EP3765584A1 - Procede d'oligomerisation d'olefines - Google Patents

Procede d'oligomerisation d'olefines

Info

Publication number
EP3765584A1
EP3765584A1 EP19711891.2A EP19711891A EP3765584A1 EP 3765584 A1 EP3765584 A1 EP 3765584A1 EP 19711891 A EP19711891 A EP 19711891A EP 3765584 A1 EP3765584 A1 EP 3765584A1
Authority
EP
European Patent Office
Prior art keywords
weight
methyl
ene
catalyst
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19711891.2A
Other languages
German (de)
English (en)
Inventor
Christine-Joy RICHARDSON
Laurent Germanaud
Stéphane Kressmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TotalEnergies Onetech SAS
Original Assignee
Total Marketing Services SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total Marketing Services SA filed Critical Total Marketing Services SA
Publication of EP3765584A1 publication Critical patent/EP3765584A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • C10G50/02Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation of hydrocarbon oils for lubricating purposes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/12Catalytic processes with crystalline alumino-silicates or with catalysts comprising molecular sieves
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/24Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/08Alkenes with four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/12Silica and alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1088Olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/10Lubricating oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/18Solvents

Definitions

  • the present invention relates to a process for oligomerization of olefins having good yields and good selectivity, for various applications including solvent fluids and jet fuels.
  • Hydrocarbon fluids are widely used as solvents, for example in adhesives, cleaning liquids, explosives, solvents for decorative coatings and printing inks, light oils for applications such as metal mining, work metals or demolding, industrial lubricants and drilling fluids.
  • Hydrocarbon fluids can also be used as diluting oils in adhesives and sealants such as silicone sealants, such as viscosity-lowering agents in plasticized polyvinylchloride formulations, as vehicles in polymeric flocculant formulations. for example in water treatment, mining operations or papermaking and also as thickeners in printing pastes.
  • Hydrocarbon fluids can also be used as solvents in a wide range of other applications, for example in chemical reactions.
  • hydrocarbon fluids vary considerably depending on the use for which the fluid is intended.
  • the important properties of hydrocarbon fluids are as follows: distillation curve (generally determined according to ASTM D86 or ASTM D1160 by the vacuum distillation technique used for heavier materials), flash point, density, aniline point (determined according to ASTM D611), aromatic content, sulfur content, viscosity, color and refractive index.
  • distillation curve generally determined according to ASTM D86 or ASTM D1160 by the vacuum distillation technique used for heavier materials
  • flash point density
  • aniline point determined according to ASTM D611
  • aromatic content sulfur content
  • viscosity color and refractive index
  • the fluids can be classified as paraffinic, isoparaffinic, deflavored, naphthenic, non-dearomatised and aromatic.
  • US5008466 discloses a process for the isomerization of alkenes having a terminal double bond to obtain alkenes having an internal double bond. This document does not disclose a process for oligomerization of C5 branched olefins.
  • the invention relates to a method for preparing a hydrocarbon fluid comprising an oligomerization step of an initial hydrocarbon composition comprising, relative to the total weight of the initial hydrocarbon composition, at least 2% by weight of 3-methyl-butyl 1-butene, at least 5% by weight of 2-methyl-but-2-ene and at least 5% by weight of 2-methyl-but-1-ene.
  • the initial hydrocarbon composition is derived from biomass.
  • the initial hydrocarbon composition is obtained by dehydration of alcohol (s), preferably by dehydration of fusel oil.
  • the initial hydrocarbon composition comprises at least 20% by weight, preferably at least 30% by weight, preferably at least 40% by weight, more preferably at least 50% by weight, and even more preferably at least 60% by weight of branched olefins having 5 carbon atoms chosen from 3-methyl-but-1-ene, 2-methyl-but-2-ene and 2-methyl-but-1- ene, based on the total weight of the initial composition.
  • the initial hydrocarbon composition comprises at least 20% by weight, preferably at least 30% by weight, preferably at least 40% by weight, more preferably at least 50% by weight, and even more preferably at least 60% by weight, of 2-methyl-but-2-ene, relative to the total weight of the composition.
  • the initial hydrocarbon composition comprises 3-methyl-but-1-ene in a mass proportion such that 3-methyl-but-1-ene represents the olefin having 5 carbon atoms. majority of the initial hydrocarbon composition.
  • the oligomerization step is carried out in the presence of a catalyst chosen from alumina and aluminosilicates.
  • the catalyst is an aluminosilicate and the molar ratio S102 / Al2O3 of the catalyst ranges from 10 to 80, preferably from 15 to 50.
  • the catalyst is a mesoporous aluminosilicate having a BET specific surface area greater than or equal to 50 m 2 / g, preferably ranging from 150 to 1200 m 2 / g, preferably ranging from 250 to 550. m 2 / g.
  • the catalyst is an amorphous Si Al catalyst (ASA) and has from 5 to 95% by weight of silica (SiO 2), a BET specific surface area ranging from 100 to 550 m 2 / g. and an accessible pore size ranging from 2 to 14 nm.
  • ASA amorphous Si Al catalyst
  • the process of the invention is carried out at a temperature ranging from 80 to 220 ° C, preferably from 90 to 210 ° C, preferably from 100 to 200 ° C.
  • the process of the invention is carried out at a pressure ranging from 2 to 50 bar, preferably from 5 to 40 bar, preferably from 10 to 30 bar.
  • the method of the invention further comprises at least one treatment step, preferably a hydrogenation step and / or a fractionation step.
  • the process of the invention comprises a step of recycling an effluent comprising the unreacted C5 olefins.
  • the invention also relates to a hydrocarbon fluid obtainable by the process according to the invention.
  • the invention relates to the use of the hydrocarbon fluid according to the invention, as a crude or hydrogenated and / or fractionated solvent fraction for the formulation of inks, paints, varnishes, cleaning products, lubricants for the work. metals, dielectric fluids, drilling fluids, cosmetics.
  • the process according to the invention makes it possible to obtain a mixture of hydrocarbon fluids with good yields and a good selectivity.
  • the process according to the invention can be carried out starting from raw material of biological origin.
  • the process according to the invention makes it possible to obtain various hydrocarbon cuts, using a single oligomerization step optionally followed by a hydrogenation and / or fractionation step.
  • the invention relates to a method for preparing a hydrocarbon fluid comprising an oligomerization step of an initial hydrocarbon composition comprising, relative to the total weight of the hydrocarbon composition, at least 2% by weight of 3-methyl-but- 1-ene, at least 5% by weight of 2-methyl-but-2-ene and at least 5% by weight of 2-methyl-but-1-ene.
  • the initial composition (which undergoes oligomerization) comprises three different branched olefins each having 5 carbon atoms.
  • the initial composition comprises, relative to the total weight of the initial composition, at least 2% by weight of 3-methyl-but-1-ene, at least 5% by weight of 2-methyl-but-2- and at least 5% by weight of 2-methyl-but-1-ene.
  • branched olefin having 5 carbon atoms is meant an olefin having a branched hydrocarbon chain containing 5 carbon atoms.
  • the expression "branched olefin in C5" denotes a branched olefin having 5 carbon atoms.
  • the initial composition comprises, relative to the total weight of the initial composition, at least 20% by weight, preferably at least 30% by weight, preferably at least 40% by weight, more preferably at least 50% by weight. % by weight, still more preferably at least 60% by weight, of branched olefins having 5 carbon atoms selected from 3-methyl-but-1-ene, 2-methyl-but-2-ene and 2- methyl-but-l-ene.
