EP3768974B1 - Pompe avec détection d'angle de rotation absolu - Google Patents

Pompe avec détection d'angle de rotation absolu Download PDF

Info

Publication number
EP3768974B1
EP3768974B1 EP19735541.5A EP19735541A EP3768974B1 EP 3768974 B1 EP3768974 B1 EP 3768974B1 EP 19735541 A EP19735541 A EP 19735541A EP 3768974 B1 EP3768974 B1 EP 3768974B1
Authority
EP
European Patent Office
Prior art keywords
pump
rotor
rotation
rotor shaft
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19735541.5A
Other languages
German (de)
English (en)
Other versions
EP3768974A1 (fr
Inventor
Wolfgang Laufer
Jens Löffler
Mario STAIGER
Daniel Hauer
Markus Braxmaier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebm Papst St Georgen GmbH and Co KG
Original Assignee
Ebm Papst St Georgen GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebm Papst St Georgen GmbH and Co KG filed Critical Ebm Papst St Georgen GmbH and Co KG
Publication of EP3768974A1 publication Critical patent/EP3768974A1/fr
Application granted granted Critical
Publication of EP3768974B1 publication Critical patent/EP3768974B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/06Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C5/00Rotary-piston machines or pumps with the working-chamber walls at least partly resiliently deformable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/08Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/24Application for metering throughflow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/81Sensor, e.g. electronic sensor for control or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/05Speed
    • F04C2270/052Speed angular
    • F04C2270/0525Controlled or regulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/20Flow

