EP3768974B1 - Pumpe mit absoluter drehwinkel-erfassung - Google Patents

Pumpe mit absoluter drehwinkel-erfassung Download PDF

Info

Publication number
EP3768974B1
EP3768974B1 EP19735541.5A EP19735541A EP3768974B1 EP 3768974 B1 EP3768974 B1 EP 3768974B1 EP 19735541 A EP19735541 A EP 19735541A EP 3768974 B1 EP3768974 B1 EP 3768974B1
Authority
EP
European Patent Office
Prior art keywords
pump
rotor
rotation
rotor shaft
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19735541.5A
Other languages
English (en)
French (fr)
Other versions
EP3768974A1 (de
Inventor
Wolfgang Laufer
Jens Löffler
Mario STAIGER
Daniel Hauer
Markus Braxmaier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebm Papst St Georgen GmbH and Co KG
Original Assignee
Ebm Papst St Georgen GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebm Papst St Georgen GmbH and Co KG filed Critical Ebm Papst St Georgen GmbH and Co KG
Publication of EP3768974A1 publication Critical patent/EP3768974A1/de
Application granted granted Critical
Publication of EP3768974B1 publication Critical patent/EP3768974B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/06Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C5/00Rotary-piston machines or pumps with the working-chamber walls at least partly resiliently deformable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/08Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/24Application for metering throughflow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/81Sensor, e.g. electronic sensor for control or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/05Speed
    • F04C2270/052Speed angular
    • F04C2270/0525Controlled or regulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/20Flow

