EP3763167B1 - Composant électrique plat et procédé de fabrication - Google Patents

Composant électrique plat et procédé de fabrication Download PDF

Info

Publication number
EP3763167B1
EP3763167B1 EP19709468.3A EP19709468A EP3763167B1 EP 3763167 B1 EP3763167 B1 EP 3763167B1 EP 19709468 A EP19709468 A EP 19709468A EP 3763167 B1 EP3763167 B1 EP 3763167B1
Authority
EP
European Patent Office
Prior art keywords
sheet metal
electrical component
adhesive layer
electrically conductive
metal panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19709468.3A
Other languages
German (de)
English (en)
Other versions
EP3763167A1 (fr
Inventor
Ronald Fluch
Gerhard Mayrhofer
Siegfried Schreiner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Stahl GmbH
Original Assignee
Voestalpine Stahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine Stahl GmbH filed Critical Voestalpine Stahl GmbH
Publication of EP3763167A1 publication Critical patent/EP3763167A1/fr
Application granted granted Critical
Publication of EP3763167B1 publication Critical patent/EP3763167B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/009Heaters using conductive material in contact with opposing surfaces of the resistive element or resistive layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/04Heating means manufactured by using nanotechnology

Definitions

  • the invention relates to a surface electrical component, a sheet metal strip composite material for a surface electrical component and a method for producing a surface electrical component.
  • the invention further relates to devices such as containers, protective walls and roof, wall, ceiling and floor panels for buildings, which include a surface electrical component, for example in the form of a surface heating and/or a surface deformation sensor.
  • heaters or sensors are integrated as separate units in flat components such as walls of containers or building wall surfaces if a corresponding functionality (heating of the environment, detection of environmental influences) is desired. For example, it is known to attach heating wires, heating coils, heating mats or heating coatings to surface elements or to provide pressure sensors in walls.
  • Heating coatings require large layer thicknesses to conduct current in the layer plane and expensive fillers (e.g. silver) as well as complex electrode structures to achieve the required electrical conductivity. If the heating coatings are to be applied to an electrically conductive substrate, this must be electrically insulated from the heating coating, for example by pre-painting, which leads to high disposal costs when scrapping in large-area applications.
  • a heating device in which a heating layer and a second contacting layer are applied to a substrate forming a first contacting layer via a sequence of coating processes.
  • the heating layer can be applied by spraying, rolling or doctoring.
  • EP 2 457 412 B1 describes a high-temperature heater that uses heating element layers formed from a flowable base material and carbon nanotubes dispersed therein.
  • US 2016/0113065 A1 describes an electrical heating mat that is constructed from two conductors and a heating element arranged between them that includes an electrically conductive material.
  • KR 2011 0088934 A describes a surface heating element which contains two conductors made of a metal foil and an electrically conductive element in between.
  • One task on which the invention is based can be seen in creating a surface electrical component that has an integral, surface electrical functionality, such as heating or sensors, and can be produced inexpensively.
  • the surface electrical component should have a high structural suitability for a variety of applications and areas of use.
  • an object on which the invention is based can be seen in creating a cost-effective sheet metal strip composite material for a flat electronic component and in specifying methods which are used to produce a sheet metal strip composite material as a preliminary product of the flat electronic component.
  • a surface electrical component comprises a first sheet metal panel, a second sheet metal panel and an electrically conductive adhesive layer which is arranged between mutually facing surfaces of the first sheet metal panel and the second sheet metal panel.
  • the first sheet metal panel forms a first electrode of the surface electrical component
  • the second sheet metal panel forms a second electrode of the surface electrical component and, during operation, a current flows from the first sheet metal panel to the second sheet metal panel through the electrically conductive adhesive layer in the direction perpendicular to the adhesive layer plane.
  • the two sheet metal panels which can be blanks made from a rolled sheet metal strip, are held together by the electrically conductive adhesive layer.
  • the first sheet metal panel is made of a steel material.
  • the second sheet metal panel consists of a steel material or an aluminum material.
  • the electrically conductive adhesive layer is based on a baking varnish.
  • the electrically conductive adhesive layer is therefore a chemically curable adhesive layer in which the first and second sheet metal panels are bonded via activation of the chemically curable adhesive layer.
  • the electrical conductivity of the adhesive layer can be brought about, for example, by an electrically conductive filler material (e.g. metal particles, carbon particles, such as conductive carbon black, graphite particles or nano-carbon particles, such as nanotubes) or by using an intrinsically conductive polymer adhesive.
