EP1068543B1 - Method for operating several adjacent ultrasonic sensors - Google Patents

Method for operating several adjacent ultrasonic sensors Download PDF

Info

Publication number
EP1068543B1
EP1068543B1 EP99916798A EP99916798A EP1068543B1 EP 1068543 B1 EP1068543 B1 EP 1068543B1 EP 99916798 A EP99916798 A EP 99916798A EP 99916798 A EP99916798 A EP 99916798A EP 1068543 B1 EP1068543 B1 EP 1068543B1
Authority
EP
European Patent Office
Prior art keywords
transmission
ultrasonic sensors
pulses
transmission pulse
ultrasonic sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99916798A
Other languages
German (de)
French (fr)
Other versions
EP1068543A1 (en
Inventor
Ernst Luber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1068543A1 publication Critical patent/EP1068543A1/en
Application granted granted Critical
Publication of EP1068543B1 publication Critical patent/EP1068543B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/10Systems for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S15/102Systems for measuring distance only using transmission of interrupted, pulse-modulated waves using transmission of pulses having some particular characteristics
    • G01S15/105Systems for measuring distance only using transmission of interrupted, pulse-modulated waves using transmission of pulses having some particular characteristics using irregular pulse repetition frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/87Combinations of sonar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/04Systems determining presence of a target

Definitions

  • the invention relates to a method for operating several neighboring ultrasonic sensors that are synchronized are and of which a first first transmission pulses, a second sends out second transmission pulses and a third third transmission pulse.
  • the invention is therefore based on the object of a method to improve the type mentioned above in that the transit time measurement an ultrasonic sensor of echo signals from neighboring Ultrasonic sensors undisturbed and reliable is possible.
  • the neighboring ultrasonic sensors synchronized via a common line and transmit pulses handed over alternately at different times.
  • the transmit pulse offset of the individual ultrasonic sensors is essential smaller than the measuring cycle, i.e. than the duration between two consecutive transmit pulses, creating a substantial higher measuring rate can be achieved than e.g. at the known serial synchronization. Due to the changing transmission pulse offset can use the echo signals from neighboring ultrasonic sensors hidden by their constantly changing runtime become.
  • the wanted echo signal of each ultrasonic sensor in successive measuring cycles always within the same time window occurring position of a single echo signal serves.
  • the time window is in terms of size and position based on the previous transmission pulse. Just the own echo signal always keeps its position approximately at, while changing from measuring cycle to measuring cycle Transmit pulse offset changes the position of the external echo signals. This is a simple and at the same time secure criterion given to determine the echo signal sought.
  • the method according to the invention for direction-independent counting vehicles using several neighboring ultrasonic sensors assumes that the Ultrasonic sensors are operated synchronized, e.g. in in the manner described in EP 0 519 090 B1. For this are the ultrasonic sensors are connected to each other by a line.
  • the synchronization pulses of the ultrasonic sensors at least partially overlap in time, and on the There is a ground potential as long as there is any Synchronizing pulse from the ultrasonic sensors is present. Only when the line assumes the potential HIGH is that Willingness to emit new ultrasonic waves, i.e. given a transmission pulse of the proximity switch.
  • the ultrasonic sensors save in one Measuring cycle the running time of the own echo signal and the running times of the neighboring ultrasonic sensors.
  • the Runtimes of the echo signals of three measuring cycles are combined compared, only the duration of the own echo signals the specified stability criterion of the ultrasonic sensor Fulfills. This is true if the echo signal is at least found three times in a row in the same time window becomes.
  • the location of the time window can vary from the measuring section, e.g. between the ultrasonic sensor and the floor or the ultrasonic sensor and one Roof area of a vehicle, move.
  • the size of this Time window can be adapted to the respective application be specified.
  • the top waveform A shows this is due to the synchronization pulses of the individual ultrasonic sensors automatically formed clock signal, as detailed can be found in EP 0 519 090 B1.
  • the transmission pulses of the ultrasonic sensors starting from the positive edges of the Clock signal with changing transmission pulse offset the transmission pulses of the ultrasonic sensors.
  • the tracks D and F below show the position of the transmission pulses S2 for the second ultrasonic sensor and S3 for the third ultrasonic sensor.
  • the transmission pulses S2 have started with measuring cycle 1, the following sequence of the transmission pulse offsets, namely d2 for measuring cycle M1, d3 for measuring cycle M2 and d1 for measuring cycle M3 with a subsequent cyclical one Repetition.
  • the transmission pulses S3 from the third ultrasonic sensor start with the transmission pulse offset d3 at Measuring clock M1, which is the transmission pulse offset d1 for measuring clock M2 and then connect d2 for measuring cycle M3.
  • Measuring clock M1 which is the transmission pulse offset d1 for measuring clock M2 and then connect d2 for measuring cycle M3.
  • the transmission pulses of the respective ultrasonic sensor are assigned in tracks C, E, G those of the relevant ultrasonic sensor received echo signals recorded.
  • the first ultrasonic sensor receives in measuring cycle 1 after about 15 ms its own echo signal E1 and after another 5 or 10 ms due to the transmission pulse offset Echo signals E2 or E3 of the second or third ultrasonic sensor.
  • your own occurs Echo signal E1 after 15 ms of the transmission pulse S1.
  • the subsequent measuring cycle 3 results from the Transmit pulse offset another different order of Echo signals with the first received echo signal E2, the after 5 ms following echo signal E3 and after another 5 ms following echo signal E1.
  • This time window is in the present example, adapted to the transmission pulse offset, less than 5 ms.
  • the temporal transmission pulse offset must be chosen so large that the echo signals can be detected selectively. If that Echo signal at least three times in succession in the named Time slot is determined, the transmitter output of the Ultrasonic sensor its state and it becomes a count given.
  • the ultrasonic sensors work in the described method independent, i.e. without additional control effort. It goes without saying that the ultrasound sensors are controlled centrally possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • External Artificial Organs (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren zum Betrieb mehrerer benachbarter Ultraschall-Sensoren, die synchronisiert sind und von denen ein erster erste Sendeimpulse, ein zweiter zweite Sendeimpulse und ein dritter dritte Sendeimpulse aussendet.The invention relates to a method for operating several neighboring ultrasonic sensors that are synchronized are and of which a first first transmission pulses, a second sends out second transmission pulses and a third third transmission pulse.

