EP3752360A1 - Vitrage feuillete - Google Patents

Vitrage feuillete

Info

Publication number
EP3752360A1
EP3752360A1 EP19710737.8A EP19710737A EP3752360A1 EP 3752360 A1 EP3752360 A1 EP 3752360A1 EP 19710737 A EP19710737 A EP 19710737A EP 3752360 A1 EP3752360 A1 EP 3752360A1
Authority
EP
European Patent Office
Prior art keywords
glass
sheet
temperature
glazing
sheets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19710737.8A
Other languages
German (de)
English (en)
Inventor
Vincent Sauvinet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP3752360A1 publication Critical patent/EP3752360A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10082Properties of the bulk of a glass sheet
    • B32B17/1011Properties of the bulk of a glass sheet having predetermined tint or excitation purity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10082Properties of the bulk of a glass sheet
    • B32B17/10119Properties of the bulk of a glass sheet having a composition deviating from the basic composition of soda-lime glass, e.g. borosilicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10128Treatment of at least one glass sheet
    • B32B17/10137Chemical strengthening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10889Making laminated safety glass or glazing; Apparatus therefor shaping the sheets, e.g. by using a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10899Making laminated safety glass or glazing; Apparatus therefor by introducing interlayers of synthetic resin
    • B32B17/10944Making laminated safety glass or glazing; Apparatus therefor by introducing interlayers of synthetic resin in powder form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/078Glass compositions containing silica with 40% to 90% silica, by weight containing an oxide of a divalent metal, e.g. an oxide of zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/02Compositions for glass with special properties for coloured glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/18Compositions for glass with special properties for ion-sensitive glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4026Coloured within the layer by addition of a colorant, e.g. pigments, dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2329/00Polyvinylalcohols, polyvinylethers, polyvinylaldehydes, polyvinylketones or polyvinylketals
    • B32B2329/06PVB, i.e. polyinylbutyral
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/006Transparent parts other than made from inorganic glass, e.g. polycarbonate glazings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars

Definitions

  • the invention relates to the field of laminated glazing, particularly laminated glazing for automobiles, especially used as windshields, roofs or side windows.
  • Laminated glazings are glazings in which two sheets of glass are adhesively bonded to each other by a lamination interlayer which has the capacity to retain glass chips in case of breakage.
  • the lamination interlayer may also fulfill other functions, for example resistance to burglary, acoustic, thermal, etc ...
  • the lamination interlayer generally comprises at least one polymeric sheet, typically polyvinyl butyral, suitable for soften during lamination treatment and adhere to glass sheets.
  • Laminated glazings are used in motor vehicles as windshields, and sometimes as side windows or roofs. As such, they must meet a growing number of requirements, including mechanical requirements (they must withstand gravel), physical requirements (they must be as light as possible so as to penalize as little as possible the energy consumption of the vehicle ), optical requirements (their transmission in the visible must be sufficient to allow good visibility for the driver) and thermal requirements (their transmission of solar radiation must be low in order to reduce solar and solar heat therefore the need for air conditioning), not to mention the cost requirements. Some of these requirements are contradictory because a Lighter glazing is a thinner glazing, but one that will tend to be less resistant to gravel and more transmit infrared radiation.
  • Hybrid laminated glazing units comprising a clear, chemically quenched glass, generally sodium aluminosilicate, assembled with a colored silica-soda-lime glass can meet these different requirements.
  • the laminated glazings are generally curved and the two glass sheets of the laminated glazing must be curved together to ensure a perfect assembly and avoid any optical distortion.
  • the two sheets of glass are superimposed, the inner sheet being disposed above the outer sheet, and introduced into a bending furnace, or they soften.
  • the bending can in particular be a gravity bending, in which the glass sheets are deformed under their own weight, the deformation being adjusted by means of specific tools. The bending can still be by pressing, the glass sheets being pressed against a shape.
  • the glass sheets can be kept at a distance by placing between them an interposed powder providing a space of a few tens of micrometers.
  • This small space by limiting the speed of penetration of the air by the edges between the two sheets of glass, also makes it possible to create a particularly favorable suction effect in the case where the inner glass is a thin glass, because it allows to limit the tendency of thin glasses to form when bending ripples at the edges by "forcing" the glass thin interior to follow the deformation of the outer glass. It turns out, however, that this suction effect is insufficient when bulbs of sodium aluminosilicates and silica-soda-lime glasses are bulged together. It then forms undesirable edge undulations all the more important that the glazing has a complex shape, including a large double bending.
  • the invention proposes to solve these various problems, and particularly to avoid the formation of edge ripples.
  • the subject of the invention is a curved laminated glazing unit comprising an outer sheet of a soda-lime colored glass and an inner sheet of a clear glass of sodium aluminosilicate that has been chemically hardened and has a thickness e2 ranging from , 4 to 1.1 mm, especially 0.4 to 0.7 mm, said outer and inner sheets being joined together by means of a lamination interlayer, said colored glass having a chemical composition comprising a weight content of iron total, expressed as FeO, ranging from 0.6 to 2.2%, and the glasses of the inner and outer sheets being selected so that 0 T T 10 n nt- T 10 ext 20 ° C, where T 10 Ni nt is the temperature T10 of the glass of the inner sheet and T10 ext the temperature T10 of the glass of the outer sheet, the temperature T10 being the temperature at which the glass under consideration has a viscosity of 10 10 dPa.s.
  • Another object of the invention is a glazing for a transport vehicle, in particular a motor vehicle, in particular a windshield or a car roof, comprising a laminated glazing unit according to the invention.
  • Another object of the invention is a method for obtaining a laminated glazing unit according to the invention. This process comprises the following successive steps:
  • a bending step in which a sheet of a clear sodium aluminosilicate glass having a thickness e2 ranging from 0.4 to 1.1 mm, called an inner glass sheet, intended to become the inner sheet of the glazing, and a sheet of a soda-lime colored glass having a chemical composition comprising a weight content of total iron, expressed as FeO, ranging from 0.6 to 2.2%, referred to as an outer glass sheet and intended to become the outer sheet of the glazing, are curved together, said inner glass sheet being positioned above said outer glass sheet, the two glass sheets being separated with an interposed powder, and then
  • a lamination step in which the inner and outer glass sheets are assembled by means of a lamination interlayer.
  • the inventors have been able to demonstrate that a judicious choice of temperatures T10i nt and T10 ext allowed to avoid the appearance of edge ripples in the thin glass during the bending of the glass sheets. It has furthermore been found that it is possible to achieve the appropriate T10 ext values by using a soda-lime glass, but whose chemical composition is adjusted with respect to that of standard glass conventionally used for the production of glass for the building or transport.
  • the unit dPa.s is also frequently called "Poise" in the glass technique.
  • the temperature T10 is preferably measured according to ISO 7884-3 using a viscometer by fiber elongation. The temperature T10 is measured on the glass before any (possible) chemical quenching.
  • T10i nt - TlOext is denoted DT10 then, according to the invention, 0 £ DT10 ⁇ 20 ° C.
  • DT10 must be null or positive.
  • DT10 is strictly positive, in particular at least 5 ° C or even 10 ° C. It has indeed been found that it is advantageous for the inner glass to be slightly more viscous than the outer glass in order to avoid during the bending the formation of marks on the inner glass because of the pressure of the latter on the powder. interlayer.
  • DT10 is preferably at most 18 ° C, especially 15 ° C. Too much difference DT10 causes the formation of undesirable edge ripples.
  • inner sheet is meant the glass sheet intended to be positioned inside the passenger compartment of the vehicle. This sheet is located on the concave side of the glazing. In contrast, the outer sheet, intended to be positioned outside the passenger compartment of the vehicle, is located on the convex side of the glazing.
  • inner (respectively outer) glass sheet the glass sheet intended to become, after the bending steps, chemical quenching and lamination, the inner or outer sheet, respectively, of the final glazing.
  • the glazing preferably consists of the outer sheet, the inner sheet and the lamination interlayer, but this does not exclude that one of these constituents is coated with layers or stackings of layers, as described herein. -after.
  • the choice of thicknesses of the inner and outer sheets has a particularly important impact on the resistance to gravel. It turns out that the resistance to gravel decreases with the total thickness of the laminated glazing but increases as the thickness of the inner sheet decreases.
  • the thickness e 1 of the outer sheet is preferably at most 2.4 mm, in particular 2.3 mm, or even 2.2 mm or 2.1 mm. It is preferably at least 1.6 or 1.7 mm.
  • the thickness e1 is advantageously in a range from 1.6 to 2.4 mm.
  • the thickness e2 of the inner sheet is preferably at most 1.0 mm, in particular 0.9 mm, or even 0.8 mm or 0.7 mm.
  • the thickness e2 is preferably at least 0.5 mm.
  • the thickness e2 is advantageously less than the thickness e1.
  • the inner sheet is made of a clear glass of sodium aluminosilicate which has been chemically hardened and having a thickness el ranging from 0.4 to 1.1 mm, preferably from 0.4 to 0.7 mm. This type of glass has been found capable of providing, in combination with the outer sheet, glazings both light and mechanically resistant.
  • the sodium aluminosilicate glass preferably comprises (before chemical quenching) from 55 to 73% by weight of
  • SiCg from 2 to 20% by weight of A ⁇ Cg and from 9 to 17% by weight of
  • Na 2 ⁇ C Na 2 ⁇ C. It also advantageously comprises from 2 to 11% by weight of MgO, from 0 to 10% by weight of K2O, less than 3% by weight of CaO and less than 10%, especially less than 5% by weight of B2O3.
  • the sodium aluminosilicate glass preferably has (before chemical quenching) one of the following compositions, expressed as mass percentages of oxides.
  • SiCy 55-71%, especially 59-68%; AI2O3: 3-11%, especially 4-10%; MgO: 4-11%, especially 5-10%; Na2O: 9-
  • SiO2 55-70%, especially 58-68%; AI2O3: 8-20%, especially 9-18%; MgO: 2-8%, especially 2-7%; Na2O: 10-
  • B2O3 ⁇ 3%, especially ⁇ 2%
  • CaO ⁇ 1%, especially ⁇ 0.6%.
  • SiO2 60-73%, especially 63-71%; AI2O3: 2-8%, especially 3-6%; MgO: 6-11%, especially 7-10%; Na 2 O: 10-17%, especially 11-16%; K2O: ⁇ 2%, especially ⁇ 1%; CaO: 0-3%, especially 1-2%; B2O3: ⁇ 2%, especially ⁇ 1%.
  • clear glass is meant a glass whose light transmission (at real thickness) is at least 90%. The light transmission is calculated from an experimental spectrum produced on the glass sheet considered, taking into account the illuminant A defined by the ISO 11664-2 standard and the CIE 1931 reference observer. (2 °) defined by the ISO 11664-1 standard.
  • Clear glasses generally contain a total iron content of not more than 0.15%, especially 0.1% and even 0.08%. The total iron content of clear glasses, however, is generally at least 0.01% because the natural raw materials used in the melting of the glass contain iron impurities, and lower contents would require the use of particularly raw materials. costly. Clear glass generally does not contain other coloring agents than iron; in particular, it preferably does not contain cobalt oxide, chromium oxide, selenium, copper oxide, nickel oxide and rare earth oxides, except for unavoidable impurities.
  • Chemical quenching involves contacting the surface of the glass with a molten potassium salt (eg potassium nitrate), so as to reinforce the glass surface by exchanging glass ions ( here sodium ions) by ions of larger ionic radius (potassium ions).
  • a molten potassium salt eg potassium nitrate
  • glass ions here sodium ions
  • potassium ions ions of larger ionic radius
  • This ion exchange makes it possible to form compressive stresses on the surface of the glass and over a certain thickness.
  • the surface stress is at least 300 MPa, in particular 400 and even 500 MPa, and at most 700 MPa
  • the thickness of the compression zone is at least 20 ⁇ m, typically between 20 ⁇ m and 20 ⁇ m. and 50 ym.
  • the stress profile can be determined in a known manner using a polarizing microscope equipped with a Babinet compensator.
  • the chemical quenching step is preferably carried out at a temperature ranging from 380 to 480 ° C, and for a time ranging from 30 minutes to 3 hours.
  • the chemical quenching step is carried out after the bending, because the bending has the effect of soaking the glass.
  • the temperature TiOi nt is preferably in a range from 660 to 680 ° C, especially from 660 to 675 ° C.
  • the outer sheet is of a soda-lime colored glass whose chemical composition comprises a weight content of total iron, expressed as Fe 2 O 3, ranging from 0.6 to 2.2%.
  • the temperature T10 ext is preferably in a range from 655 to 675 ° C.
  • silico-soda-lime glass is meant a glass containing silica as forming oxide and oxides of sodium and calcium as modifying oxides.
  • the silico-soda-lime glass generally has a chemical composition which comprises from 60 to 78% of silica (SiO 2 ), from 9 to 16% of sodium hydroxide (Na 2 O) and from 5 to 15% of lime (CaO). As indicated in the rest of the text, this silico-soda-lime glass is preferably non-mechanically reinforced.
  • the outer sheet is preferably floated, wherein the molten glass is poured onto a molten tin bath.
  • the colored glass advantageously has a chemical composition comprising the following constituents, in a weight content varying within the limits defined below:
  • the sum of the weight contents of SiCy, Al 2 O 3, CaO, MgO, NaO, KO is preferably at least 95%, especially 98%.
  • the content of SrO, BaO and / or ZrCy is advantageously zero so as not to penalize the cost of the glass sheet.
  • the content of antimony and arsenic oxides is also advantageously zero because these oxides are not compatible with the float process.
  • the other constituents of the composition may be impurities originating from the raw materials or due to the degradation of the refractories of the melting furnace or of the refining agents (in particular SO 3 ).