Definitions

  • the invention relates to a pump, in particular an orbital pump, for pumping a fluid.
  • the pump has a rotor sensor for detecting an absolute angle of rotation of a rotor shaft of the pump and a predetermined angle of rotation position.
  • a rotational angle position of a rotor is detected via three digital Hall sensors, which, however, do not detect an absolute rotor position allow and also allow the angle of rotation of the rotor to be recorded with a resolution of just 20°.
  • the position of the rotor is indirectly determined by the Hall sensors via the position of the magnetic field that excites the rotor.
  • a problem that occurs specifically with previously known orbital pumps is that when the orbital pump is switched off, an eccentric used is stopped in a non-predeterminable position, ie with a non-predetermined angle of rotation.
  • the indeterminate position of the eccentric does not rule out the possibility that the pump has an internal leak, which can lead to a leak flow through which fluid flows through the pump in an undefined manner.
  • Expensive volume flow sensors would always have to be provided for this purpose.
  • each known pump with a pump control, through which the rotor shaft is rotatable in a predetermined rotational angle position.
  • the invention is therefore based on the object of overcoming the aforementioned disadvantages and providing a pump and a method associated with the pump, with which leakage through the pump is prevented and exact positioning of the rotor in the pump is possible.
  • a pump in particular an orbital pump, is proposed for pumping a fluid.
  • the pump has at least one pump controller and one motor that can be controlled by the pump controller on.
  • the pump includes a rotor shaft for fluid delivery and a rotor sensor for detecting an absolute angle of rotation of the rotor shaft.
  • the rotor shaft can be in direct contact with the fluid to be pumped or can drive another component of the pump, which acts directly on the fluid without itself being in contact with the fluid.
  • the rotor sensor is connected to the at least one pump controller and is also designed to transmit the angle of rotation of the rotor shaft to the pump controller.
  • the pump controller is designed to control the motor, taking into account the detected angle of rotation, which drives or rotates the rotor shaft until the rotor shaft is in a predetermined angle of rotation position.
  • the control taking into account the angle of rotation, prevents the rotor shaft from overshooting and thereby increases the service life of the pump.
  • a cavity (delivery chamber) arranged in the pump can only be partially emptied, for example by rotating the rotor shaft by a predetermined angle. Since complete revolutions are not necessary to convey the fluid, small amounts of fluid can also be conveyed.
  • a pump according to the invention can also be calibrated for specific delivery quantities. Such a calibration can be used, for example, during production, but also with a pump installed in a system be performed. If predetermined amounts of fluid are to be delivered with the pump or if it is to be determined which amount is delivered per revolution or when the rotational angle of the rotor shaft changes, the volume delivered by the pump can be measured and linked to the rotational angle positions that occur, so that it is defined individually for each pump , which volume is conveyed at which angle of rotation change.
  • the determined values can be used to determine which new rotational angle position is to be approached with the rotor shaft, starting from a current rotational angle position.
  • the calibration can also be repeated, for example, at specified maintenance intervals, in order to be able to take possible mechanical wear into account and compensate for it using the controller.
  • a pump according to the invention and an associated controller can also be provided to close the rotor shaft when the pump is switched off or when the rotor shaft stops in a predetermined starting position or in one of several predetermined starting positions position. In a subsequent start-up process, a lower start-up current is therefore necessary, so that the pump is subject to less wear and has a low power consumption.
  • the pump has a pump housing, an elastically deformable pump ring and an eccentric.
  • the eccentric defines an off-center hole through which the rotor shaft extends, the eccentric being connected to the rotor shaft so that the rotor shaft drives the eccentric.
  • the rotor shaft forms the eccentric directly, so that the rotor shaft is the eccentric is.
  • the pump housing has a cylindrical recess or cavity from which a fluid inlet and a fluid outlet extend out of or into the pump housing.
  • the pump ring is arranged in the cavity or in the pump housing and is at a distance from the pump housing at least in sections in its radial direction.
  • the pump ring has a central opening which extends in the axial direction of the pump ring and is preferably arranged centered in its radial direction in the pump ring and in which the eccentric is arranged. Due to the eccentric in relation to the central opening, the pump ring is elastically deformed by the eccentric.
  • the eccentric has a section which protrudes further than the surrounding areas of the eccentric in relation to its axis of rotation, about which it is rotated. The eccentric therefore deforms in particular a rotatable section of the pump ring, which can be deformed in the radial direction by rotating the eccentric in the circumferential direction of the pump ring and can be pressed against the pump housing.
  • the pump ring itself is not rotated.
  • the rotor sensor is arranged on the rotor shaft, on the eccentric or on the pump ring and detects the absolute angle of rotation as the respective angle of rotation of the rotor shaft, the eccentric or the pump ring. Since the pump ring itself does not rotate, the position of the rotating section of the pump ring is detected.
  • the motor is an electric motor with a stator and a rotor.
  • the rotor is directly connected to the rotor shaft or merges directly into it.
  • the angle of rotation of the rotor shaft corresponds to an angle of rotation of the rotor, as a result of which the angle of rotation of the rotor shaft can be determined from the angle of rotation of the rotor.
  • the motor is an electric motor with a rotor, but the rotor is not directly but indirectly connected to the rotor shaft, for example via a gear.
  • the angle of rotation of the rotor shaft can be determined from an angle of rotation of the rotor, with the angle of rotation being able to be determined as a function of the connection of the rotor to the rotor shaft, for example the transmission ratio of the transmission.
  • the rotor sensor is arranged on the rotor of the motor.
  • the rotor sensor determines the angle of rotation of the rotor and consequently the angle of rotation of the rotor shaft.