  • the initial composition comprises, relative to the total weight of the initial composition, at least 20% by weight, preferably at least 30% by weight, preferably at least 40% by weight, more preferably at least 50% by weight, still more preferably at least 60% by weight, of 2-methyl-but-2-ene.
  • the initial composition comprises between 50% and 90% by weight of 2-methyl-but-2-ene, relative to the total weight of olefins comprising 5 carbon atoms, preferably between 55 and 80% by weight.
  • the initial hydrocarbon composition comprises 3-methyl-but-1-ene in a mass proportion such that 3-methyl-but-1-ene represents the olefin having 5 carbon atoms. major carbon of the initial hydrocarbon composition.
  • the initial composition has a weight ratio (3-methyl-but-1-ene) / (each olefin C 5 other than 3-methyl-but-1-ene) greater than or equal to 1, preferably strictly greater than 1, preferably greater than or equal to 1.2, more preferably greater than or equal to 1.5.
  • the initial composition comprises at least 50% by weight of 3-methyl-but-1-ene, relative to the total weight of olefins having 5 carbon atoms.
  • the initial composition is derived from the conversion of the biomass.
  • a composition produced from raw materials of biological origin preferably chosen from sugars and sugar precursors such as cellulose, hemicellulose, lignocellulose and mixtures thereof, these can be produced from microorganisms such as yeasts, algae and bacteria.
  • the initial composition can be obtained by dehydration of alcohol (s), preferably alcohol (s) resulting (s) from the conversion of biomass.
  • alcohol preferably alcohol (s) resulting (s) from the conversion of biomass.
  • Some yeasts can produce the Preferred alcohols in majority quantity as shown by the works of Esteban Espinosa Vidal's teams, Marcos Antonio de Morais Jr, Jean Marie Institut and Gustavo M. de Billerbeck published in Yeast 2015; 32: 47-56.
  • the initial composition is obtained by dehydration of fusel oil.
  • fusel oil is meant a mixture of alcohols resulting from the fermentation of the raw material of biological origin followed by the distillation of the effluent obtained after fermentation.
  • Fusel oil is well known to those skilled in the art as a by-product of alcoholic fermentation.
  • Fusel alcohols are a mixture of alcohols such as propanol, butanol, isobutanol, pentanol, methylbutanols, hexanol, fatty alcohols, terpenes and furfural. They are formed by alcoholic fermentation as byproducts of metabolism.
  • fusel alcohols The main compounds present in so-called fusel alcohols are: propanol, butanols, amyl alcohol, isoamyl alcohols, and hexanol.
  • the fusel oil may optionally comprise heavier linear alcohols, for example C7 and / or C8. These products are formed during fermentation when the temperature and pH are high. They are concentrated in the bottoms at the end of the process. They present themselves under an oily appearance hence their name oil of fusel.
  • the fusel oil may optionally also include ethanol depending on the quality of the separation after the fermentation.
  • Fusel oil can be obtained by various methods well known to those skilled in the art, for example by direct sampling in the distillation column followed by cooling.
  • the sample taken can optionally be purified for example by extraction followed by decantation.
  • a liquid / liquid extraction by addition of water followed by decantation makes it possible to obtain two phases.
  • the upper phase contains mainly amyl and butyl alcohols, poorly soluble in water. It is called decanted or crude fusel oil. It can be chemically treated (usually with a saturated salt solution) and / or fractionated by distillation to remove the water present and separate residual ethanol.
  • a "refined" fusel oil is then obtained.
  • Other methods of purifying the fusel oil use adsorbents, subsequently regenerated to separate the different fractions.
  • the initial composition is obtained by dehydration of a mixture comprising at least 12% by weight of alcohols containing 5 carbon atoms, at least 1% by weight of ethanol, less than 5% by weight of d ester (s) and less than 5% by weight of water, based on the total weight of the mixture.
  • the initial composition is obtained by dehydration of a mixture comprising at least 20% by weight, preferably at least 30% by weight, more preferably at least 40% by weight, preferably at least 50% by weight. by weight, more preferably at least 60% by weight of alcohols having 5 carbon atoms, relative to the total weight of the mixture.
  • the one or more alcohols comprising 5 carbon atoms present in the mixture are chosen from C 5 isoamyl isoamines, preferentially from 3-methyl-butan-1-ol, 2-methyl-butan-1-ol. and their mixtures.
  • C5 iso-alcohols is meant an alcohol having a branched hydrocarbon chain containing 5 carbon atoms.
  • the alcohols are preferably primary alcohols, that is, alcohols in which the -OH functional group is attached to a -CH 2 - group.
  • Said dehydration may be carried out using a dehydration catalyst, for example selected from zeolites, aluminas, silica-aluminas and acid catalysts, preferably from zeolites, aluminas and silica-aluminas.
  • the dehydration catalyst is a silica-alumina selected from zeolites and aluminas.
  • the dehydration catalyst is an alumina.
  • the dehydration catalyst is chosen from y-aluminas, H-b zeolites and H-y zeolites. These dehydration catalysts as such are well known to those skilled in the art and are commercially available.
  • the catalyst for dehydration is chosen from zeolites and has a molar ratio S102 / Al2O3 greater than or equal to 10, preferably greater than or equal to 20, preferably greater than or equal to 30, preferably greater than or equal to at 50, more preferably greater than or equal to 80.
  • the catalyst for dehydration is chosen from aluminas, preferably gamma (alumina) aluminas.
  • alumina catalyst there may be mentioned the catalysts of the range PurAI ® marketed by Sasol.
  • the catalyst for dehydration is a zeolite of ferrierite type, for example in the form of powder or extrudates.
  • examples include the CP914 ® form of zeolite powder or ammonium ferrierite CP914 CYL ® 1.6, as extrudates, both marketed by Zeolyst. It is possible to provide between the dehydration step and the oligomerization step, a separation step to remove the water-like compounds and optionally esters and residual alcohols present to obtain the desired initial composition for the oligomerization according to the invention. invention.
  • the catalyst for the oligomerization may be chosen from zeolites, aluminas, silica-aluminas and aluminosilicates. These catalysts as such are well known to those skilled in the art and commercially available.
  • the catalyst for the oligomerization according to the invention has a molar ratio S102 / Al2O3 ranging from 10 to 80, preferably ranging from 15 to 50.
  • the catalyst for the oligomerization is chosen from aluminosilicates.
  • the catalyst for the oligomerization according to the invention is according to a particular embodiment, different from a zeolite.
  • the catalyst is chosen from aluminosilicates having a pore size ranging from 1 to 50 nm, preferably from 1 to 25 nm, and preferably from 2 to 20 nm.
  • the aluminosilicate type catalyst used in the invention is a mesoporous aluminosilicate typically having a BET specific surface area greater than or equal to 50 m 2 / g, preferably ranging from 150 to 1200 m 2 / g, preferably ranging from from 250 to 550 m 2 / g.
  • An example of such a catalyst is an AI-MCM-41 type catalyst.
  • the aluminosilicate type catalyst used in the invention is an amorphous Si Al catalyst (ASA) typically having from 5 to 95% by weight of silica (SiO 2), a BET specific surface area ranging from 100 to 550 m 2 / g and a pore size ranging from 2 to 14 nm.
  • ASA amorphous Si Al catalyst
  • the specific surface area is measured according to the BET method, measurement of the specific surface area by adsorption of a gas, a method well known to those skilled in the art.
  • the pore size is measured by nitrogen physisorption.
  • the initial composition (charge of the oligomerization) is brought into contact with the catalyst at a temperature ranging from 80 to 220 ° C., preferably from 90 to 210 ° C., preferentially from 100 to 200 ° C.
  • the oligomerization step is carried out at a pressure ranging from 2 to 50 bar, preferably from 5 to 40 bar, preferably from 10 to 30 bar.