Ein gattungsgemäßes Verfahren ist in der EP 0 519 090 B1 beschrieben. Beim Betrieb von benachbarten Ultraschall-Sensoren kann es aufgrund von ungünstigen Reflexionen des Ultraschalls im Umfeld der Ultraschall-Sensoren zur gegenseitigen Beeinflussung kommen. Die Laufzeitmessung eines Ultraschall-Sensors wird vom Echosignal des benachbarten Ultraschall-Sensors gestört, wenn die Ultraschall-Sensoren nicht synchron senden. Es können dann möglicherweise die Echosignale nicht den Ultraschall-Sensoren richtig zugeordnet werden, die die entsprechenden Sendeimpulse ausgegeben haben. Daher kommt es bei der Laufzeitauswertung zu Fehlern, indem der Schaltausgang undefiniert gesetzt wird. Zur Lösung des Problems ist es bisher bekannt, die Ultraschall-Sensoren seriell zu betreiben, indem die Versorgungsspannungen der Ultraschall-Sensoren zyklisch zu- bzw. abgeschalten wurden. Die Ansprechzeit der Ultraschall-Sensoren ist bei dieser Technik entsprechend lang und wird sogar noch durch interne Reset-Zeiten verzögert. Eine weitere Möglichkeit, die gegenseitige Beeinflussung zu vermeiden, besteht bisher auch in der Einhaltung von Einbauvorschriften, d.h. der Vorgabe von Mindestabständen für die Installierung der Ultraschall-Sensoren. Die Mindestabstände sind jedoch sehr applikationsabhängig. Für viele Einsatzmöglichkeiten scheidet diese Methode aus, wenn ein hohes Sicherheitsmaß gefordert ist. Eine weitere Lösung zur Vermeidung gegenseitiger Beeinflussung besteht darin, daß die benachbart betriebenen Ultraschall-Sensoren über ihren Freigabeausgang miteinander durch eine gemeinsame Leitung verbunden werden und hierüber eine Parallelsynchronisation erfolgt. Hierbei werden von allen Näherungsschaltern zum gleichen Zeitpunkt Sendeimpulse abgegeben, so daß das Problem der zeitlich richtigen Zuordnung der Echosignale zu den betreffenden Ultraschall-Sensoren entfällt. Eine derartige Parallelsynchronisation hat jedoch den Nachteil, daß die Laufzeitauswertung keine gegliederten Auswerte-Algorithmen enthält. Die EP 0 519 090 B1 beschreibt eine Zusammenschaltung von mehreren Ultraschall-Sensoren über ihre Freigabeausgänge durch eine gemeinsame Leitung mit einer selbsttätigen parallelen oder seriellen Synchronisation.A generic method is described in EP 0 519 090 B1. When operating adjacent ultrasonic sensors it may be due to unfavorable reflections from the ultrasound in the environment of the ultrasonic sensors for mutual influence come. The runtime measurement of an ultrasonic sensor is from the echo signal of the neighboring ultrasonic sensor disturbed if the ultrasonic sensors do not transmit synchronously. Then the echo signals may not be able to pass the ultrasonic sensors correctly assigned to the corresponding Have issued transmission pulses. Hence it comes from the runtime evaluation for errors by the switching output is set undefined. So far it has been to solve the problem known to operate the ultrasonic sensors in series, by the supply voltages of the ultrasonic sensors were cyclically switched on or off. The response time of the With this technology, ultrasonic sensors are correspondingly long and is even delayed by internal reset times. Another way to influence each other avoid, so far there has also been compliance with installation regulations, i.e. the specification of minimum distances for the Installation of the ultrasonic sensors. The minimum distances however, are very application-dependent. For many uses this method is excluded if a high level of security is required. Another avoidance solution mutual influence is that the neighboring operated ultrasonic sensors via their release output be connected to each other by a common line and via this a parallel synchronization takes place. in this connection of all proximity switches at the same time Transmitted pulses, so that the problem of the correct timing Assignment of the echo signals to the relevant ultrasonic sensors eliminated. Such parallel synchronization has the disadvantage, however, that the runtime evaluation does not contain structured evaluation algorithms. The EP 0 519 090 B1 describes an interconnection of several Ultrasonic sensors through their release outputs a common line with an automatic parallel or serial synchronization.