Definitions

  • the invention relates to a pump, in particular an orbital pump, for pumping a fluid.
  • the pump has a rotor sensor for detecting an absolute angle of rotation of a rotor shaft of the pump and a predetermined angle of rotation position.
  • a rotational angle position of a rotor is detected via three digital Hall sensors, which, however, do not detect an absolute rotor position allow and also allow the angle of rotation of the rotor to be recorded with a resolution of just 20°.
  • the position of the rotor is indirectly determined by the Hall sensors via the position of the magnetic field that excites the rotor.
  • a problem that occurs specifically with previously known orbital pumps is that when the orbital pump is switched off, an eccentric used is stopped in a non-predeterminable position, ie with a non-predetermined angle of rotation.
  • the indeterminate position of the eccentric does not rule out the possibility that the pump has an internal leak, which can lead to a leak flow through which fluid flows through the pump in an undefined manner.
  • Expensive volume flow sensors would always have to be provided for this purpose.
  • each known pump with a pump control, through which the rotor shaft is rotatable in a predetermined rotational angle position.
  • the invention is therefore based on the object of overcoming the aforementioned disadvantages and providing a pump and a method associated with the pump, with which leakage through the pump is prevented and exact positioning of the rotor in the pump is possible.
  • a pump in particular an orbital pump, is proposed for pumping a fluid.
  • the pump has at least one pump controller and one motor that can be controlled by the pump controller on.
  • the pump includes a rotor shaft for fluid delivery and a rotor sensor for detecting an absolute angle of rotation of the rotor shaft.
  • the rotor shaft can be in direct contact with the fluid to be pumped or can drive another component of the pump, which acts directly on the fluid without itself being in contact with the fluid.
  • the rotor sensor is connected to the at least one pump controller and is also designed to transmit the angle of rotation of the rotor shaft to the pump controller.
  • the pump controller is designed to control the motor, taking into account the detected angle of rotation, which drives or rotates the rotor shaft until the rotor shaft is in a predetermined angle of rotation position.
  • the control taking into account the angle of rotation, prevents the rotor shaft from overshooting and thereby increases the service life of the pump.
  • a cavity (delivery chamber) arranged in the pump can only be partially emptied, for example by rotating the rotor shaft by a predetermined angle. Since complete revolutions are not necessary to convey the fluid, small amounts of fluid can also be conveyed.
  • a pump according to the invention can also be calibrated for specific delivery quantities. Such a calibration can be used, for example, during production, but also with a pump installed in a system be performed. If predetermined amounts of fluid are to be delivered with the pump or if it is to be determined which amount is delivered per revolution or when the rotational angle of the rotor shaft changes, the volume delivered by the pump can be measured and linked to the rotational angle positions that occur, so that it is defined individually for each pump , which volume is conveyed at which angle of rotation change.
  • the determined values can be used to determine which new rotational angle position is to be approached with the rotor shaft, starting from a current rotational angle position.
  • the calibration can also be repeated, for example, at specified maintenance intervals, in order to be able to take possible mechanical wear into account and compensate for it using the controller.
  • a pump according to the invention and an associated controller can also be provided to close the rotor shaft when the pump is switched off or when the rotor shaft stops in a predetermined starting position or in one of several predetermined starting positions position. In a subsequent start-up process, a lower start-up current is therefore necessary, so that the pump is subject to less wear and has a low power consumption.
  • the pump has a pump housing, an elastically deformable pump ring and an eccentric.
  • the eccentric defines an off-center hole through which the rotor shaft extends, the eccentric being connected to the rotor shaft so that the rotor shaft drives the eccentric.
  • the rotor shaft forms the eccentric directly, so that the rotor shaft is the eccentric is.
