.
  • Ein Ausführungsbeispiel der Erfindung betrifft eine Vorrichtung zur Nachbehandlung von Abgasen eines Verbrennungsmotors, mit einem von dem Abgas von einem Eintritt hin zu einem Austritt durchströmbaren Gehäuse, mit einer in radialer Richtung räumlich begrenzten und in axialer Richtung durchströmbaren Strömungsstrecke, die innerhalb des Gehäuses angeordnet ist, mit zumindest einem in der Strömungsstrecke angeordneten Katalysator zur katalytischen Umwandlung des Abgases, und mit zumindest einem in der Strömungsstrecke angeordneten vom Abgas durchströmbaren Heizelement zur elektrische Beheizung des Abgases, wobei zwischen der Strömungsstrecke und der Innenwandung des Gehäuses ein durchströmbarer Ringspalt ausgebildet ist, wobei die Verteilung des Abgasmassenstroms auf die Strömungsstrecke und den Ringspalt durch ein Kontrollelement beeinflussbar ist.
  • Ein durchströmbares Gehäuse ist bevorzugt durch ein Rohr gebildet, das in Fluidkommunikation mit der Abgasleitung des Verbrennungsmotors steht. Abgas kann somit direkt in die Vorrichtung einströmen und diese durchströmen. Innerhalb des Gehäuses ist eine Strömungsstrecke ausgebildet, die beispielsweise ebenfalls durch ein Rohr gebildet ist. Das Rohr ist in einer radialen Richtung durch seine Wandung begrenzt, wodurch innerhalb des Gehäuses praktisch zwei Strömungswege ausgebildet werden. Bevorzugt ist die im Gehäuse ausgebildete Strömungsstrecke konzentrisch innerhalb des Gehäuses angeordnet, es ist daher zwischen der Außenwandung der Strömungstrecke und der Innenwandung des Gehäuses ein Ringspalt ausgebildet. Die Strömungsstrecke kann über Stützelemente gegenüber dem Gehäuse fixiert werden.
  • In das Gehäuse einströmendes Abgas kann somit sowohl durch den ausgebildeten Ringspalt strömen als auch durch die Strömungsstrecke. Sofern kein Kontrollelement vorgesehen wäre, würde die Verteilung des Abgasmassenstroms auf den Ringspalt und die Strömungsstrecke im Wesentlichen durch die Querschnittsflächen der beiden Strömungswege beeinflusst werden.
  • Erfindungsgemäß ist zumindest ein Kontrollelement vorgesehen, welches aktiv beeinflusst werden kann, um die Verteilung des Abgasmassenstroms auf den Ringspalt und die Strömungsstrecke zu beeinflussen. Das Kontrollelement kann dabei auf unterschiedliche Arten ausgebildet sein. In den nachfolgenden Beschreibungen sind besonders bevorzugte Ausgestaltungen des Kontrollelements beschrieben.
  • Besonders vorteilhaft ist es, wenn das Kontrollelement durch eine drehbar gelagerte Lochblende gebildet ist, wobei durch Verdrehung der Lochblende der durchströmbare Querschnitt des Ringspalts vergrößerbar oder verkleinerbar ist.
  • Eine Lochblende kann beispielsweise durch einen Ring gebildet sein, der in dem Ringspalt angeordnet ist. Der Ring überdeckt den Strömungsquerschnitt des Ringspaltes und blockiert somit in einer möglichen Position den Abgasstrom durch den Ringspalt. In diesem Fall strömt das gesamte durch die Vorrichtung strömende Abgas durch die Strömungsstrecke, die innerhalb des Gehäuses angeordnet ist und von dem Ringspalt umgeben ist.
  • Die Lochblende weist entsprechend ihrer Funktion Löcher auf, die beispielsweise in Umfangsrichtung zueinander beabstandet angeordnet sind. Durch das Verdrehen der Lochblende relativ zum Gehäuse beziehungsweise der Strömungsstrecke kann ein Strömungsquerschnitt des Ringspalts freigegeben werden, so dass der Anteil des Abgasmassenstroms, der durch den Ringspalt strömt, steigt.
  • Auch ist es vorteilhaft, wenn die Lochblende einen feststehenden Abschnitt und einen gegenüber diesem feststehenden Abschnitt drehbar gelagerten Abschnitt aufweist, wobei beide Abschnitte in Umfangsrichtung zueinander beabstandete Öffnungen aufweisen.
  • Durch einen solchen Aufbau kann durch das Verdrehen des drehbar gelagerten Abschnitts gegenüber dem feststehenden Abschnitt eine Mehrzahl von Öffnungen freigegeben werden beziehungsweise können freigegebene Öffnungen durch das Verdrehen wider verschlossen werden. Insbesondere durch das Verdrehen der Lochblende derart, dass die Öffnungen im verdrehbaren Teil mit den Öffnungen im feststehenden Teil in Deckung liegen kann ein besonders großer Strömungsquerschnitt freigegeben werden.
  • Je nach Art, Anzahl und Größe der Öffnungen in der Lochblende, kann der maximal freigebbare Strömungsquerschnitt definiert werden.
