EP3732138A1 - Enfourneuse mobile en translation - Google Patents

Enfourneuse mobile en translation

Info

Publication number
EP3732138A1
EP3732138A1 EP18827200.9A EP18827200A EP3732138A1 EP 3732138 A1 EP3732138 A1 EP 3732138A1 EP 18827200 A EP18827200 A EP 18827200A EP 3732138 A1 EP3732138 A1 EP 3732138A1
Authority
EP
European Patent Office
Prior art keywords
charger
charging
mechanical block
translation
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18827200.9A
Other languages
German (de)
English (en)
Inventor
Antoine Guillet
Frédéric LOPEPE
Sébastien CHESNEL
Andrea RANZANI DA COSTA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Isover SA France
Original Assignee
Saint Gobain Isover SA France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Isover SA France filed Critical Saint Gobain Isover SA France
Publication of EP3732138A1 publication Critical patent/EP3732138A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/005Charging the melting furnaces using screw feeders
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/04Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in tank furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/08Screw feeders; Screw dischargers

Definitions

  • the present invention relates to a furnace for a glass furnace and a melting plant of a composition of vitrifiable materials. More specifically, flat-glass forming plants such as float or rolling mills, but also hollow-glass forming plants of the bottle-and-bottle type, and more particularly fiber-glass forming installations of the type of mineral wool, are particularly targeted. thermal or sound insulation or reinforcing textile glass threads.
  • the invention also relates to a control system of such a charger and the control method, the computer program and the associated computer recording medium.
  • vitrifiable materials are generally of the oxide type, and generally comprise at least 30% by weight of silica, such as a glass or a silicate such as an alkali and / or alkaline earth silicate.
  • silica such as a glass or a silicate such as an alkali and / or alkaline earth silicate.
  • the glass may especially be silicosodocalcique or be rock often called "black glass" by the skilled person.
  • vitrifiable materials and “raw materials” are therefore intended to include the materials necessary to obtain a vitreous (or ceramic or glass-ceramic) matrix, such as silicic sand, rock, blast furnace slags, but also all additives (refining additives), deconstruction waste (including mineral fibers), all liquid or solid fuels (composite or non-composite plastics, organic materials, coals), and all types of cullet.
  • silicic sand, rock, blast furnace slags but also all additives (refining additives), deconstruction waste (including mineral fibers), all liquid or solid fuels (composite or non-composite plastics, organic materials, coals), and all types of cullet.
  • deconstruction waste including mineral fibers
  • liquid or solid fuels composite or non-composite plastics, organic materials, coals
  • cullet all types of cullet.
  • Loading devices also called “feeders”, classically belong to one of two groups:
  • a member for conveying the composition to the oven in the direction of charging this conveying member being at least partly arranged in the sheath, and
  • a motorized drive unit of said routing member is
  • This conveying member may be a piston, as described in the patent document WO2016 / 120351A, or one or more endless screws, as described in the patent document WO2013 / 132184, the body of the charger then being for example single-screw or double-screw extruder type.
  • the member for conveying the composition to the oven is set in translational (in the case of a piston) or rotary (in the case of a screw) movement by a motorized drive unit, which may include one or more engines.
  • a resistance generated in particular by the composition being conveyed opposes the work provided by the routing member.
  • This resistance increases with the hardness and the particle size of the composition, the thickness of the plug, that is to say the contact zone between the end of the proximal furnace of the furnace, and its grip at the entrance of the furnace. the melting chamber, as well as the height and viscosity of the glass bath pressuring the plug.
  • the increase of this resistance generates a rise in power of the drive motor.
  • the various components of the charger, and in particular its conveyor and / or its motor are allowed to become blocked, which can lead to their deterioration.
  • a relatively large mass of the composition can be delivered into the melting chamber, thereby causing a drop in temperature and therefore instabilities in the fusion process.
  • a drop in the resistance opposed by the vitrifiable composition generally indicates an excessive thinning of the stopper.
  • the charger is then exposed to interference in the sheath of combustion gases from the furnace, or in other words, to a "return of gas".
  • a return gas is to be avoided at all costs since it tends to heat the vitrifiable material within the sheath. This then causes rapid deterioration of the components of the charger that are not suitable for exposure to such high temperatures. This rise in temperature also increases the risk of flaring vitrifiable materials and even explosion.
  • the release of such gases in the atmosphere is also a risk for an operator, given the toxicity of the gases in question, as well as for the environment, because of their polluting nature.
  • the proposed technique relates to a charger for charging a composition of vitrifiable materials in a glass furnace, said furnace comprising:
  • a sleeve defining a direction of charging of the composition in the oven
  • said charger being characterized in that the mechanical block is movable in translation relative to the sleeve, according to the charging direction.
  • the "mechanical block” is the assembly formed by the routing member and the motorized drive unit, this block being limited by the maximum torque value of the motorized unit.
  • the invention is thus based on a new and inventive concept of providing a charger in which the mechanical block is movable in translation relative to the sleeve, in the direction of charging.
  • a charger allows a male operator and / or machine to adjust the position of the delivery member in the sleeve according to the charging conditions.
  • the position of the conveying member is correlated with the value of the resistance offered by the batch composition and / or the cap.
  • the thickness of the cap decreases, since its end is introduced into the furnace for liquefaction.
  • the resistance decreases, making it possible to obtain an acceptable torque value for the drive motor while limiting the stresses on the routing member, and the risks of deterioration.
  • the delivery member moves back, the thickness of the plug increases, and the risk of infiltration of combustion gases and / or sudden expulsion of the plug in the melting chamber decreases.
  • a charger according to the invention allows, via the translation of the mechanical block relative to the sheath, to maintain this resistance value, and therefore the corresponding value of the torque of the motorized drive unit, in an intermediate range of values allowing on the one hand to overcome the blockages of the drive motor and to limit the risk of damage to the latter and / or the routing member, while also avoiding the generation of instabilities in the melting process or gas returns.
  • the positioning of the conveying member in the sheath can be achieved:
  • the conveying member is a worm movable in rotation about the direction of charging.
  • the delivery member is in the form of a piston movable in translation in the direction of charging, or any other type of routing member known to the state of the technical.
  • the sheath is secured to a frame with respect to which the mechanical block is movable is translation.
  • chassis allows a satisfactory control of the direction in translation of the mechanical block, as well as the assembly and positioning, with respect to the rest of the chassis, of a possible motorized unit for translational translation. mechanical block.
  • the mechanical block is adapted to be translated manually.
  • the positioning of the conveying member in the sheath can thus be modified by a specialized operator, particularly in the event of jamming of the shifter.
  • the charger comprises a motorized unit for translating the mechanical block. An operator can thus be fully or partially assisted for the positioning of the mechanical block.
  • the mechanical block is adapted to be translated both manually and via a motorized translation unit.
  • a motorized translation unit Such a combination of translational means enables an operator to overcome the potential defects of the motorized translational unit, for example to readjust accurately the position of the mechanical block, to take over from the motorized unit. in case of failure of the latter, or to perform a task requiring a power greater than the maximum power value of the motorized translation unit.
  • the charger comprises a device for measuring at least one value of a physical variable impacted by the operation of the charger, said physical variable being preferably chosen from:
  • the concentration of gas resulting from combustion within the sheath for example carbon dioxide and / or carbon monoxide.
  • the measurement of the temperature within the sheath makes it possible to detect a possible return of liquid glass and / or a start of pyrolysis in the conveying member.
  • the implementation of a measuring device makes it possible to monitor in real time the proper operation of the charger in order, if necessary, to modify the position of the mechanical block along the axis d kiln furniture.
  • the measurement of the torque is performed by means of a measurement of the electrical intensity of the same motor, which is proportional to the torque.
  • this measuring device is coupled to a human-machine interface adapted to communicate to an operator the measured value of said physical variable. The latter can then make the decision to modify or not the position of the mechanical block relative to the sheath, manually or with the assistance of a motorized translational unit.
  • the translation of the mechanical block is automated, which offers the possibility of automatic servocontrol of the position of the delivery member as a function of the torque, and therefore of continuous adaptation. from the charger to the charging conditions, according to a control method described in this text.
  • the invention also relates to a vitrifiable material melting installation comprising:
  • a vitrifiable melting furnace equipped with a charging orifice located on the vessel side, preferably below the theoretical level of the liquid glass defined by the position of the spillway of the liquid glass,
  • One end of the sheath of the charger is open on the charging port, either by direct contact or via an intermediate connection piece.
  • access to the oven is released at least occasionally, to allow the introduction of the composition of vitrifiable materials in the oven.
  • the invention is particularly applicable to immersed feeders, given the risk of return of liquid glass in the sleeve and the pressure exerted by the latter on the plug, these two factors significantly increasing the resistance to the work of the organ routing, and therefore the risk of blockage and / or deterioration.
  • the installation comprises a tubular charging head arranged downstream of the sleeve and fixed on the outer side of the furnace tank, at the level of the charging orifice, said charging head being equipped at its distal end of the furnace with a guillotine damper, whose guillotine is movable between a closed position, in which the guillotine closes the access to the inside of the oven, and an open position, in which this access is released .
  • a guillotine damper allows, when the latter is in the closed position, to separate the furnace from the oven, for example for maintenance, without risk of liquid glass return.
  • the translation function of the mechanical block is necessary to be able to close the oven, to prevent the routing member is in the axis of the guillotine when moving in the closed position.
  • said guillotine damper is oriented vertically. In this configuration, it is thus possible to arrange a plurality of feeders along the same wall of the furnace.
  • said charging head has a generally conical inner surface which widens from the distal end to the proximal end of the furnace.