Allerdings stellt die Abtastung von schnellen Vorgängen, wie sie z.B. zur Autozählung in den Zufahrten von Parkhäusern erforderlich ist, immer noch ein bisher ungelöstes Problem dar.However, the sampling of fast events, such as they e.g. required for car counting in the driveways of parking garages is still an unsolved problem.

Daher liegt der Erfindung die Aufgabe zugrunde, ein Verfahren der obengenannten Art dadurch zu verbessern, daß die Laufzeitmessung eines Ultraschall-Sensors von Echosignalen benachbarter Ultraschall-Sensoren ungestört und zuverlässig möglich ist.The invention is therefore based on the object of a method to improve the type mentioned above in that the transit time measurement an ultrasonic sensor of echo signals from neighboring Ultrasonic sensors undisturbed and reliable is possible.

Die Aufgabe wird mit den Merkmalen gemäß dem Patentanspruch 1 gelöst. Danach werden die benachbarten Ultraschall-Sensoren über eine gemeinsame Leitung synchronisiert und Sendeimpulse zeitlich wechselnd versetzt abgegeben. Dabei ist der Sendeimpulsversatz der einzelnen Ultraschall-Sensoren wesentlich kleiner als der Meßzyklus, d.h. als die Dauer zwischen zwei aufeinander folgenden Sendeimpulsen, wodurch eine wesentlich höhere Meßrate erreicht werden kann, als z.B. bei der bekannten seriellen Synchronisation. Durch den wechselnden Sendeimpulsversatz können die Echosignale benachbarter Ultraschall-Sensoren durch ihre ständig wechselnde Laufzeit ausgeblendet werden. The object is achieved with the features according to claim 1 solved. Then the neighboring ultrasonic sensors synchronized via a common line and transmit pulses handed over alternately at different times. Here is the transmit pulse offset of the individual ultrasonic sensors is essential smaller than the measuring cycle, i.e. than the duration between two consecutive transmit pulses, creating a substantial higher measuring rate can be achieved than e.g. at the known serial synchronization. Due to the changing transmission pulse offset can use the echo signals from neighboring ultrasonic sensors hidden by their constantly changing runtime become.

Um dies zu erreichen, wird das Verfahren vorteilhaft mit den Merkmalen nach Anspruch 2 weitergebildet. Danach werden von den Ultraschall-Sensoren empfangene Echosignale mehrerer Meßzyklen, d.h. sowohl die eigenen Echosignale als auch Fremdechosignale, hinsichtlich ihrer Lage miteinander verglichen und ausgewertet.To achieve this, the process is advantageous with the Features developed according to claim 2. After that, from echo signals of several measuring cycles received by the ultrasonic sensors, i.e. both your own echo signals and external echo signals, compared in terms of their location and evaluated.

Als besonders vorteilhafte Weiterbildung des Verfahrens hat sich erwiesen, wenn als Stabilitätskriterium zur Ermittlung des gesuchten eigenen Echosignals jedes Ultraschall-Sensors die in aufeinanderfolgenden Meßzyklen stets innerhalb des gleichen Zeitfensters vorkommende Lage eines einzigen Echosignals dient. Dabei ist das Zeitfenster hinsichtlich Größe und Lage bezogen auf den ihm vorausgehenden Sendeimpuls. Nur das eigene Echosignal behält nämlich stets die Lage in etwa bei, während sich durch den von Meßzyklus zu Meßzyklus verändernden Sendeimpulsversatz die Lage der Fremdechosignale verändert. Somit ist ein einfaches und zugleich sicheres Kriterium zur Ermittlung des gesuchten Echosignals gegeben.As a particularly advantageous development of the method proved if as a stability criterion for the determination the wanted echo signal of each ultrasonic sensor in successive measuring cycles always within the same time window occurring position of a single echo signal serves. The time window is in terms of size and position based on the previous transmission pulse. Just the own echo signal always keeps its position approximately at, while changing from measuring cycle to measuring cycle Transmit pulse offset changes the position of the external echo signals. This is a simple and at the same time secure criterion given to determine the echo signal sought.