  • the rotor sensor is an encoder or a resolver that detects the angle of rotation of the rotor shaft.
  • the encoder or resolver can output the angle of rotation as a digital signal or as an analog signal. In particular, the output as a sine and cosine signal is possible.
  • the rotor sensor is preferably an absolute encoder, which means that no referencing of the rotor shaft is necessary.
  • an alternative embodiment provides that the rotor sensor is an incremental encoder and the pump has a reference sensor for referencing the rotor sensor the position of the rotor shaft is detected in the predetermined rotational angle position.
  • the pump ring has a first and a second deformation section.
  • the pump ring In the first deformation section, the pump ring is designed to be more elastically deformable than in its second deformation section.
  • the pump ring In the first deformation section, the pump ring can be easily deformed in its radial direction by the eccentric, so that the eccentric requires less force to deform the pump ring in the first deformation section or a lesser torque can be applied to the eccentric for rotation about the axis of rotation.
  • the predetermined rotational angle position is set in the first deformation section. At the start of the rotation of the eccentric from a standstill of the eccentric, a lower torque is therefore necessary on the eccentric in the first deformation section than when the rotation starts in the second deformation section.
  • a leakage flow channel is defined in the pump between a fluid inlet into the pump and a fluid outlet from the pump. According to the invention it is provided that the leakage flow channel is closed with the rotor shaft in the predetermined rotational angle position. A leakage flow between the fluid inlet and the fluid outlet is thus prevented.
  • the rotating section of the pump ring is pressed by the eccentric onto the fluid inlet or the fluid outlet, so that it is sealed in a fluid-tight manner from an end face of the pump ring.
  • the invention also includes a method for controlling a pump according to the invention.
  • a fluid volume flow conveyed by the pump from a fluid inlet to a fluid outlet of the pump is calculated from a plurality of angles of rotation of the rotor shaft detected by the rotor sensor in a predetermined time interval. Then the die Motor driving the rotor shaft is controlled depending on a fluid volume flow to be conveyed according to a predetermined motor characteristic. The volume flow of fluid that is actually delivered is adjusted to the volume flow of fluid to be delivered by controlling the motor according to the motor characteristics.
  • a development of the method provides in particular that the motor is controlled to stop and position the rotor shaft at the predetermined rotational angle position when the volume flow to be delivered is zero. If the rotor shaft is to be stopped by the motor at the predetermined rotational angle position, the motor characteristic corresponds, for example, to slow braking of the motor, as a result of which the rotor shaft comes to a standstill at the predetermined position without overshooting.
  • the pump shown schematically is provided with a rotor sensor and a pump controller, even if these cannot be seen in the figure.
  • the pump housing 10 is shown in a section running orthogonally to a longitudinal axis, so that the cavity 14 located in the pump housing 10 with the components arranged therein can be seen.
  • the rotor shaft 40 shown in section runs through the center of the cylindrical cavity 14 or, in the sectional view, round cavity 14 along an axis of rotation, not shown, which extends along its axial direction orthogonally to the plane of the illustration.
  • An eccentric 30 is arranged on the rotor shaft 40 and acts or presses on the elastically deformable pump ring 20 via a bearing ring 32 between the pump ring 20 and the eccentric 30 .
  • the bearing ring 32 is a needle bearing formed, for example, from needle elements and designed as a radial bearing, through which the eccentric 30 can rotate in it without directly contacting the deformable pump ring 20, deforming the pump ring 20 in the pump ring 20.
  • the eccentric 30 presses the pump ring 20 in the eccentric direction 31, as a result of which the elastically deformable pump ring 20 is deformed in its radial direction lying in the plane of the illustration, so that the pump ring 20 with its section 21 in the radial direction on the pump housing 10 is present.
  • the deformed section 21 of the pump ring 20 migrates in the circumferential direction U around the axis of rotation, so that the section 21 rotates in the circumferential direction, with the pump ring 20 not rotating.
  • the pump ring 20 is spaced at a distance from the pump housing 10 in sections and rests against the pump housing 10 in the radial direction only in the rotating section 21 and in a sealing section 22 .
  • the rotation of the rotating section 21 of the pump ring 20 and the spacing of the pump ring 20 from the pump housing 10 in the radial direction define two chambers in the cavity 14 which change in size as a result of the rotation of the rotating section 21 .
  • a fluid is sucked into a first chamber connected to the fluid inlet 11 through the fluid inlet 11 into the cavity 14 or into the expanding first chamber, and a fluid is discharged from the second chamber connected to the fluid outlet 12 ejected from the cavity 14 or from the decreasing second chamber.
  • the pump ring 20 has two deformation sections 24, 25 adjacent to one another in the circumferential direction U or over an angular range in the circumferential direction U.
  • a deformation force is already applied to the pump ring 20 in the radial direction by the pin 13 extending parallel to the axis of rotation.
  • there is a cavity in the pump ring 20 which is located on the pin 13 and through which the pump ring 20 can be deformed more easily in the radial direction.
  • the pump ring 20 can also have further measures for easier deformability in relation to the adjoining second deformation section 25 .
  • the predetermined rotational angle position is therefore symmetrical to the pin 13 on the straight line bisecting the rotor shaft 40 and the pin 13 .
  • This predetermined rotational angle position can be defined as 0°, for example, with the illustrated eccentric being shown in a rotational angle position rotated by 90° along the rotation path 33 .
  • the angle of rotation of the rotor shaft 40 can be detected, for example, on the rotor shaft 40, on the eccentric 30, on the pump ring 20 by the rotating section 21 of the pump ring 20 or on a rotor of a motor that is not shown and drives the rotor shaft 40.
  • the eccentric 30 is connected in one piece to the rotor shaft 40, with the rotor shaft 40 also being able to form the eccentric 30 in one piece.