  • the oligomerization step is carried out at a temperature ranging from 90 to 220 ° C., preferably from 95 to 210 ° C., preferably from 100 to 200 ° C. and at a temperature of from 100 to 200 ° C. pressure ranging from 2 to 50 bar, preferably from 5 to 40 bar, preferably from 10 to 30 bar.
  • the oligomerization process is carried out in the liquid phase.
  • Oligomerization then makes it possible to obtain C10 dimers, C15 trimers, as well as other molecules, such as C6-C9 molecules and C11-C14 molecules.
  • a separation step at the end of the oligomerization step so as to separate the molecules having 5 carbon atoms or less, used as a charge, produced molecules having 6 or more carbon atoms.
  • This separation step then makes it possible to obtain a first stream comprising molecules having 5 carbon atoms or less, and a second stream comprising molecules having 6 or more carbon atoms.
  • the reaction product obtained can undergo different treatments.
  • the subsequent treatments are preferably carried out on the second stream comprising molecules having 6 or more carbon atoms.
  • the process according to the invention comprises an oligomerization step as described above, followed by a hydrogenation step.
  • the hydrogenation can be carried out according to any method well known to those skilled in the art.
  • the method according to the invention comprises an oligomerization step as described above followed by a fractionation step.
  • the method according to the invention comprises an oligomerization step as described above followed by a hydrogenation step, itself followed by a fractionation step.
  • Fractionation of a hydrocarbon fluid is well known to those skilled in the art. It allows in particular to obtain hydrocarbon cuts varying by their distillation range. So, the method according to the invention makes it possible to obtain a hydrocarbon fraction, defined by its distillation range.
  • the invention also relates to hydrocarbon fluids obtainable by the preparation process according to the invention.
  • the invention also proposes the use of the hydrocarbon fluid according to the invention as a crude or hydrogenated and / or fractionated solvent cut for the formulation of inks, paints, varnishes, cleaning products, lubricants for the work. metals, dielectric fluids, drilling fluids, cosmetics.
  • a catalyst for the dehydration of fusel oil is prepared from Y-Al 2 O 3 extrudates having a diameter of 1.2 mm, a surface area of 200 m 2 / g, a centered pore size distribution around 124 ⁇ and a pore volume of 0.588 mL / g.
  • the extrudates are crushed and then sieved at 35-45 mesh (0.500-0.354 ⁇ m).
  • a stainless steel tubular reactor having an internal diameter of 10 mm, is charged with 20 ml of the catalyst Y-Al 2 O 3 thus obtained.
  • the empty spaces on either side of the catalyst are filled with powdered silicon carbide (SiC) 0.5 mm in diameter.
  • the temperature profile is monitored using a thermocouple placed inside the reactor.
  • the temperature of the reactor is increased at a rate of 60 ° C./h up to 550 ° C. under a flow of 45 NL / h of nitrogen and 10 NL / h of air.
  • the temperature is maintained at 550 ° C and the nitrogen flow reduced to 30 NL / h.
  • the nitrogen flow is further reduced to 10 NL / h.
  • the nitrogen flow is stopped and the air flow is increased to 20 NL / h.
  • the reactor temperature is lowered to 400 ° C and the reactor is purged with nitrogen.
  • ol 0.1% by weight of ethyl pentanoate, 0.3% by weight of ethyl hexanoate, higher ethyl esters and pyrazine derivatives is filtered to remove the fine particles.
  • the flow of nitrogen into the reactor is replaced by a stream of filtered fusel oil charge.
  • the feedstock is passed through a preheater onto the catalyst bed at an initial internal reactor temperature of 400 ° C and an overall hourly volume (WH) velocity of 4 h 1 .
  • the temperature is increased to 425 ° C.
  • the catalytic tests are carried out in descending current, at a pressure of 2 barg (bar gauge, gauge pressure) in a temperature range from 300 to 450 ° C and with a space hourly space weight (WHSV) ranging from 2 to 7 h 1 .
  • Product analysis is performed using an in-line gas chromatograph.
  • a catalyst for the dehydration of fusel oil is prepared from a zeolite of the ferrierite-type (Zeolyst CP914 ® powder) calcined under a flow of 50 NL / h of nitrogen at 550 ° C for 6 hours (1 ° C per minute). The catalyst is then milled and sieved at 35-45 mesh (0.500-0.354 ⁇ m).
  • a stainless steel tubular reactor having an internal diameter of 10 mm, is charged with 10 ml (5.53 g) of the ferrierite catalyst thus obtained.
  • the empty spaces on either side of the catalyst are filled with powdered silicon carbide (SiC) 0.5 mm in diameter.
  • the temperature profile is monitored using a thermocouple placed inside the reactor.
  • the temperature of the reactor is increased at a rate of 60 ° C./h up to 550 ° C. under a flow of 10 NL / h of nitrogen. After 1 hour, the reactor temperature is lowered to 260 ° C and the reactor is purged with nitrogen.
  • a batch of distilled biosourced fusel oil (125-135 ° C fraction) is prepared, containing, based on the total weight of the filler, less than 0.1% by weight of ethanol, less than 0.1% by weight. weight of propan-1-ol, less than 0.1% by weight of butan-1-ol, about 1.0% by weight of isobutanol, 83.5% by weight of 3-methyl-butan-1-ol 13.8% by weight of 2-methyl-butan-1-ol, less than 0.1% by weight of ethyl pentanoate, higher ethyl esters and pyrazine derivatives.
  • the charge of distilled fusel oil is sent through a preheater to the catalyst bed at an internal reactor initial temperature of 260 ° C, an overall hourly volume velocity (WH) of 8 h 1 and a pressure of 2 barg.
  • the temperature is gradually increased to 375 ° C.
  • Product analysis is performed using an in-line gas chromatograph.
  • a catalyst for the dehydration of fusel oil is prepared from a zeolite of the ferrierite-type (Zeolyst CP914 ® CYL-1.6) in the form of extrudates crushed and sieved to 35-45 mesh (0,500- 0,354 pm).
  • a stainless steel tubular reactor having an internal diameter of 10 mm is charged with 10 ml of the ferrierite catalyst thus obtained.
  • the empty spaces on either side of the catalyst are filled with powdered silicon carbide (SiC) 0.5 mm in diameter.
  • the temperature profile is monitored using a thermocouple placed inside the reactor.
  • the temperature of the reactor is increased at a rate of 60 ° C./h up to 550 ° C. under a flow of 10 NL / h of nitrogen. After 1 hour, the reactor temperature is lowered to 270 ° C and the reactor is purged with nitrogen.
  • a batch of distilled biosourced fusel oil (125-135 ° C fraction) is prepared, containing, based on the total weight of the filler, less than 0.1% by weight of ethanol, less than 0.1% by weight. weight of propan-1-ol, less than 0.1% by weight of butan-1-ol, about 1.0% by weight of isobutanol, 83.5% by weight of 3-methyl-butan-1-ol 13.8% by weight of 2-methyl-butan-1-ol, less than 0.1% by weight of ethyl pentanoate, higher ethyl esters and pyrazine derivatives.
  • the charge of distilled fusel oil is sent through a preheater to the catalyst bed at an internal reactor initial temperature of 270 ° C, an overall hourly volume velocity (WH) of 8 h 1 and a pressure of 2 barg.
  • the temperature is gradually increased to 350 ° C.
  • Product analysis is performed using an in-line gas chromatograph.
  • Dehydration of fusel oil results in the mixture of isomers of isoamylenes as follows: 3-methyl-1-butene (3MB1), 2-methyl-but-2-ene (2MB2) and 2-methyl-but- 1-ene (2MB1).
  • the ratio of the isoamylenes depends in particular on the dehydration catalyst used, the residence time and the temperature used during the dehydration reaction.
  • the amorphous silica-alumina (ASA) catalyst has a BET specific surface area as measured by the ASTM D 4365-95 method (Reapproved 2008) ranging from 100 to 550 m 2 / g and a pore size ranging from 2 to 14 nm.
  • the pressure is maintained at 25 bar in the system thanks to a Kammer valve controlled by a pressure sensor. Samples are taken after cooling to 0 ° C at the indicated times, diluted and analyzed by GC-MS.
  • Table 2 Results of oligomerization
  • Detection is performed using the following standards: C15 assay vs 1-pentadecene standard (counted at 97%, GC); CIO assay vs 1-decene standard (counted at 98%, GC); estimated C6-C9 compounds vs 1-decene standard; estimated C11-C14 compounds vs pentadecene standard; Compounds> C15 not dosed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