  • an electrically conductive filler material e.g. metal particles, carbon particles, such as conductive carbon black, graphite particles or nano-carbon particles, such as nanotubes
  • the current flow direction perpendicular to the layer plane of the adhesive layer ensures that the layer material only has to have a relatively low electrical conductivity compared to arrangements in which the current flow takes place in the layer plane.
  • a relatively low fill factor of conductive particles may be sufficient to produce the desired electrical layer properties.
  • the vertical flow of current enables a high level of reliability of the surface electrical component, since an interruption of the current flow can practically not occur due to the large cross section.
  • the electrically conductive adhesive layer is an adhesive layer based on chemical curing (crosslinking).
  • the chemical hardening of the adhesive layer also contributes to the robustness of the surface electrical component and thus to its reliability.
  • the electrically conductive adhesive layer is based on a baking varnish.
  • Baked varnish layers are chemically curable adhesive layers specially developed for electrical core construction, which offer high mechanical and thermal (long-term) stability as well as high corrosion protection.
  • a metallic corrosion protection layer for example a corrosion protection layer based on zinc and / or aluminum.
  • the corrosion protection layer it can also be provided that one or both of the mutually facing surfaces of the two electrical panels are covered with an electrically conductive lacquer layer whose specific electrical resistance is smaller than a specific electrical resistance of the adhesive layer.
  • an electrically conductive lacquer layer whose specific electrical resistance is smaller than a specific electrical resistance of the adhesive layer. This can ensure that the electrode surface adjacent to the electrically conductive adhesive layer (which is formed by the surface of the electrically conductive lacquer layer) has uniform and defined electrical properties and the underlying electrode materials (for example the metallic corrosion protection layer or the sheet material of the sheet metal panels) are protected from reactions ( e.g. oxidation) are protected with ambient media (e.g. air).
  • the adhesive layer can be arranged in the form of a pattern that partially covers the mutually facing surfaces.
  • cost savings can be achieved by reducing the amount of adhesive required (if necessary with a corresponding amount of filling material).
  • spacers are arranged between the mutually facing surfaces.
  • the spacers increase the reliability of the surface electrical component and can, especially in combination with a An adhesive layer that is only applied to part of the surface can result in cost savings.
  • the sheet metal panels can be comparatively large and have side lengths in one or both dimensions equal to or greater than 1.0 m, 2.0 m, 3.0 m or 4.0 m, etc.
  • the surface electrical component can, for example, have an electrical functionality as an electrical surface heating and/or as an electrical surface deformation sensor. These or other electrical functionalities can also be used together. As will be explained in more detail below by way of example, this results in a variety of applications and possible uses. In particular, applications are possible in which high mechanical stability, load-bearing capacity and robustness and/or large areas are required and/or high corrosion resistance or resistance to environmental influences are required.
  • Products that consist of or can have the surface electrical component described here are therefore, for example, containers, roof, wall, ceiling and/or floor panels for buildings as well as protective walls with integrated breakthrough protection and/or integrated impact detection.
  • a further aspect relates to a method for producing a surface electrical component, which involves separating a sheet metal strip, over one surface of which an electrically conductive adhesive layer is applied, into first sheet metal panels, and bonding the first sheet metal panels using the adhesive layer to second sheet metal panels, in such a way that first sheet metal panel, a first electrode of the surface electrical component and the second sheet metal panel, a second electrode of the surface electrical component form, includes. It is again provided that the current flow between the sheet metal panel via the electrically conductive adhesive layer takes place perpendicular to the adhesive layer plane.
  • the first sheet metal panel is made of a steel material.
  • the second sheet metal panel consists of a steel material or an aluminum material.
  • the electrically conductive adhesive layer is based on a baking varnish and is applied over a surface of the sheet metal strip.
  • the first sheet metal panels can be glued to the second sheet metal panels in a pressing station using surface pressure and an energy supply to activate the adhesive layer.
  • the process can, for example, be carried out entirely at the customer's site, i.e. after delivery of the sheet metal strip with the electrically conductive adhesive layer applied thereon by the steel producer. It is also possible, for example, for the step of separating the sheet metal strip to be carried out by the steel producer and the remaining steps by the customer.