  • Ein bevorzugtes Ausführungsbeispiel ist dadurch gekennzeichnet, dass das Kontrollelement durch eine in axialer Richtung des Gehäuses verschiebbare Ringblende gebildet ist. Ein axial verschiebbarer Ring ist besonders geeignet den durchströmbaren Strömungsquerschnitt zu beeinflussen, wenn entweder die Innenwandung des Gehäuses und/oder die Außenwandung des Gehäuses sich konisch verjüngen beziehungsweise sich konisch erweitern.
  • Durch das Verschieben der Ringblende, welche eine unveränderliche definierte Form aufweist, kann so der durchströmbare Strömungsquerschnitt des Ringspalts vergrößert oder verkleinert werden.
  • Auch ist es zu bevorzugen, wenn die Ringblende innerhalb des Ringspaltes zwischen der Strömungsstrecke und dem Gehäuse angeordnet ist.
  • Darüber hinaus ist es vorteilhaft, wenn die Ringblende relativ zum Gehäuse und/oder der Strömungsstrecke verschiebbar ist, wobei die Ringblende einen definierten Öffnungsquerschnitt aufweist. Durch das Verschieben der Ringblende kann aktiv der durchströmbare Strömungsquerschnitt des Ringspalts beeinflusst werden. Es besteht somit die Möglichkeit, abhängig von den gerade vorherrschenden Betriebsbedingungen, eine möglichst optimale Verteilung des Abgasstroms auf den Ringspalt und die Strömungsstrecke zu erzeugen.
  • Weiterhin ist es vorteilhaft, wenn die Ringblende Leitbleche aufweist, wobei der durch den Ringspalt strömende Abgasmassenstrom durch die Leitbleche ablenkbar ist. Leitbleche sind vorteilhaft, da der durch den Ringspalt strömende Abgasstrom gezielt beeinflusst werden kann. Es kann so beispielsweise ein Wirbel erzeugt werden, wodurch eine bessere Vermischung der beiden Abgasströme nach dem Durchströmen der Strömungsstrecke und dem Ringspalt erreicht werden kann. Auch kann die Strömung im Ringspalt turbulent werden durch die Leitbleche, wodurch der Wärmeübergang verbessert wird und eine Homogenisierung der Temperaturverteilung beziehungsweise der Konzentrationen der verschiedenen Abgasbestandteile erreicht werden kann.
  • Auch ist es zweckmäßig, wenn die die Strömungsstrecke in radialer Richtung begrenzende Struktur als Kontrollelement drehbar gelagerte Klappen aufweist. Drehbare Klappen können gezielt beeinflusst werden, um Öffnungen freizugeben oder diese zu verschließen. Abhängig von der aktuell gewünschten Verteilung des Abgasstroms auf die Strömungsstrecke und den Ringspalt können die Klappen aktiv verstellt werden, wodurch das Überströmen zwischen der Strömungsstrecke und dem Ringspalt geregelt wird.
  • Darüber hinaus ist es vorteilhaft, wenn die drehbar gelagerten Klappen um in axialer Richtung ausgerichtete Achsen drehbar gelagert sind. In axiale Richtung bedeutet parallel zur Hauptdurchströmungsrichtung der Vorrichtung. Durch um axiale Drehachsen drehbar gelagerte Klappen kann somit eine Öffnung in radialer Richtung freigegeben werden, so dass das Abgas aus der Strömungsstrecke in radiale Richtung nach außen in den Ringspalt strömen kann. In einer vorteilhaften Ausführung der Vorrichtung strömt das Abgas in die konzentrisch im Gehäuse angeordnete Strömungsstrecke ein und von dort bei geschlossenen Klappen vollständig vorbei an dem Heizelement hinein in die in der Strömungsstrecke oder nach der Strömungsstrecke angeordneten Katalysatoren. Ein Überströmen in den die Strömungsstrecke umgebenden Ringspalt ist in dieser Stellung der Klappen unterbunden. Der Ringspalt wirkt in dieser Klappenstellung als thermisch isolierendes Luftpolster, welches einen Wärmeverlust von der Strömungsstrecke hin zur Umgebung des Gehäuses reduziert. Der Ringspalt wird in dieser Klappenstellung nicht aktiv mit Abgas durchströmt.
  • Je weiter die Klappen geöffnet werden, umso größer wird der Anteil des Abgasmassenstroms, der aus der Strömungsstrecke in den Ringspalt überströmt.
  • Weiterhin ist es zweckmäßig, wenn durch die Klappen Öffnungen freigebbar sind, welche ein zumindest teilweises Überströmen des Abgasmassenstroms aus der Strömungsstrecke in den Ringspalt erlauben. Dies ist vorteilhaft, um eine Aufteilung des Abgasmassenstroms auf die Strömungsstrecke und den Ringspalt zu erreichen.
