EP3755452A1 - Adsorbeur pour l'épuration ou la séparation d'un flux gazeux comprenant un système de remplissage amovible - Google Patents

Adsorbeur pour l'épuration ou la séparation d'un flux gazeux comprenant un système de remplissage amovible

Info

Publication number
EP3755452A1
EP3755452A1 EP19710735.2A EP19710735A EP3755452A1 EP 3755452 A1 EP3755452 A1 EP 3755452A1 EP 19710735 A EP19710735 A EP 19710735A EP 3755452 A1 EP3755452 A1 EP 3755452A1
Authority
EP
European Patent Office
Prior art keywords
filling
granular material
granulometry
adsorber
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19710735.2A
Other languages
German (de)
English (en)
Inventor
Guillaume Rodrigues
Bernard FRAIOLI
Patrick Pereira
Patrick Le Bot
Benjamin MORINEAU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP3755452A1 publication Critical patent/EP3755452A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/025Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0423Beds in columns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/003Feeding of the particles in the reactor; Evacuation of the particles out of the reactor in a downward flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0453Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being superimposed one above the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0259Physical processing only by adsorption on solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/304Linear dimensions, e.g. particle shape, diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/414Further details for adsorption processes and devices using different types of adsorbents
    • B01D2259/4141Further details for adsorption processes and devices using different types of adsorbents within a single bed
    • B01D2259/4145Further details for adsorption processes and devices using different types of adsorbents within a single bed arranged in series
    • B01D2259/4146Contiguous multilayered adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/0476Vacuum pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00752Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00884Means for supporting the bed of particles, e.g. grids, bars, perforated plates