L'invention concerne un procédé de préparation d'un fluide hydrocarboné comprenant une étape d'oligomérisation d'une composition hydrocarbonée initiale comprenant, par rapport au poids total de la composition hydrocarbonée initiale, au moins 2% en poids de 3-méthyl-but-1-ène,au moins 5% en poids de 2-méthyl-but-2-ène et au moins 5% en poids de 2-méthyl-but-1-ène.

Description

PROCEDE D'OLIGOMERISATION D'OLEFINES
DOMAINE DE L'INVENTION
La présente invention concerne un procédé d'oligomérisation d'oléfines présentant de bons rendements et une bonne sélectivité, pour des applications variées notamment comme fluides solvants et carburéacteurs.
CONTEXTE TECHNIQUE DE L'INVENTION
Les fluides hydrocarbures sont largement utilisés en tant que solvants, par exemple dans des adhésifs, liquides de nettoyage, explosifs, solvants pour des revêtements décoratifs et encres d’imprimerie, huiles légères servant dans des applications telles que l’extraction de métaux, le travail des métaux ou le démoulage, lubrifiants industriels et liquides de forage. Les fluides hydrocarbures peuvent également être employés comme huiles de dilution dans des adhésifs et systèmes d’étanchéité tels que les mastics au silicone, comme abaisseurs de viscosité dans des formulations à base de chlorure de polyvinyle plastifié, comme véhicules dans des formulations polymères servant de floculants, par exemple dans le traitement des eaux, les opérations minières ou la fabrication du papier et également comme épaississants dans des pâtes d’impression. Les fluides hydrocarbures peuvent par ailleurs être utilisés comme solvants dans un vaste éventail d’autres applications, par exemple dans des réactions chimiques.
La nature chimique et la composition des fluides hydrocarbures varient considérablement selon l’usage auquel le fluide est destiné. Les propriétés importantes des fluides hydrocarbures sont les suivantes : courbe de distillation (généralement déterminée conformément aux méthodes ASTM D86 ou ASTM D1160 par la technique de distillation sous vide employée pour des matériaux plus lourds), point d’éclair, densité, point d’aniline (déterminé conformément à la méthode ASTM D611), teneur en aromatiques, teneur en soufre, viscosité, couleur et indice de réfraction. Les fluides peuvent être classés comme étant paraffiniques, isoparaffiniques, désaromatisés, naphténiques, non désaromatisés et aromatiques.
Le document US5008466 divulgue un procédé d'isomérisation d'alcènes ayant une double liaison terminale pour obtenir des alcènes ayant une double liaison interne. Ce document ne divulgue pas un procédé d'oligomérisation d'oléfines ramifiées en C5.
RÉSUMÉ DE L'INVENTION
Ces objectifs sont atteints grâce à un nouveau procédé d'oligomérisation d'oléfines. L'invention concerne un procédé de préparation d'un fluide hydrocarboné comprenant une étape d'oligomérisation d'une composition hydrocarbonée initiale comprenant, par rapport au poids total de la composition hydrocarbonée initiale, au moins 2% en poids de 3-méthyl-but-l-ène, au moins 5% en poids de 2-méthyl-but-2-ène et au moins 5% en poids de 2-méthyl-but-l-ène.
Selon un mode de réalisation de l'invention, la composition hydrocarbonée initiale est issue de la biomasse.
Selon un mode de réalisation de l'invention, la composition hydrocarbonée initiale est obtenue par déshydratation d'alcool(s), de préférence par déshydratation d'huile de fusel.
Selon un mode de réalisation de l'invention, la composition hydrocarbonée initiale comprend au moins 20% en poids, de préférence au moins 30% en poids, préférentiellement au moins 40% en poids, plus préférentiellement au moins 50% en poids, encore plus préférentiellement au moins 60% en poids, d'oléfines ramifiées comportant 5 atomes de carbone choisis parmi le 3-méthyl-but-l-ène, le 2-méthyl-but-2-ène et le 2-méthyl-but-l-ène, par rapport au poids total de la composition initiale.
Selon un mode de réalisation de l'invention, la composition hydrocarbonée initiale comprend au moins 20% en poids, de préférence au moins 30% en poids, préférentiellement au moins 40% en poids, plus préférentiellement au moins 50% en poids, encore plus préférentiellement au moins 60% en poids, de 2-méthyl-but-2-ène, par rapport au poids total de la composition.
Selon un mode de réalisation de l'invention, la composition hydrocarbonée initiale comprend du 3-méthyl-but-l-ène en une proportion massique telle que le 3-méthyl-but-l-ène représente l'oléfine comportant 5 atomes de carbone majoritaire de la composition hydrocarbonée initiale.
Selon un mode de réalisation de l'invention, l'étape d'oligomérisation est effectuée en présence d'un catalyseur choisi parmi l'alumine et les aluminosilicates.
Selon un mode de réalisation de l'invention, le catalyseur est un aluminosilicate et le ratio molaire S1O2/AI2O3 du catalyseur va de 10 à 80, de préférence de 15 à 50.
Selon un mode de réalisation de l'invention, le catalyseur est un aluminosilicate mésoporeux présentant une surface spécifique BET supérieure ou égale à 50 m2/g, de préférence allant de 150 à 1200 m2/g, de préférence allant de 250 à 550 m2/g.
Selon un autre mode de réalisation de l'invention, le catalyseur est un catalyseur Si Al amorphe (ASA) et présente de 5 à 95% en poids de silice (Si02), une surface spécifique BET allant de 100 à 550 m2/g et une taille de pores accessibles allant de 2 à 14 nm.
Selon un mode de réalisation, le procédé de l'invention est mis en oeuvre à une température allant de 80 à 220°C, de préférence de 90 à 210°C, préférentiellement de 100 à 200°C.
Selon un mode de réalisation, le procédé de l'invention mis en oeuvre à une pression allant de 2 à 50 bars, de préférence de 5 à 40 bars, préférentiellement de 10 à 30 bars. Selon un mode de réalisation, le procédé de l'invention comprend en outre au moins une étape de traitement, de préférence une étape d'hydrogénation et/ou une étape de fractionnement.
Selon un mode de réalisation, le procédé de l'invention comprend une étape de recyclage d'un effluent comprenant les oléfines en C5 n'ayant pas réagi.
L'invention concerne également un fluide hydrocarboné susceptible d'être obtenue par le procédé selon l'invention.
Enfin, l'invention concerne l'utilisation du fluide hydrocarboné selon l'invention, comme coupe solvante brute ou hydrogénée et/ou fractionnée pour la formulation des encres, des peintures, des vernis, des produits d'entretien, des lubrifiants pour le travail des métaux, des fluides diélectriques, des fluides de forage, des produits cosmétiques.
Le procédé selon l'invention permet d'obtenir un mélange de fluides hydrocarbures avec de bons rendements et une bonne sélectivité.
Le procédé selon l'invention peut être mis en oeuvre à partir de matière première d'origine biologique.
Le procédé selon l'invention permet d'obtenir diverses coupes hydrocarbonées, à l'aide d'une unique étape d'oligomérisation suivie éventuellement d'une étape d'hydrogénation et/ou de fractionnement.
DESCRIPTION DETAILLEE DE L'INVENTION
L'invention concerne un procédé de préparation d'un fluide hydrocarboné comprenant une étape d'oligomérisation d'une composition hydrocarbonée initiale comprenant, par rapport au poids total de la composition hydrocarbonée, au moins 2% en poids de 3-méthyl-but-l-ène, au moins 5% en poids de 2-méthyl-but-2-ène et au moins 5% en poids de 2-méthyl-but-l-ène.
Composition hydrocarbonée initiale (dite « composition initiale »)
La composition initiale (qui subit une oligomérisation) comprend trois oléfines ramifiées différentes comportant chacune 5 atomes de carbone. En particulier, la composition initiale comprend, par rapport au poids total de la composition initiale, au moins 2% en poids de 3-méthyl- but-l-ène, au moins 5% en poids de 2-méthyl-but-2-ène et au moins 5% en poids de 2-méthyl-but-l- ène. Par « oléfine ramifiée comportant 5 atomes de carbone », on entend une oléfine comportant une chaîne hydrocarbonée ramifiée à 5 atomes de carbone. Au sens de la présente invention, l'expression « oléfine ramifiée en C5 » désigne une oléfine ramifiée comportant 5 atomes de carbone.
