EP3746805A1 - Method for operating a radar sensor system in a motor vehicle - Google Patents

Method for operating a radar sensor system in a motor vehicle

Info

Publication number
EP3746805A1
EP3746805A1 EP18808311.7A EP18808311A EP3746805A1 EP 3746805 A1 EP3746805 A1 EP 3746805A1 EP 18808311 A EP18808311 A EP 18808311A EP 3746805 A1 EP3746805 A1 EP 3746805A1
Authority
EP
European Patent Office
Prior art keywords
radar
clock signal
radar sensors
frequency
radar sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18808311.7A
Other languages
German (de)
French (fr)
Inventor
Marcel Mayer
Michael Schoor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3746805A1 publication Critical patent/EP3746805A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/345Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using triangular modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • G01S7/0232Avoidance by frequency multiplex
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • G01S7/0235Avoidance by time multiplex
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4008Means for monitoring or calibrating of parts of a radar system of transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93272Sensor installation details in the back of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93274Sensor installation details on the side of the vehicles

Definitions

  • the invention relates to a method for operating a radar sensor system with a plurality of independently operating radar sensors in a motor vehicle.
  • the object of the invention is to reduce the probability of such interfering interferences.
  • the radar sensors are synchronized with respect to their transmission times and transmission frequencies so that at no time are two radar signals whose frequency spacing is smaller than a certain minimum frequency spacing transmitted simultaneously.
  • the minimum frequency spacing is chosen so that at least the radar signals transmitted by different radar sensors of the same vehicle do not cause interfering interference, ie the beats resulting from the superimposition of such signals have a frequency outside of that at the signal evaluation in the individual radar sensors are in the considered frequency range. Since overlays of the radar signals can also be caused by reflections and multiple reflections on objects in the surroundings of the vehicle, it is also expedient to synchronize radar sensors whose transmission and reception ranges do not actually overlap one another in this way.
  • the local time and frequency are derived from a quartz oscillator.
  • quartz oscillators are used whose frequency accuracy is limited and, for example, on the order of a few MFIz, which is not sufficient for a reliable interference prevention.
  • the radar sensors of the system are provided with a common clock signal with which all radar sensors synchronize. In this way, an accurate and even over longer periods stable synchronization can be achieved without expensive oscillators must be used with high frequency accuracy.
  • a bus system is present in the motor vehicle, for example CAN, Flexray or Ethernet, via which the radar sensors communicate with other electronic components in the vehicle, for example with a computer of a driver assistance system, wheel speed sensors and the like.
  • this bus system is used to provide the common clock signal for the radar sensors, so that no additional lines need to be laid during the installation.
  • the timing signal used for synchronization can be fed by a special clock as a kind of timestamp in the bus.
  • the data traffic which anyway takes place on the bus and which always takes place with a defined data rate, can be used for a reconstruction of a common clock signal in the individual radar sensors.
  • Such a clock signal reconstruction (clock recovery) is provided for example in Ethernet clients anyway and can thus in the Radar sensors are used for a frequency synchronization, example, using a frequency counter in a microcontroller or the like.
  • the synchronization of the radar sensors can be repeated at certain intervals, so that the synchronization is not falsified by aging effects or temperature effects in the local oscillators of the radar sensors.
  • FIG. 1 shows a sketch of a radar system with a plurality of radar sensors in a motor vehicle
  • FIG. 2 shows a simplified circuit diagram of two radar sensors which are synchronized with one another via a bus
  • FIG. 3 shows a time diagram of clock signals for synchronization of the radar sensors
  • FIG. 4 shows different frequency modulation patterns of the radar signals transmitted by two radar sensors.
  • a motor vehicle 10 is shown schematically and in plan view, in which a total of five independently operating radar sensors 12, 14 are installed.
  • the radar sensor 12 is centered in the front bumper of the vehicle. ⁇ " *
  • the four radar sensors 14 are arranged in the four corners of the vehicle and serve, for example, for detecting pedestrians next to their own lane, for detecting overtaking vehicles on the secondary lanes and the like.