  • the invention also relates to the use of such an installation for melting vitrifiable materials.
  • the invention further relates to a method of controlling a charging machine such as that described above, from at least one value of a physical variable impacted by the operation of the charger, said physical variable being preferably chosen among:
  • control method comprising at least the following steps:
  • This threshold value may refer either to an operating anomaly of the charger which one would like to avoid (eg blocking, breaking, extreme temperature) or on the contrary, to an optimal value of operation of this one of which one would like to approach .
  • the translation instruction of the mechanical block is either transmitted to a human-machine interface for subsequent execution by an operator, or transmitted directly to motorized translational unit for automatic execution.
  • said physical variable value is the torque supplied by the motorized drive unit of said routing member
  • the value of this torque tends to decrease when the routing member is advanced in the sleeve towards the oven, and vice versa.
  • the command command issued to reduce this torque is therefore to translate the routing member in the direction of charging.
  • the command command issued to increase this torque is to translate the organ in the opposite direction.
  • the measured physical variable is the intensity, proportional to the torque, of the motor of the motorized unit driving in rotation of a worm for conveying the composition to the oven, and that said threshold value is initially between 10 and 50%, preferably between 10 and 30%, preferably between 12 and 20%, more preferably between 14 and 16% of the maximum intensity admissible by said engine.
  • the torque available in absolute value possibly makes it possible to solve a problem of blocking the member for conveying the composition into the oven.
  • the threshold value of the motor intensity is 15% of the maximum intensity allowed by the motorized drive unit.
  • the corresponding torque value is between 600 and 700 N / m.
  • control in translation of the mechanical block downstream of the theoretical section plane of the guillotine is slaved to the arrangement thereof in the open position.
  • the measured physical variable is the temperature within the sheath at its most upstream end, the order of command issued being to translate the routing member backwards when the measured temperature is equal to or greater than a temperature threshold value.
  • the invention also relates to a control system of a charger as described above, comprising a processing module adapted for:
  • the invention further relates to a computer program downloadable from a communication network and / or recorded on a recording medium adapted to be read by a computer and / or executed by a processor, comprising an instruction code for setting implement a control method as described above.
  • the invention also relates to a computer recording medium on which is recorded such a computer program.
  • FIG. 1 is a schematic sectional view of a vitrifiable material melting installation according to a particular embodiment of the invention
  • Figure 2 is a kinematic diagram of a charger according to a particular embodiment of the invention.
  • Figure 3 is a schematic representation of a control system of a charger according to a particular embodiment of the invention.
  • Figure 4 is a flow diagram illustrating the successive steps of a method of controlling a charger according to a particular embodiment of the invention.
  • the invention relates to a glass batch melting installation 10 comprising:
  • the charging orifice is situated below the theoretical level of the liquid glass defined by the position of the weir of the liquid glass. It is then referred to submerged type of auger, which the invention is particularly applicable, given the risk of liquid glass return to the sleeve 4 and the pressure exerted by the latter on the cap, these two factors increasing significantly the resistance to the work of the routing member 6, and therefore the risk of blockage and / or deterioration.
  • the charging can however be carried out above the theoretical level of liquid glass, along a side and / or oven gear 3.
  • the invention also relates to a charger 1 comprising:
  • this routing member 6 being at least partly arranged in the sleeve 4, and
  • the mechanical block 5 is movable in translation relative to the sleeve 4, in the charging direction X.
  • a magazine 1 according to the invention allows, via the translation of the mechanical block 5 relative to the sleeve 4, to maintain this resistance value, and therefore the corresponding value of the torque of the motorized drive unit 7, in an intermediate range. values allowing on the one hand to overcome the blockages of the drive motor and to limit the risk of damage to the latter and / or the routing member 7, while also avoiding the generation of instabilities in the smelting process and the return of gases.
  • the magazine 1 comprises a sleeve 4 in which is housed a worm 6 movable in rotation about the loading axis X.
  • This worm 6 thus acts as a delivery member of the composition 2 to the oven 3.
  • the organ routing 6 may be in the form of a piston movable in translation in the direction of charging X, or any other type of routing member known from the state of the art.
  • the routing member 6 is driven in rotation / translation by a motorized unit 7 comprising one or more motors.
  • the assembly formed by this routing member 6 and the motorized drive unit 7 forms a mechanical block 5.
  • a hopper on the sleeve 4 allows the introduction of the composition 2 of raw materials.
  • the head of the charger also comprises a guillotine damper and a tubular connecting piece in the oven.
  • the guillotine damper includes a fixed portion and a movable portion, referred to as a guillotine.
  • On the fixed part of the register is fixed a tubular connection piece whose inner surface widens slightly towards the furnace of which only the tank side is shown.
  • the tubular connector piece is inserted into the charging port.
  • the connecting piece and the guillotine of the register are each traversed by a system of internal conduits for the circulation of a coolant. When the guillotine is in the closed position, it closes the access to the interior of the oven.
  • the sleeve 4 of the charger 1 is secured to a frame 8 against which the mechanical block 5 is movable is translation. More specifically, and as illustrated by the kinematic diagram of Figure 2, the mechanical block 5 is fixed on a horizontal plate (not shown) which slides itself in the direction of charging X along side rails 14 secured to the frame 8. The translation of the mechanical block 5 relative to the frame is carried out by means of an assembly screw 15. It is to be understood that according to alternative embodiments, the mobility in translation of the mechanical block 5 with respect to the Sleeve 4 can be implemented by any arrangement and / or type of mechanical connection known from the state of the art, without departing from the scope of the invention.
  • the translation of the mechanical block 5 is controlled manually, by means of a wheel for rotating the assembly screw 15.
  • a translation can be controlled by means of a crank or any known mechanical device having a similar function.
  • the translation is controlled by means of a motorized translational unit 9.
  • An operator can thus be wholly or partly assisted for the positioning of the mechanical block 5.
  • the charger 1 is equipped with a plurality of sensors including:
  • the different sensors are coupled to a human-machine interface (not shown) adapted to communicate the measured values to an operator. The latter can then make the decision to modify or not the position of the mechanical block 5 relative to the sleeve 4, manually or with the assistance of a motorized translation unit 9.
  • the translation of the mechanical block 5 is automated, via a control system 20 described in the present text, which offers the possibility of automatic servocontrol of the position of the screw 6 according to the measured torque, and therefore a continuous adaptation of the charger 1 to the charging conditions, according to a control method described in this text.
  • control system 20 of a charger 1 such as that described in this text.
  • a control system 20 comprises a processor 21 acting as a processing module, a storage unit 22, an interface unit 23 and measurement sensors 24, these elements being interconnected by a computer bus.
  • the processor 21 controls the motorized unit 9 for translating the mechanical block 5.
  • the storage unit 22 stores at least one program to be executed by the processor 21, and various data, including the data collected by the sensors of measurement 24, the parameters used by calculations made by the processor 21, or the intermediate data of the calculations performed by the processor 21.
  • the processor 21 may be formed by any known or appropriate hardware or software, or by a combination of hardware and software. software.
  • the storage unit 22 may be formed by any suitable storage or means adapted to store the program and the data in a computer readable manner.
  • the program causes the processor 21 to implement a control method such as that described in the present text.
  • the interface unit 23 provides an interface between the control system 20 and an external device.
  • the interface unit 23 may in particular be in communication with the external device via a cable or a wireless communication.
  • the external apparatus may be the motorized unit 9 for translating the mechanical block 5 and / or another component of the charger 1.
  • values measured by the sensors 24 may be entered into the system 20 through the interface unit 23, then stored in the storage unit 22.
  • processor 21 may comprise different modules and units implementing the functions performed by the control system 20. These functions can also be performed by a user. a plurality of interconnected processors 21.
  • Figure 4 is a flow diagram illustrating the successive steps of a method of controlling a charger 1 according to a particular embodiment.
  • step S1 During a first step (step S1), the following quantities are compared:
  • the value of the motor intensity of the motorized driving unit 7 in rotation of the worm 6, proportional to the torque of the same motor, is compared with a threshold value set at 15% of the maximum intensity allowable by this engine, which corresponds in this case to an optimal operating value which we would like to approach, with a margin of deviation of 5%,
  • step SI The temperature measured in the sheath 4, at its most upstream end, is compared with a threshold temperature value set at 50 ° C., which in this case corresponds to an extreme temperature that we would like to avoid.
  • a priority is given in the control method on the maintenance of this temperature at the end of the sleeve 4 below the threshold value of 50 ° C.
  • step SI the measured motor intensity value
  • step S3 order is given by the processor 21 to advance (Step S3) the mechanical block 5 of 1 cm towards the furnace 3.
  • the motorized translational unit 9 of the mechanical block 5 is then controlled (step S3) according to this instruction.
  • step SI the measured motor intensity value
  • step SI the measured motor intensity value
  • step S2 the measured motor intensity value
  • step S3 the mechanical block 5 of 1 cm.
  • step SI the measured temperature
  • step SI3 it is forbidden (step S2) to advance (step S3) the mechanical block 5, regardless of the measured motor intensity value (step IF).
  • step SI the measured temperature
  • the translation control of the mechanical block 5 downstream of the theoretical cutting plane of the guillotine is slaved to the arrangement thereof in the open position, to avoid contact between the worm 6 and the guillotine and therefore any deterioration that may result.
  • This control method is repeated at a frequency of 10 minutes.
  • this control method can be implemented on the basis of different types of measurements, different threshold values, and / or at different iteration frequencies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacturing And Processing Devices For Dough (AREA)
  • Formation And Processing Of Food Products (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Tunnel Furnaces (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