Ein Ausführungsbeispiel der Erfindung wird im folgenden anhand einer Zeichnung näher erläutert.An embodiment of the invention is as follows explained in more detail using a drawing.

Das erfindungsgemäße Verfahren zur richtungsunabhängigen Zählung von Fahrzeugen mittels mehrerer, benachbarter Ultraschall-Sensoren geht von der Voraussetzung aus, daß die Ultraschall-Sensoren synchronisiert betrieben werden, z.B. in der in der EP 0 519 090 B1 beschriebenen Weise. Hierzu sind die Ultraschall-Sensoren durch eine Leitung miteinander verbunden. Die Synchronisierimpulse der Ultraschall-Sensoren überlappen sich zeitlich mindestens teilweise, und an der Leitung steht solange ein Massepotential an, wie noch irgendein Synchronisierimpuls der Ultraschall-Sensoren ansteht. Erst wenn die Leitung das Potential HIGH annimmt ist die Bereitschaft zum Aussenden neuer Ultraschall-Wellen, d.h. eines Sendeimpulses der Näherungsschalter gegeben. Diese durch die Synchronisierimpulse der Ultraschall-Sensoren bedingten Flankenwechsel haben ein Taktsignal zur Folge, dessen positive Flanken als Bezugszeitpunkte für die Sendeimpulse der Ultraschall-Sensoren dienen. Dabei werden die Sendeimpulse zeitlich wechselnd in Bezug auf die positiven Flanken versetzt ausgegeben. Der Sendeimpulsversatz der einzelnen Ultraschall-Sensoren ist wesentlich kleiner als der Meßzyklus, d.h. als die Dauer zwischen zwei aufeinander folgenden Sendeimpulsen eines Ultraschall-Sensors. Hierdurch läßt sich eine wesentlich höhere Meßrate erreichen als z.B. bei der eingangs erwähnten seriellen Synchronisation. Die höhere Meßrate ist von um so größerer Bedeutung, wenn mit den Ultraschall-Sensoren sich schnell bewegende Objekte erfaßt werden sollen. Durch den wechselnden Sendeimpulsversatz können die Echosignale der benachbarten Ultraschall-Sensoren durch ihre ständig wechselnde Laufzeit in Bezug auf den Sendeimpuls des jeweils betrachteten Ultraschall-Sensors ausgeblendet werden. Die Ultraschall-Sensoren speichern in einem Meßzyklus die Laufzeit des eigenen Echosignals und die Laufzeiten der jeweils benachbarten Ultraschall-Sensoren. Die Laufzeiten der Echosignale dreier Meßzyklen werden miteinander verglichen, wobei nur die Laufzeit der eigenen Echosignale des Ultraschall-Sensors das vorgegebene Stabilitätskriterium erfüllt. Dies trifft zu, wenn das Echosignal mindestens dreimal hintereinander in demselben Zeitfenster festgestellt wird. Dabei kann die Lage des Zeitfensters sich abhängig von der Meßstrecke, z.B. zwischen dem Ultraschall-Sensor und dem Boden oder dem Ultraschall-Sensor und einer Dachfläche eines Fahrzeugs, verschieben. Die Größe dieses Zeitfensters kann angepaßt an den jeweiligen Anwendungsfall vorgegeben werden.The method according to the invention for direction-independent counting vehicles using several neighboring ultrasonic sensors assumes that the Ultrasonic sensors are operated synchronized, e.g. in in the manner described in EP 0 519 090 B1. For this are the ultrasonic sensors are connected to each other by a line. The synchronization pulses of the ultrasonic sensors at least partially overlap in time, and on the There is a ground potential as long as there is any Synchronizing pulse from the ultrasonic sensors is present. Only when the line assumes the potential HIGH is that Willingness to emit new ultrasonic waves, i.e. given a transmission pulse of the proximity switch. This through the synchronization pulses of the ultrasonic sensors conditional edge changes result in a clock signal, its positive edges as reference times for the transmission pulses the ultrasonic sensors. The Transmitting impulses alternating with respect to the positive ones Flanks issued offset. The transmission pulse offset of the individual Ultrasonic sensors is much smaller than that Measuring cycle, i.e. than the duration between two consecutive Transmitting pulses from an ultrasonic sensor. hereby a much higher measuring rate can be achieved than e.g. in the serial synchronization mentioned at the beginning. The higher measuring rate is all the more important if with the Ultrasonic sensors detect fast moving objects should be. Due to the changing transmission pulse offset the echo signals from the neighboring ultrasonic sensors due to their constantly changing term in relation to the Transmission pulse of the ultrasound sensor under consideration is hidden become. The ultrasonic sensors save in one Measuring cycle the running time of the own echo signal and the running times of the neighboring ultrasonic sensors. The Runtimes of the echo signals of three measuring cycles are combined compared, only the duration of the own echo signals the specified stability criterion of the ultrasonic sensor Fulfills. This is true if the echo signal is at least found three times in a row in the same time window becomes. The location of the time window can vary from the measuring section, e.g. between the ultrasonic sensor and the floor or the ultrasonic sensor and one Roof area of a vehicle, move. The size of this Time window can be adapted to the respective application be specified.