  • the radar sensors operate independently of one another in the sense that each radar sensor provides measurement data about the objects it locates, without requiring any information from any of the other radar sensors.
  • the vehicle has a bus system 16, for example a CAN bus system, via which different sensory and actuator components and electronic control instances of the vehicle communicate with one another.
  • the radar sensors 12, 14 are also connected to the bus system and communicate via this bus system, inter alia, with a driver assistance system in which the positioning data are further evaluated.
  • the bus system 16 also serves to provide the radar sensors 12, 14 with a common clock signal, which makes it possible to precisely synchronize the radar sensors 12, 14 with one another.
  • FIG. 2 schematically shows two of the radar sensors 14, which receive a common clock signal T via the bus system 16.
  • the clock signal T may consist of a continuous or intermittent series of rectangular pulses at a fixed clock frequency, as shown in FIG.
  • Each radar sensor has a local base oscillator 18 which generates a local clock signal L1 or L2, which determines the local time in the relevant radar sensor and also serves as a reference for the frequency of a radar signal generated by a local transmitting oscillator 20.
  • each radar sensor has only one transmission oscillator 20, but optionally also several transmission oscillators may be present in the same radar sensor.
  • the frequency of the common clock signal T is compared by a frequency comparator 22 with the local clock signal L1 or L2. In the case of a frequency deviation, the frequency comparator 22 reports a deviation signal D to a controller 24, which controls the transmitting oscillator 20 and determines the frequency modulation of the radar signal, which is then radiated via an antenna 26.
  • a specific number of pulses of the clock signal T are counted by the frequency comparators 22 of each radar sensor to be synchronized.
  • the count each extends over a time interval 28, the duration of which is determined by the number of pulses counted and by the frequency of the clock signal T.
  • the number of pulses counted is much larger and, for example, on the order of one million.
  • the pulses of the local clock signal L1 or L2 are also counted in each case.
  • the local clock signal L1 has the same frequency as the common clock signal T, i.e., in the time interval 28 also sixteen pulses of the clock signal L1 are counted.
  • the base oscillator which generates the clock signal L2
  • the base oscillator has a somewhat lower frequency, so that in the time interval 28 only fifteen pulses are counted here.
  • the frequency deviation of the respective basic oscillator can be determined, which then reports as a deviation signal D to the controller 24 becomes.
  • the base oscillators 22 have the same frequency as the clock signal T. It is sufficient that there is a specific desired ratio between these clock signals. If, as here with the local clock signal L2, a frequency deviation is detected, the controller 24 can use the deviation signal D to correct the local time in the relevant radar sensor.
  • the frequency generated by the transmitting oscillator 20 can be calibrated to the frequency of the clock signal T.
  • the clock signal T can therefore be derived from any arbitrary signal available on the bus system 16 and having a sufficiently stable frequency.
  • FIG. 4 shows, as simplified examples, two different frequency modulation patterns M1 and M2 (frequency f as a function of time t), which may, for example, be the transmission frequencies of the transmission oscillators 20 of the radar sensors shown in FIG.
  • the frequency modulation pattern M1 consists of intermittently transmitted sequences of increasing frequency ramps
  • the frequency modulation pattern M2 consists of an alternating sequence of rising and falling ramps. Due to the synchronization via the common clock signal T, the frequencies in the two modulation patterns can be adjusted in such a way that the ratio and thus also the frequency spacing of the transmission frequencies is precisely known at all times, regardless of any frequency deviations between the local clock signals L1 and L2.
  • the modulation patterns in this example can also be synchronized so that the frequency minima of M2 lie in the intervals between the individual bursts of the modulation pattern M1, as in FIG Fig. 4 is shown.
  • this minimum frequency spacing f_min taking into account the reception bandwidth of the sensors, it can then be ensured that the measurement data obtained with the radar sensors 12, 14 of the system shown in FIG. 1 are not distorted by interfering interferences, if for any reason Reason in any of these radar sensors signals are received, consisting of a superposition of two or more of the radar sensors 12, 14 sent signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Traffic Control Systems (AREA)