  • Silica is the main forming element of glass. In too low levels, the hydrolytic resistance of the glass, especially in basic medium, would be reduced too much. On the other hand, contents above 75% lead to an increase in the viscosity of the highly detrimental glass.
  • the silica content is preferably at least 69%, especially 70% and / or at most 74%, in particular 73% or even 72%.
  • Alumina (Al2O3) makes it possible to increase the hydrolytic resistance of the glass and to reduce its refractive index.
  • the alumina content is preferably at least 0.5%, especially 1%, 1.5% or 2% and / or at most 2.5%.
  • Increasing the AI2O3 content increases the temperature T10 ext
  • the addition of lime (CaO) has the advantage of reducing the high-temperature viscosity of the glass, and thus facilitating its melting and refining, while increasing the lower annealing temperature, and therefore the thermal stability.
  • the increase in the liquidus temperature and the refractive index attributable to this oxide lead to limiting its content.
  • Magnesia (MgO) is useful for improving the chemical durability of glass and decreasing its viscosity. High levels, however, lead to increased risks of devitrification.
  • the CaO content is preferably at least 8%, even 9% and even 10% and / or at most 13%, especially 12% or even 11%.
  • CaO and MgO can increase the temperature T10ext ⁇
  • Soda Na 2 O
  • Soda is useful for reducing the viscosity at high temperature and liquidus temperature. Too high levels, however, lead to degrade the hydrolytic strength of the glass and its thermal stability, while increasing the cost.
  • the addition of soda decreases the temperature T10 ext ⁇
  • the potash (K 2 0) has the same advantages and disadvantages.
  • the Na 2 0 content is preferably at least 9.5%, especially 10% or 11% or 11.5% and / or at most 12%.
  • the K 2 0 content is preferably at most 1% and / or at least 0.5%.
  • the weight content of MgO is at most 1%, especially 0.5% and even 0.1%.
  • the CaO content is advantageously at least 11.5% or even 12%.
  • the Na 2 0 content is preferably at least 10% or even 11%. It is advantageously at most 12%.
  • Particularly preferred compositions comprise the following constituents, in a weight content varying within the limits defined below:
  • the weight content of MgO is at least 4%, even 4.5% or 5% and / or at least 6%.
  • the CaO content is preferably between 9 and 11%, especially between 9 and 10.5%.
  • the content of Na 2 0 is preferably at least 9.5% or 10% and / or at most 12% or 11%.
  • Particularly preferred compositions comprise the following constituents, in a weight content varying within the limits defined below:
  • the weight content of CaO is at least 9%, especially 10% and / or at most 12%, especially 11%.
  • the weight content of MgO is preferably at least 4% and / or at most 5%.
  • the Na 2 0 content is preferably at least 11%.
  • compositions comprise the following constituents, in a weight content varying within the limits defined below:
  • the weight content of total iron of the colored glass, expressed as FeO, is preferably at least 0.7%, especially 0.8%. It is preferably at most 1.9%, especially 1.6%, or even 1.4%. It is preferably in a range from 0.7 to 1.8%, especially 0.8 to 1.5%.
  • the redox ratio of the colored glass is preferably at least 0.22, especially 0.25. It is preferably at most 0.31, especially 0.30, or even 0.29 or 0.28.
  • the redox ratio is preferably in a range from 0.22 to 0.31, especially 0.24 to 0.29, or even 0.25 to 0.27.
  • the redox ratio is the ratio of the ferrous iron content by weight, expressed as FeO, to the weight content of total iron, expressed as FeO.
  • the colored glass preferably does not contain other coloring agents than iron oxide or titanium oxide.
  • the latter is an impurity frequently contained in some raw materials and can contribute to slightly tinting the glass.
  • the content of titanium oxide is generally at most 0.1% or even 0.06%.
  • the colored glass preferably does not contain cobalt oxide, nickel oxide, chromium oxide, selenium, copper oxide, vanadium oxide or manganese oxide. It preferably does not contain rare earth oxide, in particular no cerium oxide.
  • the colored glass may contain very small amounts of at least one of the above coloring agents in order to adjust the optical properties.
  • the outer sheet is preferably made of mechanically unreinforced glass. In this case, it is neither hardened nor hardened.
  • Mechanically unstrengthened means that the glass sheet has not been reinforced by chemical quenching or by means of forced cooling to create high compressive stresses on the surface of the glass. glass sheet. This definition, however, does not exclude the possibility of using cooling means conventionally used and necessary to respect cycle times or to obtain form constraints. In a car glazing forming process, it is indeed necessary to cool the glass after forming in order to respect the cycle times and to create shape constraints by putting the periphery of the glazing in compression to increase the resistance. edges to the breakage. The term "non-reinforced mechanically” does not exclude the presence of edge stresses.
  • the mechanically unreinforced glass is preferably such that the residual stress of core tension is at most 12 MPa, in particular 5 MPa, or even 2 MPa. Such stress values are obtained especially with cooling speeds of at most 1 ° C per second after bending, more precisely between the exit of the bending furnace and the zone in which the temperature of the glass corresponds to its annealing temperature. .
  • the measurement of the residual stress is in particular carried out on a specimen obtained by cutting in the glazing a parallelepiped test piece of 10 mm by 50 mm, by separating the first sheet of glass from the laminating interlayer, for example by heat-treating the test piece at a temperature of 150 to 200 ° C, and then measuring the stresses in the thickness of the glass sheet.
  • the measurement of the stresses can for example be carried out by means of a biasograph, described in Chapter 8 of the book "Photoelasticity of Glass" by H. Aben, C.
  • the glazing is curved. To do this, the two glass sheets are curved, generally together, before being assembled by means of the lamination interlayer.
  • the bending can be carried out in known manner, for example by gravity (glass deforming under its own weight) or by pressing, at temperatures typically ranging from 600 to 680 ° C.
  • the inner glass sheet is placed on top of the outer glass sheet.
  • the glass sheets are preferably kept at a distance by placing between them an interposed powder providing a space of a few tens of micrometers, typically from 20 to 50 ⁇ m.
  • the interlayer powder is for example based on calcium carbonate and / or magnesium.
  • the lamination can be carried out in known manner by an autoclave treatment, for example at temperatures of 110 to 160 ° C and a pressure of 10 to 15 bar. Prior to the autoclave treatment, air trapped between the glass sheets and the lamination interlayer may be removed by calendering or vacuum.
  • the direct solar transmission of the glazing is preferably at most 52%, especially 50%, and even 48% or 46%, or even 45%. It is usually at least 35%. Direct solar transmission is determined according to the standard
  • the light transmission of the glazing is preferably at least 70%, especially 71%. It is advantageously at most 80%, especially at most 78% or 77% and even 75% or 74%.
  • the light transmission is calculated from an experimental spectrum produced on the glazing considered, taking into account the illuminant A defined by the standard ISO 11664-2 and the reference observer CIE 1931 (2 °) defined by the standard ISO 11664-1.
  • the thickness of the glazing is preferably at most 5 mm, in particular 4.5 mm or even 4 mm. It is generally at least 2.8 mm, especially 3 mm.
  • the invention avoids the appearance of edge ripples following bending, which is particularly difficult to obtain in the case of complex glazing, large and / or strongly curved.
  • the glazing preferably has an area of at least 1.5 m 2 , or even 1.6 or 1.8 m 2 .
  • the glazing is preferably doubly curved. It preferably has a double-bending depth (often simply called "double-bending") of at least 20 mm.
  • a glazing is doubly curved if it can not be included in a surface generated by lines perpendicular to the same plane.
  • a glazing is said to be doubly curved when the sections of the glazing, in the plane of symmetry of the glazing and in a plane orthogonal to said plane of symmetry, have a curvature.
  • the double-bending is then defined as being the minimum of the largest arrow in the planes parallel to the plane of symmetry of the pane and the largest arrow in the planes orthogonal to said plane of symmetry.
  • At least one glass sheet may be coated on one face facing the lamination interlayer of an electroconductive and / or low-emissivity thin film stack, in order to obtain a heating glazing or to further improve the thermal insulation glazing.
  • a stack preferably comprises at least one thin layer of silver framed by at least two thin dielectric layers.
  • the laminating interlayer preferably comprises at least one sheet of polyvinyl acetal, especially polyvinyl butyral (PVB).
  • PVB polyvinyl butyral
  • the laminating interlayer can be tinted or untinted so as necessary to regulate the optical or thermal properties of the glazing.
  • the lamination interlayer may advantageously have acoustic absorption properties in order to absorb sounds of aerial or solid origin.
  • it may consist of three polymeric sheets, two of which are said to be external PVB sheets flanking an inner polymeric sheet, possibly made of PVB, of lower hardness than that of the outer sheets.
  • the lamination interlayer may also have thermal insulation properties, in particular infrared radiation reflection. he can for this purpose, a low-emissivity thin-film coating, for example a coating comprising a thin layer of silver or an alternating coating of dielectric layers of different refractive indices, deposited on an internal PET sheet framed by two sheets of External PVB.
  • a low-emissivity thin-film coating for example a coating comprising a thin layer of silver or an alternating coating of dielectric layers of different refractive indices, deposited on an internal PET sheet framed by two sheets of External PVB.
  • the thickness of the lamination interlayer is generally in a range from 0.3 to 1.5 mm, in particular from 0.5 to 1 mm.
  • the lamination interlayer may have a lower thickness on one edge of the glazing than in the center of the glazing to prevent the formation of a double image when using a head-up vision system, said HUD ( head-up display).
  • Curved laminated glazings were manufactured as detailed below.
  • the inner and outer glass sheets were cut and placed one over the other, more precisely the inner sheet above the outer sheet, the two sheets being separated by a magnesium carbonate interlayer powder, providing space about 20 ⁇ m between the two leaves.
  • the two glass sheets, arranged on a bending skeleton, were then placed in a bending furnace to obtain the desired curvature.
  • the bending cycle used is a conventional cycle for the production of windshields: a rise in temperature for 380 s to reach a plateau during which the glass sheets remain for 30 s at a maximum bending temperature indicated below, then cooling at a rate of 0.80 ° C / sec.
  • the inner glass sheet was chemically quenched by dipping the glass sheet into a salt of molten potassium nitrate so as to obtain a stress of upper surface of 550 MPa and a compression thickness of 40 ⁇ m.
  • the two sheets of glass were then laminated in a known manner using a laminating interlayer PVB 0.76 mm thick.
  • the inner sheet is made of clear sodium aluminosilicate glass. Its thickness is 0.5 mm. The temperature of this glass TLOI nt (before chemical tempering) is 665 ° C.
  • the outer sheet is made of a silico-sodocalcic glass colored and unreinforced mechanically. Its thickness is 1.6 mm.
  • the total iron content, expressed as Fe 2 O 3, is 1%, with a redox ratio of 0.26.
  • the chemical weight composition of silico-soda-lime glass was as follows: SiO 2 : 72.4%; A1 2 0 3 : 0.6%; Fe 2 O 3 : 1.0%; Na 2 O: 13.4%;
  • T10 ext temperature of this glass is 635 ° C, so that DT10 is 30 ° C.
  • the maximum bending temperature was 635 ° C.
  • the chemical weight composition of the silica-soda-lime glass was as follows: SiO 2 : 69.3%; A1 2 0 3 : 2.0%; Fe 2 O 3 : 1.0%;
  • edge corrugations are visible to the naked eye. These corrugations of the inner glass sheet are manifested by periodic local detachment between the two sheets of glass. At the edges, the inner sheet is peeled away from the outer sheet by a distance of 20 mm. In the case of the example according to the invention, on the other hand, no ripple is observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Glass Compositions (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