L'invention se rapporte également à une enfourneuse (1) comprenant : ͦ˙un fourreau (4) définissant une direction d'enfournement X dans le four (3) d'une composition (2) de matières vitrifiables, et ͦ un bloc mécanique (5) équipé : o d'un organe d'acheminement (6) de la composition (2) vers le four (3) selon la direction d'enfournement X, cet organe d'acheminement (6) étant au moins en partie agencé dans le fourreau (4), et o d'une unité motorisée d'entraînement (7) dudit organe d'acheminement (6). En particulier, une telle enfourneuse (1) comprend en particulier un bloc mécanique (5) mobile en translation par rapport au fourreau (4), selon la direction d'enfournement X. L'invention permet à un opérateur Homme et/ou machine d'adapter la position de l'organe d'acheminement dans le fourreau (4) en fonction des conditions d'enfournement.

Description

ENFOURNEUSE MOBILE EN TRANSLATION
La présente invention concerne une enfourneuse pour four verrier et une installation de fusion d'une composition de matières vitrifiables. Sont plus particulièrement visées les installations de formage de verre plat comme les installations float ou de laminage, mais aussi les installations de formage de verre creux du type bouteille, flacon, et plus particulièrement les installations de formage de fibres de verre du type laine minérale d'isolation thermique ou phonique ou encore de fils de verre textile dits de renforcement.
L'invention concerne également un système de contrôle d'une telle enfourneuse ainsi que le procédé de contrôle, le programme d'ordinateur et le support d'enregistrement informatique associés.
Les installations de fusion sont équipées d'un dispositif de chargement d'une composition de matières vitrifiables dans un four verrier. Ces matières vitrifiables sont généralement du type oxyde, et comprennent généralement au moins 30% en masse de silice, telle qu'un verre ou un silicate comme un silicate d'alcalin et/ou d'alcalino-terreux. Le verre peut notamment être silicosodocalcique ou être de la roche souvent appelée « verre noir » par l'homme du métier. Les termes « matières vitrifiables » et « matières premières » visent donc à englober les matières nécessaires à l'obtention d'une matrice vitreuse (ou céramique ou vitrocéramique), tels que le sable silicique, la roche, les laitiers de hauts fourneaux, mais également tous les additifs (additifs d'affinage), les déchets de déconstruction (incluant des fibres minérales), tous les combustibles liquides ou solides éventuels (plastique de matériau composite ou non, matières organiques, charbons), et tout type de calcin. Dans la description, les expressions « verre liquide » et « bain de verre » désignent le produit de la fusion de ces matières vitrifiables.
Les dispositifs de chargement, également nommés « enfourneuses », appartiennent classiquement à l'un des deux groupes suivants :
• Les enfourneuses émergées à tiroir ou à poussoir installées sur une niche, appelée « dog house », extérieure au bassin de fusion,
• Les enfourneuses dites « immergées », qui distribuent la composition directement à l'intérieur du bassin de fusion, à un niveau situé en dessous du niveau des matières vitrifiables en fusion. Plus spécifiquement, il est connu de mettre en œuvre une enfourneuse comprenant :
• un fourreau définissant une direction d'enfournement de la composition dans le four,
· un organe d'acheminement de la composition vers le four selon la direction d'enfournement, cet organe d'acheminement étant au moins en partie agencé dans le fourreau, et
• une unité motorisée d'entraînement dudit organe d'acheminement.
Cet organe d'acheminement peut être un piston, tel que décrit dans le document brevet W02016/120351A, ou une ou plusieurs vis sans fin, tel que décrit dans le document brevet WO2013/132184, le corps de l'enfourneuse étant alors par exemple de type extrudeuse mono-vis ou double-vis. L'organe d'acheminement de la composition vers le four est mis en mouvement translatif (dans le cas d'un piston) ou rotatif (dans le cas d'une vis) par une unité motorisée d'entraînement, pouvant comprendre un ou plusieurs moteurs.
Dans ce contexte, une résistance générée notamment par la composition en cours d'acheminement s'oppose au travail fourni par l'organe d'acheminement. Cette résistance augmente avec la dureté et la granulométrie de la composition, l'épaisseur du bouchon, c'est-à-dire la zone de contact entre l'extrémité de l'enfourneuse proximale du four, et son accroche à l'entrée de la chambre de fusion, ainsi qu'avec la hauteur et la viscosité du bain de verre faisant pression sur le bouchon. De manière connue, l'augmentation de cette résistance engendre une montée en puissance du moteur d'entraînement.
Lorsque suite à l'accroissement de la résistance, la puissance délivrée par le moteur atteint une valeur limite maximale, prédéterminée par le dimensionnement du moteur, les différentes composantes de l'enfourneuse, et en particulier son organe d'acheminement et/ou son moteur d'entraînement sont amenées à se bloquer, ce qui peut engendrer leur détérioration. En outre, dans l'hypothèse où l'organe d'acheminement est finalement débloqué suite à la montée en puissance du moteur, une masse relativement importante de la composition peut être délivrée dans la chambre de fusion, provoquant alors une baisse de la température et donc des instabilités dans le procédé de fusion. A l'inverse, une chute de la résistance opposée par la composition vitrifiable témoigne généralement d'un amincissement excessif du bouchon. L'enfourneuse est alors exposée à l'immixtion dans le fourreau de gazs de combustion en provenance du four, ou en d'autres termes, à un « retour de gazs ». Un tel retour de gaz est à éviter à tout prix puisqu'il tend à échauffer la matière vitrifiable au sein du fourreau. Ceci engendre alors une détérioration rapide des composantes de l'enfourneuse qui ne sont pas adaptées pour une exposition à de telles hautes températures. Cette montée en température augmente également les risques d'embrasement des matières vitrifiables et même d'explosion. Le dégagement de tels gazs dans l'atmosphère représente de plus un risque pour un opérateur, compte tenu de la toxicité des gazs en question, ainsi que pour l'environnement, du fait de leur caractère polluant.
Au regard de ces difficultés, il est connu de surdimensionner le moteur d'entraînement de manière à ce que sa puissance instantanée permette l'acheminement dans le four de la composition de matières vitrifiables. Cette solution technique reste cependant très insatisfaisante puisqu'elle ne permet aucune adaptation de l'enfourneuse aux conditions variables de mise en œuvre de l'enfournement. Ainsi, la résistance opposée par l'agglomérat formé par les matières à enfourner varie significativement en fonction de leur dureté et de leur granulométrie. Une enfourneuse dimensionnée pour une composition donnée ne sera donc pas ou peu adaptée à l'enfournement d'une composition de nature différente. En outre, un tel dimensionnement du moteur ne permet pas de limiter les risques de détérioration de l'organe d'acheminement lors d'une montée du couple. Ceci est particulièrement le cas lorsque cet organe subit des sollicitations asymétriques, par exemple lors de l'acheminement d'une composition très hétérogène ou lors de la formation d'un bouchon d'épaisseur variable. Enfin, une telle solution ne permet en rien d'éviter la génération d'instabilités dans le procédé de fusion ou les retours de gazs, bien au contraire.
Il existe donc un besoin de fournir une enfourneuse permettant de pallier les blocages du moteur d'entraînement et de limiter les risques de détérioration de ce dernier et/ou de l'organe d'acheminement, tout en évitant la génération d'instabilités dans le procédé de fusion et les retours de gazs. La présente invention répond à ce besoin. Plus particulièrement, dans au moins un mode de réalisation, la technique proposée se rapporte à une enfourneuse pour l'enfournement d'une composition de matières vitrifiables dans un four verrier, ladite enfourneuse comprenant :
· un fourreau définissant une direction d'enfournement de la composition dans le four, et
• un bloc mécanique équipé :
o d'un organe d'acheminement de la composition vers le four selon la direction d'enfournement, cet organe d'acheminement étant au moins en partie agencé dans le fourreau, et
o d'une unité motorisée d'entraînement dudit organe d'acheminement,
ladite enfourneuse étant caractérisée en ce que le bloc mécanique est mobile en translation par rapport au fourreau, selon la direction d'enfournement.