Abstract

The invention relates to a method for operating a radar sensor system having a plurality of radar sensors (12, 14) operating independently of one another in a motor vehicle (10), characterized in that the radar sensors (12, 14) are synchronized with respect to their transmission times and transmission frequencies in such a way that two radar signals whose frequency interval is less than a certain minimum frequency interval are at no time simultaneously transmitted.

Description

Beschreibung  description
%J  J%
Titel title
Verfahren zum Betreiben eines Radarsensorsvstems in einem Kraftfahrzeug0 Method for operating a radar sensor system in a motor vehicle
Stand der Technik State of the art
Die Erfindung betrifft ein Verfahren zum Betreiben eines Radarsensorsystems mit mehreren unabhängig voneinander arbeitenden Radarsensoren in einem Kraftfahrzeug. The invention relates to a method for operating a radar sensor system with a plurality of independently operating radar sensors in a motor vehicle.
Mit zunehmendem Funktionsumfang von Fahrerassistenzsystemen für Kraft- fahrzeuge und mit fortschreitender Annäherung an das Ziel eines vollständig0 autonomen Fahrens wird in Kraftfahrzeugen eine zunehmende Zahl von Radar- sensoren verbaut, die innerhalb desselben Fahrzeugs unabhängig voneinander eine Vielzahl unterschiedlicher Aufgaben erfüllen wie beispielsweise Messung des Abstands zum vorausfahrenden Fahrzeug, Erfassung von Fußgängern am Fahrbahnrand, Tote-Winkel-Überwachung, Überwachung des Rückraums des5 Fahrzeugs, Einparkhilfen und dergleichen. Mit zunehmender Zahl der Radarsig- nalquellen steigt auch die Wahrscheinlichkeit von störenden Interferenzen zwi- schen Radarsignalen, die von verschiedenen Radarsensoren gesendet werden. As the range of driver assistance systems for automobiles increases, and as the goal of fully autonomous driving progresses, automobiles are installing an increasing number of radar sensors that independently perform a variety of different tasks within the same vehicle, such as measuring the distance to the vehicle in front Vehicle, detection of pedestrians at the edge of the road, blind spot monitoring, monitoring the rear space of the vehicle, parking aids and the like. As the number of radar signals increases, so does the likelihood of interfering interference between radar signals transmitted by different radar sensors.
Offenbarung der ErfindungDisclosure of the invention
0 Aufgabe der Erfindung ist es, die Wahrscheinlichkeit solcher störender Interfe- renzen zu verringern. 0 The object of the invention is to reduce the probability of such interfering interferences.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass die Radarsensoren hinsichtlich ihrer Sendezeiten und Sendefrequenzen so miteinander synchroni- siert werden, dass zu keinem Zeitpunkt zwei Radarsignale, deren Frequenzab- stand kleiner als ein bestimmter Mindestfrequenzabstand ist, gleichzeitig gesen- det werden. This object is achieved according to the invention in that the radar sensors are synchronized with respect to their transmission times and transmission frequencies so that at no time are two radar signals whose frequency spacing is smaller than a certain minimum frequency spacing transmitted simultaneously.
Der Mindestfrequenzabstand wird so gewählt, dass zumindest die Radarsig- nale, die von verschiedenen Radarsensoren desselben Fahrzeugs gesendet werden, nicht zu störenden Interferenzen führen, d.h., dass die durch Überlage- rung solcher Signale entstehenden Schwebungen eine Frequenz haben, die au- ßerhalb des bei der Signalauswertung in den einzelnen Radarsensoren in Be- tracht gezogenen Frequenzbereiches liegen. Da Überlagerungen der Radarsig- nale auch durch Reflexionen und Mehrfachreflexionen an Objekten in der Um- gebung des Fahrzeugs verursacht werden können, ist es zweckmäßig, auch Radarsensoren, deren Sende- und Empfangsbereiche einander eigentlich nicht überlappen, in dieser Weise miteinander zu synchronisieren. The minimum frequency spacing is chosen so that at least the radar signals transmitted by different radar sensors of the same vehicle do not cause interfering interference, ie the beats resulting from the superimposition of such signals have a frequency outside of that at the signal evaluation in the individual radar sensors are in the considered frequency range. Since overlays of the radar signals can also be caused by reflections and multiple reflections on objects in the surroundings of the vehicle, it is also expedient to synchronize radar sensors whose transmission and reception ranges do not actually overlap one another in this way.
Grundsätzlich ist es bereits bekannt, mehrere Radarsensoren in einem Fahr- zeug miteinander zu synchronisieren (z.B. DE 101 24 909 A1 ). Eine solche Synchronisation ist immer dann erforderlich, wenn die Radarsensoren miteinan- der kooperieren, beispielsweise durch Auswertung von Kreuzechos, also von Radarsignalen, die von einem Sensor gesendet und von einem anderen Sensor empfangen werden. Die Besonderheit der Erfindung besteht demgegenüber da- rin, dass Radarsensoren miteinander synchronisiert werden, die völlig unabhän- gig voneinander arbeiten. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen ange- geben. Basically, it is already known to synchronize several radar sensors in a vehicle with each other (eg DE 101 24 909 A1). Such synchronization is always required when the radar sensors cooperate with each other, for example, by evaluating cross-echoes, that is to say from radar signals transmitted by one sensor and received by another sensor. The peculiarity of the invention, on the other hand, is that radar sensors are synchronized with one another which work completely independently of one another. Advantageous embodiments of the invention are specified in the subclaims.