Selon un mode de réalisation, la composition initiale comprend, par rapport au poids total de la composition initiale, au moins 20% en poids, de préférence au moins 30% en poids, préférentiellement au moins 40% en poids, plus préférentiellement au moins 50% en poids, encore plus préférentiellement au moins 60% en poids, d'oléfines ramifiées comportant 5 atomes de carbone choisis parmi le 3-méthyl-but-l-ène, le 2-méthyl-but-2-ène et le 2-méthyl-but-l-ène.
Selon un mode de réalisation particulier, la composition initiale comprend, par rapport au poids total de la composition initiale, au moins 20% en poids, de préférence au moins 30% en poids, préférentiellement au moins 40% en poids, plus préférentiellement au moins 50% en poids, encore plus préférentiellement au moins 60% en poids, de 2-méthyl-but-2-ène.
Selon un mode de réalisation de l'invention, la composition initiale comprend entre 50% et 90% en poids de 2-méthyl-but-2-ène, par rapport au poids total d'oléfines comportant 5 atomes de carbone, de préférence entre 55 et 80% en poids.
Selon un autre mode de réalisation de l'invention, la composition hydrocarbonée initiale comprend du 3-méthyl-but-l-ène en une proportion massique telle que le 3-méthyl-but-l-ène représente l'oléfine comportant 5 atomes de carbone majoritaire de la composition hydrocarbonée initiale. Ainsi, de préférence, la composition initiale présente un ratio massique (3-méthyl-but-l-ène) / (chaque oléfine en C5 autre que 3-méthyl-but-l-ène) supérieur ou égal à 1, de préférence strictement supérieur à 1, préférentiellement supérieur ou égal à 1,2, plus préférentiellement supérieur ou égal à 1,5.
Selon un mode de réalisation particulier de l'invention, la composition initiale comprend au moins 50% en poids de 3-méthyl-but-l-ène, par rapport au poids total d'oléfines comportant 5 atomes de carbone.
Selon un mode de réalisation de l'invention, la composition initiale est issue de la conversion de la biomasse. Par issue de la conversion de la biomasse, on entend une composition produite à partir de matières premières d’origine biologique choisies de préférence parmi les sucres et les précurseurs de sucre tels que la cellulose, l'hémicellulose, la lignocellulose et leurs mélanges, ces dernières pouvant être produites à partir de microorganismes tels que les levures, les algues et les bactéries.
En particulier la composition initiale peut être obtenue par déshydratation d'alcool(s), de préférence d'alcool(s) issu(s) de la conversion de la biomasse. Certaines levures peuvent produire les alcools préférés en quantité majoritaire comme le montrent les travaux des équipes de Esteban Espinosa Vidal, Marcos Antonio de Morais Jr, Jean Marie François et Gustavo M. de Billerbeck publiés dans la revue Yeast 2015; 32: 47-56. : "Biosynthesis of higher alcohol flavour compounds by the yeast Saccharomyces cerevisiae: impact of oxygen availability and responses to glucose puise in minimal growth medium with leucine as sole nitrogen source" ou encore ceux de l'équipe de Yuan J, Mishra P et Ching CB "Engineering the leucine biosynthetic pathway for isoamyl alcohol overproduction in Saccharomyces cerevisiae" publiés dans la revue J Ind Microbiol Biotechnol. 2017 Jan;44(l):107-117.
Selon un mode de réalisation préféré, la composition initiale est obtenue par déshydratation d'huile de fusel. Par « huile de fusel », on entend un mélange d'alcools issu de la fermentation de la matière première d'origine biologique suivie de la distillation de l'effluent obtenu après fermentation. L'huile de fusel est bien connue de l'homme du métier comme sous-produit de la fermentation alcoolique. Les alcools de fusel sont un mélange d’alcools tels que le propanol, le butanol, l'isobutanol, le pentanol, les méthylbutanols, l'hexanol, les alcools gras, les terpènes et le furfural. Ils se forment par la fermentation alcoolique comme sous-produits du métabolisme. Les principaux composés présents dans les alcools dits de fusel sont : le propanol, les butanols, l'alcool amylique, les alcools isoamyliques, et l’hexanol. L'huile de fusel peut éventuellement comprendre des alcools linéaires plus lourds, par exemple en C7 et/ou en C8. Ces produits sont formés au cours de la fermentation lorsque la température et le pH sont élevés. Ils sont concentrés dans les queues de distillation, à la fin du processus. Ils se présentent alors sous un aspect huileux d’où leur nom huile de fusel. L'huile de fusel peut éventuellement comprendre également de l'éthanol selon la qualité de la séparation après la fermentation.
L'huile de fusel peut être obtenue par différents procédés bien connus de l'homme du métier, par exemple par prélèvement direct dans la colonne de distillation suivi d'un refroidissement. L'échantillon prélevé peut éventuellement être purifié par exemple par extraction suivie d'une décantation. Une extraction liquide/liquide par addition d'eau suivie d'une décantation permet l'obtention de deux phases. La phase supérieure contient essentiellement les alcools amyliques et butyliques, faiblement solubles dans l'eau. Elle est appelée huile de fusel décantée ou brute. Elle peut être traitée chimiquement (généralement par une solution saturée en sels) et/ou fractionnée par distillation pour éliminer l'eau présente et séparer l'éthanol résiduel. Une huile de fusel « raffinée » est alors obtenue. D'autres méthodes de purification de l'huile de fusel utilisent des adsorbants, par la suite régénérés pour séparer les différentes fractions. Parmi les nombreux adsorbants testés, le charbon actif végétal en granulés est préféré puisqu'il peut adsorber huit fois son poids en huile de fusel. Les alcools peuvent ensuite être isolés des autres constituants par une étape de fractionnement. Selon un mode de réalisation, la composition initiale est obtenue par déshydratation d'un mélange comprenant au moins 12% en poids d'alcools comportant 5 atomes de carbone, au moins 1% en poids d'éthanol, moins de 5% en poids d'ester(s) et moins de 5% en poids d'eau, par rapport au poids total du mélange. Selon un mode de réalisation particulier, la composition initiale est obtenue par déshydratation d'un mélange comprenant au moins 20% en poids, de préférence au moins 30% en poids, de préférence encore au moins 40% en poids, préférentiellement au moins 50% en poids, plus préférentiellement au moins 60% en poids d'alcools comportant 5 atomes de carbone, par rapport au poids total du mélange.
De préférence, le ou les alcools comportant 5 atomes de carbone présents dans le mélange sont choisis parmi les iso-alcools isoamyliques en C5, préférentiellement parmi le 3-méthyl-butan-l- ol, le 2-méthyl-butan-l-ol et leurs mélanges. Par iso-alcools en C5, on entend un alcool présentant une chaîne hydrocarbonée ramifiée comportant 5 atomes de carbone.
Selon la présente invention, les alcools sont de préférence des alcools primaires, autrement dit, des alcools où la fonction -OH est reliée à un groupement -CH2-.
Ladite déshydratation peut être effectuée à l'aide d'un catalyseur de déshydratation, par exemple choisi parmi les zéolithes, les alumines, les silice-alumines et les catalyseurs acides, de préférence parmi les zéolithes, les alumines et les silice-alumines. Selon un mode de réalisation de l'invention, le catalyseur de déshydratation est une silice-alumine choisie parmi les zéolithes et les alumines. Selon un autre mode de réalisation de l'invention, le catalyseur de déshydratation est une alumine. De préférence, le catalyseur de déshydratation est choisi parmi les alumines y, les zéolithes H-b et les zéolithes H-y. Ces catalyseurs de déshydratation en tant que tels sont bien connus de l'homme du métier et sont disponibles dans le commerce.
Selon un mode de réalisation, le catalyseur pour la déshydratation est choisi parmi les zéolithes et présente un ratio molaire S1O2/AI2O3 supérieur ou égal à 10, de préférence supérieur ou égal à 20, de préférence supérieur ou égal à 30, préférentiellement supérieur ou égal à 50, plus préférentiellement supérieur ou égal à 80.
Selon un autre mode de réalisation, le catalyseur pour la déshydratation est choisi parmi les alumines, de préférence les alumines gamma (alumine y). A titre d'exemple de catalyseur de type alumine, on peut citer les catalyseurs de la gamme PurAI® commercialisés par Sasol.