  • Another aspect relates to a method for producing a sheet metal strip composite material, which is intended as a preliminary product for the production of a surface electrical component according to the above description.
  • the method includes producing a rolled sheet metal strip from a steel material and applying an electrically conductive adhesive layer based on a baking varnish over a surface of the rolled sheet metal strip.
  • the method can also produce a metallic corrosion protection layer, in particular a corrosion protection layer based on zinc and/or aluminum, over the surface of the rolled sheet metal strip before applying the electrically conductive adhesive layer and/or producing an electrically conductive lacquer layer over the surface of the rolled sheet metal strip before applying the electrically conductive adhesive layer.
  • a metallic corrosion protection layer in particular a corrosion protection layer based on zinc and/or aluminum
  • the specific electrical resistance of the electrically conductive lacquer layer can be smaller than a specific electrical resistance of the adhesive layer.
  • a cost-effective way of applying the electrically conductive adhesive layer is to apply it by roller application or by a printing process, in particular screen printing.
  • Both the production process and the creation of the (optional) metallic corrosion protection layer and/or the (optional) electrically conductive paint layer can be carried out entirely at the steel producer, i.e. for example on site in the steelworks.
  • over as used in reference to an element or layer of material formed or applied “over” a surface may be used herein to mean that the element or layer of material is “indirectly on” the Surface is attached, wherein intermediate elements or layers may be present between the surface and the element or layer of material.
  • the term “over” may also have the specific meaning that the element or layer of material that is applied or applied “over” a surface is applied “directly on”, i.e., for example, in direct contact with the surface in question. The same applies to similar terms such as “above”, “below”, “underneath”, etc.
  • Figure 1 shows an exemplary surface electrical component 100 according to a first embodiment.
  • the surface electrical component 100 contains a first sheet metal panel 110, a second sheet metal panel 120 and an electrically conductive adhesive layer 130, which is arranged between mutually facing surfaces 110A and 120B of the first sheet metal panel 110 and the second sheet metal panel 120, respectively.
  • the sheet metal panels 110, 120 can be shaped blanks that were produced from a continuous sheet metal strip, for example by dividing it transversely.
  • the first and second sheet metal panels 110, 120 can, for example have a thickness equal to or greater than 0.5 mm, 0.75 mm, 1.0 mm, 1.5 mm, 2.0 mm or 2.5 mm.
  • the thickness and the material (for example steel) of the sheet metal panels 110, 120 can depend on the intended purpose of the surface electrical component 100, that is to say in particular depend on the mechanical and/or structural stability that is required of the surface electrical component 100 in the respective application.
  • both sheet metal panels 110, 120 are made of a steel material.
  • the sheet metal panel 110 can consist of a different metallic material than the sheet metal panel 120.
  • the sheet metal panel 110 is made of a steel material to ensure sufficient mechanical and/or structural stability
  • the second sheet metal panel 120 is made of an aluminum material.
  • the thermal insulation properties can advantageously be improved here, since in particular the emissivity values (measure of the heat radiation that a material exchanges with its surroundings) can be kept low when using aluminum. In such a case, the thickness of the aluminum material would advantageously be less than or equal to 0.1 mm.
  • the electrically conductive adhesive layer 130 can consist of a chemically curable adhesive which is present in a cured form in the finished surface electrical component 100.
  • the electrically conductive adhesive layer 130 thus bonds the two sheet metal panels 110, 120.
  • the adhesive can be, for example, a polymerization adhesive, a polycondensation adhesive or a polyaddition adhesive.
  • the electrically conductive adhesive layer 130 is made on the basis of a baking varnish layer.
  • Well-known baking varnish layers are epoxy resin-based baking varnish layers with latent hardener.
  • An advantageous composition can result if the organic material of the (dried) baking varnish layer contains, for example, 7.5 to 10.5% by volume of latent hardener and, for example, 89.5 to 92.5% by volume of epoxy resin.
  • the baking varnish contains fillers (e.g. electrically conductive particles made of carbon (e.g. soot particles, carbon nanotubes, etc.) or metal particles) in order to adjust the electrical conductivity according to the specific intended use in the product, and the rest can be used in the (dried ) Baking varnish layer may also contain possible impurities.
  • the electrical conductivity of the electrically conductive adhesive layer 130 can be achieved by fillers (for example by adding electrically conductive particles as mentioned above), or it is possible to use an intrinsically conductive organic adhesive.