  • the pump housing has a cylindrical recess or cavity from which a fluid inlet and a fluid outlet extend out of or into the pump housing.
  • the pump ring is arranged in the cavity or in the pump housing and is at a distance from the pump housing at least in sections in its radial direction.
  • the pump ring has a central opening which extends in the axial direction of the pump ring and is preferably arranged centered in its radial direction in the pump ring and in which the eccentric is arranged. Due to the eccentric in relation to the central opening, the pump ring is elastically deformed by the eccentric.
  • the eccentric has a section which protrudes further than the surrounding areas of the eccentric in relation to its axis of rotation, about which it is rotated. The eccentric therefore deforms in particular a rotatable section of the pump ring, which can be deformed in the radial direction by rotating the eccentric in the circumferential direction of the pump ring and can be pressed against the pump housing.
  • the pump ring itself is not rotated.
  • the rotor sensor is arranged on the rotor shaft, on the eccentric or on the pump ring and detects the absolute angle of rotation as the respective angle of rotation of the rotor shaft, the eccentric or the pump ring. Since the pump ring itself does not rotate, the position of the rotating section of the pump ring is detected.
  • the motor is an electric motor with a stator and a rotor.
  • the rotor is directly connected to the rotor shaft or merges directly into it.
  • the angle of rotation of the rotor shaft corresponds to an angle of rotation of the rotor, as a result of which the angle of rotation of the rotor shaft can be determined from the angle of rotation of the rotor.
  • the motor is an electric motor with a rotor, but the rotor is not directly but indirectly connected to the rotor shaft, for example via a gear.
  • the angle of rotation of the rotor shaft can be determined from an angle of rotation of the rotor, with the angle of rotation being able to be determined as a function of the connection of the rotor to the rotor shaft, for example the transmission ratio of the transmission.
  • the rotor sensor is arranged on the rotor of the motor.
  • the rotor sensor determines the angle of rotation of the rotor and consequently the angle of rotation of the rotor shaft.
  • the rotor sensor is an encoder or a resolver that detects the angle of rotation of the rotor shaft.
  • the encoder or resolver can output the angle of rotation as a digital signal or as an analog signal. In particular, the output as a sine and cosine signal is possible.
  • the rotor sensor is preferably an absolute encoder, which means that no referencing of the rotor shaft is necessary.
  • an alternative embodiment provides that the rotor sensor is an incremental encoder and the pump has a reference sensor for referencing the rotor sensor the position of the rotor shaft is detected in the predetermined rotational angle position.
  • the pump ring has a first and a second deformation section.
  • the pump ring In the first deformation section, the pump ring is designed to be more elastically deformable than in its second deformation section.
  • the pump ring In the first deformation section, the pump ring can be easily deformed in its radial direction by the eccentric, so that the eccentric requires less force to deform the pump ring in the first deformation section or a lesser torque can be applied to the eccentric for rotation about the axis of rotation.
  • the predetermined rotational angle position is set in the first deformation section. At the start of the rotation of the eccentric from a standstill of the eccentric, a lower torque is therefore necessary on the eccentric in the first deformation section than when the rotation starts in the second deformation section.
  • a leakage flow channel is defined in the pump between a fluid inlet into the pump and a fluid outlet from the pump. According to the invention it is provided that the leakage flow channel is closed with the rotor shaft in the predetermined rotational angle position. A leakage flow between the fluid inlet and the fluid outlet is thus prevented.
  • the rotating section of the pump ring is pressed by the eccentric onto the fluid inlet or the fluid outlet, so that it is sealed in a fluid-tight manner from an end face of the pump ring.
  • the invention also includes a method for controlling a pump according to the invention.