Dans la suite de la description, le « bloc mécanique » est l'ensemble formé par l'organe d'acheminement et l'unité motorisée d'entrainement, ce bloc étant limité par la valeur maximale de couple de l'unité motorisée.
L'invention repose ainsi sur un concept nouveau et inventif consistant à fournir une enfourneuse dans laquelle le bloc mécanique est mobile en translation par rapport au fourreau, selon la direction d'enfournement. Une telle enfourneuse permet à un opérateur Homme et/ou machine d'adapter la position de l'organe d'acheminement dans le fourreau en fonction des conditions d'enfournement.
En effet et tel que décrit ci-dessus, la position de l'organe d'acheminement est corrélée à la valeur de la résistance offerte par la composition de matières vitrifiables et/ou le bouchon. Lorsque cet organe avance dans le fourreau, l'épaisseur du bouchon diminue, puisque son extrémité est introduite dans le four pour liquéfaction. En conséquence, la résistance diminue, permettant l'obtention d'une valeur de couple acceptable pour le moteur d'entraînement tout en limitant les sollicitations de l'organe d'acheminement, et les risques de détérioration. A l'inverse, lorsque l'organe d'acheminement recule, l'épaisseur du bouchon augmente, et les risques d'infiltration de gazs de combustion et/ou d'expulsion soudaine du bouchon dans la chambre de fusion diminuent. Une enfourneuse selon l'invention permet, via la translation du bloc mécanique par rapport au fourreau, de maintenir cette valeur de résistance, et donc la valeur correspondante du couple de l'unité motorisée d'entraînement, dans une plage intermédiaire de valeurs permettant d'une part de pallier les blocages du moteur d'entraînement et de limiter les risques de détérioration de ce dernier et/ou de l'organe d'acheminement, tout en évitant d'autre part la génération d'instabilités dans le procédé de fusion ou des retours de gazs.
Dans la pratique, le positionnement de l'organe d'acheminement dans le fourreau peut être réalisé :
• de manière préventive, au regard de la dureté et de la granulométrie de la composition introduite dans l'enfourneuse et des caractéristiques techniques de l'enfourneuse, et/ou
• au cours du fonctionnement de l'enfourneuse, suite à un blocage de l'organe d'acheminement, à une montée en couple excessive de l'unité motorisée d'entraînement, ou au constat de tout autre dysfonctionnement de l'enfourneuse.
Selon un mode de réalisation particulier, l'organe d'acheminement est une vis sans fin mobile en rotation autour de la direction d'enfournement. Selon un mode de réalisation alternatif, l'organe d'acheminement se présente sous la forme d'un piston mobile en translation selon la direction d'enfournement, ou de tout autre type d'organe d'acheminement connu de l'état de la technique.
Selon un mode de réalisation particulier, le fourreau est solidaire d'un châssis au regard duquel le bloc mécanique est mobile est translation.
La mise en œuvre d'un tel châssis permet un contrôle satisfaisant de la direction mise en translation du bloc mécanique, ainsi que l'assemblage et le positionnement, par rapport au reste du châssis, d'une éventuelle unité motorisée de mise en translation du bloc mécanique.
Selon un mode de réalisation particulier, le bloc mécanique est adapté pour être mis en translation manuellement.
Le positionnement de l'organe d'acheminement dans le fourreau peut ainsi être modifié par un opérateur spécialisé, notamment en cas de blocage de l'enfourneuse.
Selon un mode de réalisation particulier, l'enfourneuse comprend une unité motorisée de mise en translation du bloc mécanique. Un opérateur peut ainsi être tout ou en partie assisté pour le positionnement du bloc mécanique.
Selon un mode de réalisation particulier, le bloc mécanique est adapté pour être mis en translation à la fois manuellement et via une unité motorisée de mise en translation. Une telle combinaison de moyens de mise en translation permet à un opérateur de pallier les défauts potentiels de l'unité motorisée de mise en translation, par exemple pour réajuster avec précision la position du bloc mécanique, pour prendre le relais de l'unité motorisée en cas de panne de cette dernière, ou pour effectuer un travail requérant une puissance supérieure à la valeur de puissance maximale de l'unité motorisée de mise en translation.
Selon un mode de réalisation particulier, l'enfourneuse comprend un dispositif de mesure d'au moins une valeur d'une variable physique impactée par le fonctionnement de l'enfourneuse, ladite variable physique étant préférentiellement choisie parmi :
· le couple fourni par l'unité motorisée d'entraînement dudit organe d'acheminement,
• la température au sein du fourreau au niveau de son extrémité la plus en aval, c'est-à-dire la plus proche du four,
• la concentration en gaz issu de la combustion au sein du fourreau, par exemple en dioxyde de carbone et/ou en monoxyde de carbone.
La mesure de la température au sein du fourreau permet de détecter un éventuel retour de verre liquide et/ou un début de pyrolyse dans l'organe d'acheminement.
La mise en œuvre d'un dispositif de mesure selon cet aspect particulier de l'invention permet de surveiller en temps réel le bon fonctionnement de l'enfourneuse afin, si nécessaire, de modifier la position du bloc mécanique le long de l'axe d'enfournement.
Selon un mode de réalisation particulier, la mesure du couple est réalisée par l'intermédiaire d'une mesure de l'intensité électrique de ce même moteur, qui est proportionnelle au couple.
Selon un mode de réalisation particulier, ce dispositif de mesure est couplé à une interface Homme-machine adaptée pour communiquer à un opérateur la valeur mesurée de ladite variable physique. Ce dernier peut alors prendre la décision de modifier ou non la position le bloc mécanique par rapport au fourreau, de manière manuelle ou avec l'assistance d'une unité motorisée de mise en translation.
Selon un mode de réalisation particulier, la mise en translation du bloc mécanique est automatisée, ce qui offre la possibilité d'un asservissement automatique de la position de l'organe d'acheminement en fonction du couple, et donc d'une adaptation en continue de l'enfourneuse aux conditions d'enfournement, suivant un procédé de contrôle décrit dans le présent texte.
L'invention se rapporte également à une installation de fusion de matières vitrifiables comprenant :
· un four de fusion de matières vitrifiables équipé d'un orifice d'enfournement situé en flanc de cuve, préférentiellement en dessous du niveau théorique du verre liquide défini par la position du déversoir du verre liquide,
• une enfourneuse telle que décrite ci-dessus, une extrémité du fourreau de l'enfourneuse étant ouverte sur l'orifice d'enfournement.
Les avantages techniques conférés par une enfourneuse selon l'invention, tels qu'ils sont décrits dans le présent texte, se rapportent également à une installation de fusion de matières vitrifiables intégrant une telle enfourneuse.
Une extrémité du fourreau de l'enfourneuse est ouverte sur l'orifice d'enfournement, soit par contact direct ou via une pièce de raccord intermédiaire. Dans cette configuration, l'accès au four est libéré au moins de manière ponctuelle, afin de permettre l'introduction de la composition de matières vitrifiables dans le four.
L'invention s'applique tout particulièrement aux enfourneuses immergées, compte tenu des risques de retour de verre liquide dans le fourreau et de la pression exercée par ce dernier sur le bouchon, ces deux facteurs accroissant significativement la résistance opposée au travail de l'organe d'acheminement, et donc les risques de blocage et/ou de détérioration.
Selon un mode de réalisation particulier, l'installation comprend une tête d'enfournement tubulaire agencée en aval du fourreau et fixée sur le flanc extérieur de la cuve du four, au niveau de l'orifice d'enfournement, ladite tête d'enfournement étant équipée à son extrémité distale du four d'un registre à guillotine, dont la guillotine est mobile entre une position fermée, dans laquelle la guillotine obture l'accès à l'intérieur du four, et une position ouverte, dans laquelle cet accès est libéré. La mise en œuvre d'un tel registre à guillotine permet, lorsque ce dernier est en position fermée, de désolidariser l'enfourneuse du four, par exemple pour maintenance, sans risque de retour de verre liquide. A noter que la fonction translation du bloc mécanique est nécessaire pour pouvoir fermer le four, afin d'éviter que l'organe d'acheminement ne soit dans l'axe de la guillotine au moment de son déplacement en position fermée.
Selon un mode de réalisation particulier, ledit registre à guillotine est orienté à la verticale. Dans cette configuration, il est ainsi possible d'agencer une pluralité d'enfourneuses le long d'une même paroi du four.