Description

  • Die Erfindung betrifft eine Pumpe, insbesondere eine Orbitalpumpe, zum Pumpen eines Fluides. Die Pumpe weist hierzu einen Rotorsensor zur Erfassung eines absoluten Drehwinkels einer Rotorwelle der Pumpe sowie eine vorbestimmten Drehwinkelposition auf.
  • Aus dem Stand der Technik sind bereits verschiedene Ausführungsformen von Pumpen mit einer Drehwinkelerfassung bekannt. Beispielsweise wird eine Drehwinkelposition eines Rotors bei einer bekannten Lösung über drei digitale Hall-Sensoren erfasst, welche jedoch keine absolute Rotorlagenerkennung ermöglichen und eine Erfassung des Drehwinkels des Rotors auch lediglich mit einer Auflösung von 20° erlauben. Durch die Hall-Sensoren wird die Position des Rotors indirekt über die Position des Magnetfelds ermittelt, welches den Rotor anregt.
  • Bei einer derartigen Erfassung des Drehwinkels werden viele im Stand der Technik verbreitete Pumpen im "Open-Loop"-Betrieb angesteuert, bei dem einem sich drehenden Magnetfeld des die Pumpe antreibendes Motors ein bestimmtes Muster aufgeprägt wird. Der Rotor folgt dann diesem erzeugten Magnetfeld mehr oder weniger genau. Aufgrund einer erhöhten Last am Rotor kann es dazu kommen, dass dieser dem Magnetfeld hinterher eilt und die Drehzahlen und Drehwinkel des Magnetfeldes und des Rotors nicht mehr übereinstimmen. Eine Berechnung des geförderten Volumenstroms und eine Positionierung des Rotors werden dadurch nicht mehr möglich, da der tatsächliche bzw. absolute Drehwinkel des Rotors unbekannt ist.
  • Neben den Nachteilen des "Open-Loop"-Betriebs kommt es ferner zu weiteren Einschränkungen und Nachteilen an den Pumpen. Beispielsweise kommt es bei den im Stand der Technik in Pumpen verbreiteten Rotoren zu einem undefinierten Überschwingen des Rotors um eine angefahrene Position. Dadurch wird beispielsweise eine Membran oder ein anderes elastisches Element, das mit dem Rotor in Verbindung steht, stärker belastet als ohne das Überschwingen, womit ein erhöhter Verschleiß an dem elastischen Element auftritt. Durch das Überschwingen erhöht sich zudem eine Dosier- oder Fördervarianz, da durch die Bewegung des Rotors um die angefahrene Position beim Überschwingen weiter undefiniert ein Fluid durch die Pumpe gefördert wird.
  • Hinzukommt, dass es nicht möglich ist, die absolute Position des Rotors zu ermitteln oder den Rotor auf eine bestimmte Position zu positionieren, insbesondere, da die Auflösung bei vielen bei Pumpen verbreiteten Rotorsensoren zu gering ist und allenfalls eine Position innerhalb eines durch die Auflösung vorbestimmten Bereichs angefahren werden kann.
  • Ein speziell bei vorbekannten Orbitalpumpen auftretendes Problem ist, dass ein verwendeter Exzenter beim Abschalten der Orbitalpumpe auf einer nicht vorherbestimmbaren Position, also mit einem nicht vorbestimmten Drehwinkel gestoppt wird. Durch die unbestimmte Lage des Exzenters ist nicht ausgeschlossen, dass die Pumpe eine interne Leckage aufweist, durch welche es zu einer Leckage-Strömung kommen kann, durch die undefiniert Fluid durch die Pumpe strömt. Dadurch ist es über eine Drehzahl des Rotors nicht möglich zu ermitteln, wie viel Fluid von der Pumpe gefördert wurde bzw. wie viel Fluid ein an die Pumpe angeschlossener Verbraucher, zu dem das Fluid gepumpt wird, verbraucht. Es müssten hierfür immer teure Volumenstromsensoren vorgesehen werden.
  • Beispielsweise sind aus den Dokumenten DE 10 2014 109 558 A1 , DE 10 2015 203 437 B3 und JP H11 280 664 A jeweils Pumpen mit einer Pumpensteuerung bekannt, durch welche die Rotorwelle in eine vorbestimmte Drehwinkelposition rotierbar ist.
  • Der Erfindung liegt deshalb die Aufgabe zugrunde, die vorgenannten Nachteile zu überwinden und eine Pumpe sowie ein zu der Pumpe gehörendes Verfahren bereitzustellen, mit welcher eine Leckage durch die Pumpe verhindert wird und eine exakte Positionierung des Rotors in der Pumpe möglich ist.
  • Diese Aufgabe wird durch die Merkmalskombination gemäß Patentanspruch 1 gelöst.
  • Erfindungsgemäß wird eine Pumpe, insbesondere eine Orbitalpumpe, zum Pumpen eines Fluides vorgeschlagen. Die Pumpe weist wenigstens eine Pumpensteuerung und einen durch die Pumpensteuerung steuerbaren Motor auf. Ferner umfasst die Pumpe eine Rotorwelle zur Fluidförderung und einen Rotorsensor zur Erfassung eines absoluten Drehwinkels der Rotorwelle. Die Rotorwelle kann unmittelbar mit dem zu fördernden Fluid in Kontakt stehen oder ein weiteres Bauteil der Pumpe antreiben, welches unmittelbar auf das Fluid wirkt, ohne selbst mit dem Fluid in Kontakt zu sein. Der Rotorsensor ist mit der wenigstens einen Pumpensteuerung verbunden und ist ferner ausgebildet, den Drehwinkel der Rotorwelle an die Pumpensteuerung zu übermitteln. Die Pumpensteuerung ist ausgebildet, den Motor unter Berücksichtigung des erfassten Drehwinkels anzusteuern, welcher die Rotorwelle antreibt bzw. rotiert, bis die Rotorwelle in einer vorbestimmten Drehwinkelposition steht.
  • Durch die Berücksichtigung des Drehwinkels zur Ansteuerung der Rotorwelle und dem gezielten und gesteuerten Positionieren der Rotorwelle in eine vorbestimmte Drehwinkelposition ist es möglich, die Dosiervarianz der Pumpe zu senken, so dass bei einem sich widerholenden Pumpvorgang eine immer gleiche Menge Fluid gefördert werden kann. Insbesondere wird durch die Steuerung unter Berücksichtigung des Drehwinkels das überschwingen der Rotorwelle verhindert und dadurch die Lebensdauer der Pumpe erhöht.
  • Hinzukommt, dass durch die exakte Positionierung der Rotorwelle ein in der Pumpe angeordneter Hohlraum (Förderkammer) nur teilweise entleert werden kann, indem die Rotorwelle beispielsweise um einen vorbestimmten Winkel gedreht wird. Da somit keine vollständigen Umdrehungen zur Förderung des Fluides notwendig sind, können auch kleine Fluidmengen gefördert werden.
  • Sind die Drehwinkel bzw. die genauer Drehwinkelposition der Rotorwelle bekannt kann eine erfindungsgemäße Pumpe zudem für bestimmte Fördermengen kalibriert werden. Eine solche Kalibrierung kann beispielsweise bei der Herstellung, jedoch auch bei einer in einer Anlage eingebauten Pumpe durchgeführt werden. Sollen vorbestimmte Fluidmengen mit der Pumpe gefördert werden oder bestimmt werden, welche Menge pro Umdrehung oder bei der Drehwinkeländerung der Rotorwelle gefördert wird, kann das von der Pumpe geförderte Volumen gemessen und mit den dabei auftretenden Drehwinkelpositionen verknüpft werden, so dass für jede Pumpe individuell festgelegt wird, welches Volumen bei welcher Drehwinkeländerung gefördert wird. Soll später eine bestimmte Fluidmenge (Volumen) gefördert werden, kann anhand der ermittelten Werte bestimmt werden, welche neue Drehwinkelposition mit der Rotorwelle ausgehend von einer aktuellen Drehwinkelposition angefahren werden soll. Die Kalibrierung kann beispielsweise auch bei vorgegebenen Wartungsintervallen wiederholt werden, um einen möglichen mechanischen Verschleiß berücksichtigen und durch die Steuerung kompensieren zu können.