Üblicherweise wird in jedem einzelnen Radarsensor die lokale Zeit und Fre- quenz von einem Quarzoszillator abgeleitet. Aus Kostengründen werden jedoch Quarzoszillatoren eingesetzt, deren Frequenzgenauigkeit begrenzt ist und bei spielsweise in der Größenordnung von einigen MFIz liegt, was für eine zuverläs- sige Interferenzvermeidung nicht ausreicht. In einer vorteilhaften Ausführungs- form wird deshalb den Radarsensoren des Systems ein gemeinsames Taktsig- nal zur Verfügung gestellt, mit dem sich alle Radarsensoren synchronisieren. Auf diese Weise lässt sich eine genaue und auch über längere Zeiträume stabile Synchronisation erreichen, ohne dass teurere Oszillatoren mit hoher Frequenzgenauigkeit eingesetzt werden müssen. Usually, in each individual radar sensor, the local time and frequency are derived from a quartz oscillator. For cost reasons, however, quartz oscillators are used whose frequency accuracy is limited and, for example, on the order of a few MFIz, which is not sufficient for a reliable interference prevention. In an advantageous embodiment, therefore, the radar sensors of the system are provided with a common clock signal with which all radar sensors synchronize. In this way, an accurate and even over longer periods stable synchronization can be achieved without expensive oscillators must be used with high frequency accuracy.
In der Regel ist im Kraftfahrzeug ein Bussystem vorhanden, beispielsweise CAN, Flexray oder Ethernet, über das die Radarsensoren mit anderen elektroni- schen Komponenten im Fahrzeug kommunizieren, beispielsweise mit einem Rechner eines Fahrerassistenzsystems, Raddrehzahlgebern und dergleichen.As a rule, a bus system is present in the motor vehicle, for example CAN, Flexray or Ethernet, via which the radar sensors communicate with other electronic components in the vehicle, for example with a computer of a driver assistance system, wheel speed sensors and the like.
In einer zweckmäßigen Ausführungsform wird dieses Bussystem zur Bereitstel- lung des gemeinsamen Taktsignals für die Radarsensoren genutzt, so dass bei der Installation keine zusätzlichen Leitungen verlegt zu werden brauchen. Das zur Synchronisation dienende Taktsignal kann dabei durch einen speziellen Taktgeber als eine Art Zeitstempel in den Bus eingespeist werden. In einer an- deren Ausführungsform kann jedoch auch der ohnehin auf dem Bus stattfin- dende Datenverkehr, der stets mit einer definierten Datenrate erfolgt, für eine Rekonstruktion eines gemeinsamen Taktsignals in den einzelnen Radarsenso- ren genutzt werden. Eine solche Taktsignalrekonstruktion (clock recovery) ist beispielsweise bei Ethernet-Clients ohnehin vorgesehen und kann somit in den Radarsensoren für eine Frequenzsynchronisation genutzt werden, beispiels weise mit Hilfe eines Frequenzzählers in einem Mikrocontroller oder derglei- chen. Die Synchronisation der Radarsensoren kann in gewissen Zeitabständen wie- derholt werden, damit die Synchronisation nicht durch Alterungseffekte oder Temperatureffekte in den lokalen Oszillatoren der Radarsensoren verfälscht wird. In an expedient embodiment, this bus system is used to provide the common clock signal for the radar sensors, so that no additional lines need to be laid during the installation. The timing signal used for synchronization can be fed by a special clock as a kind of timestamp in the bus. In another embodiment, however, the data traffic which anyway takes place on the bus and which always takes place with a defined data rate, can be used for a reconstruction of a common clock signal in the individual radar sensors. Such a clock signal reconstruction (clock recovery) is provided for example in Ethernet clients anyway and can thus in the Radar sensors are used for a frequency synchronization, example, using a frequency counter in a microcontroller or the like. The synchronization of the radar sensors can be repeated at certain intervals, so that the synchronization is not falsified by aging effects or temperature effects in the local oscillators of the radar sensors.
Im Folgenden wird ein Ausführungsbeispiel anhand der Zeichnung näher erläu- tert. In the following, an embodiment will be explained in more detail with reference to the drawing.
Es zeigen: Show it:
Fig. 1 eine Skizze eines Radarsystems mit mehreren Radarsensoren in einem Kraftfahrzeug; 1 shows a sketch of a radar system with a plurality of radar sensors in a motor vehicle;
Fig. 2 ein vereinfachtes Schaltbild zweier Radarsensoren, die über ei- nen Bus miteinander synchronisiert werden; 2 shows a simplified circuit diagram of two radar sensors which are synchronized with one another via a bus;
Fig. 3 ein Zeitdiagramm von Taktsignalen zur Synchronisation der Ra- darsensoren; und FIG. 3 shows a time diagram of clock signals for synchronization of the radar sensors; FIG. and
Fig. 4 unterschiedliche Frequenzmodulationsmuster der von zwei Ra- darsensoren gesendeten Radarsignale. ln Fig. 1 ist schematisch und im Grundriss ein Kraftfahrzeug 10 gezeigt, in dem insgesamt fünf unabhängig voneinander arbeitende Radarsensoren 12, 14 ver- baut sind. Der Radarsensor 12 ist mittig in der vorderen Stoßstange des Fahr- ί"* 4 shows different frequency modulation patterns of the radar signals transmitted by two radar sensors. In FIG. 1, a motor vehicle 10 is shown schematically and in plan view, in which a total of five independently operating radar sensors 12, 14 are installed. The radar sensor 12 is centered in the front bumper of the vehicle. ί " *
\J  \ J
zeugs angeordnet und dient zur Messung der Abstände und Relativgeschwin- digkeiten vorausfahrender Fahrzeuge. Die vier Radarsensoren 14 sind in den vier Ecken des Fahrzeugs angeordnet und dienen beispielsweise zur Erfassung von Fußgängern neben der eigenen Fahrspur, zur Erfassung von überholenden Fahrzeugen auf den Nebenspuren und dergleichen. Die Radarsensoren arbei- ten in dem Sinne unabhängig voneinander, dass jeder Radarsensor Messdaten über die von ihm georteten Objekte liefert, ohne dazu irgendwelche Informatio- nen von einem der anderen Radarsensoren zu benötigen. arranged and serves to measure the distances and relative speeds of preceding vehicles. The four radar sensors 14 are arranged in the four corners of the vehicle and serve, for example, for detecting pedestrians next to their own lane, for detecting overtaking vehicles on the secondary lanes and the like. The radar sensors operate independently of one another in the sense that each radar sensor provides measurement data about the objects it locates, without requiring any information from any of the other radar sensors.