  • Außerdem ist es zweckmäßig, wenn die Strömungsstrecke derart im Gehäuse angeordnet ist, dass der Ringspalt nur durch die von den Klappen freigebbaren Öffnungen von dem Abgasstrom durchströmbar ist. Dies ist vorteilhaft, um die Verteilung des Abgasstroms von der Strömungsstrecke auf den Ringspalt besser beeinflussen zu können.
  • Auch ist es zu bevorzugen, wenn im Ringspalt als Kontrollelement um radial ausgerichtete Achsen drehbar gelagerte Drallklappen angeordnet sind. Darüber hinaus ist es vorteilhaft, wenn durch das Verdrehen der Drallklappen ein Strömungsquerschnitt des Ringspalts freigebbar ist.
  • Drallklappen im Ringspalt können durch das Verdrehen der Klappen um ihre jeweiligen Drehachsen den durchströmbaren Querschnitt des Ringspalts vergrößern oder verkleinern und ihn abhängig von dem Aufbau der Drallklappen auch vollständig verschließen.
  • Weiterhin ist es vorteilhaft, wenn die Drallklappen in Umfangsrichtung zueinander beabstandet im Ringspalt angeordnet sind. Durch die Anzahl der Drallklappen, deren Größe und Beabstandung zueinander kann ebenfalls auf den freigebbaren Strömungsquerschnitt Einfluss genommen werden.
  • Auch ist es zweckmäßig, wenn die Strömungsstrecke durch ein Mantelrohr gebildet ist, welches innerhalb des Gehäuses angeordnet ist.
  • Vorteilhafte Weiterbildungen der vorliegenden Erfindung sind in den Unteransprüchen und in der nachfolgenden Figurenbeschreibung beschrieben.
  • Kurze Beschreibung der Zeichnungen
  • Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen detailliert erläutert. In den Zeichnungen zeigen:
  • Fig. 1
    eine Schnittansicht durch eine konventionelle Vorrichtung zur Abgasnachbehandlung,
    Fig. 2
    eine Schnittansicht durch eine erfindungsgemäße Vorrichtung zur Abgasnachbehandlung, wobei in dem Gehäuse eine Strömungsstrecke innerhalb eines Mantelrohres ausgebildet ist,
    Fig. 3
    eine perspektivische Ansicht eines Kontrollelementes, welches in Form einer drehbaren Lochblende ausgebildet ist,
    Fig. 4
    eine Schnittansicht durch eine Vorrichtung zur Abgasnachbehandlung, wobei das Kontrollelement durch eine axial verschiebbare Ringblende gebildet ist,
    Fig. 5
    eine Schnittansicht durch eine alternative Ausgestaltung einer Vorrichtung zur Abgasnachbehandlung, wobei das Kontrollelement durch eine axial verschiebbare Ringblende gebildet ist,
    Fig. 6
    eine Schnittansicht durch eine Vorrichtung zur Abgasnachbehandlung, wobei das Mantelrohr eine Mehrzahl von drehbaren Klappen aufweist, die ein Überströmen aus der Strömungsstrecke in den Ringspalt ermöglichen, und
    Fig. 7
    eine perspektivische Ansicht einer Vorrichtung zur Abgasnachbehandlung, wobei drehbare Klappen im Bereich des Ringspaltes angeordnet sind, um den durchströmbaren Strömungsquerschnitt des Ringspaltes zu beeinflussen.
    Bevorzugte Ausführung der Erfindung
  • Die Figur 1 zeigt eine Schnittansicht durch eine Vorrichtung zur Abgasnachbehandlung. Sie ist gebildet aus einem Gehäuse mit Bereichen unterschiedlichen Durchmessers. Innerhalb des Gehäuses ist eine Vorrichtung 1 zur Erwärmung des Abgasstroms angeordnet und stromabwärts ein Katalysator 2, der zur Nachbehandlung von Abgasen dient. Zusätzlich kann die Vorrichtung Mittel zur Zugabe von Betriebsstoffen 3 vorweisen, um beispielsweise eine wässrige Harnstofflösung oder Kraftstoff in die Vorrichtung einzubringen.
  • Die in Figur 1 gezeigte Vorrichtung ist insbesondere dadurch gekennzeichnet, dass der gesamte Abgasstrom, der die Vorrichtung von links nach rechts durchströmt, vollständig durch das Heizelement 1 und den nachgeschalteten Katalysator 2 strömt. Sofern der Abgasmassenstrom also nicht die erforderliche Temperatur aufweist, um den Katalysator 2 auf eine für seinen Betrieb ausreichende Temperatur zu erwärmen, muss über das Heizelement der gesamte Abgasmassenstrom erwärmt werden, um den Katalysator 2 ebenfalls zu erwärmen. Hierfür wird eine große Energiemenge benötigt, da der gesamte Massenstrom erwärmt werden muss.
  • Figur 2 zeigt eine Schnittansicht durch eine erfindungsgemäße Vorrichtung 10. Sie weist ein Gehäuse 11 auf und ein darin befindliches Rohr 12, welches eine Strömungsstrecke mit einer Begrenzung in radialer Richtung ausbildet. Zwischen dem Rohr 12 und dem Gehäuse 11 ist ein Ringspalt 13 ausgebildet der vom Abgas durchströmt werden kann.
  • Die Durchströmungsrichtung des Gehäuses 11 und der Strömungsstrecke erfolgt von links nach rechts.