Selon un mode de réalisation avantageux, le catalyseur pour la déshydratation est une zéolithe de type ferriérite, par exemple sous forme de poudre ou d'extrudats. A titre d'exemple, on peut citer le CP914®, sous forme de poudre de zéolithe ferriérite ammonium ou le CP914® CYL 1.6, sous forme d'extrudats, tous deux commercialisés par Zeolyst. Il est possible de prévoir entre l'étape de déshydratation et l'étape d'oligomérisation, une étape de séparation pour éliminer les composés de type eau et éventuellement esters et alcools résiduels présents pour obtenir la composition initiale souhaitée pour l'oligomérisation selon l'invention.
Catalyseur pour oligomérisation
Le catalyseur pour l'oligomérisation peut être choisi parmi les zéolithes, les alumines, les silice- alumines et les aluminosilicates. Ces catalyseurs en tant que tels sont bien connus de l'homme du métier et disponibles commercialement.
Selon un mode de réalisation de l'invention, le catalyseur pour l'oligomérisation selon l'invention présente un ratio molaire S1O2/AI2O3 allant de 10 à 80, de préférence allant de 15 à 50.
Selon un mode de réalisation particulier de l'invention, le catalyseur pour l'oligomérisation est choisi parmi les aluminosilicates. Ainsi, le catalyseur pour l'oligomérisation selon l'invention est selon un mode de réalisation particulier, différent d'une zéolithe.
Selon un mode de réalisation de l'invention, le catalyseur est choisi parmi les aluminosilicates présentant une taille de pores allant de 1 à 50 nm, de préférence de 1 à 25 nm, de préférence de 2 à 20 nm.
Selon un mode de réalisation, le catalyseur de type aluminosilicate utilisé dans l'invention est un aluminosilicate mésoporeux présentant typiquement une surface spécifique BET supérieure ou égale à 50 m2/g, de préférence allant de 150 à 1200 m2/g, préférentiellement allant de 250 à 550 m2/g. Un exemple de tel catalyseur est un catalyseur de type AI-MCM-41.
Selon un autre mode de réalisation, le catalyseur de type aluminosilicate utilisé dans l'invention est un catalyseur Si Al amorphe (ASA) présentant typiquement de 5 à 95% en poids de silice (S1O2), une surface spécifique BET allant de 100 à 550 m2/g et une taille de pores allant de 2 à 14 nm.
Dans la présente invention, la surface spécifique est mesurée selon la méthode BET, mesure de la surface spécifique par adsorption d'un gaz, méthode bien connue de l'homme du métier.
Dans la présente invention, la taille de pores est mesurée par physisorption d'azote .
Oligomérisation
Selon un mode de réalisation du procédé selon l'invention, la composition initiale (charge de l'oligomérisation) est mise en contact avec le catalyseur à une température allant de 80 à 220°C, de préférence de 90 à 210°C, préférentiellement de 100 à 200°C. Selon un mode de réalisation de l'invention, l'étape d'oligomérisation est mise en oeuvre à une pression allant de 2 à 50 bars, de préférence de 5 à 40 bars, préférentiellement de 10 à 30 bars.
Selon un mode de réalisation de l'invention, l'étape d'oligomérisation est mise en oeuvre à une température allant de 90 à 220°C, de préférence de 95 à 210°C, préférentiellement de 100 à 200°C et à une pression allant de 2 à 50 bars, de préférence de 5 à 40 bars, préférentiellement de 10 à 30 bars.
Selon un mode de réalisation, le procédé d'oligomérisation est mis en oeuvre en phase liquide.
L'oligomérisation permet alors d'obtenir des dimères en CIO, des trimères en C15, ainsi que d'autres molécules, telles que des molécules en C6-C9 et des molécules en C11-C14.
Il est possible de prévoir une étape de séparation à l'issue de l'étape d'oligomérisation de façon à séparer les molécules présentant 5 atomes de carbone ou moins, utilisées comme charge, des molécules produites présentant 6 atomes de carbone ou plus. Cette étape de séparation permet alors d'obtenir un premier flux comprenant des molécules présentant 5 atomes de carbone ou moins, et un second flux comprenant des molécules présentant 6 atomes de carbone ou plus. Selon ce mode de réalisation, il est possible de prévoir une étape de recyclage d'un effluent comprenant les oléfines en C5 n'ayant pas réagi. Il est ainsi possible de prévoir une boucle de recyclage afin de réintroduire le premier flux ou tout ou partie du second flux, en amont de la réaction d'oligomérisation.
A l'issue de l'étape d'oligomérisation, le produit de réaction obtenu peut subir différents traitements. Dans le cas où une étape de séparation a lieu après l'oligomérisation, les traitements ultérieurs sont de préférence effectués sur le second flux comprenant des molécules présentant 6 atomes de carbone ou plus.
Parmi les traitements ultérieurs, on peut citer une hydrogénation et/ou un fractionnement.
Selon un mode de réalisation, le procédé selon l'invention comprend une étape d'oligomérisation telle que décrite précédemment, suivie d'une étape d'hydrogénation. L'hydrogénation peut être effectuée selon toutes méthodes bien connues de l'homme du métier.
Selon un mode de réalisation, le procédé selon l'invention comprend une étape d'oligomérisation telle que décrite précédemment suivie d'une étape de fractionnement.
Selon un mode de réalisation, le procédé selon l'invention comprend une étape d'oligomérisation telle que décrite précédemment suivie d'une étape d'hydrogénation, elle-même suivie d'une étape de fractionnement.
Le fractionnement d'un fluide hydrocarboné est bien connu de l'homme du métier. Il permet notamment d'obtenir des coupes hydrocarbonées variant par leur intervalle de distillation. Ainsi, le procédé selon l'invention permet d'obtenir une coupe hydrocarbonée, définie par son intervalle de distillation.
Fluide hydrocarboné
L'invention concerne également des fluides hydrocarbonés susceptibles d'être obtenus par le procédé de préparation selon l'invention.
Enfin, l'invention propose également l'utilisation du fluide hydrocarboné selon l'invention comme coupe solvante brute ou hydrogénée et/ou fractionnée pour la formulation des encres, des peintures, des vernis, des produits d'entretien, des lubrifiants pour le travail des métaux, des fluides diélectriques, des fluides de forage, des produits cosmétiques.
EXEMPLES
Dans la suite de la présente description, des exemples sont donnés à titre illustratif de la présente invention et ne visent en aucun cas à en limiter la portée.
Exemple 1 : déshydratation d'une huile de fusel
Un catalyseur pour la déshydratation d'huile de fusel est préparé à partir d'extrudats de Y-AI2O3 ayant un diamètre de 1,2 mm, une surface spécifique de 200 m2/g, une distribution de tailles de pores centrée autour de 124 Â et un volume poreux de 0,588 mL/g. Les extrudats sont broyés puis tamisés à 35-45 mesh (0,500-0,354 pm).
Un réacteur tubulaire en acier inoxydable, ayant un diamètre interne de 10 mm, est chargé avec 20 mL du catalyseur Y-AI2O3 ainsi obtenu. Les espaces vides de part et d'autre du catalyseur sont remplis avec du carbure de silicium (SiC) en poudre de 0,5 mm de diamètre.
Le profil de température est suivi à l'aide d'un thermocouple placé à l'intérieur du réacteur. La température du réacteur est augmentée à une vitesse de 60°C/h jusqu'à 550°C sous un flux de 45 NL/h d'azote et 10 NL/h d'air. La température est maintenue à 550°C et le flux d'azote réduit à 30 NL/h. Après 30 minutes, le flux d'azote est encore réduit à 10 NL/h. Après 30 minutes supplémentaires, le flux d'azote est arrêté et le flux d'air augmenté à 20 NL/h. Après 1 heure, la température du réacteur est abaissée à 400°C et le réacteur est purgé à l'azote.
Une charge d'huile de fusel brute biosourcée contenant, par rapport au poids total de la charge, environ 20,9 % en poids d'éthanol, 1,5 % en poids de propan-l-ol, 0,3 % en poids de butan-l-ol, 14,0 % en poids d'isobutanol, 45,6 % en poids de 3-méthyl-butan-l-ol, 16,7 % en poids de 2-méthyl-butan-l- ol, 0,1 % en poids de pentanoate d'éthyle, 0,3 % en poids d'hexanoate d'éthyle, des esters éthyliques supérieurs et des dérivés de pyrazine est filtrée pour retirer les particules fines.
Le flux d'azote dans le réacteur est remplacé par un flux de charge d'huile de fusel filtrée. La charge est envoyée, au travers d'un préchauffeur, sur le lit catalytique à une température initiale interne du réacteur de 400°C et une vitesse volumique horaire (WH) globale de 4 h 1. La température est augmentée jusqu'à 425°C.