Anhand eines Beispiels mit drei synchronisierten Ultraschall-Sensoren werden die beim Betrieb auftretenden Signalverläufe gemäß der Figur erläutert. Der oberste Signalverlauf A zeigt das aufgrund der Synchronisierimpulse der einzelnen Ultraschall-Sensoren selbsttätig gebildete Taktsignal, wie es ausführlich der EP 0 519 090 B1 zu entnehmen ist. Wie bereits oben erwähnt, werden ausgehend von den positiven Flanken des Taktsignals mit sich änderndem Sendeimpulsversatz die Sendeimpulse der Ultraschall-Sensoren abgegeben.Using an example with three synchronized ultrasonic sensors become the waveforms that occur during operation explained according to the figure. The top waveform A shows this is due to the synchronization pulses of the individual ultrasonic sensors automatically formed clock signal, as detailed can be found in EP 0 519 090 B1. As before mentioned above, starting from the positive edges of the Clock signal with changing transmission pulse offset the transmission pulses of the ultrasonic sensors.

Die in der Spur B dargestellten Sendeimpulse S1 für den Ultraschall-Sensor haben für die Meßtakte M1, M2 und M3 des Taktsignals drei unterschiedliche Sendeimpulsversätze d1, d2 und d3, wobei im vorliegenden Beispiel d1 = 0 ms, d2 = 5 ms und d3 = 10 ms ist. Diese treten in der genannten Reihenfolge und danach sich zyklisch wiederholend auf.The transmission pulses S1 shown in track B for the ultrasonic sensor have for the measuring clocks M1, M2 and M3 of Clock signal three different transmission pulse offsets d1, d2 and d3, in the present example d1 = 0 ms, d2 = 5 ms and d3 = 10 ms. These occur in the order mentioned and then repeat themselves cyclically.

Die darunterliegenden Spuren D und F zeigen die Lage der Sendeimpulse S2 für den zweiten Ultraschall-Sensor und S3 für den dritten Ultraschall-Sensor. Die Sendeimpulse S2 haben beginnend mit den Meßtakt 1 folgende Reihenfolge der Sendeimpulsversätze, nämlich d2 für Meßtakt M1, d3 für Meßtakt M2 und d1 für Meßtakt M3 mit einer sich anschließenden zyklischen Wiederholung. Die Sendeimpulse S3 des dritten Ultraschall-Sensors beginnen mit dem Sendeimpulsversatz d3 beim Meßtakt M1, dem sich der Sendeimpulsversatz d1 für Meßtakt M2 und nachfolgend d2 für Meßtakt M3 anschließen. Dabei haben d1, d2 und d3 im vorliegenden Beispiel stets die obengenannten Zahlenwerte. Den Sendeimpulsen des jeweiligen Ultraschall-Sensors zugeordnet sind in den Spuren C, E, G die von dem betreffenden Ultraschall-Sensor empfangenen Echosignale aufgezeichnet. Im Meßtakt 1 empfängt der erste Ultraschall-Sensor nach etwa 15 ms sein eigenes Echosignal E1 und nach weiteren 5 bzw. 10 ms aufgrund des Sendeimpulsversatzes die Echosignale E2 bzw. E3 des zweiten bzw. dritten Ultraschall-Sensors. Im anschließenden Meßtakt M2 tritt wiederum das eigene Echosignal E1 nach 15 ms des Sendeimpulses S1 auf. Aufgrund des Sendeimpulsversatzes tritt aber das Echosignal E3 5 ms vor dem Echosignal E1 auf und das Echosignal E2 5 ms später. Im anschließenden Meßtakt 3 ergibt sich aufgrund des Sendeimpulsversatzes eine weitere abweichende Reihenfolge der Echosignale mit dem zuerst empfangenen Echosignal E2, dem nach 5 ms folgenden Echosignal E3 und dem nach weiteren 5 ms folgenden Echosignal E1. Dabei erkennt man, daß nur das Echosignal E1 das Stabilitätskriterium erfüllt und dreimal hintereinander in demselben Zeitfenster, nämlich nach 15 ms, auftritt. Dieses Zeitfenster ist im vorliegenden Beispiel, angepaßt an den Sendeimpulsversatz, kleiner als 5 ms.The tracks D and F below show the position of the transmission pulses S2 for the second ultrasonic sensor and S3 for the third ultrasonic sensor. The transmission pulses S2 have started with measuring cycle 1, the following sequence of the transmission pulse offsets, namely d2 for measuring cycle M1, d3 for measuring cycle M2 and d1 for measuring cycle M3 with a subsequent cyclical one Repetition. The transmission pulses S3 from the third ultrasonic sensor start with the transmission pulse offset d3 at Measuring clock M1, which is the transmission pulse offset d1 for measuring clock M2 and then connect d2 for measuring cycle M3. Have along d1, d2 and d3 in the present example always the above Numerical values. The transmission pulses of the respective ultrasonic sensor are assigned in tracks C, E, G those of the relevant ultrasonic sensor received echo signals recorded. The first ultrasonic sensor receives in measuring cycle 1 after about 15 ms its own echo signal E1 and after another 5 or 10 ms due to the transmission pulse offset Echo signals E2 or E3 of the second or third ultrasonic sensor. In the subsequent measuring cycle M2, your own occurs Echo signal E1 after 15 ms of the transmission pulse S1. by virtue of of the transmission pulse offset occurs the echo signal E3 5 ms before the echo signal E1 and the echo signal E2 5 ms later. In the subsequent measuring cycle 3 results from the Transmit pulse offset another different order of Echo signals with the first received echo signal E2, the after 5 ms following echo signal E3 and after another 5 ms following echo signal E1. You can see that only the echo signal E1 meets the stability criterion and three times in a row in the same time window, namely after 15 ms, occurs. This time window is in the present example, adapted to the transmission pulse offset, less than 5 ms.