  • Innerhalb des Rohres 12 ist ein Heizmittel 14 zur elektrischen Beheizung des Abgases angeordnet. Weiterhin ist stromabwärts innerhalb des Rohres 12 ein Katalysator 15 angeordnet, der zur Nachbehandlung des durch ihn strömenden Abgases dient. Der Katalysator 15 ist insbesondere durch metallische oder keramische Wabenkörper gebildet, die mit einer entsprechenden Oberflächenbeschichtung beaufschlagt sind, um mittels einer chemischen Reaktion unerwünschte Bestandteile aus dem Abgas zu entfernen beziehungsweise deren Konzentration zu verringern oder mittels einer chemischen Reaktion die zugegebenen Betriebsstoffe umzuwandeln. Hierzu gehört beispielsweise die Umwandlung von wässriger Harnstofflösung in Ammoniak oder die Erzeugung von Wärme aus zugegebenem Kraftstoff.
  • In alternativen Ausgestaltungen können auch mehrere Katalysatoren innerhalb des Rohres angeordnet sein. Entlang des mit dem Bezugszeichen 16 versehenen Pfeils können Betriebsstoffe, wie beispielsweise eine wässrige Harnstofflösung oder Kraftstoff, in die Vorrichtung zugegeben werden.
  • Abgas, welches die Vorrichtung 10 durchströmt, kann direkt durch den Ringspalt 13 strömen und somit einen Bypass um die in der durch das Rohr 12 gebildete Strömungsstrecke. Alternativ kann das Abgas direkt in die Strömungsstrecke 12 einströmen und die in der Strömungsstrecke 12 angeordneten Elemente umströmen oder durchströmen. Nach dem Durchströmen der Strömungsstrecke 12 vereinen sich die beiden Strömungswege wieder und strömen in einer gemeinsamen Rohrleitung weiter.
  • Das Ausführungsbeispiel der Figur 2 zeigt den grundsätzlichen Aufbau einer erfindungsgemäßen Vorrichtung zur Behandlung von Abgasen. Nicht dargestellt in Figur 2 ist das Kontrollelement, welches eingesetzt wird um die Verteilung des Abgasmassenstroms auf den Ringspalt 13 und die Strömungsstrecke im Rohr 12 zu beeinflussen. Mögliche Ausführungsformen werden im Detail in den nachfolgenden Figuren beschrieben.
  • Figur 3 zeigt eine Ansicht eines Kontrollelementes 17, welches als drehbare Lochblende ausgebildet ist. Die Lochblende 17 ist dabei aus einem drehbar gelagerten Element 18 und einem feststehenden Element 19 gebildet. Die beiden Elemente 18, 19 der Lochblende 17 weisen in Umfangsrichtung zueinander beabstandete Öffnungen 20 auf. Wenn diese Öffnungen 20 durch das Verdrehen des Elementes 18 miteinander in Deckung gebracht werden, kann Abgas direkt in den dahinter liegenden Ringspalt einströmen. Sofern die Öffnungen 20 vollständig gegeneinander verdreht sind, wird der Strömungspfad in den Ringspalt hinein blockiert und das Abgas strömt vollständig durch die Strömungsstrecke im Inneren des zentralen Rohres.
  • Die Darstellung in Figur 3 ist explosionsartig um eine bessere Übersichtlichkeit zu gewährleisten. In einer realen Ausführung sitzen die beiden Elemente 18, 19 direkt aufeinander. Das Rohr, welches die Strömungsstrecke bildet, kann über die Lochblende 17 hinausragen oder bündig mit der Lochblende 17 abschließen. Die Lochblende 17 ist bevorzugt an der Einströmseite des Ringspalts angeordnet. Sie kann jedoch an jeder Stelle des Ringspalts angeordnet sein.
  • Die Figur 4 zeigt eine mögliche Ausgestaltung des Kontrollelementes als axial verschiebbare Ringblende 25. Die Ringblende 25 ist an der Ausströmseite 21 des Rohrs 12 angeordnet und derart ausgebildet, das der Ausschnitt im Zentrum der Blende 25 mit dem Innendurchmesser des Rohres 12 übereinstimmt. Durch ein Verschieben der Blende 25 nach links hin zum Rohr 12 kann eine Anlage der Blende 25 am Rohr 12 erreicht werden, wodurch der Ringspalt 13 vollständig verschlossen wird. Das durch die Vorrichtung strömende Abgas kann in diesem Fall den Ringspalt 13 nicht durchströmen und muss vollständig durch die Strömungsstrecke 12 und somit das Heizelement 14 und den Katalysator 15 strömen.
  • Durch das Verschieben der Ringblende 25 axial nach rechts, also weg vom Rohr 12, kann ein Strömungspfad freigegeben werden, so dass Abgas aus dem Ringspalt 13 an der Blende 25 vorbeiströmen kann und sich mit dem durch das Rohr 12 strömenden Abgas vermischen kann. Die Ringblende 25 ist im gezeigten Beispiel auf der Innenwandung des Gehäuses 11 geführt und kann axial entlang der Hauptdurchströmungsrichtung der Vorrichtung 10 verschoben werden. Durch den maximal in axialer Richtung zum Rohr 12 erreichbaren Abstand der Blende 25 kann die maximal mögliche Öffnung zwischen dem Ringspalt 13 und der Blende 25 definiert werden.