L'invention a pour objet un vitrage feuilleté bombé comprenant une feuille extérieure d'un verre coloré silico- sodocalcique et une feuille intérieure d'un verre clair d'aluminosilicate de sodium trempé chimiquement et ayant une épaisseur e2 allant de 0,4 à 1,1 mm, notamment de 0,4 à 0,7mm, lesdites feuilles extérieure et intérieure étant assemblées entre elles au moyen d'un intercalaire de feuilletage, ledit verre coloré possédant une composition chimique comprenant une teneur pondérale en fer total, exprimée sous la forme Fe2O3, allant de 0,6 à 2,2%, les verres des feuilles intérieure et extérieure étant choisis de sorte que 0 ≤ T10int – T10ext ≤ 20°C, où T10int est la température T10 du verre de la feuille intérieure et T10ext la température T10 du verre de la feuille extérieure, la température T10 étantla température à laquelle le verre considéré possède une viscosité de 1010 dPa.s.

Description

i
VITRAGE FEUILLETE
L' invention se rapporte au domaine des vitrages feuilletés, plus particulièrement des vitrages feuilletés pour automobile, notamment employés comme pare-brise, toits ou vitrages latéraux.
Les vitrages feuilletés sont des vitrages dans lesquels deux feuilles de verre sont liées adhésivement entre elles par un intercalaire de feuilletage qui possède la capacité de retenir les éclats de verre en cas de bris. L' intercalaire de feuilletage peut également remplir d'autres fonctions, par exemple de résistance à l'effraction, acoustiques, thermiques etc... L'intercalaire de feuilletage comprend en général au moins une feuille polymérique, typiquement en polyvinylbutyral , apte à se ramollir lors du traitement de feuilletage et à adhérer aux feuilles de verre.
Les vitrages feuilletés sont utilisés dans les véhicules automobiles comme pare-brise, et parfois comme vitrages latéraux ou toits. A ce titre, ils doivent répondre à un nombre croissant d'exigences, dont des exigences mécaniques (ils doivent résister au gravillonnage) , des exigences physiques (ils doivent être le plus léger possible de manière à pénaliser le moins possible la consommation énergétique du véhicule) , des exigences optiques (leur transmission dans le visible doit être suffisante pour permettre une bonne visibilité pour le conducteur) et des exigences thermiques (leur transmission du rayonnement solaire doit être faible de manière, en été, à réduire les apports de chaleur solaire et donc le besoin de climatisation), sans parler des exigences de coût. Certaines de ces exigences sont contradictoires, car un vitrage plus léger est un vitrage plus mince, mais qui aura tendance à moins bien résister au gravillonnage et à plus transmettre le rayonnement infrarouge.
Des vitrages feuilletés « hybrides » comprenant un verre mince clair et trempé chimiquement, généralement d' aluminosilicate de sodium, assemblé à un verre silico- sodocalcique coloré peuvent répondre à ces différentes exigences .
D'autres exigences sont quant à elles relatives au procédé de fabrication de ces vitrages, et à leur impact sur la présence ou non de défauts. En particulier, les vitrages feuilletés sont généralement bombés et les deux feuilles de verre du vitrage feuilleté doivent pouvoir être bombées ensemble de manière à assurer un parfait assemblage et éviter toutes distorsions optiques. Pour ce faire, les deux feuilles de verre sont superposées, la feuille intérieure étant disposée au-dessus de la feuille extérieure, et introduites dans un four de bombage, ou elles se ramollissent. Le bombage peut notamment être un bombage par gravité, dans lequel les feuilles de verre se déforment sous leur propre poids, la déformation étant ajustée au moyen d'outillages spécifiques. Le bombage peut encore être par pressage, les feuilles de verre étant pressées contre une forme. Pour éviter que les feuilles de verre ne collent l'une à l'autre pendant le bombage, on peut les maintenir à distance en disposant entre elles une poudre intercalaire assurant un espace de quelques dizaines de micromètres. Ce faible espace, en limitant la vitesse de pénétration de l'air par les bords entre les deux feuilles de verre, permet en outre de créer un effet de succion particulièrement favorable dans le cas où le verre intérieur est un verre mince, car il permet de limiter la tendance qu'ont les verres minces à former lors du bombage des ondulations au niveau des bords en « forçant » le verre mince intérieur à suivre la déformation du verre extérieur. Il s'avère toutefois que cet effet de succion est insuffisant lorsque sont bombés ensemble des verres d' aluminosilicates de sodium et des verres silico- sodocalciques . Il se forme alors des ondulations de bord indésirables d'autant plus importantes que le vitrage présente une forme complexe, notamment un double-bombage important .
L' invention se propose de résoudre ces différents problèmes, et particulièrement d'éviter la formation d'ondulations de bord.
A cet effet, l'invention a pour objet un vitrage feuilleté bombé comprenant une feuille extérieure d'un verre coloré silico-sodocalcique et une feuille intérieure d'un verre clair d' aluminosilicate de sodium trempé chimiquement et ayant une épaisseur e2 allant de 0,4 à 1,1 mm, notamment de 0,4 à 0,7 mm, lesdites feuilles extérieure et intérieure étant assemblées entre elles au moyen d'un intercalaire de feuilletage, ledit verre coloré possédant une composition chimique comprenant une teneur pondérale en fer total, exprimée sous la forme FeÛ , allant de 0,6 à 2,2%, et les verres des feuilles intérieure et extérieure étant choisis de sorte que 0 £ TlOint - T10ext £ 20°C, où TlOint est la température T10 du verre de la feuille intérieure et T10ext la température T10 du verre de la feuille extérieure, la température T10 étant la température à laquelle le verre considéré possède une viscosité de 1010 dPa.s.
Un autre objet de l'invention est un vitrage pour véhicule de transport, notamment automobile, en particulier un pare-brise ou un toit automobile, comprenant un vitrage feuilleté selon l'invention. Un autre objet de l'invention est un procédé d'obtention d'un vitrage feuilleté selon l'invention. Ce procédé comprend les étapes successives suivantes :
- une étape de bombage, dans laquelle une feuille d'un verre clair d' aluminosilicate de sodium ayant une épaisseur e2 allant de 0,4 à 1,1 mm, dite feuille de verre intérieure et destinée à devenir la feuille intérieure du vitrage, et une feuille d'un verre coloré silico- sodocalcique possédant une composition chimique comprenant une teneur pondérale en fer total, exprimée sous la forme FeÛ , allant de 0,6 à 2,2%, dite feuille de verre extérieure et destinée à devenir la feuille extérieure du vitrage, sont bombées ensemble, ladite feuille de verre intérieure étant positionnée au-dessus de ladite feuille de verre extérieure, les deux feuilles de verre étant séparées à l'aide d'une poudre intercalaire, puis
- une étape de trempe chimique, dans laquelle la feuille de verre intérieure est mise en contact avec un sel de potassium fondu, puis
une étape de feuilletage, dans laquelle les feuilles de verre intérieure et extérieure sont assemblées au moyen d'un intercalaire de feuilletage.
Les inventeurs ont pu mettre en évidence qu'un choix judicieux de températures T10int et T10ext permettait d'éviter l'apparition d'ondulations de bord dans le verre mince lors du bombage des feuilles de verre. Il s'est en outre révélé qu'il était possible d'atteindre les valeurs T10ext adéquates en utilisant un verre silico-sodocalcique, mais dont la composition chimique est ajustée par rapport à celle du verre standard classiquement employé pour la réalisation de vitrages pour le bâtiment ou les transports.
L'unité dPa.s est aussi fréquemment appelée « Poise » dans la technique verrière. La température T10 est de préférence mesurée selon la norme ISO 7884-3 à l'aide d'un viscosimètre par élongation de fibre. La température T10 est mesurée sur le verre avant toute (éventuelle) trempe chimique.
Si T10int - TlOext est notée DT10 alors , selon l'invention, 0 £ DT10 < 20 ° C .