  • a fluid volume flow conveyed by the pump from a fluid inlet to a fluid outlet of the pump is calculated from a plurality of angles of rotation of the rotor shaft detected by the rotor sensor in a predetermined time interval. Then the die Motor driving the rotor shaft is controlled depending on a fluid volume flow to be conveyed according to a predetermined motor characteristic. The volume flow of fluid that is actually delivered is adjusted to the volume flow of fluid to be delivered by controlling the motor according to the motor characteristics.
  • a development of the method provides in particular that the motor is controlled to stop and position the rotor shaft at the predetermined rotational angle position when the volume flow to be delivered is zero. If the rotor shaft is to be stopped by the motor at the predetermined rotational angle position, the motor characteristic corresponds, for example, to slow braking of the motor, as a result of which the rotor shaft comes to a standstill at the predetermined position without overshooting.
  • the pump shown schematically is provided with a rotor sensor and a pump controller, even if these cannot be seen in the figure.
  • the pump housing 10 is shown in a section running orthogonally to a longitudinal axis, so that the cavity 14 located in the pump housing 10 with the components arranged therein can be seen.
  • the rotor shaft 40 shown in section runs through the center of the cylindrical cavity 14 or, in the sectional view, round cavity 14 along an axis of rotation, not shown, which extends along its axial direction orthogonally to the plane of the illustration.
  • An eccentric 30 is arranged on the rotor shaft 40 and acts or presses on the elastically deformable pump ring 20 via a bearing ring 32 between the pump ring 20 and the eccentric 30 .
  • the bearing ring 32 is a needle bearing formed, for example, from needle elements and designed as a radial bearing, through which the eccentric 30 can rotate in it without directly contacting the deformable pump ring 20, deforming the pump ring 20 in the pump ring 20.
  • the eccentric 30 presses the pump ring 20 in the eccentric direction 31, as a result of which the elastically deformable pump ring 20 is deformed in its radial direction lying in the plane of the illustration, so that the pump ring 20 with its section 21 in the radial direction on the pump housing 10 is present.
  • the deformed section 21 of the pump ring 20 migrates in the circumferential direction U around the axis of rotation, so that the section 21 rotates in the circumferential direction, with the pump ring 20 not rotating.
  • the pump ring 20 is spaced at a distance from the pump housing 10 in sections and rests against the pump housing 10 in the radial direction only in the rotating section 21 and in a sealing section 22 .
  • the rotation of the rotating section 21 of the pump ring 20 and the spacing of the pump ring 20 from the pump housing 10 in the radial direction define two chambers in the cavity 14 which change in size as a result of the rotation of the rotating section 21 .
  • a fluid is sucked into a first chamber connected to the fluid inlet 11 through the fluid inlet 11 into the cavity 14 or into the expanding first chamber, and a fluid is discharged from the second chamber connected to the fluid outlet 12 ejected from the cavity 14 or from the decreasing second chamber.
  • the pump ring 20 has two deformation sections 24, 25 adjacent to one another in the circumferential direction U or over an angular range in the circumferential direction U.
  • a deformation force is already applied to the pump ring 20 in the radial direction by the pin 13 extending parallel to the axis of rotation.
  • there is a cavity in the pump ring 20 which is located on the pin 13 and through which the pump ring 20 can be deformed more easily in the radial direction.
  • the pump ring 20 can also have further measures for easier deformability in relation to the adjoining second deformation section 25 .
  • the predetermined rotational angle position is therefore symmetrical to the pin 13 on the straight line bisecting the rotor shaft 40 and the pin 13 .
  • This predetermined rotational angle position can be defined as 0°, for example, with the illustrated eccentric being shown in a rotational angle position rotated by 90° along the rotation path 33 .
  • the angle of rotation of the rotor shaft 40 can be detected, for example, on the rotor shaft 40, on the eccentric 30, on the pump ring 20 by the rotating section 21 of the pump ring 20 or on a rotor of a motor that is not shown and drives the rotor shaft 40.
  • the eccentric 30 is connected in one piece to the rotor shaft 40, with the rotor shaft 40 also being able to form the eccentric 30 in one piece.