Definitions

  • Adsorber for purifying or separating a gas stream comprising a removable filling system
  • the present invention relates to an adsorber for purifying or separating a gas stream and to a process for filling the adsorber with adsorbent material.
  • the units VSA (Vacuum Swing Adsorption) 02 are units of separation of the gases of the air by adsorption process with modulation of pressure in which the adsorption is carried out substantially with the atmospheric pressure, called high pressure, it is between 1 bara and 1.5 bar, and the desorption takes place at a pressure below atmospheric pressure, typically between 0.3 and 0.5 bar.
  • the production of gaseous oxygen reaches a purity of the order of 90% to 93% and the production range of this type of apparatus varies from 30t / d to 200t / d.
  • a compressor and a vacuum pump are often used to reach cycle pressures.
  • the VPSA processes in which the adsorption is carried out at a high pressure substantially greater than atmospheric pressure, that is to say generally between 1.6 and 8 bara, preferably between 2 and 6 bara, and the low pressure is below at atmospheric pressure, typically between 30 and 800 mbar, preferably between 100 and 600 mbar.
  • the PSA processes in which the adsorption is carried out at a high pressure clearly above atmospheric pressure, typically between 1.6 and 50 bara, preferably between 2 and 35 bara, and the low pressure is greater than or substantially equal to the atmospheric pressure, therefore between 1 and 9 bara, preferably between 1.2 and 2.5 bara.
  • V PSA which will include VSA, PSA, and VPSA.
  • the (V) PSA cycles comprise at least the following steps: production, decompression, purge, recompression.
  • the units generally operate with a total cycle time greater than 30 seconds and employ one to three adsorbers. We distinguish two large families of adsorbers distinguished by the direction of flow of gas, one being axial and the other radial. If the first is generally chosen for small units ( ⁇ 60 tons per day of 02 produced), the second is adapted to larger capacities.
  • Axial technology must meet a number of technical constraints including the minimization of pressure losses and empty volumes, the management of a good distribution of gas, a maintenance of adsorbents that can be carried by the process gas or adsorber movements during transport from the workshop to the production site.
  • the axial geometries are chosen because of their simplicity and cost.
  • the adsorption processes can impose a gas flow from the bottom upwards then subjecting the granular material (s) to a fluidization limit.
  • the fluidization of active granular materials can be driven by an excessive flow of gas inherent in the normal operation of the process or during an accidental flow peak.
  • a solution of the present invention is an adsorber for purifying or separating a gas stream comprising:
  • an upper domed bottom F2 comprising a main filling opening of a granular material; with said orifice having an inner diameter Din
  • the filling system A is composed of a cylinder of a cylinder perforated over all or part of its height, of its upper bottom of diameter Dext and of its lower bottom,
  • the distance Din-Dext is strictly greater than twice the size of the particles of the grain size material M
  • the particle size material M is in contact at times with at least a portion of the outer surface of the system A and at least a portion of the inner surface of the upper curved bottom F2.
  • the configuration of the adsorber according to the invention makes it possible to:
  • the adsorber according to the invention may have one or more of the following characteristics:
  • the granulometry material M is in contact with the entire outer surface of the system A within the cylindrical shell.
  • the particle size material M is in contact with at least 10%, preferably at least 20%, even more preferably at least 30% of the inner surface of the upper domed bottom F2.
  • the curved upper bottom F2 comprises at least two secondary filling holes of smaller diameter than the main orifice.
  • the secondary orifices have a diameter 2 to 6 smaller than the main orifice.
  • the granulometry material M is completed by a complementary material having a particle size MC of less than or equal to M, preferably the complementary material has a particle size MC three times smaller than the particle size M.
  • said adsorber successively comprises, in the flow direction of the gas flow, N layers (N> 1): a first layer of a granular material of ADI granulometry, an Nth-1 layer of a granular material of DNA granulometry, and Nth layer of a granular material of granulometry M, with M>AD2> ADI.
  • the first layer of a granular material of ADI particle size is supported by a rigid metal grid covered with a mesh fabric.
  • the first layer of a granular material of ADI particle size is supported by a granular material with a grain size MGS greater than ADI.
  • the granular material of the ADN granulometry is separated from the granular material of granulometry M by a flexible fabric or a rigid grid covered with a flexible fabric.