DT10 doit être nul ou positif. De préférence DT10 est strictement positif, en particulier d'au moins 5°C, voire 10°C. Il s'est en effet avéré qu'il était avantageux que le verre intérieur soit légèrement plus visqueux que le verre extérieur afin d'éviter lors du bombage la formation de marques sur le verre intérieur du fait de la pression de ce dernier sur la poudre intercalaire.
DT10 est de préférence d'au plus 18°C, notamment 15°C. Une trop forte différence DT10 entraîne en effet la formation d'ondulations de bord indésirables.
On entend par feuille intérieure la feuille de verre destinée à être positionnée à l'intérieur de l'habitacle du véhicule. Cette feuille est donc située du côté concave du vitrage. A l'opposé, la feuille extérieure, destinée à être positionnée à l'extérieur de l'habitacle du véhicule, est située du côté convexe du vitrage. Par extension, on qualifie également de feuille (de verre) intérieure, respectivement extérieure, la feuille de verre destinée à devenir, après les étapes de bombage, de trempe chimique et de feuilletage, la feuille intérieure, respectivement extérieure, du vitrage final.
Le vitrage est de préférence constitué de la feuille extérieure, de la feuille intérieure et de l'intercalaire de feuilletage, ce qui n'exclut toutefois pas qu'un de ces constituants soit revêtu de couches ou d'empilements de couches, comme décrit ci-après. Le choix des épaisseurs des feuilles intérieure et extérieure a un impact particulièrement important sur la résistance au gravillonnage. Il s'avère en effet que la résistance au gravillonnage décroit avec l'épaisseur totale du vitrage feuilleté mais s'accroît lorsque l'épaisseur de la feuille intérieure diminue.
L'épaisseur el de la feuille extérieure est de préférence d'au plus 2,4 mm, notamment 2,3 mm, voire 2,2 mm ou 2,1 mm. Elle est de préférence d'au moins 1,6 ou 1,7 mm. L'épaisseur el est avantageusement comprise dans un domaine allant de 1,6 à 2,4 mm.
L'épaisseur e2 de la feuille intérieure est de préférence d'au plus 1,0 mm, notamment 0,9 mm, voire 0,8 mm ou 0,7 mm. L'épaisseur e2 est de préférence d'au moins 0 , 5 mm .
L'épaisseur e2 est avantageusement inférieure à l'épaisseur el.
Afin d'optimiser la résistance au gravillonnage, le rapport R = e2/el2 est avantageusement d'au plus 0,40, notamment 0,35 ou 0,30, notamment 0,25, voire 0,20. Il est de préférence d'au moins 0,10.
Des couples d'épaisseurs el/e2 particulièrement avantageux sont notamment : e 1=1 , 6 mm et e2=0 , 5 mm e 1=1 , 6 mm et e2=0 , 7 mm e 1=1 , 8 mm et e2=0 , 5 mm e 1=1 , 8 mm et e2=0 , 7 mm el=2 , 1 mm et e2=0 , 5 mm el=2 , 1 mm et e2=0 , 7 mm
La feuille intérieure est en un verre clair d' aluminosilicate de sodium trempé chimiquement et ayant une épaisseur el allant de 0,4 à 1,1 mm, de préférence de 0,4 à 0,7 mm. Ce type de verre s'est révélé apte à fournir, en combinaison avec la feuille extérieure, des vitrages à la fois légers et résistants mécaniquement.
Le verre d' aluminosilicate de sodium comprend de préférence (avant trempe chimique) de 55 à 73% en poids de
SiCg, de 2 à 20% en poids d'A^Cg et de 9 à 17% en poids de
Na2<C. Il comprend en outre avantageusement de 2 à 11% en poids de MgO, de 0 à 10% en poids de K2O, moins de 3% en poids de CaO et moins de 10%, notamment moins de 5% en poids de B2O3.
Plus particulièrement, le verre d' aluminosilicate de sodium possède de préférence (avant trempe chimique) une des compositions suivantes, exprimées en pourcentages massiques d'oxydes.
SiCy : 55-71%, notamment 59-68% ; AI2O3 : 3-11%, notamment 4-10% ; MgO : 4-11%, notamment 5-10% ; Na2Û : 9-
17%, notamment 10-14% ; K2O : 3-12%, notamment 5-11%; B2O3 :
<2%, notamment <0,5%; CaO: < 1%, notamment < 0,5%.
Si02 : 55-70%, notamment 58-68% ; AI2O3 : 8-20%, notamment 9-18% ; MgO : 2-8%, notamment 2-7% ; Na20 : 10-
17%, notamment 11-16% ; K2O : 1 à 8%, notamment 1 à 6% ;
B2O3 : < 3%, notamment < 2% ; CaO : < 1%, notamment < 0,6%.
Si02 : 60-73%, notamment 63-71% ; AI2O3 : 2-8%, notamment 3-6% ; MgO : 6-11%, notamment 7-10% ; Na20 : 10- 17%, notamment 11-16% ; K2O : < 2%, notamment < 1% ; CaO : 0-3%, notamment 1-2% ; B2O3 : < 2%, notamment < 1%.
Par « verre clair », on entend un verre dont la transmission lumineuse (à épaisseur réelle) est d'au moins 90%. La transmission lumineuse est calculée à partir d'un spectre expérimental réalisé sur la feuille de verre considérée, en prenant en compte l'illuminant A défini par la norme ISO 11664-2 et l'observateur de référence CIE 1931 (2°) défini par la norme ISO 11664-1. Les verres clairs contiennent en général une teneur pondérale en fer total d'au plus 0,15%, notamment 0,1% et même 0,08%. La teneur pondérale en fer total des verres clairs est toutefois généralement d'au moins 0,01% car les matières premières naturelles employées dans la fusion du verre contiennent des impuretés de fer, et des teneurs plus faibles nécessiteraient l'utilisation de matières premières particulièrement coûteuses. Le verre clair ne contient en général pas d' autres agents colorants que le fer ; en particulier il ne contient de préférence pas d'oxyde de cobalt, d'oxyde de chrome, de sélénium, d'oxyde de cuivre, d'oxyde de nickel et d'oxydes de terres rares, sauf impuretés inévitables.
La trempe chimique (aussi appelée « échange ionique ») consiste à mettre en contact la surface du verre avec un sel de potassium fondu (par exemple du nitrate de potassium) , de manière à renforcer la surface du verre en échangeant des ions du verre (ici des ions sodium) par des ions de plus grand rayon ionique (des ions potassium) . Cet échange ionique permet en effet de former des contraintes de compression à la surface du verre et sur une certaine épaisseur. De préférence, la contrainte de surface est d'au moins 300 MPa, notamment 400 et même 500 MPa, et d'au plus 700 MPa, et l'épaisseur de la zone en compression est d'au moins 20 ym, typiquement entre 20 et 50 ym. Le profil de contraintes peut être déterminé de manière connue à l'aide d'un microscope polarisant équipé d'un compensateur de Babinet. L'étape de trempe chimique est de préférence mise en œuvre à une température allant de 380 à 480°C, et pour une durée allant de 30 minutes à 3 heures. L'étape de trempe chimique est mise en œuvre après le bombage, car le bombage a pour effet de détremper le verre. La température TlOint est de préférence comprise dans un domaine allant de 660 à 680°C, notamment de 660 à 675°C.
La feuille extérieure est en un verre coloré silico- sodocalcique dont la composition chimique comprend une teneur pondérale en fer total, exprimée sous la forme Fe203, allant de 0,6 à 2,2%.
La température T10ext est de préférence comprise dans un domaine allant de 655 à 675°C.
On entend par verre silico-sodocalcique un verre contenant de la silice comme oxyde formateur et des oxydes de sodium et de calcium comme oxydes modificateurs. Le verre silico-sodocalcique possède généralement une composition chimique qui comprend de 60 à 78% de silice (Si02) , de 9 à 16% de soude (Na20) et de 5 à 15% de chaux (CaO) . Comme indiqué dans la suite du texte, ce verre silico-sodocalcique est de préférence non-renforcé mécaniquement .
La feuille extérieure est de préférence obtenue par flottage, procédé dans lequel le verre fondu est déversé sur un bain d'étain en fusion.
Afin d'assurer des températures T10ext adaptées aux verres d' aluminosilicate de sodium les plus couramment utilisés, le verre coloré possède avantageusement une composition chimique comprenant les constituants suivants, en une teneur pondérale variant dans les limites ci-après définies :
Si02 68-75%
AI2O3 0-3%
CaO + MgO 11-16, 2%
MgO 0-6, 5%
Na20 9-12,4%
K20 0-1,5%. Bien qu'étant de type silico-sodo-calcique, comme le verre standard, ces compositions permettent étonnamment d'obtenir des températures T10ext adaptées aux températures TlOint de la feuille intérieure en aluminosilicate de sodium.
La somme des teneurs pondérales en SiCy, AI2O3, CaO, MgO, NaÛ, KO est de préférence d'au moins 95%, notamment 98%. La teneur en SrO, BaO et/ou ZrCy est avantageusement nulle afin de ne pas pénaliser le coût de la feuille de verre. La teneur en oxydes d'antimoine et d'arsenic est également avantageusement nulle car ces oxydes ne sont pas compatibles avec le procédé de flottage. Les autres constituants de la composition peuvent être des impuretés provenant des matières premières ou dues à la dégradation des réfractaires du four de fusion ou des agents d'affinage (notamment SO3) .