Claims (12)

  1. Pompe, en particulier pompe orbitale, permettant de pomper un fluide, dans laquelle
    la pompe présente au moins une commande de pompe, un moteur pouvant être commandé par la commande de pompe, un arbre de rotor (10) permettant de refouler du fluide, et un capteur de rotor permettant de détecter un angle de rotation absolu de l'arbre de rotor (40),
    le capteur de rotor est relié à la commande de pompe et réalisé pour transmettre l'angle de rotation de l'arbre de rotor (40) à la commande de pompe, et
    la commande de pompe est réalisée pour piloter en rotation l'arbre de rotor (40) par l'intermédiaire du moteur jusqu'à ce que l'arbre de rotor (40) se trouve dans une position d'angle de rotation prédéterminée,
    caractérisée en ce qu'entre une entrée de fluide (11) dans la pompe et une sortie de fluide (12) de la pompe est déterminé un canal d'écoulement de fuite dans la pompe qui est fermé par l'arbre de rotor (40) dans la position d'angle de rotation prédéterminée, dans laquelle un écoulement de fuite entre l'entrée de fluide (11) et la sortie de fluide (12) est empêché.
  2. Pompe selon la revendication précédente, dans laquelle
    la pompe présente un carter de pompe (10), un anneau de pompe (20) à déformation élastique et un excentrique (30) qui est entraîné ou formé par l'arbre de rotor (40),
    l'anneau de pompe (20) est disposé dans le carter de pompe (10) et est espacé au moins par endroits dans sa direction radiale par rapport au carter de pompe (10),
    l'anneau de pompe (20) présente une ouverture centrale dans laquelle est disposé l'excentrique (30), et
    une partie rotative (21) de l'anneau de pompe (20) qui peut être déformée par une rotation de l'excentrique (30) dans la direction circonférentielle (U) de l'anneau de pompe (20) peut être poussée dans la direction radiale et contre le carter de pompe (10), dans laquelle
    un angle de rotation de la partie rotative (21) de l'anneau de pompe (20) correspond à l'angle de rotation de l'arbre de rotor (40).
  3. Pompe selon la revendication précédente, dans laquelle le capteur de rotor est disposé sur l'arbre de rotor (40), sur l'excentrique (30) ou sur l'anneau de pompe (20) et détecte l'angle de rotation respectif.
  4. Pompe selon l'une quelconque des revendications précédentes, dans laquelle le moteur est un moteur électrique muni d'un rotor, le rotor est relié directement à l'arbre de rotor (40), et l'angle de rotation de l'arbre de rotor (40) correspond à un angle de rotation du rotor.
  5. Pompe selon l'une quelconque des revendications précédentes 1 à 3, dans laquelle le moteur est un moteur électrique muni d'un rotor, le rotor est relié indirectement à l'arbre de rotor (40), et l'angle de rotation de l'arbre de rotor (40) peut être déterminé à partir d'un angle de rotation du rotor.
  6. Pompe selon l'une quelconque des revendications précédentes 4 ou 5, dans laquelle le capteur de rotor est disposé sur le rotor et détermine l'angle de rotation du rotor.
  7. Pompe selon l'une quelconque des revendications précédentes, dans laquelle le capteur de rotor est un codeur ou un résolveur qui détecte l'angle de rotation de l'arbre de rotor (40).
  8. Pompe selon la revendication précédente, dans laquelle le capteur de rotor est un codeur absolu.
  9. Pompe selon l'une quelconque des revendications précédentes 1 à 7, dans laquelle le capteur de rotor est un codeur incrémental, et pour la prise de référence du capteur de rotor, la pompe présente un capteur de référence qui détecte la position de l'arbre de rotor (40) dans la position d'angle de rotation prédéterminée.
  10. Pompe selon l'une quelconque des revendications précédentes 2 à 9, dans laquelle l'anneau de pompe (20), vue dans la direction circonférentielle (U), présente une première et une deuxième partie de déformation (24, 25), l'anneau de pompe (20) est réalisé dans la première partie de déformation (24) avec une plus grande déformation élastique que dans sa deuxième partie de déformation (25), et dans laquelle la position d'angle de rotation prédéterminée est fixée dans la première partie de déformation (24).
  11. Procédé permettant de piloter une pompe selon l'une quelconque des revendications précédentes, dans lequel un débit volumique de fluide refoulé par la pompe d'une entrée de fluide (11) à une sortie de fluide (12) de la pompe est calculé à partir de plusieurs angles de rotation de l'arbre de rotor (40) détectés par le capteur de rotor dans un intervalle de temps prédéterminé, et le moteur entraînant l'arbre de rotor (40) est piloté en fonction d'un débit volumique de fluide à refouler selon une caractéristique de moteur prédéterminée, et le débit volumique de fluide réellement refoulé est adapté au débit volumique de fluide à refouler.
  12. Procédé selon la revendication précédente, dans lequel le moteur est piloté pour arrêter et positionner l'arbre de rotor (40) à la position d'angle de rotation prédéterminée lorsque le débit volumique à refouler est égal à zéro.
EP19735541.5A 2018-07-26 2019-07-01 Pompe avec détection d'angle de rotation absolu Active EP3768974B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018118100.0A DE102018118100A1 (de) 2018-07-26 2018-07-26 Pumpe mit absoluter Drehwinkel-Erfassung
PCT/EP2019/067542 WO2020020577A1 (fr) 2018-07-26 2019-07-01 Pompe avec détection d'angle de rotation absolu