  • the granular material of DNA granulometry rests directly on the granular material of granulometry M. It goes without saying that in this case the granular material of granulometry M will be selected so that it does not allow the material of granulometry DNA to flow into his breast.
  • the adsorber R in question is of vertical axial geometry and comprises two bottoms, at least the upper bottom is curved.
  • Figure 1 shows an example of adsorber according to the invention.
  • a gas distributor can be installed at the bottom. At least one layer of active granular material is contained in the ferrule R, here two layers will be assumed.
  • the first layer of ADI adsorbent material may be supported either by a rigid metal grid covered with a sufficiently fine mesh fabric to retain the adsorbent material or by a material having an MGS granulometry greater than that of the adsorbent material, thus making it possible to limit the losses while filling part of the empty volume, the latter may be detrimental to the performance of the process.
  • the volume above the last layer of active material of DNA granulometry is filled with at least one type of granular material with a grain size M greater than DNA.
  • a flexible fabric S preferably metal, or a rigid grid covered with a flexible fabric separates the materials of particle size DNA and M.
  • the granulometry material M is in contact with a significant part of the upper convex bottom and the system A, so that in case of excessively high flow or movement of the adsorber the forces acting on the active granular materials are transmitted. to the walls of the ferrule R and to the system A via the grain size material M.
  • the volume of the upper bottom is first filled with the granulometry material M in a compact manner while leaving a space in the center allowing the insertion of the system A.
  • compact filling is meant a rain-type filling.
  • the empty volume between the particles of the grain size material M can vary substantially due to a more or less tight stack of particles constituting it - a rain type filling is considered compact, whereas a "loose" filling during which the material is spilled without special attention is considered to be loose.
  • a granular medium initially filled by any method and whose container is subjected to standardized shocks will have an intermediate compactness between the 2 compact "rain” and "bulk” mentioned above. After being put in place, the end of the system A will then be in contact with the grain size material M via its bottom D,
  • the outer diameter of the system A is chosen to be smaller than the internal diameter of the outlet orifice situated on the curved bottom F2 so that balls (it may be materials of non-spherical shapes) of the granulometry material; M can be inserted in the created annulus
  • additional filling holes OS (FIG. 4), of smaller diameter than that of the main orifice, make it possible to complete the filling of the convex bottom with a granular material having the same or smaller grain size MC as the grain size material M.
  • a compact filling of the granular materials is necessary to ensure a maintenance over time of the contact surface between the granulometry material M and the ferrule R and the system A. If this was not the case, a complement of the granulometry material M by the annular space between the system (A) and the main fill port and / or through the orifices (OS) would be needed after the adsorber has been subjected to motion or vibration.
  • Various filling systems achieve optimum compactness filling.
  • an extra-granular vacuum content of the active materials of 35% can be obtained by a cross-sieve system.
  • the filling of the grain size material M before setting up the system and the filling of the lower ADI DNA layers can be made in a compact manner, that is to say by a flow in rain, for filling the ferrule R of granular material of granulometry M by the space between the external diameter of the system A and the internal diameter of the filling orifice and the filling of the ferrule R of additional grain size material MC by the secondary filling orifices, c is not possible. Indeed there is not enough room to insert in these orifices the tools for a flow in rain. In case of vibration of the container, de-packing of the granular material can then be observed and lead to an increase in the desired contact area with the grain size material M.
  • Figures 2 and 3 illustrate the system A by providing a diagram of a front view and a diagram of a view from above.
  • the system A is provided with fixing lugs which are supported on lugs integral with the main filling opening.
  • the present invention also relates to a process for filling adsorbent material with an adsorber according to the invention comprising the following successive steps: a) partial filling of the ferrule R of granular material of particle size AD2 by the main filling opening;
  • the convex upper bottom F2 comprises at least two secondary filling holes of diameter smaller than the main orifice and said method comprises a step e) of filling the ferrule R with additional grain size material MC by the secondary filling orifices BONE.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