  • the layer thickness of the electrically conductive adhesive layer 130 can, for example, be equal to or greater than 30 ⁇ m, 50 ⁇ m, 75 ⁇ m, 100 ⁇ m or 150 ⁇ m. Larger layer thicknesses in the range of over 200 pm, 300 ⁇ m, 400 ⁇ m are also possible.
  • the ratio of the thickness of at least one of the first and second sheet metal panels 110, 120 to the layer thickness of the electrically conductive adhesive layer 130 can, for example, be equal to or greater than 5, 10, 15 or 20.
  • the first sheet metal panel 110 forms a first electrode of the surface electrical component 100 and the second sheet metal panel 120 forms a second electrode of the surface electrical component 100.
  • a current flow from the first sheet metal panel 110 to the second sheet metal panel 120 (or vice versa) occurs perpendicular to the plane of the electrically conductive adhesive layer 130.
  • the surface electrical component 100 can have different electrical functionalities. In a first example it is used as surface heating.
  • the two electrodes first and second sheet metal panels 110, 120
  • the current is coupled into the surface electrical component 100 via the two sheet metal panels 110, 120.
  • the electrically conductive adhesive layer 130 acts as a heating coating in which the heat development takes place.
  • the surface electrical component 100 can also serve as a sensor.
  • the two electrodes (sheet metal panels 110, 120) are connected to a measuring device M.
  • the measuring device M evaluates an electrical quantity at its input. For example, an electrical resistance is measured or monitored. A change in resistance may indicate a structural change (e.g. deformation, damage, destruction, etc.) of the surface electrical component 100.
  • Figure 2 shows a simplified representation of an equivalent circuit diagram of the surface electrical component 100. Shown are an electrical device SQ/M (e.g. current source and/or measuring device) and the sheet resistance R KS of the electrically conductive adhesive layer 130.
  • the equivalent circuit diagram refers to a design in which the electrical sheet resistance R KS of the electrically conductive adhesive layer 130 is significantly greater than the electrical resistance of the sheet metal panels 110, 120.
  • Values for ⁇ KS can vary over a wide range depending on the application and can, for example, be equal to or larger or smaller than 20 k ⁇ m, 60 k ⁇ m, 200 k ⁇ m, 800 k ⁇ m, 1000 k ⁇ m or 3000 k ⁇ m. In general, values in the range from k ⁇ m to several M ⁇ m can be expected.
  • a layer thickness SD of, for example, 30 ⁇ m, this would result in a value for ⁇ KS of 800 k ⁇ m.
  • a desired heating output of the surface electrical component 100 can be set as desired by selecting suitable values for A and/or SD and/or ⁇ KS .
  • Figure 3A shows a detail D1 Figure 1 .
  • a metallic corrosion protection layer 111 (for example corrosion protection layer based on zinc and/or aluminum) is arranged above the surface 110A of the first sheet metal panel 110, which thus runs between the adhesive layer 130 and the base material (for example steel) of the first sheet metal panel 110.
  • the corrosion protection layer 111 can completely cover the surface 110A of the first sheet metal panel 110.
  • Figure 3B shows a second example of detail D1, which differs from that in Figure 3A
  • the example shown differs only in that an electrically conductive lacquer layer 112 is provided between the metallic corrosion protection layer 111 and the adhesive layer 130.
  • the electrically conductive paint layer 112 can consist of an organic conductive paint, increase corrosion protection and create an electrode contact surface for the adhesive layer 130 that is improved in terms of electrical and structural properties.
  • the electrically conductive lacquer layer 112 can have a significantly higher specific electrical conductivity than the adhesive layer 130.
  • the thickness of the electrically conductive lacquer layer 112 can be significantly less than the thickness of the electrically conductive adhesive layer 130 and, for example, be equal to or less than 20 ⁇ m, 15 ⁇ m or 10 ⁇ m.
  • the electrically conductive lacquer layer 112 can have a high flatness and act as an electrode finish that improves the electrode surface.
  • Figure 3C shows another example of detail D1 Figure 1 , in which compared to the example of Figure 3B the metallic corrosion protection layer 111 is dispensed with. Otherwise they are too Figures 3A and 3B information provided on the in Figure 3C Example shown transferable.
  • the second electrode of the surface electrical component 100 comprising the second sheet metal panel 120 is analogous to that in Figures 3A to 3C shown layer sequences can be realized.
  • Figure 4 shows an exemplary surface electrical component 400 according to a second embodiment.
  • the surface electrical component 400 differs from the surface electrical component 100, for example, only in that a protective layer 410 or 420 is applied to one or both outer surfaces of the sheet metal panels 110, 120 (ie on a surface 110B or a surface 120A).
  • the protective layers 410, 420 can consist of a polymer material, for example. For example, a polyester material can be used.
  • the protective layers 410, 420 can cause electrical insulation of the electrodes from the outside.
  • the protective layers 410, 420 can enable the surface electrical component 400 to have a desired appearance, such as is required, for example, for wall, floor or ceiling surfaces on the outside or inside of buildings.