Selon un mode de réalisation particulier, ladite tête d'enfournement présente une surface interne globalement conique qui s'élargit depuis l'extrémité distale vers l'extrémité proximale du four.
Par le concept de dépouille, il est ainsi plus aisé, en cas de création d'un bouchon, de pousser ce dernier dans le four.
L'invention concerne également l'utilisation d'une telle installation pour la fusion de matières vitrifiables.
L'invention concerne de plus un procédé de contrôle d'une enfourneuse telle que celle décrite ci-dessus, à partir d'au moins une valeur d'une variable physique impactée par le fonctionnement de l'enfourneuse, ladite variable physique étant préférentiellement choisie parmi :
• le couple fourni par l'unité motorisée d'entraînement dudit organe d'acheminement,
• l'intensité du moteur de ladite unité motorisée d'entraînement,
• la température au sein du fourreau au niveau de son extrémité la plus en amont, ledit procédé de contrôle comprenant au moins les étapes suivantes :
• comparer ladite valeur mesurée avec au moins une valeur seuil, et
• émettre une instruction de mise en translation du bloc mécanique,
• commander l'unité motorisée de mise en translation du bloc mécanique.
Cette valeur seuil peut se rapporter soit à une anomalie de fonctionnement de l'enfourneuse que l'on souhaiterait éviter (e.g. blocage, casse, température extrême) ou au contraire, à une valeur optimale de fonctionnement de celle-ci dont on souhaiterait se rapprocher. A noter que selon des modes de réalisation alternatifs, l'instruction de mise en translation du bloc mécanique est soit transmise à une interface Homme-Machine pour exécution subséquente par un opérateur, soit transmise directement à unité motorisée de mise en translation pour exécution automatique.
Dans le cas où ladite valeur de variable physique est le couple fourni par l'unité motorisée d'entraînement dudit organe d'acheminement, il a été observé que la valeur de ce couple tend à diminuer lorsque l'organe d'acheminement est avancé dans le fourreau en direction du four, et inversement. L'ordre de commande émis afin de réduire ce couple est donc de faire translater l'organe d'acheminement dans le sens d'enfournement. Inversement, l'ordre de commande émis afin d'augmenter ce couple est de faire translater l'organe dans le sens opposé.
Selon un mode de réalisation particulier, la variable physique mesurée est l'intensité, proportionnelle au couple, du moteur de l'unité motorisée d'entraînement en rotation d'une vis sans fin d'acheminement de la composition vers le four, et en ce que ladite valeur seuil est initialement comprise entre 10 et 50%, préférentiellement entre 10 et 30%, préférentiellement entre 12 et 20%, encore préférentiellement entre 14 et 16% de l'intensité maximale admissible par ledit moteur.
Dans cette plage de valeur, le couple disponible en valeur absolue permet éventuellement de résoudre un problème de blocage de l'organe d'acheminement de la composition dans le four.
Selon un mode de réalisation particulier, la valeur seuil d'intensité moteur est de 15% de l'intensité maximale admissible par l'unité motorisée d'entraînement. En fonction du dimensionnement du moteur, la valeur de couple correspondante est comprise entre 600 et 700 N/m.
Selon un mode de réalisation particulier, la commande en translation du bloc mécanique en aval du plan théorique de coupe de la guillotine est asservie à l'agencement de celle-ci en position ouverte.
Ceci permet d'éviter tout contact entre l'organe d'acheminement et la guillotine et par conséquent toute détérioration qui pourrait en résulter.
Selon un mode de réalisation particulier, la variable physique mesurée est la température au sein du fourreau au niveau de son extrémité la plus en amont, l'ordre de commande émis étant de translater l'organe d'acheminement vers l'arrière lorsque la température mesurée est égale ou supérieure à une valeur seuil de température.
L'invention concerne également un système de contrôle d'une enfourneuse telle que décrite ci-dessus, comprenant un module de traitement adapté pour :
• comparer au moins une valeur d'une variable physique impactée par le fonctionnement de l'enfourneuse avec au moins une valeur seuil,
• émettre une instruction de mise en translation du bloc mécanique.
L'invention concerne de plus un programme d'ordinateurs téléchargeable depuis un réseau de communication et/ou enregistré sur un support d'enregistrement adapté pour être lu par un ordinateur et/ou exécuté par un processeur, comprenant un code d'instructions pour mettre en œuvre un procédé de contrôle tel que décrit ci-dessus.
L'invention concerne également un support d'enregistrement informatique, sur lequel est enregistré un tel programme d'ordinateurs.
D'autres caractéristiques et avantages de l'invention sont décrits dans la suite du texte, au regard des dessins sur lesquels :
• La figure 1 est une vue schématique en coupe d'une installation de fusion de matières vitrifiables selon un mode de réalisation particulier de l'invention,
• La figure 2 est un schéma cinématique d'une enfourneuse selon un mode de réalisation particulier de l'invention ;
• La figure 3 est une représentation schématique d'un système de contrôle d'une enfourneuse selon un mode de réalisation particulier de l'invention ;
• La figure 4 est un diagramme de flux illustrant les étapes successives d'un procédé de contrôle d'une enfourneuse selon un mode de réalisation particulier de l'invention ;
Les numéros de référence qui sont identiques sur les différentes figures représentent des éléments similaires ou identiques.
Selon un mode de réalisation particulier et tel qu'illustré par la figure 1, l'invention se rapporte à une installation 10 de fusion de matières vitrifiables comprenant :
• un four 3 de fusion de matières vitrifiables équipé d'un orifice d'enfournement situé en flanc de cuve, et • une enfourneuse 1 selon l'invention, une extrémité du fourreau 4 de l'enfourneuse 1 étant ouverte sur l'orifice d'enfournement afin de pouvoir y introduire les matières vitrifiables.
Selon le mode de réalisation illustré par la figure 1, l'orifice d'enfournement est situé en dessous du niveau théorique du verre liquide défini par la position du déversoir du verre liquide. On parle alors d'enfourneuse de type immergée, à laquelle l'invention s'applique tout particulièrement, compte tenu des risques de retour de verre liquide dans le fourreau 4 et de la pression exercée par ce dernier sur le bouchon, ces deux facteurs accroissant significativement la résistance opposée au travail de l'organe d'acheminement 6, et donc les risques de blocage et/ou de détérioration.
Selon un mode de réalisation alternatif, l'enfournement peut cependant être réalisé au-dessus du niveau théorique de verre liquide, le long d'un piédroit et/ou pignon du four 3.
L'invention se rapporte également à une enfourneuse 1 comprenant :
· un fourreau 4 définissant une direction d'enfournement X dans le four 3 d'une composition 2 de matières vitrifiables, et
• un bloc mécanique 5 équipé :
o d'un organe d'acheminement 6 de la composition 2 vers le four 3 selon la direction d'enfournement X, cet organe d'acheminement 6 étant au moins en partie agencé dans le fourreau 4, et
o d'une unité motorisée d'entraînement 7 dudit organe d'acheminement 6.
En particulier, le bloc mécanique 5 est mobile en translation par rapport au fourreau 4, selon la direction d'enfournement X.
Une enfourneuse 1 selon l'invention permet, via la translation du bloc mécanique 5 par rapport au fourreau 4, de maintenir cette valeur de résistance, et donc la valeur correspondante du couple de l'unité motorisée d'entraînement 7, dans une plage intermédiaire de valeurs permettant d'une part de pallier les blocages du moteur d'entraînement et de limiter les risques de détérioration de ce dernier et/ou de l'organe d'acheminement 7, tout en évitant d'autre part la génération d'instabilités dans le procédé de fusion et les retours de gazs.
Selon les modes de réalisation particuliers illustrés par les figures 1 et 2, l'enfourneuse 1 comprend un fourreau 4 au sein duquel est logée une vis sans fin 6 mobile en rotation autour de l'axe d'enfournement X. Cette vis sans fin 6 joue donc le rôle d'organe d'acheminement de la composition 2 vers le four 3. A noter que selon un mode de réalisation alternatif, l'organe d'acheminement 6 peut se présenter sous la forme d'un piston mobile en translation selon la direction d'enfournement X, ou de tout autre type d'organe d'acheminement connu de l'état de la technique. Quelle que soit la nature de l'organe d'acheminement 6, ce dernier est entraîné en rotation/translation par une unité motorisée 7 comprenant un ou plusieurs moteurs. L'ensemble formé par cet organe d'acheminement 6 et l'unité motorisée d'entraînement 7 forme un bloc mécanique 5. Une trémie sur le fourreau 4 permet l'introduction de la composition 2 de matières premières.