Das Fahrzeug weist ein Bussystem 16, beispielsweise ein CAN-Bussystem auf, über das verschiedene sensorische und aktorische Komponenten und elektroni- sche Steuerungsinstanzen des Fahrzeugs miteinander kommunizieren. Auch die Radarsensoren 12, 14 sind an das Bussystem angeschlossen und kommu- nizieren über dieses Bussystem unter anderem mit einem Fahrerassistenzsys- tem, in dem die Ortungsdaten weiter ausgewertet werden. The vehicle has a bus system 16, for example a CAN bus system, via which different sensory and actuator components and electronic control instances of the vehicle communicate with one another. The radar sensors 12, 14 are also connected to the bus system and communicate via this bus system, inter alia, with a driver assistance system in which the positioning data are further evaluated.
In dem hier gezeigten Beispiel dient das Bussystem 16 auch dazu, den Radar- sensoren 12, 14 ein gemeinsames Taktsignal zur Verfügung zu stellen, das es gestattet, die Radarsensoren 12, 14 präzise miteinander zu synchronisieren. In the example shown here, the bus system 16 also serves to provide the radar sensors 12, 14 with a common clock signal, which makes it possible to precisely synchronize the radar sensors 12, 14 with one another.
In Fig. 2 sind schematisch zwei der Radarsensoren 14 dargestellt, die über das Bussystem 16 ein gemeinsames Taktsignal T erhalten. Das Taktsignal T kann in einer kontinuierlichen oder intermittierenden Folge von Rechteckimpulsen mit einer festen Taktfrequenz bestehen, wie in Fig. 3 gezeigt ist. Jeder Radar- sensor weist einen lokalen Basisoszillator 18 auf, der ein lokales Taktsignal L1 bzw. L2 erzeugt, das die lokale Zeit in dem betreffenden Radarsensor bestimmt und auch als Referenz für die Frequenz eines von einem lokalen Sendeoszilla- tor 20 erzeugten Radarsignals dient. Im gezeigten Beispiel hat jeder Radar- sensor nur einen einzigen Sendeoszillator 20, doch können wahlweise auch mehrere Sendeoszillatoren in demselben Radarsensor vorhanden sein. Die Frequenz des gemeinsamen Taktsignals T wird durch einen Frequenzver- gleicher 22 mit dem lokalen Taktsignal L1 bzw. L2 verglichen. Im Fall einer Fre- quenzabweichung meldet der Frequenzvergleicher 22 ein Abweichungssignal D an einen Controller 24, der den Sendeoszillator 20 ansteuert und die Frequenz- modulation des Radarsignals bestimmt, das dann über eine Antenne 26 abge- strahlt wird. FIG. 2 schematically shows two of the radar sensors 14, which receive a common clock signal T via the bus system 16. The clock signal T may consist of a continuous or intermittent series of rectangular pulses at a fixed clock frequency, as shown in FIG. Each radar sensor has a local base oscillator 18 which generates a local clock signal L1 or L2, which determines the local time in the relevant radar sensor and also serves as a reference for the frequency of a radar signal generated by a local transmitting oscillator 20. In the example shown, each radar sensor has only one transmission oscillator 20, but optionally also several transmission oscillators may be present in the same radar sensor. The frequency of the common clock signal T is compared by a frequency comparator 22 with the local clock signal L1 or L2. In the case of a frequency deviation, the frequency comparator 22 reports a deviation signal D to a controller 24, which controls the transmitting oscillator 20 and determines the frequency modulation of the radar signal, which is then radiated via an antenna 26.
Wie in Fig. 3 gezeigt ist, wird durch die Frequenzvergleicher 22 jedes zu syn- chronisierenden Radarsensors eine bestimmte Anzahl von Impulsen des Takt- signals T gezählt. Die Zählung erstreckt sich jeweils über ein Zeitintervall 28, dessen Dauer durch die Anzahl der gezählten Impulse und durch die Frequenz des Taktsignals T bestimmt ist. In dem hier gezeigten vereinfachten Beispiel werden lediglich sechszehn Impulse des Taktsignals T gezählt. In der Praxis ist die Anzahl der gezählten Impulse jedoch deutlich größer und liegt beispiels- weise in der Größenordnung von einer Million. As shown in FIG. 3, a specific number of pulses of the clock signal T are counted by the frequency comparators 22 of each radar sensor to be synchronized. The count each extends over a time interval 28, the duration of which is determined by the number of pulses counted and by the frequency of the clock signal T. In the simplified example shown here, only sixteen pulses of the clock signal T are counted. In practice, however, the number of pulses counted is much larger and, for example, on the order of one million.
Innerhalb des gleichen Zeitintervalls 28 werden jeweils auch die Impulse des lo- kalen Taktsignals L1 bzw. L2 gezählt. Im gezeigten Beispiel hat das lokale Takt- Signal L1 die gleiche Frequenz wie das gemeinsame Taktsignal T, d.h., in dem Zeitintervall 28 werden auch sechszehn Impulse des Taktsignals L1 gezählt.Within the same time interval 28, the pulses of the local clock signal L1 or L2 are also counted in each case. In the example shown, the local clock signal L1 has the same frequency as the common clock signal T, i.e., in the time interval 28 also sixteen pulses of the clock signal L1 are counted.