  • the protective layers 410, 420 can be highly scratch-resistant and/or highly UV-resistant surface layers, which are already used, for example, for facade applications on coated steel facades.
  • the thickness of the protective layers 410, 420 can, for example, be equal to or smaller or larger than 15 ⁇ m, 25 ⁇ m, 35 ⁇ m or 50 ⁇ m. In this way, surface electrical components 400 can be produced, which are electrically insulated from the outside and can be used in the same way as known wall structures based on coated steels, but in contrast to these have an integrated electrical functionality.
  • Figure 5A shows a perspective view of a partially cut open surface electrical component 500.
  • the surface electrical component 500 can be constructed according to one or more of the previously described examples, but with the modification that the electrically functional adhesive layer 130 is arranged as a pattern that only partially covers the surfaces 110A and 120B.
  • FIG. 5A A grid-shaped adhesive pattern is shown.
  • the Figures 5B and 5C show surface electrical components 500 with a stripe pattern or an adhesive pattern consisting of dots.
  • the representations in the Figures 5A to 5C are merely examples and a variety of other pattern shapes can be realized.
  • the degree of coverage of the adhesive layer 130 can be equal to or less than 80%, 60%, 40% or 20% of the surface of the base.
  • Side lengths L1 and/or L2 of the sheet metal panels 110, 120 can be equal to or greater than 1.0 m, 2.0 m, 3.0 m or 4.0 m for all surface electrical components 100, 400, 500 described here as examples.
  • spacers can be provided between the sheet metal panels 110, 120.
  • Figure 6A illustrated in the form of a detailed representation of detail D2 in Figure 4 a first example in which spacers 610_1 are inserted, for example in the form of an insert structure, between the sheet metal panels 110, 120 before they are glued together.
  • Figure 6B illustrates another possibility in which spacers 610_2 in the form of beads, for example glass beads, are introduced between the sheet metal panels 110, 120 together with the adhesive (ie dispersed in them). Both options can be used with both full-surface adhesive layers 130 and partially patterned adhesive layers 130 (see Figures 5A-5C ) can be used.
  • the spacers 610_1, 610_2 can have a thickness (or average diameter) of, for example, equal to or smaller or larger than 30 pm, 50 ⁇ m, 75 pm, 100 ⁇ m, 125 ⁇ m, 150 ⁇ m, 175 ⁇ m or 200 ⁇ m.
  • Figure 7 shows an example of the use of surface electrical components 100, 400, 500 as wall and ceiling panels for a covered lounge area, for example a bus stop.
  • surface electrical components 100, 400, 500 as wall and ceiling panels for a covered lounge area, for example a bus stop.
  • Many other indoor and outdoor applications are possible, for example as floor heating or wall heating in buildings or as radiant heat sources in halls or churches (where convection heating is expensive) or outdoors.
  • Figure 8 shows by way of example the use of surface electrical components 100, 400, 500 as the walls of storage containers 800.
  • the storage containers can be, for example, containers for liquid, gaseous or solid, in particular free-flowing substances, for example large-volume storage containers for gases or liquids, or silos .
  • the Surface electrical components 100, 400, 500 can be operated here, as in many other applications, as a heater, as a pressure or deformation sensor or as both.
  • Figure 9 shows an example of the use of surface electrical components 100, 400, 500 as the wall of a storage container (electric box) 900 for an electric battery, for example a battery in the field of electromobility.
  • a storage container (electric box) 900 for an electric battery for example a battery in the field of electromobility.
  • the same statements as for Figure 8 apply accordingly to this application, although here too the combination of heatability and/or deformation sensors as well as structural stability and robustness can be very important.
  • Figure 10 shows an example of the use of surface electrical components 100, 400, 500 as a protective wall 1000 with integrated breakthrough protection and/or integrated impact detection.
  • the protective wall 1000 can be a guardrail in road traffic.
  • Figure 11 shows an example of the use of surface electrical components 100, 400, 500 as a robust counter 1100.
  • a floor area for example of a road, consists of a surface electrical component, which is used as a sensor for motor vehicles or other movable goods driving over it.
  • a measurement variable is generated which can be detected and verified by the measuring device M.
  • the functionality of the surface electrical components 100, 400, 500 as a sensor an evaluation of electrical signals from the electrodes in a measuring device does not necessarily have to take place.
  • material fatigue processes can be localized at an early stage and then remedied appropriately.
  • Figure 12A shows, in an exemplary form, a process for producing a sheet metal strip composite material intended as a preliminary product for the production of a surface electrical component.
  • the starting product of the process is a rolled sheet metal strip 1210, as is produced in a steelworks using known process steps (for example hot rolling, cold rolling, galvanizing, etc.).
  • the sheet metal strip 1210 can be, for example, a steel strip.