La silice (SiCy) est le principal élément formateur du verre. En de trop faibles teneurs, la résistance hydrolytique du verre, notamment en milieu basique, s'en trouverait trop amoindrie. En revanche, les teneurs au-delà de 75% entraînent une augmentation de la viscosité du verre hautement préjudiciable. La teneur en silice est de préférence d'au moins 69%, notamment 70% et/ou d'au plus 74%, notamment 73%, voire 72%.
L'alumine (AI2O3) permet d'augmenter la résistance hydrolytique du verre et de diminuer son indice de réfraction. La teneur en alumine est de préférence d'au moins 0,5%, notamment 1%, 1,5% ou 2% et/ou d'au plus 2,5%. L'augmentation de la teneur en AI2O3 permet d'augmenter la température T10ext·
L'ajout de chaux (CaO) présente l'avantage de diminuer la viscosité à haute température du verre, et donc de faciliter sa fusion et son affinage, tout en augmentant la température inférieure de recuisson, et donc la stabilité thermique. L'augmentation de la température au liquidus et de l'indice de réfraction attribuables à cet oxyde conduisent toutefois à en limiter la teneur. La magnésie (MgO) est utile pour améliorer la durabilité chimique du verre et diminuer sa viscosité. De fortes teneurs conduisent toutefois à renforcer les risques de dévitrification. La teneur en CaO est de préférence d'au moins 8%, voire 9% et même 10% et/ou d'au plus 13%, notamment 12%, voire 11%. L'augmentation de la teneur en
CaO et MgO permet d'augmenter la température T10ext ·
La soude (Na20) est utile pour réduire la viscosité à haute température et la température au liquidus. Des teneurs trop élevées conduisent toutefois à dégrader la résistance hydrolytique du verre et sa stabilité thermique, tout en augmentant le coût. L'ajout de soude diminue la température T10ext· La potasse (K20) présente les mêmes avantages et inconvénients. La teneur en Na20 est de préférence d'au moins 9,5%, notamment 10% ou 11%, voire 11,5% et/ou d'au plus 12%. La teneur en K20 est de préférence d'au plus 1% et/ou d'au moins 0,5%.
Selon un premier mode de réalisation préféré, la teneur pondérale en MgO est d'au plus 1%, notamment 0,5% et même 0,1%. La teneur en CaO est avantageusement d'au moins 11,5%, voire 12%. La teneur en Na20 est de préférence d'au moins 10%, voire 11%. Elle est avantageusement d'au plus 12%. Des compositions particulièrement préférées comprennent les constituants suivants, en une teneur pondérale variant dans les limites ci-après définies :
S102 71-74,2%
A1203 0-3%
CaO 11,5-13%
MgO 0-1%
Na20 11-12,4%, notamment 11-12%, K20 0-1,5%.
Selon un second mode de réalisation préféré, la teneur pondérale en MgO est d'au moins 4%, voire 4,5% ou 5% et/ou d'au moins 6%. La teneur en CaO est de préférence comprise entre 9 et 11%, notamment entre 9 et 10,5%. La teneur en Na20 est avantageusement d'au moins 9,5%, voire 10% et/ou d'au plus 12% ou 11%. Des compositions particulièrement préférées comprennent les constituants suivants, en une teneur pondérale variant dans les limites ci-après définies :
Si02 70-74%
A1203 0-2%
CaO 9-10,5%
MgO 4-6,5%, notamment 4-6%
Na20 10-11%
K20 0-1%.
Selon un troisième mode de réalisation, la teneur pondérale en CaO est d'au moins 9%, notamment 10% et/ou d'au plus 12%, notamment 11%. La teneur pondérale en MgO est de préférence d'au moins 4% et/ou d'au plus 5%. La teneur en Na20 est de préférence d'au moins 11%.
Des compositions particulièrement préférées comprennent les constituants suivants, en une teneur pondérale variant dans les limites ci-après définies :
Si02 69-72%, notamment 69-71%
A1203 1-3%, notamment 1,7-3%
CaO 10-12%, notamment 10,1-11%
MgO 4-5%
Na20 11-12,4%, notamment 11,5-12%
K20 0-1%, notamment 0-0,3%. La teneur pondérale en fer total du verre coloré, exprimée sous la forme FeÛ , est de préférence d'au moins 0,7%, notamment 0,8%. Elle est de préférence d'au plus 1,9%, notamment 1,6%, voire 1,4%. Elle est de préférence comprise dans un domaine allant de 0,7 à 1,8%, notamment de 0,8 à 1,5%.
Le rapport rédox du verre coloré est de préférence d'au moins 0,22, notamment 0,25. Il est de préférence d'au plus 0,31, notamment 0,30, voire 0,29 ou 0,28. Le rapport rédox est de préférence compris dans un domaine allant de 0,22 à 0,31, notamment de 0,24 à 0,29, voire de 0,25 à 0,27. Le rapport rédox correspond au rapport entre la teneur pondérale en fer ferreux, exprimée sous la forme FeO, et la teneur pondérale en fer total, exprimée sous la forme FeÛ .
Ce choix de teneurs pondérales en fer total et/ou de rapport rédox permet d' obtenir des vitrages ayant de bonnes propriétés optiques et thermiques, notamment en termes de transmission lumineuse et de transmission solaire directe.
Le verre coloré ne contient de préférence pas d'autres agents colorants que l'oxyde de fer ou l'oxyde de titane. Ce dernier est une impureté fréquemment contenue dans certaines matières premières et peut contribuer à teinter légèrement le verre. La teneur en oxyde de titane est généralement d'au plus 0,1%, voire 0,06%. Le verre coloré ne contient de préférence pas d'oxyde de cobalt, d'oxyde de nickel, d'oxyde de chrome, de sélénium, d'oxyde de cuivre, d'oxyde de vanadium, d'oxyde de manganèse. Il ne contient de préférence pas d'oxyde de terres rares, en particulier pas d'oxyde de cérium. Selon une variante, le verre coloré peut contenir de très faibles quantités d' au moins un agent colorant précité afin d'ajuster les propriétés optiques. Dans ce cas, la teneur totale en agents colorants autre que les oxydes de fer et de titane est de préférence d'au plus 40 ppm (1 ppm = 0,0001%), notamment 30 ou 20 ppm.
Afin d'améliorer la résistance au gravillonnage, la feuille extérieure est de préférence en verre non-renforcé mécaniquement. Elle n'est donc dans ce cas ni trempée ni durcie. Par « non-renforcé mécaniquement », on entend que la feuille de verre n'a pas subi de renforcement par trempe chimique ou à l'aide de moyens de refroidissement forcé dans le but de créer de fortes contraintes de compression à la surface de la feuille de verre. Cette définition n'exclut toutefois pas la possibilité d'utiliser des moyens de refroidissement classiquement utilisés et nécessaires au respect des temps de cycle ou à l'obtention de contraintes de forme. Lors d'un procédé de formage de vitrage pour automobile, il est en effet nécessaire de refroidir le verre après son formage afin de respecter les temps de cycle et de créer des contraintes de forme en mettant la périphérie du vitrage en compression pour augmenter la résistance des bords à la casse. Le terme « non-renforcé mécaniquement » n'exclut donc pas la présence de contraintes de bord.
Le verre non-renforcé mécaniquement est de préférence tel que la contrainte résiduelle de tension à cœur est d'au plus 12 MPa, notamment 5 MPa, voire 2 MPa. De telles valeurs de contrainte sont notamment obtenues avec des vitesses de refroidissement d'au plus 1°C par seconde après bombage, plus précisément entre la sortie du four de bombage et la zone dans laquelle la température du verre correspond à sa température d' annealing. La mesure de la contrainte résiduelle est notamment réalisée sur une éprouvette obtenue en découpant dans le vitrage une éprouvette parallélépipédique de 10 mm sur 50 mm, en séparant la première feuille de verre de l'intercalaire de feuilletage, par exemple en traitant thermiquement l'éprouvette à une température de 150 à 200°C, puis en mesurant les contraintes dans l'épaisseur de la feuille de verre. La mesure des contraintes peut par exemple être réalisée au moyen d'un biasographe, décrit au chapitre 8 de l'ouvrage « Photoelasticity of Glass » de H. Aben, C.
Guillemet (1993) Springer Verlag.