  • Zum Anlauf einer Pumpe mit stillstehender Rotorwelle sind abhängig von der Drehwinkelposition zudem unterschiedliche Anlaufströme nötig. Um einen Anlauf der Pumpe mit möglichst geringen Strömen zu ermöglichen, kann durch eine erfindungsgemäße Pumpe und eine zugehörige Steuerung zudem vorgesehen sein, die Rotorwelle bei einem Abschalten der Pumpe oder bei einem Anhalten der Rotorwelle in einer vorbestimmten Anlaufposition oder in einer von mehreren vorbestimmten Anlaufpositionen zu positionieren. Bei einem darauf folgenden Anlaufprozess ist somit ein geringerer Anlaufstrom notwendig, so dass die Pumpe einem geringen Verschleiß unterliegt und eine geringe Stromaufnahme aufweist.
  • Eine vorteilhafte Ausführungsform der Erfindung sieht vor, dass die Pumpe ein Pumpengehäuse, einen elastisch verformbaren Pumpenring und einen Exzenter aufweist. Der Exzenter bestimmt ein außermittiges Loch, durch welches sich die Rotorwelle erstreckt, wobei der Exzenter mit der Rotorwelle verbunden ist, so dass die Rotorwelle den Exzenter antreibt. Alternativ bildet die Rotorwelle den Exzenter unmittelbar aus, so dass die Rotorwelle der Exzenter ist. Das Pumpengehäuse weist eine zylinderförmige Ausnehmung bzw. Hohlraum auf, von welchem sich aus ein Fluideingang und ein Fluidausgang aus dem bzw. in das Pumpengehäuse erstrecken. In dem Hohlraum bzw. in dem Pumpengehäuse ist der Pumpenring angeordnet und zumindest abschnittsweise in seine Radialrichtung von dem Pumpengehäuse beabstandet. Der Pumpenring weist eine sich in Axialrichtung des Pumpenrings erstreckende und vorzugsweise in seine Radialrichtung zentriert in dem Pumpenring angeordnete Zentralöffnung auf, in welcher der Exzenter angeordnet ist. Durch den gegenüber der Zentralöffnung außermittigen Exzenter wird der Pumpenring durch den Exzenter elastisch verformt. Der Exzenter weist hierzu einen Abschnitt auf, welcher gegenüber seiner Rotationsachse, um welche er rotiert wird, weiter hervorsteht als die umliegenden Bereiche des Exzenters. Der Exzenter verformt daher insbesondere einen rotierbaren Abschnitt des Pumpenrings, der durch eine Rotation des Exzenters in Umfangsrichtung des Pumpenrings in Radialrichtung verformbar und an das Pumpengehäuse drückbar ist. Der Pumpenring wird selbst nicht rotiert. Es werden lediglich unterschiedliche Bereiche des Pumpenrings verformt und an das Pumpengehäuse gedrückt, wodurch der Abschnitt des Pumpenrings, der verformt ist, um die Rotationsachse bzw. in Umfangsrichtung des Pumpenrings wandert bzw. rotiert. Ein Drehwinkel des rotierbaren Abschnitts des Pumpenrings entspricht dem Drehwinkel der Rotorwelle, womit durch die als Drehwinkel angegebene Position der Rotorwelle der Position des rotierbaren Abschnitts entspricht.
  • Der Rotorsensor ist bei einer vorteilhaften Weiterbildung an der Rotorwelle, an dem Exzenter oder an dem Pumpenring angeordnet und erfasst den absoluten Drehwinkel als den jeweiligen Drehwinkel der Rotorwelle, des Exzenters oder des Pumpenrings. Da der Pumpenring selbst nicht rotiert, wird hierbei die Position des rotierenden Abschnitts des Pumpenrings erfasst.
  • Bei einer ebenfalls vorteilhaften Variante der Erfindung ist vorgesehen, dass der Motor ein Elektromotor mit einem Stator und einem Rotor ist. Der Rotor ist unmittelbar mit der Rotorwelle verbunden oder geht unmittelbar in diese über. Ferner entspricht der Drehwinkel der Rotorwelle einem Drehwinkel des Rotors, wodurch der Drehwinkel der Rotorwelle durch den Drehwinkel des Rotors ermittelbar ist.
  • Alternativ sieht eine Weiterbildung vor, dass der Motor ein Elektromotor mit einem Rotor ist, der Rotor jedoch nicht unmittelbar, sondern mittelbar, beispielsweise über ein Getriebe, mit der Rotorwelle verbunden ist. Der Drehwinkel der Rotorwelle ist aus einem Drehwinkel des Rotors bestimmbar, wobei der Drehwinkel abhängig von der Verbindung des Rotors mit der Rotorwelle, beispielsweise dem Übersetzungsverhältnis des Getriebes, bestimmbar ist.
  • Der Rotorsensor ist bei einer möglichen Ausgestaltungsvariante der Erfindung an dem Rotor des Motors angeordnet. Der Rotorsensor ermittelt den Drehwinkel des Rotors und folglich den Drehwinkel der Rotorwelle.
  • Eine vorteilhafte Weiterbildung sieht vor, dass der Rotorsensor ein Encoder oder ein Resolver ist, der den Drehwinkel der Rotorwelle erfasst. Der Encoder oder der Resolver können den Drehwinkel als ein digitales Signal oder als ein analoges Signal ausgeben. Möglich ist hierbei insbesondere die Ausgabe als Sinus- und Cosinus-Signal.
  • Vorzugsweise ist der Rotorsensor ein Absolutwertgeber, wodurch keine Referenzierung der Rotorwelle notwendig ist.
  • Da die Rotorwelle jedoch vorzugweise an einer vorbestimmten Position gestoppt werden soll und bei einem Anfahren aus dieser Position der Drehwinkel der Rotorwelle bekannt ist, sieht eine alternative Ausführungsform vor, dass der Rotorsensor ein Inkrementalgeber ist und die Pumpe zur Referenzierung des Rotorsensors einen Referenzsensor aufweist, der die Position der Rotorwelle in der vorbestimmten Drehwinkelposition erfasst.
  • Der Pumpenring weist in Umfangsrichtung gesehen einen ersten und einen zweiten Verformungsabschnitt auf. In dem ersten Verformungsabschnitt ist der Pumpenring elastischer verformbar ausgebildet als in seinem zweiten Verformungsabschnitt. In dem ersten Verformungsabschnitt ist der Pumpenring dadurch in seine Radialrichtung einfach von dem Exzenter verformbar, so dass der Exzenter zum Verformen des Pumpenrings in dem ersten Verformungsabschnitt eine geringere Kraft benötigt bzw. an dem Exzenter zur Rotation um die Rotationsachse ein geringeres Drehmoment anliegen kann. Die vorbestimmte Drehwinkelposition ist in dem ersten Verformungsabschnitt festgelegt. Beim Beginn der Rotation des Exzenters aus einem Stillstand des Exzenters ist im ersten Verformungsabschnitt daher ein geringeres Drehmoment an dem Exzenter notwendig als bei einem Beginn der Rotation in dem zweiten Verformungsabschnitt.