Der zeitliche Sendeimpulsversatz muß so groß gewählt werden, daß die Echosignale selektiv erfaßt werden können. Wenn das Echosignal mindestens dreimal hintereinander in dem genannten Zeitfenster festgestellt wird, ändert der Senderausgang des Ultraschall-Sensors seinen Zustand und es wird ein Zählimpuls gegeben.The temporal transmission pulse offset must be chosen so large that the echo signals can be detected selectively. If that Echo signal at least three times in succession in the named Time slot is determined, the transmitter output of the Ultrasonic sensor its state and it becomes a count given.

Wie bereits oben erwähnt, hängt die Lage der Echosignale und die zugehörigen Zeitfenster, in denen die Echosignale liegen, von der jeweiligen Meßstrecke ab.As already mentioned above, the location of the echo signals and the associated time windows in which the echo signals are located, on the respective measuring section.

Auch die Echosignale E2 bzw. E3 des zweiten bzw. dritten Ultraschall-Sensors gemäß den Spuren D und F werden in entsprechender Weise jeweils miteinander verglichen und ausgewertet, um nur die Laufzeiten der eigenen Echosignale in der beschriebenen Weise herauszufiltern, d.h. die Echosignale benachbarter Ultraschall-Sensoren auszublenden. Die Sendeimpulsversätze für die verschiedenen Ultraschall-Sensoren können unter ihnen zugeordneten Adressen abgelegt werden. Somit ist z.B. folgende Zuordnung möglich:

  • Unter der Adresse 1 für den ersten Ultraschall-Sensor d1 = 0 ms, d2 = 5 ms, d3 = 10 ms, d1 = 0 ms, d2 = 5 ms, d3 = 10 ms usw.,
  • unter der Adresse 2 für den zweiten Ultraschall-Sensor d2 = 5 ms, d3 = 10 ms, d1 = 0 ms, d2 = 5 ms, d3 = 10 ms, d1 = 0 ms usw. und
  • unter der Adresse 3 für den dritten Ultraschall-Sensor d3 = 10 ms, d1 = 0 ms, d2 = 5 ms, d3 = 10 ms, d1 = 0 ms, d2 = 5 ms usw..
  • The echo signals E2 and E3 of the second and third ultrasound sensors according to tracks D and F are also compared and evaluated in a corresponding manner in order to filter out only the transit times of the own echo signals in the manner described, ie the echo signals from adjacent ultrasound sensors. Hide sensors. The transmit pulse offsets for the various ultrasonic sensors can be stored under the addresses assigned to them. The following assignment is possible, for example:
  • At address 1 for the first ultrasonic sensor d1 = 0 ms, d2 = 5 ms, d3 = 10 ms, d1 = 0 ms, d2 = 5 ms, d3 = 10 ms etc.,
  • at address 2 for the second ultrasonic sensor d2 = 5 ms, d3 = 10 ms, d1 = 0 ms, d2 = 5 ms, d3 = 10 ms, d1 = 0 ms etc. and
  • at address 3 for the third ultrasonic sensor d3 = 10 ms, d1 = 0 ms, d2 = 5 ms, d3 = 10 ms, d1 = 0 ms, d2 = 5 ms etc.
  • Bei dem beschriebenen Verfahren arbeiten die Ultraschall-Sensoren selbständig, d.h. ohne zusätzlichen Steuerungsaufwand. Selbstverständlich ist jedoch eine zentrale Steuerung der Ultraschall-Sensoren möglich.The ultrasonic sensors work in the described method independent, i.e. without additional control effort. It goes without saying that the ultrasound sensors are controlled centrally possible.