Adsorbeur pour l'épuration ou la séparation d'un flux gazeux comprenant une virole cylindrique (R), un fond bombé inférieur (F1), un fond bombé supérieur (F2) comprenant un orifice principal de remplissage d'un matériau granulaire, avec ledit orifice présentant un diamètre intérieur Din, un matériau granulaire de granulométrie ADN, un matériau granulaire de granulométrie M et un système de remplissage (A) amovible de la virole en matériau granulaire positionné dans l'orifice principal de remplissage, caractérisé en ce que: le système de remplissage (A) est composé d'un cylindre perforé sur toute ou partiede sa hauteur, de son fond supérieur de diamètre Dext et de son fond inférieur, la distance Din-Dext est strictement supérieure à deuxfois la taille des particules du matériau de granulométrie M, le matériau granulaire de granulométrie ADN et le matériau granulaire de granulométrie M se succèdent dans le sens de circulation du flux gazeux et sont tels que M > ADN le matériau de granulométrie M est en contact à fois avec au moins une partie de la surface extérieure du système (A) et au moins une partie de la surface intérieure du fond bombé supérieur (F2).

Description

Adsorbeur pour l'épuration ou la séparation d'un flux gazeux comprenant un système de remplissage amovible
La présente invention est relative à un adsorbeur pour l'épuration ou la séparation d'un flux gazeux et à un procédé de remplissage en matériau adsorbant de cet adsorbeur.
Les unités VSA (Vacuum Swing Adsorption) 02 sont des unités de séparation des gaz de l'air par procédé d'adsorption à modulation de pression dans lequel l'adsorption s'effectue sensiblement à la pression atmosphérique, dite pression haute, c'est-à-dire entre 1 bara et 1,5 bar, et la désorption s'effectue à une pression inférieure à la pression atmosphérique, typiquement entre 0,3 à 0,5 bar. La production d'oxygène gazeux atteint une pureté de l'ordre de 90% à 93% et la gamme de production de ce type d'appareils varie de 30t/j à 200t/j. Ces procédés trouvent des applications dans les domaines tels que la purification d'eau, la fabrication de verres, le traitement des pâtes à papier, etc.
Un compresseur et une pompe à vide sont souvent utilisés pour atteindre les pressions du cycle.
Notons que même si la présente invention s'appliquera en priorité aux VSA la présente invention pourra également s'appliquer à tous les PSA (Pressure Swing Adsorption = procédés de séparation de gaz par adsorption modulée en pression) :
- les procédés VPSA dans lesquels l'adsorption s'effectue à une pression haute sensiblement supérieure à la pression atmosphérique, c'est à dire généralement entre 1,6 et 8 bara, préférentiellement entre 2 et 6 bara, et la pression basse est inférieure à la pression atmosphérique, typiquement entre 30 et 800 mbara, de préférence entre 100 et 600 mbara.
- les procédés PSA dans lesquels l'adsorption s'effectue à une pression haute nettement supérieure à la pression atmosphérique, typiquement entre 1,6 et 50 bara, préférentiellement entre 2 et 35 bara, et la pression basse est supérieure ou sensiblement égale à la pression atmosphérique, donc entre 1 et 9 bara, de préférence entre 1,2 et 2,5 bara.
Par la suite on utilisera le terme (V)PSA qui regroupera les VSA, les PSA, et les VPSA.
Les cycles de (V)PSA comprennent au moins les étapes suivantes : production, décompression, purge, recompression.
Les unités fonctionnent généralement avec un temps de cycle total supérieur à 30 secondes et emploient un à trois adsorbeurs. On distinguera 2 grandes familles d'adsorbeurs distinguées par le sens d'écoulement des gaz, l'une étant axiale et l'autre radiale. Si la première est généralement choisie pour les unités de petite taille (<60 tonnes par jour d'02 produit), la seconde est adaptée aux plus grandes capacités. La technologie axiale se doit de répondre à nombre de contraintes techniques incluant la minimisation des pertes de charges et des volumes vides, la gestion d'une bonne distribution du gaz, un maintien des adsorbants pouvant être entraînés par le gaz process ou des mouvements des adsorbeurs lors de leur transport de l'atelier jusqu'au site de production.
Lorsque des débits très importants doivent être traités, les pertes de charge et les problèmes d'attrition deviennent limitant pour la technologie axiale. Une solution consiste à passer en géométrie radiale offrant en comparaison une perte de charge réduite pour un rayon d'adsorbeur donné. Par ailleurs, l'adsorbeur radial n'est théoriquement pas soumis à une limitation vis-à-vis des phénomènes d'attrition. Le lit d'adsorbant est maintenu entre des grilles perforées verticales. Les inconvénients majeurs de cette technologie radiale sont une augmentation des volumes morts, une limitation du nombre de couches d'adsorbant en raison de la complexité d'installation des grilles concentriques, la difficulté à assurer une bonne distribution gazeuse, ainsi qu'un coût de fabrication élevé.
Dans le cas de débits modérés, les géométries axiales sont choisies en raison de leur simplicité et de leur coût. Les procédés adsorption peuvent imposer une circulation du gaz du bas vers le haut soumettant alors le(s) matériau(x) granulaire(s) à une limite de fluidisation.