Les tests catalytiques sont réalisés en courant descendant, à une pression de 2 barg (bar gauge, pression manométrique) dans une gamme de température allant de 300 à 450°C et avec un volume spatial horaire en poids (VSHP) allant de 2 à 7 h 1. L'analyse des produits est réalisée en utilisant un chromatographe en phase gazeuse en ligne.
Les résultats sont présentés dans le tableau 1 ci-dessous. Les valeurs sont données en pourcentage en poids par rapport au poids total des produits.
Tableau 1 : conversion des alcools (en % en poids)
La conversion complète des alcools est observée aux deux températures. A 400°C, le 3-méthyl-but-l- ène représente environ 53 % en poids des isoamylènes. En augmentant la température à 425°C, la proportion de 2-méthyl-but-2-ène parmi les oléfines en C5 augmente et la quantité totale d'isoamylènes diminue du fait de la formation de produits plus lourds.
Exemple 2 : déshydratation d'une huile de fusel distillée
Un catalyseur pour la déshydratation d'huile de fusel est préparé à partir d'une zéolithe de type ferriérite (Zeolyst CP914®, poudre) calcinée sous un flux de 50 NL/h d'azote à 550°C pendant 6 heures (1°C par minute). Le catalyseur est ensuite broyé puis tamisé à 35-45 mesh (0,500-0,354 pm).
Un réacteur tubulaire en acier inoxydable, ayant un diamètre interne de 10 mm, est chargé avec 10 mL (5,53 g) du catalyseur ferriérite ainsi obtenu. Les espaces vides de part et d'autre du catalyseur sont remplis avec du carbure de silicium (SiC) en poudre de 0,5 mm de diamètre. Le profil de température est suivi à l'aide d'un thermocouple placé à l'intérieur du réacteur. La température du réacteur est augmentée à une vitesse de 60°C/h jusqu'à 550°C sous un flux de 10 NL/h d'azote. Après 1 heure, la température du réacteur est abaissée à 260°C et le réacteur est purgé à l'azote.
Une charge d'huile de fusel biosourcée distillée (coupe 125-135°C) est préparée, contenant, par rapport au poids total de la charge, moins de 0,1 % en poids d'éthanol, moins de 0,1 % en poids de propan-l-ol, moins de 0,1 % en poids de butan-l-ol, environ 1,0 % en poids d'isobutanol, 83,5 % en poids de 3-méthyl-butan-l-ol, 13,8 % en poids de 2-méthyl-butan-l-ol, moins de 0,1 % en poids de pentanoate d'éthyle, des esters éthyliques supérieurs et des dérivés de pyrazine.
La charge d'huile de fusel distillée est envoyée, au travers d'un préchauffeur, sur le lit catalytique à une température initiale interne du réacteur de 260°C, une vitesse volumique horaire (WH) globale de 8 h 1 et une pression de 2 barg. La température est augmentée graduellement jusqu'à 375°C. L'analyse des produits est réalisée en utilisant un chromatographe en phase gazeuse en ligne.
A 375°C, on obtient un taux de conversion de l'alcool isoamylique de 78 %. En augmentant la température jusqu'à 400°C, le taux de conversion est supérieur à 99 %, avec 55 % de 2-méthyl-but-2- ène dans l'effluent. Ces conditions opératoires sont maintenues pendant 100 heures sans perte de sélectivité sensible.
Exemple 3 : déshydratation d'une huile de fusel distillée
Un catalyseur pour la déshydratation d'huile de fusel est préparé à partir d'une zéolithe de type ferriérite (Zeolyst CP914® CYL-1.6) sous forme d'extrudats broyés puis tamisés à 35-45 mesh (0,500- 0,354 pm).
Un réacteur tubulaire en acier inoxydable, ayant un diamètre interne de 10 mm, est chargé avec 10 mL du catalyseur ferriérite ainsi obtenu. Les espaces vides de part et d'autre du catalyseur sont remplis avec du carbure de silicium (SiC) en poudre de 0,5 mm de diamètre.
Le profil de température est suivi à l'aide d'un thermocouple placé à l'intérieur du réacteur. La température du réacteur est augmentée à une vitesse de 60°C/h jusqu'à 550°C sous un flux de 10 NL/h d'azote. Après 1 heure, la température du réacteur est abaissée à 270°C et le réacteur est purgé à l'azote.
Une charge d'huile de fusel biosourcée distillée (coupe 125-135°C) est préparée, contenant, par rapport au poids total de la charge, moins de 0,1 % en poids d'éthanol, moins de 0,1 % en poids de propan-l-ol, moins de 0,1 % en poids de butan-l-ol, environ 1,0 % en poids d'isobutanol, 83,5 % en poids de 3-méthyl-butan-l-ol, 13,8 % en poids de 2-méthyl-butan-l-ol, moins de 0,1 % en poids de pentanoate d'éthyle, des esters éthyliques supérieurs et des dérivés de pyrazine. La charge d'huile de fusel distillée est envoyée, au travers d'un préchauffeur, sur le lit catalytique à une température initiale interne du réacteur de 270°C, une vitesse volumique horaire (WH) globale de 8 h 1 et une pression de 2 barg. La température est augmentée graduellement jusqu'à 350°C. L'analyse des produits est réalisée en utilisant un chromatographe en phase gazeuse en ligne.
A 350°C, on obtient une conversion quasiment complète (moins de 1 % d'alcool) avec 60 % de 2- méthyl-but-2-ène dans l'effluent. En augmentant la température jusqu'à 360°C, on obtient 62-63 % de 2-méthyl-but-2-ène dans l'effluent. Ces conditions opératoires sont maintenues pendant 50 heures sans perte de sélectivité sensible. En augmentant la température jusqu'à 380°C, on observe une faible diminution de la proportion de 2-méthyl-but-2-ène dans l'effluent et une augmentation des proportions de trans-2-pentène et de cis-2-pentène.
Exemple 4 : mélange d'isomères isoamylène
Une déshydratation d'huile de fusel conduit au mélange d'isomères d'isoamylènes suivant : 3-méthyl- but-l-ène (3MB1), 2-méthyl-but-2-ène (2MB2) et 2-méthyl-but-l-ène (2MB1). Le ratio des isoamylènes dépend notamment du catalyseur de déshydratation utilisé, du temps de séjour et de la température utilisée lors de la réaction de déshydratation.
Un mélange d'isoamylène dans un ratio massique 2MB1/3MB1/2MB2 = 20/10/70 est testé en réaction d'oligomérisation dans un réacteur tubulaire double enveloppe garni avec 3,0g de catalyseur Si Al amorphe et 12g de billes de verre répartis de manière homogène (diamètre <lmm) pour constituer le lit catalytique. Le catalyseur silice alumine amorphe (ASA) présente une surface spécifique BET telle que mesurée par la méthode ASTM D 4365 - 95 (Reapproved 2008) allant de 100 à 550 m2/g et une taille de pores allant de 2 à 14 nm.
Le mélange des isoamylènes (2MB1/3MB1/2MB2 = 20/10/70) est introduit via la pompe HPLC refroidie à un débit de 0,3mL/min (WHSV = 4h-1) puis le réacteur est chauffé graduellement via un fluide caloporteur pour atteindre, dans le lit catalytique, 155°C. La pression est maintenue à 25 bars dans le système grâce à une vanne Kammer pilotée par un capteur de pression. Des échantillons sont prélevés après refroidissement à 0°C aux temps indiqués, dilués, puis analysés par GC-MS. Tableau 2 : résultats de l'oligomérisation
* La détection est effectuée à l'aide des étalons suivants : dosage C15 vs étalon 1-pentadécène (compté à 97%, GC) ; dosage CIO vs étalon 1-décène (compté à 98%, GC) ; composés C6-C9 estimés vs étalon 1-décène ; composés C11-C14 estimés vs étalon pentadécène ; Composés > C15 non dosés.
Le tableau 2 montre un taux de transformation très satisfaisant. On observe en outre, l'obtention de composés en C6-C9 et en Cll-14 en quantités non négligeables, ce qui permet d'obtenir des fluides hydrocarbonés adaptés à différentes applications. Exemple 5 : autre mélange d'isomères isoamylène
Un essai a été mis en oeuvre avec le mélange d'isomères d'isoamylènes suivant : 2MB1/3MB1/2MB2 = 14/53/33 (rapport massique) avec un catalyseur Si Al amorphe et un mode opératoire identique à celui de l'exemple 4. Les performances suivantes ont été obtenues : Tableau 3 : résultats de l'oligomérisation
* La détection est effectuée à l'aide des étalons suivants : dosage C15 vs étalon 1-pentadécène (compté à 97%, GC) ; dosage CIO vs étalon 1-décène (compté à 98%, GC) ; composés C6-C9 estimés vs étalon 1-décène ; composés C11-C14 estimés vs étalon pentadécène ; Composés > C15 non dosés. Le tableau 3 montre un taux de transformation satisfaisant et un rendement sur réactif non négligeable en ce qui concerne les composés différents des dimères (CIO) et trimères (C15), i.e. les composés en C6-C9 et C11-C14.