Der Basisoszillator, der das Taktsignal L2 erzeugt, hat dagegen eine etwas klei- nere Frequenz, so dass hier in dem Zeitintervall 28 nur fünfzehn Impulse ge- zählt werden. Anhand der Differenz zwischen der Soll-Anzahl der Impulse (sechzehn in diesem Beispiel) und der tatsächlich gezählten Anzahl (fünfzehn in diesem Beispiel) lässt sich die Frequenzabweichung des betreffenden Basisos- zillators ermitteln, die dann als Abweichungssignal D an den Controller 24 ge- meldet wird. Selbstverständlich ist es nicht zwingend, dass die Basisoszillatoren 22 die glei- che Frequenz haben wie das Taktsignal T. Es genügt, dass zwischen diesen Taktsignalen ein bestimmtes Soll-Verhältnis besteht. Wenn, wie hier bei dem lokalen Taktsignal L2, eine Frequenzabweichung fest- gestellt wird, so kann der Controller 24 anhand des Abweichungssignals D die lokale Zeit in dem betreffenden Radarsensor korrigieren. Ebenso lässt sich an- hand des Abweichungssignals D die vom Sendeoszillator 20 erzeugte Frequenz auf die Frequenz des Taktsignals T eichen. By contrast, the base oscillator, which generates the clock signal L2, has a somewhat lower frequency, so that in the time interval 28 only fifteen pulses are counted here. Based on the difference between the desired number of pulses (sixteen in this example) and the number actually counted (fifteen in this example), the frequency deviation of the respective basic oscillator can be determined, which then reports as a deviation signal D to the controller 24 becomes. Of course, it is not mandatory that the base oscillators 22 have the same frequency as the clock signal T. It is sufficient that there is a specific desired ratio between these clock signals. If, as here with the local clock signal L2, a frequency deviation is detected, the controller 24 can use the deviation signal D to correct the local time in the relevant radar sensor. Likewise, by means of the deviation signal D, the frequency generated by the transmitting oscillator 20 can be calibrated to the frequency of the clock signal T.
Wenn auf diese Weise die lokalen Zeiten und die Sendefrequenzen in allen Ra- darsensoren mit dem Taktsignal T synchronisiert werden, so erreicht man auch eine Synchronisation der lokalen Zeiten und Frequenzen der Radarsensoren untereinander, ohne dass dazu der Absolutwert der Frequenz des gemeinsa- men Taktsignals T genau bekannt sein muss. Das Taktsignal T kann deshalb aus irgendeinem beliebigen Signal hergeleitet werden, das auf dem Bussystem 16 verfügbar ist und eine hinreichend stabile Frequenz hat. If in this way the local times and the transmission frequencies in all radar sensors are synchronized with the clock signal T, synchronization of the local times and frequencies of the radar sensors with one another is achieved without the absolute value of the frequency of the common clock signal T must be known exactly. The clock signal T can therefore be derived from any arbitrary signal available on the bus system 16 and having a sufficiently stable frequency.
In Fig. 4 sind als vereinfachte Beispiele zwei verschiedene Frequenzmodulati- onsmuster M1 und M2 (Frequenz f als Funktion der Zeit t) gezeigt, bei denen es sich beispielsweise um die Sendefrequenzen der Sendeoszillatoren 20 der bei den in Fig. 2 gezeigten Radarsensoren handeln kann. Als Beispiel ist hier ange- nommen, dass das Frequenzmodulationsmuster M1 aus intermittierend gesen- deten Folgen von steigenden Frequenzrampen besteht, während das Fre- quenzmodulationsmuster M2 in einer abwechselnden Folge von steigenden und fallenden Rampen besteht. Aufgrund der Synchronisation über das gemein- same Taktsignal T können die Frequenzen in den beiden Modulationsmustern so abgeglichen werden, dass zu jedem Zeitpunkt das Verhältnis und damit auch der Frequenzabstand der Sendefrequenzen genau bekannt ist, unabhängig von etwaigen Frequenzabweichungen zwischen den lokalen Taktsignalen L1 und L2. Da auch die lokalen Zeiten in den Radarsensoren miteinander synchroni- siert sind, lassen sich die Modulationsmuster in diesem Beispiel auch so mitei- nander synchronisieren, dass die Frequenzminima von M2 jeweils in den Pau- sen zwischen den einzelnen Bursts des Modulationsmusters M1 liegen, wie in Fig. 4 gezeigt ist. Dadurch lässt sich mit hoher Präzision sicherstellen, dass der Frequenzabstand zwischen den von den beiden Radarsensoren gesendeten Signalen zu keinem Zeitpunkt kleiner ist als ein gewisser Mindestfrequenzab- stand f_min. Durch geeignete Wahl dieses Mindestfrequenzabstands f_min, un- ter Berücksichtigung der Empfangsbandbreite der Sensoren, lässt sich dann si- cherstellen, dass die mit den Radarsensoren 12, 14 des in Fig. 1 gezeigten Systems erhaltenen Messdaten nicht durch störende Interferenzen verfälscht werden, wenn aus irgendeinem Grund in irgendeinem dieser Radarsensoren Signale empfangen werden, die aus einer Überlagerung von zweien oder meh- reren der von den Radarsensoren 12, 14 gesendeten Signale bestehen. FIG. 4 shows, as simplified examples, two different frequency modulation patterns M1 and M2 (frequency f as a function of time t), which may, for example, be the transmission frequencies of the transmission oscillators 20 of the radar sensors shown in FIG. As an example, it is assumed here that the frequency modulation pattern M1 consists of intermittently transmitted sequences of increasing frequency ramps, while the frequency modulation pattern M2 consists of an alternating sequence of rising and falling ramps. Due to the synchronization via the common clock signal T, the frequencies in the two modulation patterns can be adjusted in such a way that the ratio and thus also the frequency spacing of the transmission frequencies is precisely known at all times, regardless of any frequency deviations between the local clock signals L1 and L2. Since the local times in the radar sensors are also synchronized with one another, the modulation patterns in this example can also be synchronized so that the frequency minima of M2 lie in the intervals between the individual bursts of the modulation pattern M1, as in FIG Fig. 4 is shown. This makes it possible to ensure with high precision that the frequency spacing between the signals transmitted by the two radar sensors is never smaller than a certain minimum frequency spacing f_min. By suitably selecting this minimum frequency spacing f_min, taking into account the reception bandwidth of the sensors, it can then be ensured that the measurement data obtained with the radar sensors 12, 14 of the system shown in FIG. 1 are not distorted by interfering interferences, if for any reason Reason in any of these radar sensors signals are received, consisting of a superposition of two or more of the radar sensors 12, 14 sent signals.