La fluidisation des matériaux granulaires actifs peut être entraînée par un flux trop important de gaz inhérent au fonctionnement normal du procédé ou lors d'un pic de débit accidentel.
Partant de là, un problème qui se pose est de fournir un adsorbeur amélioré à géométrie axiale et présentant un meilleur maintien du ou des adsorbants granulaires.
Une solution de la présente invention est un adsorbeur pour l'épuration ou la séparation d'un flux gazeux comprenant :
- une virole cylindrique R
- un fond bombé inférieur Fl
- un fond bombé supérieur F2 comprenant un orifice principal de remplissage d'un matériau granulaire ; avec ledit orifice présentant un diamètre intérieur Din
- un matériau granulaire de granulométrie ADN - un matériau granulaire de granulométrie M et
- un système de remplissage A amovible de la virole en matériau granulaire positionné dans l'orifice principal de remplissage,
caractérisé en ce que :
- le système de remplissage A est composé d'un cylindre d'un cylindre perforé sur toute ou partie de sa hauteur, de son fond supérieur de diamètre Dext et de son fond inférieur,
- la distance Din-Dext est strictement supérieure à deux fois la taille des particules du matériau de granulométrie M,
- le matériau granulaire de granulométrie ADN et le matériau granulaire de granulométrie M se succèdent dans le sens de circulation du flux gazeux et sont tels que M > ADN
- le matériau de granulométrie M est en contact à fois avec au moins une partie de la surface extérieure du système A et au moins une partie de la surface intérieure du fond bombé supérieur F2.
La configuration de l'adsorbeur selon l'invention permet de :
- maintenir le lit adsorbant,
- d'assurer une meilleure distribution de gaz, et
- d'assurer un meilleur remplissage de l'adsorbeur.
Selon le cas, l'adsorbeur selon l'invention peut présenter une ou plusieurs des caractéristiques suivantes :
- le matériau de granulométrie M est en contact avec la totalité de la surface extérieure du système A comprise à l'intérieur de la virole cylindrique.
- le matériau de granulométrie M est en contact avec au moins 10%, de préférence au moins 20%, encore plus préférentiellement au moins 30% de la surface intérieure du fond bombé supérieur F2.
- le fond supérieur bombé F2 comprend au moins deux orifices de remplissage secondaires de diamètre inférieure à l'orifice principal.
- les orifices secondaires ont un diamètre 2 à 6 plus petit que l'orifice principal.
- le matériau de granulométrie M est complété par un matériau complémentaire de granulométrie MC inférieure ou égale à M, de préférence le matériau complémentaire présente une granulométrie MC trois fois plus petite que la granulométrie M. En effet, il s'agit d'éviter que le matériau MC s'écoule dans les interstices du matériau M. - ledit adsorbeur comprend successivement dans le sens de circulation du flux gazeux, N couches (N>1): une première couche d'un matériau granulaire de granulométrie ADI, une Nième-1 couche d'un matériau granulaire de granulométrie ADN, et une Nième couche d'un matériau granulaire de granulométrie M, avec M > AD2 > ADI.
- la première couche d'un matériau granulaire de granulométrie ADI est supportée par une grille métallique rigide recouverte d'une toile de maillage.
- la première couche d'un matériau granulaire de granulométrie ADI est supportée par un matériau granulaire de granulométrie MGS supérieur à ADI.
- le matériau granulaire de granulométrie ADN est séparé du matériau granulaire de granulométrie M par une toile souple ou une grille rigide recouverte d'une toile souple.
- le matériau granulaire de granulométrie ADN repose directement sur le matériau granulaire de granulométrie M. Il va de soi que dans ce cas le matériau granulaire de granulométrie M sera sélectionné afin qu'il ne permette pas au matériau de granulométrie ADN de s'écouler en son sein.
L'adsorbeur R en question est de géométrie axiale verticale et comporte deux fonds, dont au moins le fond supérieur est bombé.
Il comporte également deux orifices de circulation du gaz, l'un au niveau du fond inférieur, le second au niveau du fond bombé supérieur. Ce dernier est également l'orifice de remplissage principal des matériaux granulaires et permet l'installation du système (A).
La présente invention va être décrite plus en détail à l'aide des figures 1 à 3.
La Figure 1 représente un exemple d'adsorbeur selon l'invention.
Un distributeur de gaz peut être installé en partie basse. Au moins une couche de matériau granulaire actif est contenue dans la virole R, on supposera ici 2 couches. La première couche de matériau adsorbant ADI peut-être supportée soit par une grille métallique rigide recouverte d'une toile de maillage suffisamment fin pour retenir le matériau adsorbant soit par un matériau de granulométrie MGS supérieure à celle du matériau adsorbant, permettant ainsi de limiter les pertes de charge tout en comblant une partie du volume vide, ce dernier pouvant être néfaste aux performances du procédé.
Le volume au dessus de la dernière couche de matériau actif de granulométrie ADN est rempli d'au moins un type de matériau granulaire de granulométrie M supérieure à ADN. Une toile souple S, préférentiellement métallique, ou une grille rigide recouverte d'une toile souple sépare les matériaux de granulométrie ADN et M. Le matériau de granulométrie M est en contact avec une partie significative du fond bombé supérieur et du système A, de telle sorte qu'en cas de trop fort débit ou mouvement de l'adsorbeur les forces s'exerçant sur les matériaux granulaires actifs soient transmises aux parois de la virole R et au système A via le matériau de granulométrie M.