Selon un mode de réalisation particulier (non représenté), la tête de l'enfourneuse comporte par ailleurs un registre à guillotine et une pièce de raccord tubulaire au four. Le registre à guillotine comprend une partie fixe et une partie mobile, appelée guillotine. Sur la partie fixe du registre est fixée une pièce de raccord tubulaire dont la surface interne s'élargit légèrement en direction du four dont seul le flanc de cuve est représenté. La pièce de raccord tubulaire est insérée dans l'orifice d'enfournement. La pièce de raccord et la guillotine du registre sont parcourues chacune par un système de conduites internes permettant la circulation d'un liquide de refroidissement. Lorsque la guillotine est en position fermée, elle obture l'accès à l'intérieur du four.
Tel qu'illustré par la Figure 1, le fourreau 4 de l'enfourneuse 1 est solidaire d'un châssis 8 au regard duquel le bloc mécanique 5 est mobile est translation. Plus précisément, et tel qu'illustré par le schéma cinématique de la figure 2, le bloc mécanique 5 est fixé sur une plaque horizontale (non représentée) qui coulisse elle-même selon la direction d'enfournement X, le long de rails latéraux 14 solidaires du châssis 8. La translation du bloc mécanique 5 par rapport au châssis est réalisée au moyen d'une vis d'assemblage 15 II est bien entendu que selon des modes de réalisations alternatifs, la mobilité en translation du bloc mécanique 5 par rapport au fourreau 4 peut être mise en œuvre via tout agencement et/ou type de liaison mécanique connu de l'état de la technique, sans sortir pour autant du champ de l'invention.
Selon le mode de réalisation particulier de l'invention (non illustré), la translation du bloc mécanique 5 est commandée manuellement, au moyen d'un volant permettant la mise en rotation de la vis d'assemblage 15. Selon des modes de réalisation alternatifs, une telle mise en translation peut être commandée au moyen d'une manivelle ou de tout dispositif mécanique connu ayant une fonction analogue.
Selon un mode de réalisation alternatif illustré par la figure 1, la translation est commandée au moyen d'une unité motorisée de mise en translation 9. Un opérateur peut ainsi être tout ou en partie assisté pour le positionnement du bloc mécanique 5.
Afin de guider la prise de décisions quant à la translation du bloc mécanique 5 dans le fourreau 4, l'enfourneuse 1 est équipée d'une pluralité de capteurs dont :
• un capteur du couple fourni par l'unité motorisée d'entraînement 7,
• un capteur de température positionné au sein du fourreau 4 au niveau de son extrémité destinée à être positionnée à proximité du_ four, qui permet de détecter un éventuel retour de verre liquide et/ou un début de pyrolyse dans la vis sans fin 6,
• un dispositif de mesure de la concentration en dioxyde de carbone et/ou en monoxyde de carbone issu de la combustion, au sein du fourreau 4,
Selon un mode de réalisation particulier, les différents capteurs sont couplés à une interface Homme-machine (non représentée) adaptée pour communiquer les valeurs mesurées à un opérateur. Ce dernier peut alors prendre la décision de modifier ou non la position le bloc mécanique 5 par rapport au fourreau 4, de manière manuelle ou avec l'assistance d'une unité motorisée de mise en translation 9.
Selon un mode de réalisation alternatif représenté par la figure 1, la mise en translation du bloc mécanique 5 est automatisée, via un système de contrôle 20 décrit dans le présent texte, ce qui offre la possibilité d'un asservissement automatique de la position de la vis 6 en fonction du couple mesuré, et donc d'une adaptation en continue de l'enfourneuse 1 aux conditions d'enfournement, suivant un procédé de contrôle décrit dans le présent texte.
Ainsi, l'invention se rapporte également à un système 20 de contrôle d'une enfourneuse 1 telle que celle décrite dans le présent texte. Tel qu'illustré par la figure 3, un tel système 20 de contrôle comprend un processeur 21 ayant fonction de module de traitement, une unité de stockage 22, une unité d'interface 23 et des capteurs de mesure 24, ces éléments étant interconnectés par un bus 25 informatique.
Le processeur 21 commande l'unité motorisée 9 de mise en translation du bloc mécanique 5. L'unité de stockage 22 stocke au moins un programme à exécuter par le processeur 21, et diverses données, y compris les données recueillies par les capteurs de mesure 24, les paramètres utilisés par des calculs réalisés par le processeur 21, ou les données intermédiaires des calculs effectués par le processeur 21. Le processeur 21 peut être formé par tout matériel ou logiciel connu ou approprié, ou par une combinaison de matériel et de logiciel. L'unité de stockage 22 peut être formée par tout stockage approprié ou moyen adapté pour stocker le programme et les données de manière lisible par ordinateur. Le programme fait que le processeur 21 met en œuvre un procédé de contrôle tel que celui décrit dans le présent texte.
L'unité d'interface 23 fournit une interface entre le système de contrôle 20 et un appareil externe. L'unité d'interface 23 peut notamment être en communication avec l'appareil externe via un câble ou une communication sans fil. Dans ce mode de réalisation, l'appareil externe peut être l'unité motorisée 9 de mise en translation du bloc mécanique 5 et/ou une autre composante de l'enfourneuse 1. Dans ce cas, des valeurs mesurées par les capteurs 24 peuvent être entrées dans le système 20 à travers l'unité d'interface 23, puis stockées dans l'unité de stockage 22.
Bien qu'un seul processeur 21 soit représenté sur la figure 3, une personne qualifiée comprendra qu'un tel processeur peut comprendre différents modules et unités mettant en œuvre les fonctions exécutées par le système de contrôle 20. Ces fonctions peuvent également être réalisées par une pluralité de processeurs 21 interconnectés.
La figure 4 est un diagramme de flux illustrant les étapes successives d'un procédé de contrôle d'une enfourneuse 1 selon un mode de réalisation particulier.
Au cours d'une première étape (étape SI), les grandeurs suivantes sont comparées :
• la valeur de l'intensité du moteur de l'unité motorisée d'entraînement 7 en rotation de la vis sans fin 6, proportionnelle au couple de ce même moteur, est comparée à une valeur seuil fixée à 15% de l'intensité maximale admissible par ce moteur, ce qui correspond en l'espèce à une valeur optimale de fonctionnement dont on souhaiterait se rapprocher, avec une marge de déviation de 5%,
• la température mesurée au sein du fourreau 4, au niveau de son extrémité la plus en amont, est comparée à une valeur seuil de température fixée à 50°C, ce qui correspond en l'espèce à une température extrême que l'on souhaiterait éviter. Une priorité est donnée dans le procédé de contrôle sur le maintien de cette température à l'extrémité du fourreau 4 en dessous de la valeur seuil de 50°C. En pratique, si la valeur d'intensité moteur mesurée (étape SI) est supérieure à 20% de l'intensité maximale admissible, pour une température inférieure à 50°C, ordre est donné (étape S2) par le processeur 21 d'avancer (étape S3) le bloc mécanique 5 de 1 cm en direction du four 3. L'unité motorisée de mise en translation 9 du bloc mécanique 5 est alors commandée (étape S3) selon cette instruction.
A l'inverse, si la valeur d'intensité moteur mesurée (étape SI) est inférieure à 10% de l'intensité maximale admissible, pour une température inférieure à 50°C, ordre est donné (étape S2) de reculer (étape S3) le bloc mécanique 5 de 1 cm.
En revanche, si la température mesurée (étape SI) est supérieure ou égale à 50°C, interdiction est faite (étape S2) d'avancer (étape S3) le bloc mécanique 5, peu importe la valeur d'intensité moteur mesurée (étape SI). Les seules commandes autorisées sont alors le maintien en position du bloc mécanique 5 et son recul.
De même, la commande en translation du bloc mécanique 5 en aval du plan théorique de coupe de la guillotine est asservie à l'agencement de celle-ci en position ouverte, afin d'éviter tout contact entre la vis sans fin 6 et la guillotine et par conséquent toute détérioration qui pourrait en résulter.
Ce procédé de contrôle est réitéré à une fréquence de 10 minutes.
A noter que selon des modes de réalisation alternatifs, ce procédé de contrôle peut être mis en œuvre sur la base de différents types de mesures, de différentes valeurs seuils, et/ou à des fréquences d'itération différentes.