Le vitrage est bombé. Pour ce faire, les deux feuilles de verre sont bombées, généralement ensemble, avant d'être assemblées au moyen de l'intercalaire de feuilletage. Le bombage peut être réalisé de manière connue, par exemple par gravité (le verre se déformant sous son propre poids) ou par pressage, à des températures allant typiquement de 600 à 680°C. Lors du bombage, la feuille de verre intérieure est placée au-dessus de la feuille de verre extérieure. Comme indiqué précédemment, pour éviter que les feuilles de verre ne collent l'une à l'autre pendant le bombage, les feuilles de verre sont de préférence maintenues à distance en disposant entre elles une poudre intercalaire assurant un espace de quelques dizaines de micromètres, typiquement de 20 à 50 ym. La poudre intercalaire est par exemple à base de carbonate de calcium et/ou de magnésium.
Le feuilletage peut être réalisé de manière connue par un traitement en autoclave, par exemple à des températures de 110 à 160°C et sous une pression allant de 10 à 15 bars. Préalablement au traitement en autoclave, l'air emprisonné entre les feuilles de verre et l'intercalaire de feuilletage peut être éliminé par calandrage ou par dépression. La transmission solaire directe du vitrage est de préférence d'au plus 52%, notamment 50%, et même 48% ou 46%, voire 45%. Elle est en général d'au moins 35%. La transmission solaire directe est déterminée selon la norme
ISO 9050 : 2003. La transmission lumineuse du vitrage est de préférence d'au moins 70%, notamment 71%. Elle est avantageusement d'au plus 80%, notamment d'au plus 78% ou 77% et même 75% ou 74%. La transmission lumineuse est calculée à partir d'un spectre expérimental réalisé sur le vitrage considéré, en prenant en compte l'illuminant A défini par la norme ISO 11664-2 et l'observateur de référence CIE 1931 (2°) défini par la norme ISO 11664-1.
L'épaisseur du vitrage est de préférence d'au plus 5 mm, notamment 4,5 mm, voire 4 mm. Elle est en général d'au moins 2,8 mm, notamment 3 mm.
Comme indiqué précédemment, l'invention permet d'éviter l'apparition d'ondulations de bord suite au bombage, ce qui est particulièrement difficile à obtenir dans le cas de vitrages complexes, de grande taille et/ou fortement bombés.
Le vitrage présente de préférence une surface d' au moins 1,5 m2 , voire 1,6 ou 1,8 m2.
Le vitrage est de préférence doublement bombé. Il présente de préférence une profondeur de double-bombage (souvent simplement appelée « double-bombage ») d'au moins 20 mm. Un vitrage est doublement bombé s'il ne peut pas être inclus dans une surface générée par des droites perpendiculaires à un même plan. En pratique, dans le domaine de l'automobile, un vitrage est dit doublement bombé lorsque les sections du vitrage, dans le plan de symétrie du vitrage et dans un plan orthogonal audit plan de symétrie, présentent une courbure. On définit alors le double-bombage comme étant le minimum de la plus grande flèche dans les plans parallèles au plan de symétrie du vitrage et de la plus grande flèche dans les plans orthogonaux audit plan de symétrie. Lorsqu'il n'y a pas de symétrie évidente, au lieu du plan de symétrie, on prend comme référence, en position d'utilisation du vitrage dans le véhicule, le plan vertical parallèle au déplacement (en ligne droite) du véhicule pour les vitrages non latéraux (pare-brise, toits) et le plan vertical perpendiculaire au déplacement (en ligne droite) du véhicule pour les vitrages latéraux. Une dernière possibilité équivalente est de prendre le plan vertical parallèle au déplacement du vitrage dans le four de bombage lorsque ce four est horizontal .
Au moins une feuille de verre peut être revêtue sur une face tournée vers l'intercalaire de feuilletage d'un empilement de couches minces électroconducteur et/ou à faible émissivité, afin d'obtenir un vitrage chauffant ou d'améliorer encore l'isolation thermique du vitrage. Un tel empilement comprend de préférence au moins une couche mince d' argent encadrée par au moins deux couches minces diélectriques .
L' intercalaire de feuilletage comprend de préférence au moins une feuille de polyvinylacétal , notamment de polyvinylbutyral (PVB) .
L' intercalaire de feuilletage peut être teinté ou non-teinté afin si nécessaire de réguler les propriétés optiques ou thermiques du vitrage.
L' intercalaire de feuilletage peut avantageusement posséder des propriétés d'absorption acoustique afin d'absorber les sons d'origine aérienne ou solidienne. Il peut notamment être constitué à cet effet de trois feuilles polymériques, dont deux feuilles de PVB dites externes encadrant une feuille polymérique interne, éventuellement en PVB, de dureté plus faible que celle des feuilles externes .
L' intercalaire de feuilletage peut également posséder des propriétés d'isolation thermique, en particulier de réflexion du rayonnement infrarouge. Il peut à cet effet comprendre un revêtement de couches mince à faible émissivité, par exemple un revêtement comprenant une couche mince d' argent ou un revêtement alternant des couches diélectriques d'indices de réfraction différents, déposé sur une feuille de PET interne encadrée par deux feuilles de PVB externes.
L'épaisseur de l'intercalaire de feuilletage est généralement comprise dans un domaine allant de 0,3 à 1,5 mm, notamment de 0,5 à 1 mm. L'intercalaire de feuilletage peut présenter une épaisseur plus faible sur un bord du vitrage qu'au centre du vitrage afin d'éviter la formation d'une double image en cas d'utilisation d'un système de vision tête haute, dit HUD (head-up display) .
Les exemples qui suivent illustrent l'invention de manière non-limitative.
Des vitrages bombés feuilletés ont été fabriqués comme détaillé ci-après. Les feuilles de verre intérieure et extérieure ont été découpées puis disposées l'une sur l'autre, plus précisément la feuille intérieure au-dessus de la feuille extérieure, les deux feuilles étant séparées par une poudre intercalaire en carbonate de magnésium, ménageant un espace d'environ 20 ym entre les deux feuilles. Les deux feuilles de verre, disposées sur un squelette de bombage ont ensuite été placées dans un four de bombage afin d'obtenir la courbure désirée. Le cycle de bombage employé est un cycle classique pour la production de pare-brise : une montée en température pendant 380 s pour atteindre un palier durant lequel les feuilles de verre restent pendant 30 s à une température maximale de bombage indiquée ci-après, puis un refroidissement à une vitesse de 0,80°C/s. Après refroidissement et lavage, la feuille de verre intérieure a été trempée chimiquement en plongeant la feuille de verre dans un sel de nitrate de potassium fondu de manière à obtenir une contrainte de surface supérieure de 550 MPa et une épaisseur en compression de 40 ym. Les deux feuilles de verre ont ensuite été feuilletées de manière connue à l'aide d'un intercalaire de feuilletage en PVB de 0,76 mm d'épaisseur.
La feuille intérieure est en un verre clair d' aluminosilicate de sodium. Son épaisseur est de 0,5 mm. La température TlOint de ce verre (avant trempe chimique) vaut 665°C.
La feuille extérieure est en un verre silico- sodocalcique coloré et non-renforcé mécaniquement. Son épaisseur est de 1,6 mm. La teneur en fer total, exprimée en Fe203 est de 1%, avec un rapport rédox de 0,26.
Dans un exemple comparatif, la composition chimique pondérale du verre silico-sodocalcique était la suivante : Si02 : 72,4% ; A1203 : 0, 6% ; Fe203 : 1, 0% ; Na20 : 13,4% ;
K20 : 0,1%, CaO : 9,0% ; MgO : 3,1%. La température T10ext de ce verre vaut 635°C, si bien que DT10 vaut 30°C. La température maximale de bombage était de 635 °C.
Dans un exemple selon l'invention, la composition chimique pondérale du verre silico-sodocalcique était la suivante : Si02 : 69, 3;% ; A1203 : 2,0% ; Fe203 : 1, 0% ;
Na20 : 11,9% ; K20 : 0,7%, CaO : 10,5% ; MgO : 4,3%. La température T10ext de ce verre vaut 660°C, si bien que DT10 vaut 5°C. La température maximale de bombage était de 655 °C .
Dans le cas de l'exemple comparatif, des ondulations de bord sont visibles à l'œil nu. Ces ondulations de la feuille de verre intérieure se manifestent par un décollement local périodique entre les deux feuilles de verre. Au niveau des bords, la feuille intérieure est par endroit décollée de la feuille extérieure d'une distance de 20 mm. Dans le cas de l'exemple selon l'invention en revanche, aucune ondulation n'est observée.