Claims

REVENDICATIONS
1. Procédé de préparation d'un fluide hydrocarboné comprenant une étape d'oligomérisation d'une composition hydrocarbonée initiale comprenant, par rapport au poids total de la composition hydrocarbonée initiale, au moins 2% en poids de 3-méthyl-but-l-ène, au moins 5% en poids de 2-méthyl-but-2-ène et au moins 5% en poids de 2-méthyl-but-l-ène.
2. Procédé selon la revendication précédente, dans lequel la composition hydrocarbonée initiale est issue de la biomasse.
3. Procédé selon l'une quelconque des revendications précédentes, dans lequel la composition hydrocarbonée initiale est obtenue par déshydratation d'alcool(s), de préférence par déshydratation d'huile de fusel.
4. Procédé selon l'une quelconque des revendications précédentes, dans lequel la composition hydrocarbonée initiale comprend au moins 20% en poids, de préférence au moins 30% en poids, préférentiellement au moins 40% en poids, plus préférentiellement au moins 50% en poids, encore plus préférentiellement au moins 60% en poids, d'oléfines ramifiées comportant 5 atomes de carbone choisis parmi le 3-méthyl-but-l-ène, le 2-méthyl-but-2-ène et le 2-méthyl-but-l-ène, par rapport au poids total de la composition initiale.
5. Procédé selon l'une quelconque des revendications précédentes, dans lequel la composition hydrocarbonée initiale comprend au moins 20% en poids, de préférence au moins 30% en poids, préférentiellement au moins 40% en poids, plus préférentiellement au moins 50% en poids, encore plus préférentiellement au moins 60% en poids, de 2-méthyl-but-2-ène, par rapport au poids total de la composition.
6. Procédé selon la revendication précédente, dans lequel la composition hydrocarbonée initiale comprend du 3-méthyl-but-l-ène en une proportion massique telle que le 3-méthyl-but-l- ène représente l'oléfine comportant 5 atomes de carbone majoritaire de la composition hydrocarbonée initiale.
7. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'étape d'oligomérisation est effectuée en présence d'un catalyseur choisi parmi l'alumine et les aluminosilicates.
8. Procédé selon l'une quelconque des revendications précédentes, dans lequel le catalyseur est un aluminosilicate et le ratio molaire S1O2/AI2O3 du catalyseur va de 10 à 80, de préférence de 15à 50.
9. Procédé selon l'une quelconque des revendications précédentes, dans lequel le catalyseur est un aluminosilicate mésoporeux présentant une surface spécifique BET supérieure ou égale à 50 m2/g, de préférence allant de 150 à 1200 m2/g, de préférence allant de 250 à 550 m2/g.
10. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel le catalyseur est un catalyseur Si Al amorphe (ASA) et présente de 5 à 95% en poids de silice (S1O2), une surface spécifique BET allant de 100 à 550 m2/g et une taille de pores accessibles allant de 2 à 14 nm.
11. Procédé selon l'une quelconque des revendications précédentes, mis en oeuvre à une température allant de 80 à 220°C, de préférence de 90 à 210°C, préférentiellement de 100 à 200°C.
12. Procédé selon l'une quelconque des revendications précédentes, mis en oeuvre à une pression allant de 2 à 50 bars, de préférence de 5 à 40 bars, préférentiellement de 10 à 30 bars.
13. Procédé selon l'une quelconque des revendications précédentes, comprenant en outre au moins une étape de traitement, de préférence une étape d'hydrogénation et/ou une étape de fractionnement.
14. Procédé selon l'une quelconque des revendications précédentes, comprenant une étape de recyclage d'un effluent comprenant les oléfines en C5 n'ayant pas réagi.
15. Fluide hydrocarboné susceptible d'être obtenue par le procédé selon l'une quelconque des revendications 1 à 14.
16. Utilisation du fluide hydrocarboné selon la revendication précédente, comme coupe solvante brute ou hydrogénée et/ou fractionnée pour la formulation des encres, des peintures, des vernis, des produits d'entretien, des lubrifiants pour le travail des métaux, des fluides diélectriques, des fluides de forage, des produits cosmétiques.
EP19711891.2A 2018-03-16 2019-03-15 Procede d'oligomerisation d'olefines Pending EP3765584A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP18305298 2018-03-16
EP19305166 2019-02-11
PCT/EP2019/056532 WO2019175377A1 (fr) 2018-03-16 2019-03-15 Procede d'oligomerisation d'olefines

Publications (1)

Publication Number Publication Date
EP3765584A1 true EP3765584A1 (fr) 2021-01-20

Family

ID=65818014

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19711891.2A Pending EP3765584A1 (fr) 2018-03-16 2019-03-15 Procede d'oligomerisation d'olefines

Country Status (6)

Country Link
US (1) US11198658B2 (fr)
EP (1) EP3765584A1 (fr)
KR (1) KR20200131815A (fr)
CN (1) CN111712560A (fr)
SG (1) SG11202007672TA (fr)
WO (1) WO2019175377A1 (fr)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3812683A1 (de) * 1988-04-16 1989-11-02 Erdoelchemie Gmbh Verfahren zur isomerisierung von alkenen mit endstaendiger doppelbindung zu alkenen mit innenstaendiger doppelbindung
WO2007104385A1 (fr) * 2006-03-10 2007-09-20 Exxonmobil Chemical Patents Inc. Diminution de la teneur en bases de lewis azotées pendant l'oligomérisation sur tamis moléculaire
FI120627B (fi) * 2007-08-24 2009-12-31 Neste Oil Oyj Menetelmä olefiinien oligomeroimiseksi
FR2940801B1 (fr) * 2009-01-06 2012-08-17 Arkema France Procede de fabrication d'un methacrylate de methyle derive de la biomasse
EP2404980A1 (fr) * 2010-07-08 2012-01-11 Total Raffinage Marketing Augmentation de la masse moléculaire moyenne de produits de départ d'hydrocarbure
EA034710B1 (ru) * 2015-01-29 2020-03-10 Ламмус Текнолоджи Инк. Производство олефинов c5 из потока углеводородов c5 установки парового крекинга

Also Published As

Publication number Publication date
WO2019175377A1 (fr) 2019-09-19
US11198658B2 (en) 2021-12-14
SG11202007672TA (en) 2020-09-29
US20210024437A1 (en) 2021-01-28
CN111712560A (zh) 2020-09-25
KR20200131815A (ko) 2020-11-24

Similar Documents

Publication Publication Date Title
CA2739640C (fr) Procede flexible de transformation de l&#39;ethanol en distillats moyens
EP1862528A1 (fr) Procédé de transformation de l&#39;éthanol en base pour carburant diesel
CA2931704C (fr) Procede de deshydratation d&#39;un melange contenant de l&#39;ethanol et de l&#39;isopropanol
FR3001728A1 (fr) Procede de preparation d’une olefine par conversion catalytique d’au moins un alcool
FR2968010A1 (fr) Procede de conversion d&#39;une charge lourde en distillat moyen
FR2969147A1 (fr) Production d&#39;additifs pour carburant par deshydratation et isomerisation squelettique simultanee d&#39;isobutanol sur des catalyseurs acides suivies par une etherification
EP3074368B1 (fr) Procede de deshydratation d&#39;un melange contenant de l&#39;ethanol et du n-propanol
FR2773558A1 (fr) Procede pour l&#39;obtention de 1-butene
WO2019175377A1 (fr) Procede d&#39;oligomerisation d&#39;olefines
FR3005049A1 (fr) Procede de metathese d&#39;olefines issues de coupes fischer-tropsch utilisant un complexe du ruthenium comportant un diaminocarbene n-heterocyclique dissymetrique
FR2492809A1 (fr) Procede d&#39;obtention d&#39;une olefine par decomposition de l&#39;ether correspondant
FR3042189A1 (fr) Procede pour produire un hydrocarbure aromatique, du p-xylene et de l&#39;acide terephtalique
FR2922546A1 (fr) Utilisation d&#39;un catalyseur a base d&#39;im-5 pour la transformation d&#39;alcools ayant au moins deux atomes de carbone en base carburants diesel
WO2012153011A2 (fr) Procede de production de coupes kerosene ou gazole a partir d&#39;une charge olefinique ayant majoritairement de 4 a 6 atomes de carbone
US20220234969A1 (en) Upgrading fusel oils over doped alumina
WO2018015112A1 (fr) Nouveaux procedes d&#39;obtention de composes aromatiques a partir de composes furaniques et d&#39;ethanol
EP2895448A1 (fr) Procédé de production de kérosène à partir de butanols
EP1396532B1 (fr) Procédé de valorisation d&#39;une charge d&#39;hydrocarbures et de diminution de la tension de vapeur de ladite charge
LU85406A1 (fr) Procede de craquage catalytique de distillets legers
WO2024042194A1 (fr) Procédé de déshydratation d&#39;une charge comprenant un alcool pour la production d&#39;alcènes
EP4355841A1 (fr) Fluides hydrocarbones biosources
WO2003085014A1 (fr) Melanges hydrocarbones comprenant des hydrocarbures aromatiques polycycliques modifies
FR2981066A1 (fr) Procede de preparation de jet fuel a partir de molecules issues de la biomasse.
FR3053265A1 (fr) Procede d&#39;oligomerisation utilisant un catalyseur composite a base de silice-alumine et de zeolithe
EP3456702A1 (fr) Procede de deshydratation des alcools en olefines comprenant le recyclage des alcools

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200916

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20211201

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TOTALENERGIES ONETECH