Claims

REVENDICATIONS
1. Enfourneuse (1) pour l'enfournement d'une composition (2) de matières vitrifiables dans un four (3) verrier, ladite enfourneuse (1) comprenant :
· un fourreau (4) définissant une direction d'enfournement (X) de la composition (2) dans le four (3), et
• un bloc mécanique (5) équipé :
o d'un organe d'acheminement (6) de la composition (2) vers le four (3) selon la direction d'enfournement (X), cet organe d'acheminement (6) étant au moins en partie agencé dans le fourreau (4), et
o d'une unité motorisée d'entraînement (7) dudit organe d'acheminement (6), ladite enfourneuse (1) étant caractérisée en ce que le bloc mécanique (5) est mobile en translation par rapport au fourreau (4), selon la direction d'enfournement (X).
2. Enfourneuse selon la revendication 1, caractérisée en ce que le fourreau (4) est solidaire d'un châssis (8) au regard duquel le bloc mécanique (5) est mobile est translation.
3. Enfourneuse selon l'une des revendications précédentes, caractérisée en ce que le bloc mécanique (5) est adapté pour être mis en translation manuellement.
4. Enfourneuse selon l'une des revendications précédentes, caractérisée en ce qu'elle comprend une unité motorisée de mise en translation (9) du bloc mécanique (5).
5. Enfourneuse selon l'une des revendications précédentes, caractérisée en ce qu'elle comprend un dispositif de mesure d'au moins une valeur d'une variable physique impactée par le fonctionnement de l'enfourneuse (1), ladite variable physique étant préférentiellement choisie parmi :
• le couple fourni par l'unité motorisée d'entraînement (7) dudit organe d'acheminement (6),
• l'intensité électrique du moteur de ladite unité motorisée d'entraînement (7),
• la température au sein du fourreau (4) au niveau de son extrémité la plus en aval, • la concentration en gaz issu de la combustion au sein du fourreau (4), par exemple en dioxyde de carbone et/ou en monoxyde de carbone.
6. Installation (10) de fusion de matières vitrifiables comprenant :
• un four (3) de fusion de matières vitrifiables équipé d'un orifice d'enfournement situé en flanc de cuve, préférentiellement en dessous du niveau théorique du verre liquide défini par la position du déversoir du verre liquide,
• une enfourneuse (1) selon l'une des revendications précédentes, une extrémité du fourreau (4) de l'enfourneuse (1) étant ouverte sur l'orifice d'enfournement.
7. Installation (10) selon la revendication 6, caractérisée en ce qu'elle comprend une tête d'enfournement (11) tubulaire agencée en aval du fourreau (4) et fixée sur le flanc extérieur de la cuve du four (3), au niveau de l'orifice d'enfournement, ladite tête d'enfournement (11) étant équipée à son extrémité distale du four (3) d'un registre à guillotine, dont la guillotine est mobile entre une position fermée, dans laquelle la guillotine obture l'accès à l'intérieur du four (3), et une position ouverte, dans laquelle cet accès est libéré.
8. Utilisation d'une installation (10) selon l'une des revendications 6 et 7 pour la fusion de matières vitrifiables.
9. Procédé de contrôle d'une enfourneuse (1) selon l'une des revendications 1 à 5, à partir d'au moins une valeur d'une variable physique impactée par le fonctionnement de l'enfourneuse (1), ladite variable physique étant préférentiellement choisie parmi :
• le couple fourni par l'unité motorisée d'entraînement (7) dudit organe d'acheminement (6),
• l'intensité du moteur de ladite unité motorisée d'entraînement (7),
• la température au sein du fourreau (4) au niveau de son extrémité la plus en amont,
ledit procédé de contrôle comprenant au moins les étapes suivantes :
• comparer (SI) ladite valeur mesurée avec au moins une valeur seuil, et
• émettre (S2) une instruction de mise en translation du bloc mécanique (5), • commander (S3) l'unité motorisée de mise en translation (9) du bloc mécanique (5).
10. Procédé de contrôle selon la revendication 9, caractérisé en ce que la variable physique mesurée est l'intensité du moteur de l'unité motorisée d'entraînement (7) en rotation d'une vis sans fin (6) d'acheminement de la composition (2) vers le four (3), et en ce que ladite valeur seuil est initialement comprise entre 10 et 50%, préférentiellement entre 10 et 30%, préférentiellement entre 12 et 20%, encore préférentiellement entre 14 et 16% de l'intensité maximale admissible par ledit moteur.
11. Procédé de contrôle selon l'une des revendications 9 à 10, mis en œuvre au sein d'une installation (10) selon la revendication 7, caractérisé en ce que la commande en translation du bloc mécanique (5) en aval du plan théorique de coupe de la guillotine est asservie à l'agencement de celle-ci en position ouverte.
12. Procédé de contrôle selon l'une des revendications 9 à 11, caractérisé en ce que la variable physique mesurée est la température au sein du fourreau (4) au niveau de son extrémité la plus en aval, l'ordre de commande émis étant de translater l'organe d'acheminement (6) vers l'arrière lorsque la température mesurée est égale ou supérieure à une valeur seuil de température.
13. Système (20) de contrôle d'une enfourneuse (1) selon l'une des revendications 1 à 5, comprenant un module de traitement (21) adapté pour :
• comparer (SI) au moins une valeur d'une variable physique impactée par le fonctionnement de l'enfourneuse (1) avec au moins une valeur seuil,
• émettre (S2) une instruction de mise en translation du bloc mécanique (5).
14. Programme d'ordinateurs téléchargeable depuis un réseau de communication et/ou enregistré sur un support d'enregistrement adapté pour être lu par un ordinateur et/ou exécuté par un processeur, comprenant un code d'instructions pour mettre en œuvre un procédé de contrôle selon l'une des revendications 9 à 12.
15. Support d'enregistrement informatique, sur lequel est enregistré un programme d'ordinateurs selon la revendication 14.
EP18827200.9A 2017-11-30 2018-11-29 Enfourneuse mobile en translation Pending EP3732138A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1761399A FR3074165B1 (fr) 2017-11-30 2017-11-30 Enfourneuse mobile en translation
PCT/FR2018/053038 WO2019106301A1 (fr) 2017-11-30 2018-11-29 Enfourneuse mobile en translation

Publications (1)

Publication Number Publication Date
EP3732138A1 true EP3732138A1 (fr) 2020-11-04

Family

ID=62017352

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18827200.9A Pending EP3732138A1 (fr) 2017-11-30 2018-11-29 Enfourneuse mobile en translation

Country Status (9)

Country Link
US (1) US11787722B2 (fr)
EP (1) EP3732138A1 (fr)
JP (1) JP7152485B2 (fr)
AR (1) AR113580A1 (fr)
AU (1) AU2018376727B2 (fr)
BR (1) BR112020010102A2 (fr)
CA (1) CA3082490A1 (fr)
FR (1) FR3074165B1 (fr)
WO (1) WO2019106301A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11358895B2 (en) * 2018-11-15 2022-06-14 Owens-Brockway Glass Container Inc. Batch charger for a melting chamber
CN112964067A (zh) * 2021-02-23 2021-06-15 内蒙古工业大学 一种冶金炉加料设备
CN114349308B (zh) * 2021-12-31 2023-12-12 河南旭阳光电科技有限公司 一种浮法超薄玻璃投料装置及方法