  • Zwischen einem Fluideingang in die Pumpe und einem Fluidausgang aus der Pumpe ist ein Leckage-Strömungskanal in der Pumpe bestimmt. Erfindungsgemäß ist vorgesehen, dass der Leckage-Strömungskanal mit der Rotorwelle in der vorbestimmten Drehwinkelposition verschlossen ist. Eine Leckage-Strömung zwischen dem Fluideingang und dem Fluidausgang ist somit verhindert. Hierzu wird beispielsweise der rotierende Abschnitt des Pumpenrings von dem Exzenter auf den Fluideingang oder den Fluidausgang gedrückt, so dass dieser von einer Stirnseite des Pumpenrings fluiddicht abgedichtet ist.
  • Zu der Erfindung gehört ferner ein Verfahren zur Ansteuerung einer erfindungsgemäßen Pumpe. Ein durch die Pumpe von einem Fluideingang zu einem Fluidausgang der Pumpe geförderter Fluid-Volumenstrom wird aus mehreren in einem vorbestimmten Zeitintervall durch den Rotorsensor erfassten Drehwinkeln der Rotorwelle berechnet. Anschließend wird der die Rotorwelle antreibende Motor abhängig von einem zu fördernden Fluid-Volumenstrom nach einer vorbestimmten Motorcharakteristik angesteuert. Der tatsächlich geförderte Fluid-Volumenstrom wird durch die Ansteuerung des Motors entsprechend der Motorcharakteristik dem zu fördernden Fluid-Volumenstrom angeglichen.
  • Eine Weiterbildung des Verfahrens sieht hierbei insbesondere vor, dass der Motor angesteuert wird, die Rotorwelle auf der vorbestimmten Drehwinkelposition zu stoppen und zu positionieren, wenn der zu fördernde Volumenstrom null ist. Soll die Rotorwelle durch den Motor an der vorbestimmten Drehwinkelposition gestoppt werden, entspricht die Motorcharakteristik beispielsweise einem langsamen Abbremsen des Motors, wodurch die Rotorwelle ohne an der vorbestimmten Position überzuschwingen an dieser zum Stehen kommt.
  • Andere vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet bzw. werden nachstehend anhand der Figur näher dargestellt. Es zeigt:
  • Fig. 1
    eine Orbitalpumpe mit geschnittenem Pumpengehäuse in einer Draufsicht auf den Pumpenring.
  • Die in Figur 1 schematisch dargestellte Pumpe ist mit einem Rotorsensor und einer Pumpensteuerung versehen, auch wenn diese in der Figur nicht zu erkennen sind.
  • Das Pumpengehäuse 10 ist in einem orthogonal zu einer Längsachse verlaufenden Schnitt gezeigt, so dass der in dem Pumpengehäuse 10 liegende Hohlraum 14 mit den darin angeordneten Komponenten sichtbar ist. Als Teil des Pumpengehäuses 10 erstreck sich ein Fluideingang 11 mit einem Kanal in den Hohlraum 14 und ein Fluidausgang 12 mit einem Kanal aus dem Hohlraum 14. In dem Hohlraum 14 ist ein elastisch verformbarer Pumpenring 20 angeordnet. Durch das Zentrum des zylinderförmigen bzw. in der Schnittansicht rund ausgebildeten Hohlraums 14 verläuft die geschnitten dargestellte Rotorwelle 40 entlang einer nicht dargestellten Rotationsachse, welche sich entlang ihrer Achsrichtung orthogonal zu der Darstellungsebene erstreckt. An der Rotorwelle 40 ist ein Exzenter 30 angeordnet, welcher über einen Lagerring 32 zwischen dem Pumpenring 20 und dem Exzenter 30 auf den elastisch verformbaren Pumpenring 20 wirkt bzw. drückt. Der Lagerring 32 ist ein beispielsweise aus Nadelelementen gebildetes und als Radiallager ausgeführtes Nadellager, durch welches der Exzenter 30 in ihm ohne unmittelbar an dem verformbaren Pumpenring 20 anzuliegen, den Pumpenring 20 verformend in dem Pumpenring 20 rotieren kann. Mit der Rotorwelle 40 in seinem dargestellten Drehwinkel drückt der Exzenter 30 den Pumpenring 20 in die Exzenterrichtung 31, wodurch der elastisch verformbare Pumpenring 20 in seine in der Darstellungsebene liegende Radialrichtung verformt wird, so dass der Pumpenring 20 mit seinem Abschnitt 21 in Radialrichtung an dem Pumpengehäuse 10 anliegt. Durch eine Rotation des Exzenters in Umfangsrichtung U wandert der verformte Abschnitt 21 des Pumpenrings 20 in Umfangsrichtung U um die Rotationsachse, so dass der Abschnitt 21 in Umfangsrichtung rotiert, wobei der Pumpenring 20 sich dabei nicht dreht. Der Pumpenring 20 ist abschnittsweise von dem Pumpengehäuse 10 beabstandet und liegt nur im rotierenden Abschnitt 21 und in einem Dichtabschnitt 22 in Radialrichtung an dem Pumpengehäuse 10 an. Durch das Rotieren des rotierenden Abschnitts 21 des Pumpenrings 20 und der Beabstandung des Pumpenrings 20 von dem Pumpengehäuse 10 in Radialrichtung werden durch das Pumpengehäuse 10 und den Pumpenring 20 in dem Hohlraum 14 zwei sich in ihrer Größe durch die Rotation des rotierenden Abschnitts 21 verändernde Kammern bestimmt. In eine erste mit dem Fluideingang 11 verbundenen Kammer wird ein Fluid durch den Fluideingang 11 in den Hohlraum 14 bzw. in die sich vergrößernde erste Kammer gesaugt und aus der zweiten mit dem Fluidausgang 12 verbundenen Kammer wird ein Fluid aus dem Hohlraum 14 bzw. aus der sich verkleinernden zweiten Kammer ausgestoßen.
  • In Umfangsrichtung U zueinander benachbart bzw. über einen Winkelbereich in Umfangsrichtung U weist der Pumpenring 20 zwei Verformungsabschnitte 24, 25 auf. In dem ersten Verformungsabschnitt 24 wird auf den Pumpenring 20 in Radialrichtung durch den sich parallel zu der Rotationsachse erstreckenden Pin 13 bereits eine Verformungskraft aufgebracht. Hinzukommt, dass zwischen dem Pin 13 und dem Exzenter 30 ein an dem Pin 13 liegender Hohlraum in dem Pumpenring 20 gebildet ist, durch welchen sich der Pumpenring 20 in Radialrichtung einfacher deformieren lässt. Der Pumpenring 20 kann in dem ersten Verformungsabschnitt 24 auch weitere Maßnahmen zur gegenüber dem angrenzenden zweiten Verformungsabschnitt 25 leichteren Verformbarkeit aufweisen. Durch die leichtere Verformbarkeit in dem ersten Verformungsabschnitt 24 muss auf die Rotorwelle 40 bei einer Rotation über den Drehwinkelbereich, über welchen sich der erste Verformungsabschnitt 24 erstreckt, ein geringeres Drehmoment aufgebracht werden. Die vorbestimmte Drehwinkelposition liegt bei der beispielhaft gezeigten Pumpe daher symmetrisch zu dem Pin 13, auf der die Rotorwelle 40 und den Pin 13 halbierenden Geraden. Diese vorbestimmte Drehwinkelposition kann beispielsweise als 0° definiert sein, wobei der dargestellte Exzenter in einer um 90° entlang des Rotationspfades 33 verdrehten Drehwinkelposition dargestellt ist. Der Drehwinkel der Rotorwelle 40 kann bei der dargestellten Pumpe beispielsweise an der Rotorwelle 40, an dem Exzenter 30, an dem Pumpenring 20 durch den rotierenden Abschnitt 21 des Pumpenrings 20 oder an einem Rotor eines nicht dargestellten und die Rotorwelle 40 antreibenden Motors erfasst werden. Der Exzenter 30 ist vorliegend einteilig mit der Rotorwelle 40 verbunden, wobei die Rotorwelle 40 auch den Exzenter 30 einstückig bilden kann.