  • An der Ringblende 25 können drallerzeugende Elemente 24, wie beispielsweise Leitbleche, angeordnet sein um die Strömung im Ringspalt 13 turbulent zu machen und somit eine bessere Durchmischung innerhalb des Ringspaltes 13 zu erzielen. Außerdem trägt eine turbulente Strömung beim Zusammentreffen der Abgasströme nach dem Rohr 12 beziehungsweise dem Ringspalt 13 auch zu einer verbesserten Durchmischung bei. Weiterhin wird der Wärmeübergang hin zum Gehäuse 11 durch eine turbulente Randströmung vermindert, wodurch ebenfalls die Wärmeverluste reduziert werden.
  • Figur 5 zeigt eine alternative Vorrichtung bei der die axial verschiebbare Ringblende 21 an einer alternativen Stelle innerhalb der Vorrichtung 10 angeordnet ist. Die Ringblende 21 ist innerhalb des Ringspalts 13 angeordnet. Die Ringblende 21 hat einen zentralen Ausschnitt 22 durch welchen das Rohr 12 geführt ist. Die Ringblende 21 ist in einem Bereich angeordnet, in welchem der Außendurchmesser des Rohres 12 sich konisch in Strömungsrichtung erweitert. Durch das Verschieben der formstabilen Ringblende 21 in axialer Richtung kann der Öffnungsspalt 23 zwischen der Ringblende 21 und dem Rohr 12 vergrößert oder verkleinert werden, wodurch der Anteil des Abgases der den Ringspalt 13 durchströmt ebenfalls vergrößert oder verkleinert werden kann.
  • Wenn die Ringblende 21 vollständig axial nach rechts verschoben wird, gerät die Ringblende 21 mit der Außenwandung des Rohres 12 in Anlage und der Ringspalt 13 wird vollständig verschlossen. Das Abgas strömt dann vollständig durch die Strömungsstrecke im Inneren des Rohres 12.
  • Sofern der Strömungspfad durch den Ringspalt vollständig verschlossen ist, wirkt der Ringspalt als thermischer Isolator zwischen dem Abgas und den Elementen innerhalb der der durch das Rohr gebildeten Strömungsstrecke und dem Gehäuse der Vorrichtung. Dadurch wird ein ungewollter Wärmeverlust nach außen vermindert.
  • Figur 6 zeigt eine alternative Ausgestaltung, die dadurch gekennzeichnet ist, dass der gesamte Abgasstrom vollständig in die durch das Rohr 30 gebildete Strömungsstrecke einströmt und von dort abhängig von der Stellung der gezeigten Kontrollelemente 31 in den Ringspalt 32 überströmt oder weiter durch das Rohr 30 strömt.
  • Die Kontrollelemente 31 sind durch drehbar gelagerte Klappen gebildet, die jeweils in axialer Richtung ausgerichtete Drehachsen aufweisen. Durch ein Verdrehen der Klappen 31 können somit Öffnungen in radialer Richtung freigegeben oder verschlossen werden, wodurch ein Überströmen zwischen dem Rohr 30 und dem Ringspalt 32 ermöglicht oder verhindert wird.
  • Vorteilhafterweise können mehrere Klappen 31 über den Umfang des Rohres 30 verteilt sein. Die Klappen 31 können Leitelemente aufweisen, die das durch die freigegebenen Öffnungen strömende Abgas zusätzlich ablenken, um beispielsweise eine turbulente Strömung zu erzeugen.
  • Figur 7 zeigt eine weitere alternative Ausführung wobei hier die Kontrollelemente 41 durch drehbar gelagerte Klappen 41 gebildet sind, die zwischen dem Rohr 40 und dem Gehäuse 42 angeordnet sind. Die Klappen 41 sind um in radialer Richtung verlaufende Achsen drehbar gelagert und können so Öffnungen in axialer Richtung freigeben. Die Klappen 41 sind in dem Ringspalt 43 angeordnet.
  • In einer vorteilhaften Ausgestaltung können mehrere Klappen 41 um den Umfang des Ringspaltes 43 verteilt angeordnet sein. Zusätzlich zu den in Figur 7 dargestellten Elementen kann ein weiteres Element im Ringspalt 43 angeordnet werden, welches die zwischen den Klappen liegenden Bereiche überdeckt, so dass keine Strömung an den Klappen vorbei durch den Ringspalt 43 entstehen kann. Ein solches Element, welches als Ring mit entsprechenden Ausschnitten ausgebildet sein kann, ist dann notwendig, wenn es erwünscht ist, dass der Ringspalt 43 vollständig verschlossen werden kann.
  • Die unterschiedlichen Merkmale der einzelnen Ausführungsbeispiele können auch untereinander kombiniert werden. Die Ausführungsbeispiele der Figuren 1 bis 7 weisen insbesondere keinen beschränkenden Charakter auf und dienen der Illustration der Erfindung.