Claims

REVENDICATIONS
1. Vitrage feuilleté bombé comprenant une feuille extérieure d'un verre coloré silico-sodocalcique et une feuille intérieure d'un verre clair d' aluminosilicate de sodium trempé chimiquement et ayant une épaisseur e2 allant de 0,4 à 1,1 mm, notamment de 0,4 à 0,7 mm, lesdites feuilles extérieure et intérieure étant assemblées entre elles au moyen d'un intercalaire de feuilletage, ledit verre coloré possédant une composition chimique comprenant une teneur pondérale en fer total, exprimée sous la forme Fe Û , allant de 0,6 à 2,2%, et les verres des feuilles intérieure et extérieure étant choisis de sorte que 0 £ TlOint - T10ext £ 20°C, où TlOint est la température T10 du verre de la feuille intérieure et T10ext la température T10 du verre de la feuille extérieure, la température T10 étant la température à laquelle le verre considéré possède une viscosité de 1010 dPa.s.
2. Vitrage feuilleté selon la revendication 1, tel que l'épaisseur el de la feuille extérieure est comprise dans un domaine allant de 1,6 à 2,4 mm.
3. Vitrage feuilleté selon la revendication précédente, tel que le rapport R = e2/el2 est d'au plus 0,40, notamment 0,30.
4. Vitrage feuilleté selon l'une des revendications précédentes, tel que la température T10ext est comprise dans un domaine allant de 655 à 675°C.
5. Vitrage feuilleté selon l'une des revendications précédentes, tel que la température TlOint est comprise dans un domaine allant de 660 à 680°C.
6. Vitrage feuilleté selon l'une des revendications précédentes, tel que TlOint - TlOext ³ 5 °C .
7. Vitrage feuilleté selon l'une des revendications précédentes, dans lequel le verre coloré possède une composition chimique comprenant les constituants suivants, en une teneur pondérale variant dans les limites ci-après définies :
Si02 68-75%
AI2O3 0-3%
CaO + MgO 11-16, 2%
MgO 0-6, 5%
Na20 9-12,4%
K20 0-1,5%.
8. Vitrage selon l'une des revendications précédentes, tel que la teneur pondérale en fer total du verre coloré, exprimée sous la forme Fe203, est comprise dans un domaine allant de 0,7 à 1,8%, notamment de 0,8 à 1,5%.
9. Vitrage selon l'une des revendications précédentes, dans lequel le verre coloré possède un rapport rédox, défini comme le rapport entre la teneur pondérale en fer ferreux, exprimée sous la forme FeO, et la teneur pondérale en fer total, exprimée sous la forme Fe203, compris dans un domaine allant de 0,22 à 0,31, notamment de 0,24 à 0,29.
10. Vitrage feuilleté selon l'une des revendications précédentes, dans lequel la feuille extérieure est en verre non-renforcé mécaniquement.
11. Vitrage feuilleté selon l'une des revendications précédentes, dont l'épaisseur est d'au plus 5 mm, notamment 4,5 mm, voire 4 mm.
12. Vitrage selon l'une des revendications précédentes, qui est doublement bombé et présente une profondeur de double-bombage d'au moins 20 mm.
13. Vitrage pour véhicule de transport, notamment automobile, en particulier pare-brise ou toit, comprenant un vitrage feuilleté selon l'une des revendications précédentes .
14. Procédé d'obtention d'un vitrage feuilleté bombé selon l'une des revendications 1 à 12, comprenant les étapes successives suivantes :
- une étape de bombage, dans laquelle une feuille d'un verre clair d' aluminosilicate de sodium ayant une épaisseur e2 allant de 0,4 à 1,1 mm, dite feuille de verre intérieure et destinée à devenir la feuille intérieure du vitrage, et une feuille d'un verre coloré silico-sodocalcique possédant une composition chimique comprenant une teneur pondérale en fer total, exprimée sous la forme FeÛ , allant de 0,6 à 2,2%, dite feuille de verre extérieure et destinée à devenir la feuille extérieure du vitrage, sont bombées ensemble, ladite feuille de verre intérieure étant positionnée au-dessus de ladite feuille de verre extérieure, les deux feuilles de verre étant séparées à l'aide d'une poudre intercalaire, puis
- une étape de trempe chimique, dans laquelle la feuille de verre intérieure est mise en contact avec un sel de potassium fondu, puis
une étape de feuilletage, dans laquelle les feuilles de verre intérieure et extérieure sont assemblées au moyen d'un intercalaire de feuilletage .
EP19710737.8A 2018-02-14 2019-02-12 Vitrage feuillete Pending EP3752360A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1851244A FR3077760B1 (fr) 2018-02-14 2018-02-14 Vitrage feuillete bombe comprenant une feuille exterieure d'un verre colore silico-sodocalcique et une feuille interieure d'un verre clair d'aluminosilicate de sodium trempe chimiquement
PCT/FR2019/050302 WO2019158850A1 (fr) 2018-02-14 2019-02-12 Vitrage feuillete

Publications (1)

Publication Number Publication Date
EP3752360A1 true EP3752360A1 (fr) 2020-12-23

Family

ID=62683305

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19710737.8A Pending EP3752360A1 (fr) 2018-02-14 2019-02-12 Vitrage feuillete

Country Status (7)

Country Link
US (1) US11230088B2 (fr)
EP (1) EP3752360A1 (fr)
JP (1) JP7299901B2 (fr)
CN (1) CN110382228B (fr)
FR (1) FR3077760B1 (fr)
MA (1) MA51833A (fr)
WO (1) WO2019158850A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110981190B (zh) * 2019-12-11 2021-11-19 福耀玻璃工业集团股份有限公司 一种着色薄玻璃和夹层玻璃

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1131319B (it) * 1980-06-13 1986-06-18 Siv Soc Italiana Vetro Procedimento di formatura ed assemblaggio di due o piu' lastre di vetro curvate aventi caratteristiche fisico-chimiche e/o spessori diversi,particolarmente adatte per parabrezza ed altri vetri di sicurezza per autoveicoli e simili
FR2660921B1 (fr) * 1990-04-13 1993-11-26 Saint Gobain Vitrage Internal Vitrage en verre teinte notamment pour toit de vehicules automobiles.
FR2773556B1 (fr) 1998-01-09 2001-07-13 Saint Gobain Vitrage Compositions de verre destinees a la fabrication de vitrages
JP2003002683A (ja) 2001-06-21 2003-01-08 Nippon Sheet Glass Co Ltd 低透過ガラス
GB201322240D0 (en) 2013-12-16 2014-01-29 Pilkington Group Ltd Laminated glazing
FR3045596B1 (fr) * 2015-12-17 2018-01-19 Saint-Gobain Glass France Verre mince colore renforce chimiquement
FR3045595B1 (fr) 2015-12-17 2017-12-22 Saint Gobain Verre feuillete asymetrique
JPWO2017183382A1 (ja) 2016-04-18 2019-02-28 日本電気硝子株式会社 車両用合わせガラス
DE102017124625A1 (de) * 2016-12-22 2018-06-28 Schott Ag Dünnglassubstrat, Verfahren und Vorrichtung zu dessen Herstellung

Also Published As

Publication number Publication date
WO2019158850A1 (fr) 2019-08-22
CN110382228A (zh) 2019-10-25
FR3077760B1 (fr) 2020-02-21
US11230088B2 (en) 2022-01-25
MA51833A (fr) 2021-05-19
CN110382228B (zh) 2022-09-27
US20200369004A1 (en) 2020-11-26
JP7299901B2 (ja) 2023-06-28
JP2021513501A (ja) 2021-05-27
FR3077760A1 (fr) 2019-08-16

Similar Documents

Publication Publication Date Title
JP6328619B2 (ja) 高分子中間層に対するガラスの高い接着力を有する合わせガラス構造
US10343378B2 (en) Thin laminated glass for windscreen
US20170066223A1 (en) Laminated glass
US10307992B2 (en) Thin laminated glass
EP3390047A1 (fr) Stratifiés de verre asymétriques
WO2015168529A1 (fr) Verre renforcé et composition associée
WO2017183381A1 (fr) Verre feuilleté pour véhicules
WO2018102173A1 (fr) Compositions de verre pour automobile, articles et stratifiés
WO2018030093A1 (fr) Verre feuilleté pour véhicules
WO2018030095A1 (fr) Verre feuilleté pour véhicules
EP3743396B1 (fr) Vitrage feuillete
KR20230116056A (ko) 고유한 파괴 거동을 갖는 차량 방풍용 유리
WO2019070788A1 (fr) Stratifié de verre présentant une faible contrainte de compression, une grande profondeur de couche, une couche de verre interne renforcée chimiquement et procédé associé
WO2019158850A1 (fr) Vitrage feuillete
JP7439054B2 (ja) 積層体用の軟質で化学強化可能なガラス
WO2018193721A1 (fr) Plaque de verre
JP2019131430A (ja) ガラス板
JP6959566B2 (ja) ガラス板
WO2023244747A1 (fr) Igus et fenêtres ayant du verre borosilicaté et leurs procédés
WO2023244750A1 (fr) Dispositifs solaires avec verre borosilicaté et procédés associés

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200914

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAV Requested validation state of the european patent: fee paid

Extension state: MA

Effective date: 20200914

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230201