Publications (2)

Publication Number Publication Date
EP3768974A1 EP3768974A1 (fr) 2021-01-27
EP3768974B1 true EP3768974B1 (fr) 2023-08-30

Family

ID=65981341

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19735541.5A Active EP3768974B1 (fr) 2018-07-26 2019-07-01 Pompe avec détection d'angle de rotation absolu

Country Status (5)

Country Link
US (1) US11644032B2 (fr)
EP (1) EP3768974B1 (fr)
CN (1) CN208718917U (fr)
DE (1) DE102018118100A1 (fr)
WO (1) WO2020020577A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021104816A1 (de) 2021-03-01 2022-09-01 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben einer Peristaltikpumpe, Peristaltikpumpe, Kraftfahrzeug sowie Verwendung einer Peristaltikpumpe

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US664507A (en) * 1899-11-01 1900-12-25 Automatic Ice Machine Company Pump.
US3408947A (en) * 1967-03-14 1968-11-05 William J Easton Jr Diaphragm pump with single compression roller
US3644061A (en) * 1969-07-31 1972-02-22 Gorman Rupp Co Pump apparatus
US4332534A (en) * 1978-12-14 1982-06-01 Erich Becker Membrane pump with tiltable rolling piston pressing the membrane
US4476837A (en) * 1982-12-07 1984-10-16 Stanadyne, Inc. Method and system for fuel injection timing
US4998865A (en) * 1988-07-11 1991-03-12 Aisan Kogyo Kabushiki Kaisha Brushless DC pump with enclosed circuit board
DE69330568T2 (de) * 1992-03-12 2001-11-22 Honda Motor Co Ltd Schwingungs- und Geräuschregelungssystem für Kraftfahrzeuge
US5670852A (en) * 1994-01-18 1997-09-23 Micropump, Inc. Pump motor and motor control
JPH11280664A (ja) * 1998-03-31 1999-10-15 Nissan Motor Co Ltd リラクタンスモータ一体型ポンプ
US6652249B2 (en) * 1999-12-13 2003-11-25 Parker-Hannifin Corporation Brushless DC wet motor fuel pump with integral controller
GB2385381A (en) * 2002-02-15 2003-08-20 Alfa Laval Lkm As Synchronised rotary lobed pump
US20060051217A1 (en) * 2004-09-08 2006-03-09 Felton Bret S Sterilizable pump and systems for use with sterile fluids
US7474024B2 (en) * 2004-09-15 2009-01-06 Aisan Kogyo Kabushiki Kaisha Electronic control unit and electric pump
US7167793B1 (en) * 2005-08-18 2007-01-23 Ford Global Technologies, Llc Engine position correction
EP1953337A4 (fr) * 2005-10-31 2011-03-30 Panasonic Corp Expanseur et pompe de chaleur l'utilisant
JP2008086117A (ja) * 2006-09-27 2008-04-10 Aisin Seiki Co Ltd 電動式流体ポンプ
DE102008000257B4 (de) * 2008-02-08 2010-05-12 Koenig & Bauer Aktiengesellschaft Farbwerk einer Druckmaschine
WO2010044416A1 (fr) * 2008-10-14 2010-04-22 株式会社ジェイテクト Unité de pompe électrique
DE102011015110B3 (de) * 2011-03-19 2012-01-26 Ebm-Papst St. Georgen Gmbh & Co. Kg Dosiersystem
DE102013101412A1 (de) * 2013-02-13 2014-08-14 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung zur Bereitstellung eines flüssigen Additivs
DE102013102129A1 (de) * 2013-03-05 2014-09-11 Emitec Gesellschaft Für Emissionstechnologie Mbh Pumpe zur Förderung einer Flüssigkeit
DE102013104250A1 (de) * 2013-04-26 2014-10-30 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zum Betrieb einer Vorrichtung zur dosierten Bereitstellung einer Flüssigkeit
DE102013216342B4 (de) * 2013-08-19 2022-07-28 Robert Bosch Gmbh Dämpfung von harmonischen Druckpulsationen einer Hydraulikpumpe mittels Drehzahlvariation
DE102014003247A1 (de) * 2014-03-12 2015-09-17 Wilo Se Verfahren zur Bereitstellung von wenigstens einer Information an einem Pumpenaggregat
KR20160135188A (ko) * 2014-03-19 2016-11-25 콘티넨탈 오토모티브 게엠베하 유체를 운반하는, 특히 배기 가스 클리닝 첨가제를 운반하는 펌프
DE102014108253A1 (de) * 2014-06-12 2015-12-17 Emitec France S.A.S Pumpe zur Förderung einer Flüssigkeit
DE102014109558B4 (de) 2014-07-08 2021-08-19 Ebm-Papst St. Georgen Gmbh & Co. Kg Verdrängerpumpenvorrichtung, Verfahren zum getakteten Betreiben einer Verdrängerpumpe und Verwendung einer solchen
DE102014112391A1 (de) * 2014-08-28 2016-03-03 Continental Automotive Gmbh Pumpe zur Förderung einer Flüssigkeit, insbesondere zur Förderung eines Abgasreinigungsadditivs
DE102014115548A1 (de) * 2014-10-27 2016-04-28 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Innenzahnradpumpe und Pumpverfahren
DE102015203437B3 (de) * 2015-02-26 2016-06-09 Continental Automotive Gmbh Verfahren zum Betrieb einer Vorrichtung zur dosierten Bereitstellung einer Flüssigkeit
US10865805B2 (en) * 2016-07-08 2020-12-15 Fenwal, Inc. Flexible impeller pumps and disposable fluid flow circuits incorporating such pumps
US10040092B2 (en) * 2016-09-08 2018-08-07 Nordson Corporation Applicator with diverter plate
EP3591226B1 (fr) * 2018-07-06 2022-02-16 Grundfos Holding A/S Pompe de dosage et procédé de commande d'une pompe de dosage