Claims

. g . Ansprüche , g. claims
1. Verfahren zum Betreiben eines Radarsensorsystems mit mehreren un- abhängig voneinander arbeitenden Radarsensoren (12, 14) in einem Kraftfahr- zeug (10), dadurch gekennzeichnet, dass die Radarsensoren (12, 14) hinsicht lich ihrer Sendezeiten und Sendefrequenzen (f) so miteinander synchronisiert werden, dass zu keinem Zeitpunkt zwei Radarsignale, deren Frequenzabstand kleiner als ein bestimmter Mindestfrequenzabstand (f_min) ist, gleichzeitig ge- sendet werden. 1. A method for operating a radar sensor system with a plurality of independently operating radar sensors (12, 14) in a motor vehicle (10), characterized in that the radar sensors (12, 14) respect Lich their transmission times and transmission frequencies (f) so be synchronized with each other so that at no time two radar signals whose frequency spacing is smaller than a certain minimum frequency spacing (f_min) are sent simultaneously.
2. Verfahren nach Anspruch 1 , bei dem den Radarsensoren (12, 14) ein ge- meinsames Taktsignal (T) zur Verfügung gestellt wird, anhand dessen die Ra- darsensoren miteinander synchronisiert werden. 2. Method according to claim 1, in which the radar sensors (12, 14) are provided with a common clock signal (T) by means of which the radar sensors are synchronized with one another.
3. Verfahren nach Anspruch 2, bei dem ein im Kraftfahrzeug (10) vorhande- nes Bussystem (16) dazu benutzt wird, den Radarsensoren (12, 14) das ge- meinsame Taktsignal (T) zur Verfügung zu stellen. 3. Method according to claim 2, in which a bus system (16) present in the motor vehicle (10) is used to provide the radar sensors (12, 14) with the common clock signal (T).
4. Verfahren nach Anspruch 3, bei dem das gemeinsame Taktsignal (T) in jedem Radarsensor (12, 14) anhand des auf dem Bussystem (16) stattfinden- den Datenverkehrs konstruiert wird. 4. Method according to claim 3, in which the common clock signal (T) in each radar sensor (12, 14) is constructed on the basis of the data traffic taking place on the bus system (16).
5. Radarsensorsystem mit mehreren unabhängig voneinander arbeitenden Radarsensoren (12, 14) in einem Kraftfahrzeug (10), dadurch gekennzeichnet, dass das System für die Ausführung des Verfahrens nach einem der Ansprüche 1 bis 4 ausgebildet ist. 5. radar sensor system with a plurality of independently operating radar sensors (12, 14) in a motor vehicle (10), characterized in that the system is designed for carrying out the method according to one of claims 1 to 4.
6. Radarsystem nach Anspruch 5, bei dem jeder Radarsensor (12, 14) min- destens einen Sendeoszillator (20) zum Erzeugen eines zu sendenden Radar- signals, einem Controller (24), der den Sendeoszillator ansteuert, und einen lo- kalen Basisoszillator (18) zur Bereitstellung einer lokalen Zeit und einer Fre- quenzreferenz für den betreffenden Radarsensor aufweist, wobei jeder Radar- sensor außerdem einen Frequenzvergleicher aufweist, der ein von dem lokalen Basisoszillator (18) erzeugtes lokales Taktsignal (L1 , L2) mit dem gemeinsa- men Taktsignal (T) vergleicht und im Fall einer Frequenzabweichung ein Abwei- chungssignal (D) an den Controller (24) meldet. 6. Radar system according to claim 5, wherein each radar sensor (12, 14) at least one transmitting oscillator (20) for generating a radar signal to be transmitted, a controller (24) which controls the transmitting oscillator, and a local base oscillator (18) for providing a local time and a frequency reference for the respective radar sensor, each radar sensor also having a frequency comparator which generates a local clock signal (L1, L2) generated by the local base oscillator (18) in common with the common base oscillator (18). men clock signal (T) compares and in the event of a frequency deviation, a deviation signal (D) to the controller (24) reports.
EP18808311.7A 2018-01-29 2018-11-22 Method for operating a radar sensor system in a motor vehicle Withdrawn EP3746805A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018201302.0A DE102018201302A1 (en) 2018-01-29 2018-01-29 Method for operating a radar sensor system in a motor vehicle
PCT/EP2018/082300 WO2019145066A1 (en) 2018-01-29 2018-11-22 Method for operating a radar sensor system in a motor vehicle

Publications (1)

Publication Number Publication Date
EP3746805A1 true EP3746805A1 (en) 2020-12-09

Family

ID=64477152

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18808311.7A Withdrawn EP3746805A1 (en) 2018-01-29 2018-11-22 Method for operating a radar sensor system in a motor vehicle

Country Status (7)