Claims (12)

  1. Pumpe, insbesondere eine Orbitalpumpe, zum Pumpen eines Fluides, wobei
    die Pumpe wenigstens eine Pumpensteuerung, einen durch die Pumpensteuerung steuerbaren Motor, eine Rotorwelle (10) zur Fluidförderung und einen Rotorsensor zur Erfassung eines absoluten Drehwinkels der Rotorwelle (40) aufweist,
    der Rotorsensor mit der Pumpensteuerung verbunden und ausgebildet ist, den Drehwinkel der Rotorwelle (40) an die Pumpensteuerung zu übermitteln, und
    die Pumpensteuerung ausgebildet ist, über den Motor die Rotorwelle (40) rotierend anzusteuern, bis die Rotorwelle (40) in einer vorbestimmten Drehwinkelposition steht,
    dadurch gekennzeichnet, dass zwischen einem Fluideingang (11) in die Pumpe und einem Fluidausgang (12) aus der Pumpe ein Leckage-Strömungskanal in der Pumpe bestimmt ist, welcher mit der Rotorwelle (40) in der vorbestimmten Drehwinkelposition verschlossen ist, wobei eine Leckage-Strömung zwischen dem Fluideingang (11) und dem Fluidausgang (12) verhindert ist.
  2. Pumpe nach dem vorhergehenden Anspruch, wobei
    die Pumpe ein Pumpengehäuse (10), einen elastisch verformbaren Pumpenring (20) und einen Exzenter (30) aufweist, welcher von der Rotorwelle (40) angetrieben oder von ihr gebildet ist,
    der Pumpenring (20) in dem Pumpengehäuse (10) angeordnet und zumindest abschnittsweise in seine Radialrichtung von dem Pumpengehäuse (10) beabstandet ist,
    der Pumpenring (20) eine Zentralöffnung aufweist, in welcher der Exzenter (30) angeordnet ist und
    ein rotierbarer Abschnitt (21) des Pumpenrings (20), der durch eine Rotation des Exzenters (30) in Umfangsrichtung (U) des Pumpenrings (20) in Radialrichtung verformbar und an das Pumpengehäuse (10) drückbar ist, wobei
    ein Drehwinkel des rotierbaren Abschnitts (21) des Pumpenrings (20) dem Drehwinkel der Rotorwelle (40) entspricht.
  3. Pumpe nach dem vorhergehenden Anspruch, wobei
    der Rotorsensor an der Rotorwelle (40), an dem Exzenter (30) oder an dem Pumpenring (20) angeordnet ist und den jeweiligen Drehwinkel erfasst.
  4. Pumpe nach einem der vorhergehenden Ansprüche, wobei
    der Motor ein Elektromotor mit einem Rotor ist, der Rotor unmittelbar mit der Rotorwelle (40) verbunden ist und der Drehwinkel der Rotorwelle (40) einem Drehwinkel des Rotors entspricht.
  5. Pumpe nach einem der vorhergehenden Ansprüche 1 bis 3, wobei
    der Motor ein Elektromotor mit einem Rotor ist, der Rotor mittelbar mit der Rotorwelle (40) verbunden ist und der Drehwinkel der Rotorwelle (40) aus einem Drehwinkel des Rotors bestimmbar ist.
  6. Pumpe nach einem der vorhergehenden Ansprüche 4 oder 5, wobei
    der Rotorsensor an dem Rotor angeordnet ist und den Drehwinkel des Rotors ermittelt.
  7. Pumpe nach einem der vorhergehenden Ansprüche, wobei
    der Rotorsensor ein Encoder oder ein Resolver ist, der den Drehwinkel der Rotorwelle (40) erfasst.
  8. Pumpe nach dem vorhergehenden Anspruch, wobei
    der Rotorsensor ein Absolutwertgeber ist.
  9. Pumpe nach einem der vorhergehenden Ansprüche 1 bis 7, wobei
    der Rotorsensor ein Inkrementalgeber ist und die Pumpe zur Referenzierung des Rotorsensors einen Referenzsensor aufweist, der die Position der Rotorwelle (40) in der vorbestimmten Drehwinkelposition erfasst.
  10. Pumpe nach einem der vorhergehenden Ansprüche 2 bis 9, wobei
    der Pumpenring (20) in Umfangsrichtung (U) gesehen einen ersten und einen zweiten Verformungsabschnitt (24, 25) aufweist, der Pumpenring (20) in dem ersten Verformungsabschnitt (24) elastischer verformbar ausgebildet ist als in seinem zweiten Verformungsabschnitt (25), und wobei die vorbestimmte Drehwinkelposition in dem ersten Verformungsabschnitt (24) festgelegt ist.
  11. Verfahren zur Ansteuerung einer Pumpe nach einem der vorhergehenden Ansprüche, wobei
    ein durch die Pumpe von einem Fluideingang (11) zu einem Fluidausgang (12) der Pumpe geförderter Fluid-Volumenstrom aus mehreren in einem vorbestimmten Zeitintervall durch den Rotorsensor erfassten Drehwinkeln der Rotorwelle (40) berechnet und der die Rotorwelle (40) antreibende Motor abhängig von einem zu fördernden Fluid-Volumenstrom nach einer vorbestimmten Motorcharakteristik angesteuert wird, und der tatsächlich geförderte Fluid-Volumenstrom dem zu fördernden Fluid-Volumenstrom angeglichen wird.
  12. Verfahren nach dem vorhergehenden Anspruch, wobei
    der Motor angesteuert wird, die Rotorwelle (40) auf der vorbestimmten Drehwinkelposition zu stoppen und zu positionieren, wenn der zu fördernde Volumenstrom null ist.
EP19735541.5A 2018-07-26 2019-07-01 Pumpe mit absoluter drehwinkel-erfassung Active EP3768974B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018118100.0A DE102018118100A1 (de) 2018-07-26 2018-07-26 Pumpe mit absoluter Drehwinkel-Erfassung
PCT/EP2019/067542 WO2020020577A1 (de) 2018-07-26 2019-07-01 Pumpe mit absoluter drehwinkel-erfassung