  • cold-rolled steel strips, electrolytically galvanized steel strips, hot-dip galvanized steel strips or hot-dip galvanized steel strips with zinc-magnesium-aluminum (ZM) coating can be used.
  • Possible coatings e.g. metallic corrosion protection layer(s) and/or electrically conductive paint layer
  • Figure 12A Possible coatings (e.g. metallic corrosion protection layer(s) and/or electrically conductive paint layer) have been described previously and are in Figure 12A not shown.
  • the sheet metal strip 1210 is fed to a coating station 1250.
  • an electrically conductive adhesive layer 130 ' is applied over a surface (corresponds to in the Figure 1 the surface 110A of the first sheet metal panel 110 or the surface 120B of the second sheet metal panel 120).
  • the electrically conductive adhesive layer 130' can be applied, for example, by roller application, a screen printing process, possibly roller screen printing, or by a spraying process, in which case in all cases either a full-surface or partial-surface patterned coverage of the sheet metal strip 1210 with the electrically conductive adhesive layer 130' can be achieved can.
  • a protective layer 410, 420 can be applied, as is the case in connection with Figure 4 has already been explained.
  • the sheet metal strip 1210 coated with the electrically conductive adhesive layer 130 ' can then be guided through a drying station 1260.
  • the electrically conductive adhesive layer 130' is dried so that subsequent handling processes, such as winding into a coil or stacking coated sheet metal panels, become possible.
  • the electrically conductive adhesive layer 130' is not yet activated, i.e. the chemical reaction (for example crosslinking) of the adhesive is not initiated.
  • Figure 12B shows an example through the in Figure 12A Sheet metal strip composite material produced by the process 1200. It can contain, in a manner not shown, all of the previously described additional layers (e.g. metallic corrosion protection layer 111, electrically conductive lacquer layer 112) and/or can be implemented, for example, without a protective layer 410.
  • the layer thicknesses of the not yet activated electrically conductive adhesive layer 130 ' can be in the range of the same values as those mentioned above for the layer thickness SD of the electrically conductive adhesive layer 130 in the surface electrical component 100, 400, 500. The same applies to the remaining information on the electrically conductive adhesive layer 130, in particular for the values of the specific electrical resistance ⁇ KS , which can also be transferred to the not yet activated electrically conductive adhesive layer 130 '.
  • Figure 13 illustrates in an exemplary manner a method for producing a surface electrical component 100, 400, 500 from sheet metal strip composite material 1200.
  • the sheet metal strip composite material 1200 can, for example, be in the form of a coil (winding) which was delivered from a steelworks to a customer.
  • the sheet metal strip 1200 is separated in a separating station 1350.
  • the sheet metal strip composite material 1200 can be separated either at the steel manufacturer, or after delivery of the sheet metal strip composite material 1200 at the customer. In the first case, either sheet metal panels 110, 120 are delivered already cut to size or sheet metal panels are delivered that are brought into the final shape in a subsequent shape cutting at the customer's premises.
  • Two sheet metal panels 110, 120 are then glued to form a surface electrical component 100, 400, 500 using the adhesive layer 130'.
  • two sheet metal panels 110, 120 are used at 1360 mutually facing electrically conductive adhesive layers 130 'arranged one above the other and pressed together in a bonding station 1370 using surface pressure (F) and supplying energy. This activates the electrically conductive adhesive layer 130', which can be based on a chemical reaction, for example a 3-dimensional crosslinking of the adhesive.
  • the hardenable adhesive layer 130' can be hardened by heating the pressed sheet metal panels 110, 120, for example in an oven or a heatable press, to a temperature T that is higher than the ambient temperature, whereby the hardened electrically conductive adhesive layer 130 is formed.
  • Other activation processes which can be based, for example, on the use of radiant energy, are also conceivable.
  • the surface electrical component 100, 400, 500 is mechanically completed and can be removed from the bonding station 1370 (e.g. oven or press).
  • the surface electrical component 100, 400, 500 can optionally be installed and put into operation.
  • different sheet metal panels can also be glued.
  • an electrically conductive adhesive layer 130' can only be provided on one of the two sheet metal panels and/or it is possible for different electrically conductive lacquer layers, protective layers and/or different panel thicknesses to be used.
  • one of the two sheet metal panels eg the sheet metal panel forming an outer wall
  • can be significantly thicker for example the same or more than 2, 3, 4 times as thick
  • the two protective layers 410, 420 can be different, since one protective layer (for example, the inner wall of a container) is exposed to different attacks than, for example, the protective layer on an outer wall of the container, or because, for example, different optical requirements (visible surface/not -visible surface).
  • one protective layer for example, the inner wall of a container
  • optical requirements visible surface/not -visible surface

