EP3728656B1 - Procédé destiné à produire des composants métalliques à propriétés de composants adaptées - Google Patents

Procédé destiné à produire des composants métalliques à propriétés de composants adaptées Download PDF

Info

Publication number
EP3728656B1
EP3728656B1 EP18836369.1A EP18836369A EP3728656B1 EP 3728656 B1 EP3728656 B1 EP 3728656B1 EP 18836369 A EP18836369 A EP 18836369A EP 3728656 B1 EP3728656 B1 EP 3728656B1
Authority
EP
European Patent Office
Prior art keywords
steel
dual
press
phase
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18836369.1A
Other languages
German (de)
English (en)
Other versions
EP3728656A1 (fr
Inventor
Thomas Kurz
Andreas Pichler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Stahl GmbH
Original Assignee
Voestalpine Stahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine Stahl GmbH filed Critical Voestalpine Stahl GmbH
Publication of EP3728656A1 publication Critical patent/EP3728656A1/fr
Application granted granted Critical
Publication of EP3728656B1 publication Critical patent/EP3728656B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/185Hardening; Quenching with or without subsequent tempering from an intercritical temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention relates to a method for producing metallic components with adapted properties according to the preamble of claim 1.
  • the invention relates to a method for producing steel sheets and steel components therefrom, the sheets being composed of sheet metal pieces with different properties and in particular welded together.
  • TWB Tailored Welded Blanks
  • Tailored welded blanks of this type play a major role in the manufacture of motor vehicle bodies in particular.
  • CnB steels very highly hardenable steels
  • press hardening the blank made of highly hardenable steel is heated to a temperature above the austenitization temperature and austenitized as completely as possible.
  • This blank which is in the austenitic state, is then transferred to a forming tool and both formed with one or more press strokes or press strokes and hardened by the large amount of heat dissipated from the blank into the forming tool.
  • This method is also known as the direct method.
  • a modern vehicle body thus consists of a number of load-conducting, high-strength components as well as soft, deformable elements for energy absorption.
  • Tailored Welded Blanks make it possible to integrate both properties, i.e. the load conduction and the deformation capacity, in a single component, which enables improved possibilities for energy absorption in the event of a crash and even more improved occupant protection in motor vehicles. Accordingly, these tailored welded blanks consist of hardenable areas made of the CMnB steels already mentioned and welded areas made of a softer partner material.
  • Such tailored welded blanks can also be processed with the two hardening processes mentioned. Accordingly, a high-strength, martensitic hardened structure is created during the press hardening process or during the form hardening process, ie during the direct or indirect process in the hardenable area.
  • the softer partner material takes part equally in the press-hardening process, but the different alloy layers result in significantly lower strength values with higher elongation values, which enables a high degree of energy absorption.
  • monolithic, soft and ductile components can also be manufactured, which are later connected to hard components in the body in a joining process.
  • steels are usually used as the soft partner material, which have a structure of ferrite and pearlite after the press-hardening process.
  • Such tailored welded blanks are already well known from the prior art.
  • a large number of materials are already well known as soft partner materials.
  • the object of the invention is to create a method in which tailored welded blanks, for example, can be created in a simple and cost-effective manner, in which the softer partner achieves stable mechanical characteristics regardless of the cooling situation.
  • a further object is to create a material that is suitable as a soft partner material in particular for tailor-welded blanks and that ensures stable mechanical characteristics regardless of the cooling situation and the cooling process.
  • a further task is to create a welded blank with a softer partner material and a highly hardenable boron-manganese steel and which ensures stable mechanical parameters regardless of the cooling situation and independent of the cooling process.
  • the softer partner material is formed from a steel with a dual-phase structure (DP steel).
  • the dual-phase structure according to the invention consists of a ferritic matrix with embedded martensite inclusions. Due to the enormous hardening capacity with the same strength, this allows a significantly better formability in terms of elongation at break and thus higher energy absorption than ferritic-pearlitic structures, as are known in the prior art. Therefore, the steels with a dual-phase structure according to the invention are very well suited as a soft partner material.
  • Known dual-phase steels are, for example, from EP 2 896 715 B1 known, in which a dual-phase steel with titanium precipitation hardening is described.
  • a press-hardened steel with a dual-phase structure is known.
  • a press-hardened steel with a structure of ferrite and bainite and martensite is known.
  • a structure can form which consists of a tempered martensitic matrix with little ferrite, which has only low elongations at high strengths. Only with lower cooling rates in the press are stable mechanical parameters set in the press, independent of the insertion temperature.