    Claims (3)

    1. Method for operating a plurality of adjacent ultrasound sensors which are synchronised and in which a first ultrasonic sensor emits first transmission pulses (S1), a second ultrasonic sensor emits second transmission pulses (S2), and a third ultrasonic sensor emits third transmission pulses (S3), characterised in that a clock signal is generated with at least a first (M1), a second (M2) and a third measurement clock (M3), which occur in sequence, that a first one of the first transmission pulses (S1) is generated with a first transmission pulse offset (d1) for the first measurement clock (M1), a second one of the first transmission pulses (S1) is generated with a second transmission pulse offset (d2) for the second measurement clock (M2), and a third one of the first transmission pulses (S1) is generated with a third transmission pulse offset (d3) for the third measurement clock (M3), corresponding to a first transmission pulse sequence d1-d2-d3 for the first transmission pulses (S1) for the measurement clocks (M1, M2, M3), that a first one, a second one and a third one of the second transmission pulses (S2) are generated for the first (M1), the second (M2) and the third measurement clock (M3) with the second (d2), the third (d3) and the first transmission pulse offset (d1) according to a second transmission pulse sequence d2-d3-d1, and that a first one, a second one and a third one of the third transmission pulses (S3) are generated for the first (M1), the second (M2) and the third measurement clock (M3) with the third (d3), the first (d1) and the second transmission pulse offset (d2) according to a third transmission pulse sequence d3-d1-d2.
    2. Method for operating a plurality of adjacent ultrasonic sensors according to Claim 1, characterised in that the first, second and third echo signals (E1, E2 and E3) are assigned to the first, second and third transmission pulses (S1, S2 and S3) respectively and the echo signals (E1, E2, E3) of a plurality of measurement cycles received by the first, second and third ultrasonic sensor respectively are compared with each other and evaluated with respect to their position.
    3. Method for operating a plurality of adjacent ultrasonic sensors according to Claim 2, characterised in that the position of a single echo signal (E1, E2, E3) is used as a stability criterion to determine each ultrasonic sensor's sought echo signal (E1, E2 or E3 respectively). In successive measurement cycles the position of the single echo signal (E1, E2, E3) always occurs within the same time window, which with respect to size and position is equal to the transmission pulse (S1, S2 or S3) which precedes it.
    EP99916798A 1998-03-30 1999-03-17 Method for operating several adjacent ultrasonic sensors Expired - Lifetime EP1068543B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19814181 1998-03-30
    DE19814181 1998-03-30
    PCT/DE1999/000745 WO1999050687A1 (en) 1998-03-30 1999-03-17 Method for operating several adjacent ultrasonic sensors

    Publications (2)

    Publication Number Publication Date
    EP1068543A1 EP1068543A1 (en) 2001-01-17
    EP1068543B1 true EP1068543B1 (en) 2002-12-11

    Family

    ID=7862967

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99916798A Expired - Lifetime EP1068543B1 (en) 1998-03-30 1999-03-17 Method for operating several adjacent ultrasonic sensors

    Country Status (5)

    Country Link
    US (1) US6307811B1 (en)
    EP (1) EP1068543B1 (en)
    JP (1) JP2002510057A (en)
    DE (1) DE59903749D1 (en)
    WO (1) WO1999050687A1 (en)

    Families Citing this family (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102007045561B4 (en) * 2007-09-24 2018-02-15 Robert Bosch Gmbh Method for operating a driver assistance system
    DE102009002870A1 (en) * 2009-05-06 2010-11-18 Robert Bosch Gmbh Ultrasonic object detection system and method of detecting objects using ultrasound
    DE102012020413A1 (en) * 2012-10-18 2014-04-24 Volkswagen Aktiengesellschaft Method and device for environment detection
    JP6072932B2 (en) 2012-12-18 2017-02-01 フィリップス ライティング ホールディング ビー ヴィ Control of pulse transmission from sensor
    WO2015124190A1 (en) * 2014-02-20 2015-08-27 Siemens Aktiengesellschaft Method and device for determining a position of an object
    JP6413620B2 (en) * 2014-10-22 2018-10-31 株式会社Soken Object detection device
    DE102017209095A1 (en) * 2017-05-31 2018-12-06 Robert Bosch Gmbh Method and device for detecting at least one object in the region between a primary coil and a secondary coil of an inductive charging device
    US10267912B1 (en) * 2018-05-16 2019-04-23 Cisco Technology, Inc. Audio based motion detection in shared spaces using statistical prediction