Landscapes

  • Laminated Bodies (AREA)

Claims (16)

  1. Composant électrique de surface, comprenant :
    un premier panneau de tôle (110) ;
    un deuxième panneau de tôle (120) ; et
    une couche d'adhésif électroconductrice (130) disposée entre les surfaces en regard l'une de l'autre du premier panneau de tôle (110) et du deuxième panneau de tôle (120), dans lequel
    le premier panneau de tôle (110) forme une première électrode du composant électrique de surface,
    le deuxième panneau de tôle (120) forme une deuxième électrode du composant électrique de surface et
    un courant circule du premier panneau de tôle (110), à travers la couche d'adhésif électroconductrice (130), vers le deuxième panneau de tôle (120) perpendiculairement au plan de la couche d'adhésif, caractérisé en ce que le premier panneau de tôle (110) est constitué d'un matériau d'acier, le deuxième panneau de tôle (120) est constitué d'un matériau d'acier ou d'un matériau d'aluminium et la couche d'adhésif électroconductrice (130) est réalisée à base d'un vernis de cuisson.
  2. Composant électrique de surface selon la revendication 1, dans lequel au moins l'une des surfaces en regard l'une de l'autre ou les deux sont recouvertes d'une couche métallique de protection contre la corrosion (111).
  3. Composant électrique de surface selon la revendication 1 ou 2, dans lequel au moins l'une des surfaces en regard l'une de l'autre ou les deux sont recouvertes d'une couche de vernis électroconductrice (112), dont la résistance électrique spécifique est inférieure à une résistance électrique spécifique de la couche d'adhésif électroconductrice (130).
  4. Composant électrique de surface selon l'une des revendications précédentes, dans lequel une résistivité électrique de la couche d'adhésif électroconductrice (130) est égale ou supérieure à 20 kWm, 60 kWm, 200 kWm, 800 kWm, 1000 kWm ou 3000 kWm.
  5. Composant électrique de surface selon l'une des revendications précédentes, dans lequel des entretoises (610_1, 610_2) d'une épaisseur égale ou supérieure à 30 µm, 50 pm, 75 pm, 100 pm, 125 µm, 150 µm, 175 µm ou 200 µm sont disposées entre les surfaces en regard l'une de l'autre.
  6. Composant électrique de surface selon l'une des revendications 1 à 4, dans lequel l'épaisseur de la couche d'adhésif électroconductrice (130) est égale ou supérieure à 30 µm, 50 µm, 75 µm, 100 µm ou 150 µm.
  7. Composant électrique de surface selon l'une des revendications précédentes, dans lequel l'épaisseur d'au moins l'un des panneaux de tôle (110, 120) ou des deux est égale ou supérieure à 0,5 mm, 0,75 mm, 1,0 mm, 1,5 mm, 2,0 mm ou 2,5 mm.
  8. Composant électrique de surface selon l'une des revendications précédentes, dans lequel au moins l'un des panneaux de tôle (110, 120) ou les deux présentent une longueur de côté égale ou supérieure à 1,0 m, 2,0 m, 3,0 m ou 4,0 m.
  9. Composant électrique de surface selon l'une des revendications précédentes, qui est un chauffage électrique de surface ou un capteur électrique de déformation de surface.
  10. Récipient (800, 900) ayant une paroi comprenant un composant électrique de surface selon la revendication 9.
  11. Panneaux de toit, de mur, de plafond et/ou de sol pour des bâtiments et/ou des zones de séjour couvertes, comprenant un composant électrique de surface selon l'une des revendications 1 à 8, qui est un chauffage électrique de surface.
  12. Paroi de protection (1000) comportant une protection intégrée contre la perforation et/ou la détection intégrée d'impacts, comprenant un composant électrique de surface selon l'une des revendications 1 à 8, qui est un capteur électrique de déformation de surface.
  13. Procédé de fabrication d'un composant électrique de surface, comprenant :
    la séparation (1350) d'une bande de tôle (1210) en des premiers panneaux de tôle (110) ; et
    le collage des premiers panneaux de tôle (110) au moyen d'une couche d'adhésif (130) respectivement à des deuxièmes panneaux de tôle (120), de telle sorte que
    le premier panneau de tôle (110) forme une première électrode du composant électrique de surface,
    le deuxième panneau de tôle (120) forme une deuxième électrode du composant électrique de surface, et dans lequel
    un courant circule du premier panneau de tôle (110), à travers la couche d'adhésif électroconductrice (130), vers le deuxième panneau de tôle (120) perpendiculairement au plan de la couche d'adhésif, caractérisé en ce que
    le premier panneau de tôle (110) est constitué d'un matériau d'acier,
    le deuxième panneau de tôle (120) est constitué d'un matériau d'acier ou d'un matériau d'aluminium et
    la couche d'adhésif électroconductrice (130) est réalisée à base d'un vernis de cuisson et est appliquée sur une surface de la bande de tôle (1210).
  14. Procédé selon la revendication 13, dans lequel le collage est effectué dans un poste de pressage (1370) au moyen d'une pression de surface et d'un apport d'énergie destiné à activer la couche d'adhésif électroconductrice.
  15. Procédé de production d'un matériau composite de bande de tôle qui est prévu en tant que précurseur pour la fabrication d'un composant électrique de surface selon la revendication 13, le procédé comprenant :
    la fabrication d'une bande de tôle laminée (1210) à partir d'un matériau d'acier ; et
    l'application d'une couche d'adhésif électroconductrice (130) réalisée à base d'un vernis de cuisson sur une surface de la bande de tôle laminée (1210).
  16. Procédé selon la revendication 15, dans lequel l'application de la couche d'adhésif électroconductrice (130) est réalisée par une application au rouleau ou par un procédé d'impression, notamment par sérigraphie.
EP19709468.3A 2018-03-07 2019-03-06 Composant électrique plat et procédé de fabrication Active EP3763167B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018203430.3A DE102018203430A1 (de) 2018-03-07 2018-03-07 Flächenelektrobauteil und verfahren zur herstellung
PCT/EP2019/055523 WO2019170720A1 (fr) 2018-03-07 2019-03-06 Composant électrique de surface et son procédé de fabrication

Publications (2)

Publication Number Publication Date
EP3763167A1 EP3763167A1 (fr) 2021-01-13
EP3763167B1 true EP3763167B1 (fr) 2024-02-21

Family

ID=65686879

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19709468.3A Active EP3763167B1 (fr) 2018-03-07 2019-03-06 Composant électrique plat et procédé de fabrication

Country Status (3)