Il est nécessaire d'assurer une surface de contact maximale entre le matériau de granulométrie M, la paroi supérieure de la virole R et le système A.
Pour cela,
-le volume du fond supérieur est tout d'abord rempli du matériau de granulométrie M de manière compacte tout en laissant un espace au centre permettant l'insertion du système A. Par remplissage de manière compacte on entend un remplissage de type pluie. En effet, selon la méthode de remplissage, le volume vide entre les particules du matériau de granulométrie M peut varier sensiblement du fait d'un empilement plus ou moins serré des particules le constituant - un remplissage type pluie est considéré comme compact, alors qu'un remplissage « vrac » pendant lequel le matériau est déversé sans attention particulière est considéré comme peu compact. Un milieu granulaire initialement rempli par une méthode quelconque et dont le récipient est soumis à des chocs normalisés aura une compacité intermédiaire entre les 2 compacités « pluie » et « vrac » mentionnées précédemment. Après sa mise en place, l'extrémité du système A sera alors en contact avec le matériau de granulométrie M via son fond D,
-le diamètre externe du système A est choisi de taille inférieure au diamètre interne de l'orifice de sortie situé sur le fond bombé F2 de telle sorte que des billes (il peut s'agir de matériaux de formes non sphérique) du matériau de granulométrie M puissent être insérées dans l'espace annulaire ainsi créé
-des Orifices de remplissage supplémentaires OS (figure 4), de diamètre inférieur à celui de l'orifice principal permettent de compléter le remplissage du fond bombé par un matériau granulaire de granulométrie MC identique ou inférieure au matériau de granulométrie M.
Un remplissage compact des matériaux granulaires est nécessaire pour assurer un maintien dans le temps de la surface de contact entre le matériau de granulométrie M et la virole R et le système A. Si ça n'était pas le cas, un complément du matériau de granulométrie M par l'espace annulaire entre le système (A) et l'orifice de remplissage principal et/ou par les orifices (OS) seraient nécessaire après que l'adsorbeur ait été soumis mouvement ou vibrations. Divers systèmes de remplissage permettent d'atteindre une compacité optimale de remplissage. A titre d'exemple, pour des matériaux granulaires sphériques ou pseudo sphériques, un taux de vide extra-granulaire des matériaux actifs de 35% peut être obtenu par un système de tamis croisés. Si le remplissage du matériau de granulométrie M avant mise en place du système et le remplissage des couches inférieures ADI à ADN peuvent-être faites de manière compacte, c'est-à-dire par un écoulement en pluie, pour le remplissage de la virole R de matériau granulaire de granulométrie M par l'espace compris entre le diamètre externe du système A et le diamètre interne de l'orifice de remplissage et le remplissage de la virole R de matériau complémentaire de granulométrie MC par les orifices de remplissage secondaires, c'est pas possible. En effet il n'y a pas assez de place pour insérer dans ces orifices les outils permettant un écoulement en pluie. En cas de vibration du récipient, un dé-tassement du matériau granulaire peut alors être observé et conduire à une augmentation de la surface de contact recherchée avec le matériau de granulométrie M.
Les figures 2 et 3 illustrent le système A en fournissant un schéma d'une vue de face et un schéma d'une vue de dessus.
Le système A est muni de pattes de fixation qui viennent s'appuyer sur des ergots solidaires de l'orifice de remplissage principal.
La présente invention a également pour objet un procédé de remplissage en matériau adsorbant d'un adsorbeur selon l'invention comprenant les étapes successives suivantes : a) remplissage partiel de la virole R de matériau granulaire de granulométrie AD2 par l'orifice principal de remplissage ;
b) remplissage partiel de la virole R de matériau granulaire de granulométrie M par l'orifice principal de remplissage en laissant un volume permettant la mise en place du système de remplissage A;
c) mise en place du système de remplissage A dans l'orifice de remplissage de manière à mettre le fond inférieur du système de remplissage en contact avec le matériau de granulométrie M;
d) remplissage de la virole R de matériau granulaire de granulométrie M par l'espace compris entre le diamètre externe du système A et le diamètre interne de l'orifice de remplissage. Notons qu'à l'étape b) le volume permettant la mise en place du système de remplissage A ne peut pas être un cylindre car il y a écoulement du matériau granulaire de granulométrie M selon l'angle de talutage. De préférence, le fond supérieur bombé F2 comprend au moins deux orifices de remplissage secondaires de diamètre inférieure à l'orifice principal et ledit procédé comprend une étape e) de remplissage de la virole R de matériau complémentaire de granulométrie MC par les orifices de remplissage secondaires OS.