Claims (15)

  1. Vorrichtung (10) zur Nachbehandlung von Abgasen eines Verbrennungsmotors, mit einem von dem Abgas von einem Eintritt hin zu einem Austritt durchströmbaren Gehäuse (11, 42), mit einer in radialer Richtung räumlich begrenzten und in axialer Richtung durchströmbaren Strömungsstrecke (12, 30, 40), die innerhalb des Gehäuses (11, 42) angeordnet ist, mit zumindest einem in der Strömungsstrecke (12, 30, 40) angeordneten Katalysator (15) zur katalytischen Umwandlung des Abgases, wobei, zwischen der Strömungsstrecke (12, 30, 40) und der Innenwandung des Gehäuses (11, 42) ein durchströmbarer Ringspalt (13, 32, 43) ausgebildet ist, wobei die Verteilung des Abgasmassenstroms auf die Strömungsstrecke (12, 30, 40) und den Ringspalt (13, 32, 43) durch ein Kontrollelement (17, 21, 25, 31, 41) beeinflussbar ist, dadurch gekennzeichnet, dass zumindest ein vom Abgas durchströmbares Heizelement (14) zur elektrischen Beheizung des Abgases in der Strömungsstrecke (12, 30, 40) angeordnet ist.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Kontrollelement (17) durch eine drehbar gelagerte Lochblende (17) gebildet ist, wobei durch Verdrehung der Lochblende (17) der durchströmbare Querschnitt des Ringspalts vergrößerbar oder verkleinerbar ist.
  3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Lochblende (17) einen feststehenden Abschnitt (19) und einen gegenüber diesem feststehenden Abschnitt (19) drehbar gelagerten Abschnitt (18) aufweist, wobei beide Abschnitte (18, 19) in Umfangsrichtung zueinander beabstandete Öffnungen (20) aufweisen.
  4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Kontrollelement durch eine in axialer Richtung des Gehäuses verschiebbare Ringblende (25, 23) gebildet ist.
  5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Ringblende (23) innerhalb des Ringspaltes (13) zwischen der Strömungsstrecke (12) und dem Gehäuse (11) angeordnet ist.
  6. Vorrichtung nach einem der vorhergehenden Ansprüche 4 oder 5, dadurch gekennzeichnet, dass die Ringblende (23, 25) relativ zum Gehäuse (11) und/oder der Strömungsstrecke (12) verschiebbar ist, wobei die Ringblende (23, 25) einen definierten Öffnungsquerschnitt aufweist.
  7. Vorrichtung nach einem der vorhergehenden Ansprüche 4 bis 6, dadurch gekennzeichnet, dass die Ringblende (25) Leitbleche (24) aufweist, wobei der durch den Ringspalt (13) strömende Abgasmassenstrom durch die Leitbleche (24) ablenkbar ist.
  8. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die die Strömungsstrecke (30) in radialer Richtung begrenzende Struktur als Kontrollelement drehbar gelagerte Klappen (31) aufweist.
  9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die drehbar gelagerten Klappen (31) um in axialer Richtung ausgerichtete Achsen drehbar gelagert sind.
  10. Vorrichtung nach einem der vorhergehenden Ansprüche 8 oder 9, dadurch gekennzeichnet, dass durch die Klappen (31) Öffnungen freigebbar sind, welche ein zumindest teilweises Überströmen des Abgasmassenstroms aus der Strömungsstrecke (30) in den Ringspalt (32) erlauben.
  11. Vorrichtung nach einem der vorhergehenden Ansprüche 8 bis 10, dadurch gekennzeichnet, dass die Strömungsstrecke (30) derart im Gehäuse angeordnet ist, dass der Ringspalt (32) nur durch die von den Klappen (31) freigebbaren Öffnungen von dem Abgasstrom durchströmbar ist.
  12. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass im Ringspalt (43) als Kontrollelement um radial ausgerichtete Achsen drehbar gelagerte Drallklappen (41) angeordnet sind.
  13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass durch das Verdrehen der Drallklappen (41) ein Strömungsquerschnitt des Ringspalts (43) freigebbar ist.
  14. Vorrichtung nach einem der vorhergehenden Ansprüche 12 oder 13, dadurch gekennzeichnet, dass die Drallklappen (41) in Umfangsrichtung zueinander beabstandet im Ringspalt (43) angeordnet sind.
  15. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Strömungsstrecke (12, 30, 40) durch ein Mantelrohr gebildet ist, welches innerhalb des Gehäuses (11, 42) angeordnet ist.
EP19715848.8A 2018-03-29 2019-03-26 Vorrichtung zur nachbehandlung von abgasen Active EP3775511B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018204903.3A DE102018204903B4 (de) 2018-03-29 2018-03-29 Vorrichtung zur Nachbehandlung von Abgasen
PCT/EP2019/057525 WO2019185595A1 (de) 2018-03-29 2019-03-26 Vorrichtung zur nachbehandlung von abgasen