Country Link
US (1) US11747465B2 (en)
EP (1) EP3746805A1 (en)
JP (1) JP6970308B2 (en)
KR (1) KR102683285B1 (en)
CN (1) CN111656211B (en)
DE (1) DE102018201302A1 (en)
WO (1) WO2019145066A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11796633B2 (en) * 2019-12-16 2023-10-24 Waymo Llc Dynamic loading of radar unit configuration data based on changing radar parameters
EP3862773A1 (en) * 2020-02-04 2021-08-11 Aptiv Technologies Limited Radar device
CN116324487A (en) * 2020-10-13 2023-06-23 索尼半导体解决方案公司 Sensor control system and sensor
CN112804306B (en) * 2020-12-31 2024-06-21 的卢技术有限公司 Vehicle radar communication device, method and system based on vehicle Ethernet
EP4155753A1 (en) 2021-09-22 2023-03-29 Nxp B.V. An ultra-wideband receiver module and synchronization thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19754720C2 (en) * 1997-12-10 2000-12-07 Adc Automotive Dist Control Method for operating a radar system
NO20006185L (en) * 2000-12-05 2002-06-06 Ericsson Telefon Ab L M Method and arrangement for synchronizing a TDM bus
DE10124909A1 (en) 2001-05-22 2002-12-19 Bosch Gmbh Robert Method and device for operating a radar sensor arrangement
DE10327548B4 (en) * 2003-06-18 2014-05-22 Robert Bosch Gmbh Method and device for exchanging data via a bus system
DE10360889A1 (en) * 2003-12-19 2005-07-14 Robert Bosch Gmbh System with two or more sensors
US7239266B2 (en) 2004-08-26 2007-07-03 Honeywell International Inc. Radar altimeter
US7737880B2 (en) * 2008-10-22 2010-06-15 Honeywell International Inc. Microwave and millimeterwave radar sensors
US20100150288A1 (en) * 2008-12-17 2010-06-17 Miao Zhu Synchronization of Low Noise Local Oscillator using Network Connection
DE102012212888A1 (en) * 2012-07-23 2014-01-23 Robert Bosch Gmbh Detection of radar objects with a radar sensor of a motor vehicle
US9069080B2 (en) * 2013-05-24 2015-06-30 Advanced Scientific Concepts, Inc. Automotive auxiliary ladar sensor
DE102014114107A1 (en) * 2014-09-29 2016-03-31 Hella Kgaa Hueck & Co. radar sensor
US9733340B2 (en) * 2014-11-21 2017-08-15 Texas Instruments Incorporated Techniques for high arrival angle resolution using multiple nano-radars
CN113608174A (en) * 2015-04-20 2021-11-05 瑞思迈传感器技术有限公司 Multi-sensor radio frequency detection
US9935685B2 (en) * 2015-05-28 2018-04-03 Qualcomm Incorporated DC power line synchronization for automotive sensors
DE102015218542A1 (en) * 2015-09-28 2017-03-30 Robert Bosch Gmbh Integrated high-frequency circuit, radar sensor and operating method
DE102015224787A1 (en) * 2015-12-10 2017-06-14 Robert Bosch Gmbh Cooperatively operated automobile radar
DE102017107212A1 (en) * 2017-04-04 2018-10-04 Infineon Technologies Ag Method and device for processing radar signals
US20190056478A1 (en) * 2017-08-15 2019-02-21 Valeo Radar Systems, Inc. Frequency Domain MIMO For FMCW Radar

Also Published As

Publication number Publication date
KR102683285B1 (en) 2024-07-10
CN111656211A (en) 2020-09-11
US11747465B2 (en) 2023-09-05
JP6970308B2 (en) 2021-11-24
KR20200109379A (en) 2020-09-22
DE102018201302A1 (en) 2019-08-01
WO2019145066A1 (en) 2019-08-01
US20210080536A1 (en) 2021-03-18
CN111656211B (en) 2024-09-17
JP2021512301A (en) 2021-05-13

Similar Documents

Publication Publication Date Title
EP3746805A1 (en) Method for operating a radar sensor system in a motor vehicle
EP2457110B1 (en) Ultrasonic measurement apparatus and method for evaluating an ultrasonic signal
EP2698648B1 (en) Method for classifying vehicles in motion
EP1955091B1 (en) Method for the operation of a radar system
DE102011012379B4 (en) Method and radar sensor arrangement for detecting location and speed of objects relative to a vehicle
WO2002095443A1 (en) Methods and device for self-calibration of a radar sensor arrangemetn
EP1807270B1 (en) Tyre pressure control system for a motor vehicle
DE2734998A1 (en) DOPPLER RADAR SYSTEM AS A SAFETY DEVICE FOR VEHICLES
WO2001048512A1 (en) Method and device for detecting and evaluating objects in the vicinity of a motor vehicle
EP2755045A1 (en) Method for the cyclic measuring of distances and speeds of objects with an FMCW radar sensor
DE10258097A1 (en) Device for measuring the distance and speed of objects
DE102020107372A1 (en) Method for operating a radar system
DE102013203574A1 (en) Method for compensation of angle measurement error of radar measurement device of motor car, involves determining angle measurement error between measured angle and actual angle by evaluating the movement pattern of object
DE2408333A1 (en) DEVICE FOR DISTANCE MEASUREMENT
DE102012101303A1 (en) sensor device
DE19730306C2 (en) Method for synchronizing navigation measurement data with SAR radar data and device for carrying out this method
DE19754220B4 (en) Method and device for detecting an impending or potential collision
EP0919834A1 (en) Method for detecting a target by means of a HPRF radar
EP1030190B1 (en) Device for position detection
EP0764278B1 (en) Device for speed measurement at selected locations using the doppler principle
EP1068543B1 (en) Method for operating several adjacent ultrasonic sensors
EP4018603B1 (en) Method for detecting the position of at least one bus subscriber
EP2783234A1 (en) Method for determining at least one parameter for correlating two objects
EP0777131A1 (en) Surveillance device with a radar probe
EP3782868A2 (en) Method for calibrating a speed sensor of a railway vehicle

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200831

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230209

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230620