Country Link
EP (1) EP3763167B1 (fr)
DE (1) DE102018203430A1 (fr)
WO (1) WO2019170720A1 (fr)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3535494A (en) * 1966-11-22 1970-10-20 Fritz Armbruster Electric heating mat
US4689475A (en) * 1985-10-15 1987-08-25 Raychem Corporation Electrical devices containing conductive polymers
HUT41537A (en) * 1987-04-27 1987-04-28 Epitoeipari Szallitasi Vallala Sensor for trasforming pressure and/or deformation into electric signal
TW309619B (fr) * 1995-08-15 1997-07-01 Mourns Multifuse Hong Kong Ltd
DE10310722A1 (de) * 2003-03-10 2004-09-23 Tesa Ag Elektrisch erwärmbare Haftklebemasse
DE102004058720A1 (de) * 2003-12-04 2005-07-07 Iq-Mobil Gmbh Vorrichtung zur Messung eines wirkenden Drucks auf einer Oberfläche
DE102007007617A1 (de) * 2007-02-13 2008-08-14 Tesa Ag Intrinsisch erwärmbare heißschmelzklebrige Flächengebilde
DE102009034307A1 (de) 2009-07-21 2011-01-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Hochtemperaturheizung sowie Verfahren zu dessen Herstellung
KR20110088934A (ko) * 2010-01-29 2011-08-04 아이원필름 주식회사 전자파감소 면상발열체 및 그 제조방법
US10231287B2 (en) 2012-04-20 2019-03-12 Universitat Bremen (Bccms) Electrical heating device, component and method for the production thereof
WO2014188190A1 (fr) * 2013-05-21 2014-11-27 Heat Trace Limited Chauffage électrique
LU92205B1 (en) * 2013-05-29 2014-12-01 Iee Sarl Transducer arrangement for measuring load variations
DE102013109755A1 (de) * 2013-09-06 2015-03-12 Rent A Scientist Gmbh Leitfähiger Klebstoff
KR101585393B1 (ko) * 2015-03-18 2016-01-14 주식회사 유니웜 부착식 전극을 이용한 카본사 면상발열체의 전극 형성방법
DE102016203497A1 (de) * 2016-03-03 2017-09-07 Röchling Automotive SE & Co. KG Heizeinrichtung für einen Kfz-Betriebsflüssigkeitstank mit einem PTC-Kunststoffkörper

Also Published As

Publication number Publication date
EP3763167A1 (fr) 2021-01-13
DE102018203430A1 (de) 2019-09-12
WO2019170720A1 (fr) 2019-09-12

Similar Documents

Publication Publication Date Title
EP2457411B1 (fr) Element chauffant flexible
EP3235340B1 (fr) Vitre doté d'un élément de raccordement électrique et câble de raccordement souple
EP1704287A1 (fr) Nappe a excroissances
EP3781394A1 (fr) Bande de tôle munie d'un revêtement et procédé de fabrication
DE102018103789B4 (de) Heizmatte für eine Flächenheizung, Flächenheizung zum Heizen eines Raumes eines Gebäudes sowie Verfahren zur Herstellung einer Heizmatte für eine Flächenheizung
AT516197A1 (de) Coil und Verfahren zur Herstellung eines zu einem Coil aufgehaspelten Elektrobandlaminats
EP3090812A1 (fr) Film de superposition
EP3763167B1 (fr) Composant électrique plat et procédé de fabrication
EP3442309B2 (fr) Procédé de fabrication d'un élément textile plat conducteur électrique
DE202009009228U1 (de) Elektrisch betreibbares Flächenheizelement
EP3720902B1 (fr) Substrat à base de polymère ainsi que procédé pour sa fabrication
DE102016223057B4 (de) Thermisch isolierendes flächiges Bauteil mit geringer Bauteildicke, insbesondere als Funktionsraumverkleidung eines Kraftfahrzeugs
DE112021006205T5 (de) Verfahren zum Verschmelzen von Polymer- und Metalloberflächen zur Herstellung eines kombinierten Strukturmaterials für multidisziplinäre Anwendungen
DE10008999C2 (de) Flächiges Widerstandsheizelement zum Beheizen einer mobilen Wohneiheit und Verfahren zum Einbringen des Heizelements in oder auf einen Fußboden einer mobilen Wohneinheit
DE19839237A1 (de) Verfahren zur Herstellung eines Hitzeschildes und ein mit diesem Verfahren hergestelltes Hitzeschild
DE102008002826A1 (de) Aufbau und Verfahren zur Herstellung einer elektrischen Boden- und/oder Wandheizung
EP1696705B1 (fr) Elément chauffant plat de faible épaisseur, en particulier élément chauffant pour four de cuisson
DE102005044263A1 (de) Selbstklebendes Verbindungsmittel und Verklebungsverfahren
CH703695A1 (de) Verfahren zur Herstellung eines Metallkörpers.
CH368530A (de) Isolierter Stromleiter für Stark- und Schwachstrom
DE102015223951B4 (de) Substrat für eine Sensoranordnung für ein Widerstandsthermometer, Sensoranordnung und Widerstandsthermometer
DE102020213477B4 (de) Verfahren zur Herstellung eines Schichtverbunds und Schichtverbund
EP3323607B1 (fr) Matière en bande destinée à la formation de couvertures de toits
DE102016105774A1 (de) Beheizbares Flächenelement und Verfahren zum Herstellen desselben
DE4240569A1 (de) Verfahren zur Herstellung einer haftfesten Kunststoff-Metall-Verbindung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200811

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230921

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019010620

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240327

Year of fee payment: 6

Ref country code: GB

Payment date: 20240327

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240325

Year of fee payment: 6

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D