Claims

Revendications
1. Adsorbeur pour l'épuration ou la séparation d'un flux gazeux comprenant :
- une virole cylindrique (R)
- un fond bombé inférieur (Fl)
- un fond bombé supérieur (F2) comprenant un orifice principal de remplissage d'un matériau granulaire ; avec ledit orifice présentant un diamètre intérieur Din
- un matériau granulaire de granulométrie ADN
- un matériau granulaire de granulométrie M et
- un système de remplissage (A) amovible de la virole en matériau granulaire positionné dans l'orifice principal de remplissage,
caractérisé en ce que :
- le système de remplissage (A) est composé d'un cylindre perforé sur toute ou partie de sa hauteur, de son fond supérieur de diamètre Dext et de son fond inférieur,
- la distance Din-Dext est strictement supérieure à deux fois la taille des particules du matériau de granulométrie M,
- le matériau granulaire de granulométrie ADN et le matériau granulaire de granulométrie M se succèdent dans le sens de circulation du flux gazeux et sont tels que M > ADN
- le matériau de granulométrie M est en contact à fois avec au moins une partie de la surface extérieure du système (A) et au moins une partie de la surface intérieure du fond bombé supérieur (F2).
2. Adsorbeur selon la revendication 1, caractérisé en ce que le matériau de granulométrie M est en contact avec la totalité de la surface extérieure du système (A) comprise à l'intérieur de la virole cylindrique.
3. Adsorbeur selon l'une des revendications 1 ou 2, caractérisé en ce que le matériau de granulométrie M est en contact avec au moins 10%, de préférence au moins 20%, encore plus préférentiellement au moins 30% de la surface intérieure du fond bombé supérieur (F2).
4. Adsorbeur selon l'une des revendications 1 à 3, caractérisé en ce que le fond supérieur bombé (F2) comprend au moins deux orifices de remplissage secondaires de diamètre inférieure à l'orifice principal.
5. Adsorbeur selon l'une des revendications 1 à 4, caractérisé en ce que les orifices secondaires ont un diamètre 2 à 6 plus petit que l'orifice principal.
6. Adsorbeur selon l'une des revendications 1 à 5, caractérisé en ce que le matériau de granulométrie M est complété par un matériau complémentaire de granulométrie MC inférieure ou égale à M.
7. Adsorbeur selon l'une des revendications 1 à 6, caractérisé en ce que ledit adsorbeur comprend successivement dans le sens de circulation du flux gazeux (N>1):
- une succession de N couches de matériaux granulaires de granulométrie croissantes ADI à ADN ; et
- une couche d'un matériau granulaire de granulométrie M.
8. Adsorbeur selon la revendication 7, caractérisé en ce que la première couche d'un matériau granulaire de granulométrie ADI est supportée par une grille métallique rigide recouverte d'une toile de maillage.
9. Adsorbeur selon la revendication 7, caractérisé en ce que la première couche d'un matériau granulaire de granulométrie ADI est supportée par un matériau granulaire de granulométrie MGS supérieur à ADI.
10. Adsorbeur selon l'une des revendications 7 à 9, caractérisé en ce que le matériau granulaire de granulométrie ADN est séparé du matériau granulaire de granulométrie M par une toile souple ou une grille rigide recouverte d'une toile souple.
11. Adsorbeur selon l'une des revendications 7 à 10, caractérisé en ce que le matériau granulaire de granulométrie ADN repose directement sur le matériau granulaire de granulométrie M.
12. Procédé de remplissage en matériau adsorbant d'un adsorbeur selon l'une des revendications 1 à 11 comprenant les étapes successives suivantes :
a) remplissage partiel de la virole (R) de matériau granulaire de granulométrie ADN par l'orifice principal de remplissage ;
b) remplissage partiel de la virole (R) de matériau granulaire de granulométrie M par l'orifice principal de remplissage en laissant libre un volume permettant la mise en place du système de remplissage (A) ;
c) mise en place du système de remplissage (A) dans l'orifice de remplissage de manière à mettre le fond inférieur du système de remplissage en contact avec le matériau de granulométrie M; et
d) remplissage de la virole (R) de matériau granulaire de granulométrie M par l'espace compris entre le diamètre externe du système A et le diamètre interne de l'orifice de remplissage.
13. Procédé de remplissage selon la revendication 12, caractérisé en ce que le fond supérieur bombé F2 comprend au moins deux orifices de remplissage secondaires de diamètre inférieure à l'orifice principal et ledit procédé comprend une étape e) de remplissage de la virole (R) de matériau complémentaire de granulométrie MC par les orifices de remplissage secondaires OS.
EP19710735.2A 2018-02-23 2019-02-11 Adsorbeur pour l'épuration ou la séparation d'un flux gazeux comprenant un système de remplissage amovible Pending EP3755452A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1851601A FR3078269B1 (fr) 2018-02-23 2018-02-23 Adsorbeur pour l'epuration ou la separation d'un flux gazeux comprenant un systeme de remplissage amovible
PCT/FR2019/050293 WO2019162591A1 (fr) 2018-02-23 2019-02-11 Adsorbeur pour l'épuration ou la séparation d'un flux gazeux comprenant un système de remplissage amovible

Publications (1)

Publication Number Publication Date
EP3755452A1 true EP3755452A1 (fr) 2020-12-30

Family

ID=62222919

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19710735.2A Pending EP3755452A1 (fr) 2018-02-23 2019-02-11 Adsorbeur pour l'épuration ou la séparation d'un flux gazeux comprenant un système de remplissage amovible

Country Status (5)

Country Link
US (1) US11679355B2 (fr)
EP (1) EP3755452A1 (fr)
CN (1) CN111727081B (fr)
FR (1) FR3078269B1 (fr)
WO (1) WO2019162591A1 (fr)