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191310207A (en) * 1913-04-30 1914-03-26 Augustin Emilio Bourcoud An Improvement in or relating to Screw or Worm Conveyors, with Special Reference to the Charging of Rotary Reduction Furnaces.
US2910200A (en) * 1956-12-10 1959-10-27 Owens Illinois Glass Co Method for blanket charging glass batch in a glass furnace
US3200971A (en) * 1961-08-01 1965-08-17 Owens Corning Fiberglass Corp Apparatus and method for controlling liquid level
US3573017A (en) * 1968-11-04 1971-03-30 Owens Corning Fiberglass Corp Method and apparatus for melting and supplying heat-softenable materials in a process
BE786412A (fr) * 1971-07-19 1973-01-18 Johns Manville Procede et appareil pour l'introduction et le reglage d'un fluxde matieres premieres dans un four
US3779731A (en) * 1972-02-07 1973-12-18 Ppg Industries Inc Controlled glass manufacturing process
US3856496A (en) * 1973-01-26 1974-12-24 Leone Int Sales Corp Glass melting furnace and process
US4028083A (en) * 1974-08-19 1977-06-07 Johns-Manville Corporation Method and apparatus for controlling temperature within a furnace
US3954433A (en) * 1974-08-22 1976-05-04 Owens-Corning Fiberglas Corporation Method of and apparatus for coordinating the application of heat to a melt from sources above and below the melt surface
US4194077A (en) * 1977-12-27 1980-03-18 Owens-Corning Fiberglas Corporation Batch sensor for glass-melting furnaces
US4492587A (en) * 1979-01-22 1985-01-08 Union Carbide Corporation Method of fusing vanadium pentoxide powder
US4302623A (en) * 1979-11-19 1981-11-24 Owens-Corning Fiberglass Corporation Ultrasonic batch sensing apparatus for glass-melting furnaces
US4312658A (en) * 1980-12-15 1982-01-26 Owens-Corning Fiberglas Corporation Method of and apparatus for controlling batch thickness and glass level in a glass furnace
SU1377246A1 (ru) * 1985-12-26 1988-02-28 Институт газа АН УССР Шнековый питатель
IT214358Z2 (it) * 1988-03-23 1990-05-03 Siv Soc Italiana Vetro Apparecchiatura per l'alimentazione di miscela vetrificabile in un forno per la fabbricazione di vetro
US5218617A (en) * 1990-06-01 1993-06-08 Hylsa S.A. De C.V. Apparatus for feeding iron-bearing materials to metallurgical furnaces
US5134627A (en) * 1991-02-15 1992-07-28 Frazier-Simplex, Inc. Batch charger for glass furnace
US5123942A (en) * 1991-03-21 1992-06-23 Frazier-Simplex, Inc. System for charging batch/cullet in a glass furnace
US5869810A (en) * 1995-05-23 1999-02-09 Victor Reynolds Impedance-heated furnace
US6349570B1 (en) * 1999-04-14 2002-02-26 Merkle Engineers, Inc. In-barrel wetting screw charger
US6712576B2 (en) 2001-09-18 2004-03-30 Ottawa Fibre Inc Batch charger for cold top electric furnace
JP2005179126A (ja) 2003-12-19 2005-07-07 Asahi Fiber Glass Co Ltd スクリューフィーダ先端部の冷却方法および装置
US7926301B2 (en) * 2007-08-16 2011-04-19 Corning Incorporated Method and apparatus for controlling the level of a molten material in a glass manufacturing system
KR101423369B1 (ko) 2009-06-18 2014-07-24 아사히 가라스 가부시키가이샤 원료 공급 방법 및 원료 공급 장치, 및 유리판의 제조 장치 및 제조 방법
JP5695348B2 (ja) 2009-09-14 2015-04-01 高砂工業株式会社 ロータリーキルン
DE102010035893B3 (de) 2010-08-31 2012-01-19 Beteiligungen Sorg Gmbh & Co. Kg Beschickungsvorrichtung für Glasschmelzanlagen und Verfahren zum Einlegen von partikelförmigem Beschickungsgut
FR2987617B1 (fr) 2012-03-05 2017-03-24 Saint Gobain Isover Enfourneuse avec tete amovible pour enfournement immerge
CN103420560B (zh) 2012-05-23 2015-05-13 台嘉玻璃纤维有限公司 一种玻璃纤维生产用溶解炉进料机设备
JP2014105122A (ja) 2012-11-27 2014-06-09 Avanstrate Inc ガラス基板の製造方法
US9446978B2 (en) * 2014-02-14 2016-09-20 Charles Douglas Spitler System and method for continuous strand fiberglass media processing
US10106452B2 (en) * 2014-02-14 2018-10-23 Superior Fibers, Llc System and method of continuous glass filament manufacture
US9822027B2 (en) * 2014-04-25 2017-11-21 Owens-Brockway Glass Container Inc. Glass furnace with bottom material feed
GB2527830A (en) * 2014-07-03 2016-01-06 Dps Bristol Holdings Ltd Waste processing apparatus
DE102014010914A1 (de) * 2014-07-28 2016-01-28 Beteiligungen Sorg Gmbh & Co. Kg Verfahren zur Beschickung einer Glasschmelzanlage mit aus Scherben und Rohstoffgemenge bestehenden Schüttgütern und Vorrichtung zur Durchführung des Verfahrens
GB201501312D0 (en) 2015-01-27 2015-03-11 Knauf Insulation And Knauf Insulation Llc And Knauf Insulation Gmbh And Knauf Insulation Doo Skofja Melter feeding system
CA3005929C (fr) * 2015-12-03 2024-03-19 Rockwool International A/S Procede et appareil d'alimentation en matiere minerale particulaire prechauffee destinee a la fabrication d'une masse minerale fondue
CN109562972A (zh) * 2016-08-02 2019-04-02 康宁股份有限公司 用于熔化反应性玻璃和玻璃陶瓷的方法和用于其的熔化设备
US11358895B2 (en) * 2018-11-15 2022-06-14 Owens-Brockway Glass Container Inc. Batch charger for a melting chamber

Also Published As

Publication number Publication date
KR20200089724A (ko) 2020-07-27
BR112020010102A2 (pt) 2020-11-03
FR3074165A1 (fr) 2019-05-31
JP7152485B2 (ja) 2022-10-12
US11787722B2 (en) 2023-10-17
US20200290912A1 (en) 2020-09-17
CA3082490A1 (fr) 2019-06-06
JP2021504275A (ja) 2021-02-15
AU2018376727B2 (en) 2023-10-26
RU2020120042A3 (fr) 2021-12-30
AU2018376727A1 (en) 2020-06-18
RU2020120042A (ru) 2021-12-30
WO2019106301A1 (fr) 2019-06-06
AR113580A1 (es) 2020-05-20
FR3074165B1 (fr) 2020-12-11

Similar Documents

Publication Publication Date Title
EP3732138A1 (fr) Enfourneuse mobile en translation
CA2865529C (fr) Enfourneuse avec tete amovible pour enfournement immerge
EP2443407B1 (fr) Procede de regulation d'un four de cuisson d'anodes et four adapte a sa mise en oeuvre
EP0032206A1 (fr) Procédé d'injection de quantités dosées de matières pulvérulentes par voie pneumatique dans une enceinte se trouvant sous pression variable
LU84520A1 (fr) Dispositif de refroidissement d'une installation de chargement d'un four a cuve
WO2019106303A1 (fr) Injection de fluide dans une enfourneuse
FR2715327A1 (fr) Système d'injection de boues à incinérer dans un four d'incinération, procédé de fonctionnement, utilisation et four correspondants.
RU2774287C2 (ru) Поступательно перемещаемый загрузчик шихты
WO2017042598A2 (fr) Réacteur de pyrolyse flash
EP1178018A1 (fr) Procédé et dispositif de fabrication d'une preforme de fibre optique
EP3782797B1 (fr) Dispositif d'impression 3d muni d'une vis sans fin entrainée par un moteur et de moyens de refroidissement du moteur
EP3800397B1 (fr) Systeme de gazéification et/ou de combustion équipant une installation de gazéification et/ou de combustion
KR102675298B1 (ko) 병진운동적으로 이동 가능한 장입기
FR2959499A1 (fr) Dispositif de manoeuvre d'un sas a clapets resistant a la chaleur
WO2012168671A1 (fr) Ensemble et méthode de fabrication d'une gaine tubulaire
EP0565420A1 (fr) Procédé de vitrification de déchets et dispositif de mise en oeuvre
EP0308346A1 (fr) Procédé et installation pour l'utilisation d'un combustible pétrolier de haute viscosité
EP3370877B1 (fr) Broyeur pendulaire perfectionné
EP0310509B1 (fr) Procédé de transformation d'un four rotatif destiné en particulier à la fabrication du ciment
WO2022223289A1 (fr) Dispositif de traitement d'un produit
FR3123713A1 (fr) Dispositif d’alimentation d’un récipient pour installation de traitement thermique de déchets
EP0491615A1 (fr) Procédé de vitrification de déchets et dispositif de mise en oeuvre

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200630

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230102