Also Published As

Publication number Publication date
DE102018118100A1 (de) 2020-01-30
EP3768974A1 (fr) 2021-01-27
US20210262466A1 (en) 2021-08-26
CN208718917U (zh) 2019-04-09
US11644032B2 (en) 2023-05-09
WO2020020577A1 (fr) 2020-01-30

Similar Documents

Publication Publication Date Title
EP2989305B1 (fr) Procédé permettant de faire fonctionner un dispositif destiné à la délivrance dosée d'un liquide
EP1901040A2 (fr) Capteur d'angle de rotation sans contact
EP3768974B1 (fr) Pompe avec détection d'angle de rotation absolu
EP1778980A1 (fr) Pompe a vis sans fin excentrique pourvue d'un dispositif d'entrainement integre
DE69911482T2 (de) Hydrostatisches Servolenkungssystem mit vermindertem Radschlupf
EP2550456B1 (fr) Pompe à engrenages
DE202019104461U1 (de) Vorrichtung zum Messen einer Geschwindigkeit eines Fahrzeugs mit einem In-Wheel-Motor
EP1049876B1 (fr) Pompe a engrenages
DE4011165A1 (de) Verfahren zur einstellung eines funktionsmasses
DE202018104315U1 (de) Pumpe mit absoluter Drehwinkel-Erfassung
EP3458201B1 (fr) Pompe à agent de revêtement
AT517817A1 (de) Vorrichtung mit Spalttopfmotor zur Messung von Durchflussvorgängen von Messfluiden
EP4026753A1 (fr) Procédé de détermination de l'usure d'un système de direction d'un véhicule
WO2017046199A1 (fr) Dispositif pourvu d'un moteur à chemise d'entrefer, servant à mesurer des processus d'écoulement de fluides
DE19913804A1 (de) Kraftstoff-Förderpumpe
EP2035265B1 (fr) Pompe à piston pour une installation de frein de véhicule
EP1389488B9 (fr) Atomiseur rotatif à turbine
EP2369172B1 (fr) Machine rotative à fluide dotée d'un agencement de capteur
EP0650058A1 (fr) Moteur à flasque-bride avec dispositif de mesure pour la détection de la rotation d'arbre du moteur
DE102010020230A1 (de) Stelleinheit mit Sensor, Einsteckwerkzeug sowie ein Verfahren zur Positionierung des Sensors
EP2369173A2 (fr) Machine rotative à fluide dotée d'un agencement de capteur
DE102018008035A1 (de) Vorrichtung zum Mischen von zwei oder mehr Komponenten sowie Verfahren zur Kalibrierung einer solchen
DE3513736A1 (de) Hydrostatische radialkolbenmaschine
DE102013218304B4 (de) Verfahren zum Ermitteln der Absolutposition eines Linearaktuators
DE102021212957A1 (de) Rotierende hydraulische Verdrängermaschine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201021

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: STAIGER, MARIO

Inventor name: HAUER, DANIEL

Inventor name: BRAXMAIER, MARKUS

Inventor name: LOEFFLER, JENS

Inventor name: LAUFER, WOLFGANG

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230208

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019009159

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231230

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231201

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240102