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2884372A (en) * 1956-05-29 1959-04-28 Socony Mobil Oil Co Inc Spherical reactor for the conversion of hydrocarbons
DE1100660B (de) * 1957-09-05 1961-03-02 Linde S Eismaschinen Ag Zweign Vorrichtung zur Vorreinigung eines fuer die Zerlegung durch Kompression und Tiefkuehlung bestimmten Gasgemisches
US3479146A (en) * 1966-10-28 1969-11-18 Exxon Research Engineering Co Fluid flow distributor
DE2516223C3 (de) * 1975-04-14 1978-12-14 Linde Ag, 6200 Wiesbaden Verfahren und Vorrichtung zum Regenerieren von Adsorbent
US4372857A (en) * 1981-03-05 1983-02-08 Union Carbide Corporation Liquid adsorption process and apparatus
US4938422A (en) * 1987-12-23 1990-07-03 Uop Inlet distributor for downflow reactor
FI903220A (fi) * 1990-06-26 1991-12-27 Uop Inc Tvaoriktad foerdelningsapparat foer inkommande vaetska, avsedd nedstroemskaerl innehaollande en baedd av fasta partiklar.
US5538544A (en) * 1994-12-27 1996-07-23 Praxair Technology, Inc. Adsorption flow distribution
FR2750617B1 (fr) * 1996-07-02 1998-09-25 Air Liquide Distributeur de gaz destine a etre fixe dans une bouteille de traitement de gaz et bouteille de gaz le comportant
US5769928A (en) * 1996-12-12 1998-06-23 Praxair Technology, Inc. PSA gas purifier and purification process
US5836362A (en) * 1997-07-15 1998-11-17 Praxair Technology, Inc. Multiple adsorbent loading method and apparatus for a radial flow vessel
US6089950A (en) 1998-06-01 2000-07-18 C. J. Associates, Ltd. Toy figure with articulating joints
EP1080722A1 (fr) * 1999-08-31 2001-03-07 Novartis AG Compositions antimycotiques
US6334889B1 (en) * 1999-09-01 2002-01-01 Praxair Technology, Inc. Bed restraint for an adsorber
US6605135B2 (en) 2001-09-26 2003-08-12 Air Products And Chemicals, Inc. Granular bed restraint system
US7166151B2 (en) * 2004-01-15 2007-01-23 Praxair Technology, Inc. Flow distributor for PSA vessel
US9861947B2 (en) * 2012-02-28 2018-01-09 Phillips 66 Company Reactor inlet vapor velocity equalizer and distributor
US9034084B2 (en) * 2013-03-27 2015-05-19 Lummus Technology Inc. Apparatus for distributing flow
US20160158770A1 (en) * 2014-12-04 2016-06-09 Chevron U.S.A. Inc. Gas distributor and method of use thereof

Also Published As

Publication number Publication date
FR3078269B1 (fr) 2020-02-14
RU2020129172A3 (fr) 2022-03-29
US20200398211A1 (en) 2020-12-24
US11679355B2 (en) 2023-06-20
FR3078269A1 (fr) 2019-08-30
RU2020129172A (ru) 2022-03-03
WO2019162591A1 (fr) 2019-08-29
CN111727081A (zh) 2020-09-29
CN111727081B (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
EP0526343B1 (fr) Adsorbeur à lits d&#39;adsorbants annulaires superposés
CA2053211C (fr) Procede de separation par adsorption et adsorbeur
US9518701B2 (en) Gas storage and dispensing system with monolithic carbon adsorbent
US7494530B2 (en) Gas storage and dispensing system with monolithic carbon adsorbent
KR101135453B1 (ko) 모노리스 탄소 흡착제를 가지는 가스 저장 및 분배 시스템
US9636626B2 (en) Rectangular parallelepiped fluid storage and dispensing vessel
EP0938920A1 (fr) Procédé et dispositif de purification de gaz par adsorption a lits horizontaux fixes
US20120090470A1 (en) Adsorbent cartridge assembly with end cap
KR20170019416A (ko) 압력-조절형 유체 저장 및 분배 용기의 흡착제-기반의 압력 안정화
FR2671848A1 (fr) Joint d&#39;etancheite, notamment pour raccord a brides.
WO2019162591A1 (fr) Adsorbeur pour l&#39;épuration ou la séparation d&#39;un flux gazeux comprenant un système de remplissage amovible
WO2013156697A1 (fr) « adsorbeur radial comportant un lit d&#39;adsorbant structuré»
EP2823871B1 (fr) Adsorbeur à lit axial horizontal avec système de compensation du tassement
WO2013150196A1 (fr) Réduction des volumes morts d&#39;un adsorbeur pour adsorption d&#39;un flux gazeux
FR3087670A1 (fr) Procede de conditionnement d&#39;un recipient comprenant un materiau granulaire
CN114733317A (zh) 一种多层次分子筛吸附塔装置
FR2974520A1 (fr) Adsorbeur en position horizontale
EP3820602A1 (fr) Dispositif permettant de limiter ou supprimer la migration de particules entre deux couches
BE576709A (fr)

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200923

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20240305