Publications (2)

Publication Number Publication Date
EP3775511A1 EP3775511A1 (de) 2021-02-17
EP3775511B1 true EP3775511B1 (de) 2022-03-02

Family

ID=66049177

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19715848.8A Active EP3775511B1 (de) 2018-03-29 2019-03-26 Vorrichtung zur nachbehandlung von abgasen

Country Status (5)

Country Link
US (1) US11339699B2 (de)
EP (1) EP3775511B1 (de)
CN (1) CN111989466B (de)
DE (1) DE102018204903B4 (de)
WO (1) WO2019185595A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020212845A1 (de) 2020-10-12 2022-04-14 Vitesco Technologies GmbH Vorrichtung zur Abgasnachbehandlung
DE102022102631A1 (de) * 2022-02-04 2023-08-10 Purem GmbH Mischbaugruppe für eine Abgasanlage einer Brennkraftmaschine

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2674197A (en) * 1948-11-01 1954-04-06 Eastman Pacific Company Reciprocating piston pump or motor with annularly disposed parallel multiple cylinders
JPH0385315A (ja) 1989-08-28 1991-04-10 Riken Corp 排ガス浄化装置
US5170624A (en) * 1991-04-05 1992-12-15 W. R. Grace & Co.-Conn. Composite catalytic converter
DE9202798U1 (de) * 1991-05-15 1992-04-23 Emitec Gesellschaft Fuer Emissionstechnologie Mbh, 5204 Lohmar, De
DE4222162C2 (de) * 1991-07-06 1997-02-20 Klaus Juergen Nord Verfahren zum raschen Erzielen der Zündtemperatur der Schadstoffe in den Abgasen einer Brennkraftmaschine und Vorrichtung hierzu
JPH0754640A (ja) * 1993-08-12 1995-02-28 Mitsubishi Motors Corp 排気浄化装置
US5950576A (en) * 1998-06-30 1999-09-14 Siemens Canada Limited Proportional coolant valve
US6318077B1 (en) * 2000-03-13 2001-11-20 General Motors Corporation Integrated thermal and exhaust management unit
US6378509B1 (en) * 2000-06-13 2002-04-30 Caterpillar Inc. Exhaust gas recirculation system having multifunction valve
US6883311B2 (en) * 2003-07-02 2005-04-26 Detroit Diesel Corporation Compact dual leg NOx absorber catalyst device and system and method of using the same
US7171801B2 (en) * 2004-06-24 2007-02-06 Caterpillar Inc Filter system
DE102004040221B4 (de) * 2004-08-19 2009-01-08 Pierburg Gmbh Regelbare Zwei-Wege-Ventilvorrichtung für eine Verbrennungskraftmaschine
CA2508159C (en) * 2005-05-24 2009-05-05 Ecocing Corporation Improved reversing flow catalytic converter for internal combustion engines
US7765792B2 (en) * 2005-10-21 2010-08-03 Honeywell International Inc. System for particulate matter sensor signal processing
WO2008024609A1 (en) * 2006-08-04 2008-02-28 Borgwarner Inc. Multi-functional valve for use in an exhaust breathing system
JP4988326B2 (ja) 2006-12-20 2012-08-01 ヤマハ発動機株式会社 自動二輪車用4サイクルエンジンの排気装置
US8584445B2 (en) * 2009-02-04 2013-11-19 GM Global Technology Operations LLC Method and system for controlling an electrically heated particulate filter
US8365517B2 (en) * 2009-06-11 2013-02-05 GM Global Technology Operations LLC Apparatus and method for regenerating an exhaust filter
US8479496B2 (en) * 2009-07-02 2013-07-09 GM Global Technology Operations LLC Selective catalytic reduction system using electrically heated catalyst
JP5210995B2 (ja) * 2009-08-20 2013-06-12 株式会社クボタ ディーゼルエンジンの排気処理装置
US8387372B2 (en) * 2010-03-11 2013-03-05 GM Global Technology Operations LLC Particulate filter system
US9657464B2 (en) * 2010-05-25 2017-05-23 Kerry Dunki-Jacobs Flow control system
DE102011015061A1 (de) * 2011-03-24 2012-09-27 Mann + Hummel Gmbh Verfahren und Vorrichtung zur Dosierung des Additivs zur Regenerierung eines Dieselpartikelfilters
US8361423B2 (en) 2011-05-25 2013-01-29 Corning Incorporated Exhaust gas after-treatment device and method of use
DE102011077184B4 (de) * 2011-06-08 2015-04-09 Bosch Emission Systems Gmbh & Co. Kg Abgasanlage
US8627654B2 (en) 2011-08-02 2014-01-14 GM Global Technology Operations LLC Method of treating emissions of a hybrid vehicle with a hydrocarbon absorber and a catalyst bypass system
GB201200230D0 (en) 2012-01-09 2012-02-22 Eminox Ltd Exhaust system and method
JP5990151B2 (ja) * 2013-09-30 2016-09-07 株式会社クボタ ディーゼルエンジン
GB2528954B (en) * 2014-08-07 2017-05-24 Clyde Process Ltd Adjustable multi-hole orifice plate in a pneumatic conveying apparatus
DE102015207573B4 (de) * 2015-04-24 2023-07-06 Ford Global Technologies, Llc Brennkraftmaschine mit kombiniertem Abgasnachbehandlungssystem
US9534524B1 (en) * 2015-06-18 2017-01-03 Ford Global Technologies, Llc Dual rate diesel particulate filter leak monitor
KR102529910B1 (ko) * 2017-12-12 2023-05-08 현대자동차주식회사 배기열 회수 시스템