    Family Cites Families (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS60218087A (en) * 1984-04-13 1985-10-31 Komatsu Ltd Detecting method of body using ultrasonic pulse
    US4779240A (en) * 1985-04-29 1988-10-18 Xecutek Corporation Ultrasonic sensor system
    DE3701521A1 (en) 1987-01-21 1988-08-04 Hanns Rump Apparatus for the purpose of protecting, without any gaps, stationary and/or moving objects
    JPH01101061A (en) * 1987-10-14 1989-04-19 Canon Inc Picture reader
    DE4003775A1 (en) 1990-02-08 1991-08-14 Fraunhofer Ges Forschung Control system for ultrasonic range sensor - uses variation of selected transmission parameter to differentiate between different sensors
    DE59104631D1 (en) * 1991-06-13 1995-03-23 Siemens Ag Ultrasonic proximity switch with synchronization device.

    Also Published As

    Publication number Publication date
    JP2002510057A (en) 2002-04-02
    EP1068543A1 (en) 2001-01-17
    WO1999050687A1 (en) 1999-10-07
    DE59903749D1 (en) 2003-01-23
    US6307811B1 (en) 2001-10-23

    Similar Documents

    Publication Publication Date Title
    EP1517157A1 (en) Method and apparatus for measuring distance
    DE19744185A1 (en) Distance measuring device using ultrasound
    DE102010034263B4 (en) Method for generating a threshold value curve and method for evaluating signals from an ultrasonic sensor and a device for detecting the surroundings
    EP1969390A1 (en) Method for calibrating a sensor system
    DE2544842A1 (en) METHOD AND CIRCUIT ARRANGEMENT FOR EVALUATING SIGNAL PULSE SEQUENCES, IN PARTICULAR RADAR PULSE SEQUENCES
    EP1068543B1 (en) Method for operating several adjacent ultrasonic sensors
    EP3299845A1 (en) Operating method for an ultrasonic sensor system, control device, ultrasonic sensor system and vehicle
    DE102005054390B4 (en) Driver assistance system
    EP3324207A1 (en) Method for operating an ultrasonic system
    WO2019145066A1 (en) Method for operating a radar sensor system in a motor vehicle
    EP2322952A2 (en) Method for detecting an object, driver assistance device and vehicle with a driver assistance device
    WO1998038529A1 (en) Ultrasound distance measuring system with digital measuring signals transmitted by time multiplexing
    WO2018108388A1 (en) Method for operating an ultrasonic sensor
    EP3574342A1 (en) Ultrasonic sensor apparatus
    EP1933173A1 (en) Light grid
    DE10211387B4 (en) Sensor using radiation pulses
    DE10225614A1 (en) Ultrasonic proximity sensor transceiver circuitry, transmits successive ultrasonic pulses of differing frequencies via ultrasonic transducer
    DE2723355C2 (en) Method and arrangement for evaluating radar pulse trains
    EP2788785B1 (en) Sensor system for operating a sensor system
    DE19521511C1 (en) Ultrasound room or space monitoring esp for inside vehicles
    DE3821577A1 (en) Method and device for obstruction identification using ultrasound range measurement
    DE2917510C2 (en) Process for the automatic detection of the width, the head and the side contours of sheet-metal or band-shaped test pieces when testing materials with ultrasound
    WO2005036206A1 (en) Method for detecting an obstacle in the detection area of a detection device
    DE102017121570B3 (en) Method for detecting an environmental region of a motor vehicle with specific echo reception durations in measurement cycles of ultrasound signals, as well as ultrasound sensor device and motor vehicle
    EP4022347A1 (en) Ultrasonic sensor system, method for operating ultrasonic sensors and motor vehicle

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20000417

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): CH DE FR GB LI

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    17Q First examination report despatched

    Effective date: 20020620

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): CH DE FR GB LI

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: SIEMENS SCHWEIZ AG

    Ref country code: CH

    Ref legal event code: EP

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20021211

    REF Corresponds to:

    Ref document number: 59903749

    Country of ref document: DE

    Date of ref document: 20030123

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20030912

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20060613

    Year of fee payment: 8

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070331

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070331

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    Free format text: REGISTERED BETWEEN 20110217 AND 20110223

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 17

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20150317

    Year of fee payment: 17

    Ref country code: GB

    Payment date: 20150313

    Year of fee payment: 17

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20160329

    Year of fee payment: 18

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20160317

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20161130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160331

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160317

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59903749

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20171003