Publications (2)

Publication Number Publication Date
EP3768974A1 EP3768974A1 (de) 2021-01-27
EP3768974B1 true EP3768974B1 (de) 2023-08-30

Family

ID=65981341

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19735541.5A Active EP3768974B1 (de) 2018-07-26 2019-07-01 Pumpe mit absoluter drehwinkel-erfassung

Country Status (5)

Country Link
US (1) US11644032B2 (de)
EP (1) EP3768974B1 (de)
CN (1) CN208718917U (de)
DE (1) DE102018118100A1 (de)
WO (1) WO2020020577A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021104816A1 (de) 2021-03-01 2022-09-01 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben einer Peristaltikpumpe, Peristaltikpumpe, Kraftfahrzeug sowie Verwendung einer Peristaltikpumpe

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US664507A (en) * 1899-11-01 1900-12-25 Automatic Ice Machine Company Pump.
US3408947A (en) * 1967-03-14 1968-11-05 William J Easton Jr Diaphragm pump with single compression roller
US3644061A (en) * 1969-07-31 1972-02-22 Gorman Rupp Co Pump apparatus
US4332534A (en) * 1978-12-14 1982-06-01 Erich Becker Membrane pump with tiltable rolling piston pressing the membrane
US4476837A (en) * 1982-12-07 1984-10-16 Stanadyne, Inc. Method and system for fuel injection timing
US4998865A (en) * 1988-07-11 1991-03-12 Aisan Kogyo Kabushiki Kaisha Brushless DC pump with enclosed circuit board
DE69330568T2 (de) * 1992-03-12 2001-11-22 Honda Motor Co Ltd Schwingungs- und Geräuschregelungssystem für Kraftfahrzeuge
US5670852A (en) * 1994-01-18 1997-09-23 Micropump, Inc. Pump motor and motor control
JPH11280664A (ja) * 1998-03-31 1999-10-15 Nissan Motor Co Ltd リラクタンスモータ一体型ポンプ
US6652249B2 (en) * 1999-12-13 2003-11-25 Parker-Hannifin Corporation Brushless DC wet motor fuel pump with integral controller
GB2385381A (en) * 2002-02-15 2003-08-20 Alfa Laval Lkm As Synchronised rotary lobed pump
US20060051217A1 (en) * 2004-09-08 2006-03-09 Felton Bret S Sterilizable pump and systems for use with sterile fluids
US7474024B2 (en) * 2004-09-15 2009-01-06 Aisan Kogyo Kabushiki Kaisha Electronic control unit and electric pump
US7167793B1 (en) * 2005-08-18 2007-01-23 Ford Global Technologies, Llc Engine position correction
EP1953337A4 (de) * 2005-10-31 2011-03-30 Panasonic Corp Expansionsvorrichtung und diese verwendende wärmepumpe
JP2008086117A (ja) * 2006-09-27 2008-04-10 Aisin Seiki Co Ltd 電動式流体ポンプ
DE102008000257B4 (de) * 2008-02-08 2010-05-12 Koenig & Bauer Aktiengesellschaft Farbwerk einer Druckmaschine
WO2010044416A1 (ja) * 2008-10-14 2010-04-22 株式会社ジェイテクト 電動ポンプユニット
DE102011015110B3 (de) * 2011-03-19 2012-01-26 Ebm-Papst St. Georgen Gmbh & Co. Kg Dosiersystem
DE102013101412A1 (de) * 2013-02-13 2014-08-14 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung zur Bereitstellung eines flüssigen Additivs
DE102013102129A1 (de) * 2013-03-05 2014-09-11 Emitec Gesellschaft Für Emissionstechnologie Mbh Pumpe zur Förderung einer Flüssigkeit
DE102013104250A1 (de) * 2013-04-26 2014-10-30 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zum Betrieb einer Vorrichtung zur dosierten Bereitstellung einer Flüssigkeit
DE102013216342B4 (de) * 2013-08-19 2022-07-28 Robert Bosch Gmbh Dämpfung von harmonischen Druckpulsationen einer Hydraulikpumpe mittels Drehzahlvariation
DE102014003247A1 (de) * 2014-03-12 2015-09-17 Wilo Se Verfahren zur Bereitstellung von wenigstens einer Information an einem Pumpenaggregat
KR20160135188A (ko) * 2014-03-19 2016-11-25 콘티넨탈 오토모티브 게엠베하 유체를 운반하는, 특히 배기 가스 클리닝 첨가제를 운반하는 펌프
DE102014108253A1 (de) * 2014-06-12 2015-12-17 Emitec France S.A.S Pumpe zur Förderung einer Flüssigkeit
DE102014109558B4 (de) 2014-07-08 2021-08-19 Ebm-Papst St. Georgen Gmbh & Co. Kg Verdrängerpumpenvorrichtung, Verfahren zum getakteten Betreiben einer Verdrängerpumpe und Verwendung einer solchen
DE102014112391A1 (de) * 2014-08-28 2016-03-03 Continental Automotive Gmbh Pumpe zur Förderung einer Flüssigkeit, insbesondere zur Förderung eines Abgasreinigungsadditivs
DE102014115548A1 (de) * 2014-10-27 2016-04-28 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Innenzahnradpumpe und Pumpverfahren
DE102015203437B3 (de) * 2015-02-26 2016-06-09 Continental Automotive Gmbh Verfahren zum Betrieb einer Vorrichtung zur dosierten Bereitstellung einer Flüssigkeit
US10865805B2 (en) * 2016-07-08 2020-12-15 Fenwal, Inc. Flexible impeller pumps and disposable fluid flow circuits incorporating such pumps
US10040092B2 (en) * 2016-09-08 2018-08-07 Nordson Corporation Applicator with diverter plate
EP3591226B1 (de) * 2018-07-06 2022-02-16 Grundfos Holding A/S Dosierpumpe und verfahren zur steuerung einer dosierpumpe

Also Published As

Publication number Publication date
DE102018118100A1 (de) 2020-01-30
EP3768974A1 (de) 2021-01-27
US20210262466A1 (en) 2021-08-26
CN208718917U (zh) 2019-04-09
US11644032B2 (en) 2023-05-09
WO2020020577A1 (de) 2020-01-30

Similar Documents

Publication Publication Date Title
EP2989305B1 (de) Verfahren zum betrieb einer vorrichtung zur dosierten bereitstellung einer flüssigkeit
EP1901040A2 (de) Berührungsloser Drehwinkelsensor
EP3768974B1 (de) Pumpe mit absoluter drehwinkel-erfassung
EP1778980A1 (de) Exzenterschneckenpumpe mit integriertem antrieb
DE69911482T2 (de) Hydrostatisches Servolenkungssystem mit vermindertem Radschlupf
EP2550456B1 (de) Zahnradpumpe
DE202019104461U1 (de) Vorrichtung zum Messen einer Geschwindigkeit eines Fahrzeugs mit einem In-Wheel-Motor
EP1049876B1 (de) Zahnradpumpe
DE4011165A1 (de) Verfahren zur einstellung eines funktionsmasses
DE202018104315U1 (de) Pumpe mit absoluter Drehwinkel-Erfassung
EP3458201B1 (de) Beschichtungsmittelpumpe
AT517817A1 (de) Vorrichtung mit Spalttopfmotor zur Messung von Durchflussvorgängen von Messfluiden
EP4026753A1 (de) Verfahren zur bestimmung des verschleisses eines lenksystems eines fahrzeugs
WO2017046199A1 (de) Vorrichtung mit spalttopfmotor zur messung von durchflussvorgängen von messfluiden
DE19913804A1 (de) Kraftstoff-Förderpumpe
EP2035265B1 (de) Fahrzeugbremsanlagen-kolbenpumpe
EP1389488B9 (de) Rotationszerstäuberturbine
EP2369172B1 (de) Fluid-Rotationsmaschine mit einer Sensoranordnung
EP0650058A1 (de) Flanschmotor mit Messeinrichtung zur Erfassung der Umdrehung der Motorwelle
DE102010020230A1 (de) Stelleinheit mit Sensor, Einsteckwerkzeug sowie ein Verfahren zur Positionierung des Sensors
EP2369173A2 (de) Fluid-Rotationsmaschine mit einer Sensoranordnung
DE102018008035A1 (de) Vorrichtung zum Mischen von zwei oder mehr Komponenten sowie Verfahren zur Kalibrierung einer solchen
DE3513736A1 (de) Hydrostatische radialkolbenmaschine
DE102013218304B4 (de) Verfahren zum Ermitteln der Absolutposition eines Linearaktuators
DE102021212957A1 (de) Rotierende hydraulische Verdrängermaschine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201021

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: STAIGER, MARIO

Inventor name: HAUER, DANIEL

Inventor name: BRAXMAIER, MARKUS

Inventor name: LOEFFLER, JENS

Inventor name: LAUFER, WOLFGANG

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230208

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019009159

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231230

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231201

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240102