Also Published As

Publication number Publication date
CN111989466B (zh) 2022-06-24
DE102018204903A1 (de) 2019-10-02
US11339699B2 (en) 2022-05-24
DE102018204903B4 (de) 2020-10-08
WO2019185595A1 (de) 2019-10-03
US20210025309A1 (en) 2021-01-28
EP3775511A1 (de) 2021-02-17
CN111989466A (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
DE102014110592B4 (de) Nachbehandlungskomponente
EP2691618B1 (de) Kompakte abgasbehandlungseinheit mit mischbereich und verfahren zur vermischung eines abgases
EP3216992B1 (de) Mischer
EP3406873B1 (de) Abgasnachbehandlungssystem für einen verbrennungsmotor
EP2606208B1 (de) Kompakte abgasbehandlungseinheit mit reaktionsmittelzugabe
EP2598730B1 (de) Vorrichtung zur motornahen abgasbehandlung
DE102006049005B4 (de) Fluidmitnahmevorrichtung sowie damit ausgestattetes Abgassystem
DE112010005012B4 (de) Abgasnachbehandlungssystem
DE102012014334A1 (de) Mischvorrichtung zur Nachbehandlung von Abgasen
EP3775511B1 (de) Vorrichtung zur nachbehandlung von abgasen
DE102009042386A1 (de) Hydrolysekatalysator mit größeren Durchführungsquerschnitten im Außenbereich als im zentralen Bereich und Verfahren zur Hydrolyse einer Harnstoffsubstanz
WO2012130796A1 (de) Heizmodul für eine abgasreinigungsanlage
DE102007047774A1 (de) Vorrichtung und Verfahren zur Reduzierung von Stickoxiden im Abgasstrang einer Brennkraftmaschine
DE102016004333A1 (de) Abgasnachbehandlungsvorrichtung mit Katalysator und Mischvorrichtung
EP3553290A1 (de) Gas/gas-mischer zum einleiten von gas in den abgasstrom einer brennkraftmaschine
EP3500737B1 (de) Komponente eines abgassystems und verfahren zur abgasnachbehandlung
DE2341527A1 (de) Abgasanlage fuer brennkraftmaschinen
EP3674523B1 (de) Abgasnachbehandlungssystem für einen verbrennungsmotor
DE102020116485A1 (de) Abgasanlagenbauteil mit schraubenförmiger heizeinrichtung
EP3050615A1 (de) Strömungseinheit, Abgasreinigungsanlage und Verfahren für eine Abgasreinigungsanlage
EP2325450A1 (de) Vorrichtung zur Nachbehandlung von Abgasen einer Brennkraftmaschine
DE112015007250T5 (de) Strukturell verbesserte Fahrzeug-Abgasverdünnungs- und Dispergiervorrichtung
EP3851646B1 (de) Gas/gas-mischer zum einleiten von gas in den abgasstrom einer brennkraftmaschine
DE102021123743A1 (de) Abgasnachbehandlungseinrichtung für eine Antriebseinrichtung sowie eine entsprechende Antriebseinrichtung und ein Verfahren zu ihrem Betreiben
DE102018202298A1 (de) Abgasnachbehandlungseinrichtung zum Eindosieren eines flüssigen Abgasnachbehandlungsmittels

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201029

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211022

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VITESCO TECHNOLOGIES GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1472404

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019003576

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220602

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220603

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220704

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220702

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019003576

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220326

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220326

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

26N No opposition filed

Effective date: 20221205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230327

Year of fee payment: 5

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240331

Year of fee payment: 6