  • the material in order to ensure a sufficient amount of ferrite and thus a ferritic matrix in the structure, the material is annealed in the furnace in such a way that ferrite is also present in addition to austenite.
  • intercritical annealing takes place in the furnace.
  • Intercritical annealing means that the material is annealed between its Ac1 and Ac3 temperatures.
  • the amount of ferrite required to form a ferritic matrix is achieved during cooling between the furnace and press, in addition to the formation of ferrite nuclei with subsequent ferrite growth, as well as the steady growth of the ferrite present from the intercritical annealing.
  • the Ac3 temperature for the soft partner material must be kept high so that intercritical annealing is possible at all.
  • the Ac3 value is increased by aluminum.
  • the dual-phase steel is therefore formed with an increased aluminum content. This prevents a fully austenitic annealing condition due to the alloy.
  • the annealing temperature is set at > 800°C due to the CMnB partner steel, so that this annealing value must be taken as given for the intercritical annealing.
  • CMnB steels The Ac3 temperature of CMnB steels is usually around 840 °C.
  • concept of the invention is based on a C-Si-Mn-Cr-Al-Nb/Ti alloy concept.
  • the carbon contained serves to adjust the level of strength, with a higher carbon content lowering the Ac3 value, increasing strength and also increasing the yield point.
  • the elongation decreases, the formation of ferrite, pearlite and bainite is delayed and the amount of martensite in the microstructure increases.
  • the task of manganese is to adjust the level of strength. More manganese lowers the Ac3 value and increases strength and yield strength. With a higher manganese content, the elongation decreases and the formation of ferrite, pearlite and bainite is retarded and the amount of martensite in the structure increases.
  • silicon increases the level of strength, increases the Ac3 value and delays the formation of pearlite and bainite.
  • Typical values of Ae1 temperatures and Ae3 temperatures for DP steels according to the invention and alloys not according to the invention are listed in Table 1. These calculated values essentially correspond to the Ac1 temperatures and Ac3 temperatures.
  • an Ae1 temperature or an Ae3 temperature that is too low is caused by the alloy composition selected in each case achieved and/or the desired mechanical characteristics (e.g. due to insufficient silicon content) not being achieved.
  • Chromium mainly retards pearlite and bainite formation and ensures martensite formation, so chromium has a great influence on ensuring the dual-phase character.
  • the sheet steel component is produced by cold forming a blank from at least one area made of a highly hardenable carbon-manganese-boron steel and at least one dual-phase steel, then heating it and quenching it in a cooling press, or a blank from at least one area made of a highly hardenable carbon-manganese-boron steel and at least one area made of a dual-phase steel is heated to a temperature above the austenitization temperature of the highly hardenable steel material and then in a forming and cooling press with one stroke or several strokes to the Sheet steel component is formed, with a dual-phase steel being used as a softer material and as a partner for the highly hardenable carbon-manganese-boron steel, the Ac3 value of which is raised to such an extent that it can austenitize the carbon-manganese-boron at the required annealing temperatures -steel only to a partial austenitization of the dual-phase steel, so that when it is placed
  • the annealing temperatures are advantageously >800° C., preferably >840° C., in particular >870° C., but less than Ac3 of the dual-phase steel.
  • the holding time in the oven is between 0 and 600 seconds, preferably 5 and 300 seconds.
  • the Ac3 value of the dual-phase steel is so high that the degree of austenitization that occurs with the holding time and the temperature is between 50% by volume and 90% by volume.
  • the cooling rate when transferring the formed component or blank from the furnace into the cooling and/or forming press is between 5 Kelvin/sec and 500 Kelvin/sec, particularly preferably between 5 Kelvin/sec and 100 Kelvin/sec 10 Kelvin/sec and 70 Kelvin/sec.
  • the insertion temperature in the press is between 450 and 850°C, preferably between 450 and 750°C.
  • the insertion temperature is set to 700 to 850° C. during the hardening process.
  • the insertion temperature during the press hardening process is set to 400 to 650°C, preferably 440 to 600°C and particularly preferably to 450 to 520°C.
  • the cooling rate in the press is advantageously ⁇ 10 Kelvin/sec.
  • the annealing temperature is set in such a way that the dual-phase steel is annealed intercritically, ie between its Ac1 and Ac3 temperatures.
  • the remainder is iron and unavoidable impurities from the smelting process.
  • the material has a degree of austenitization of 50 to 90% at an annealing temperature of 800 to 950° C. and a furnace holding time of up to 300 seconds and after quench hardening has an existing dual phase structure with ferritic matrix and 5 to 20% martensite and optionally some bainite.
  • the method according to the invention provides, as a tailored welded blank (TWB), at least one usually flat sheet metal part made of a highly hardenable steel material, such as a boron-manganese steel and in particular a steel from the family of 22MnB5 or 20MnB8 and the same steels with at least one usually to combine a flat sheet metal part made of a dual-phase steel.
  • a tailored welded blank TWB
  • a highly hardenable steel material such as a boron-manganese steel and in particular a steel from the family of 22MnB5 or 20MnB8 and the same steels with at least one usually to combine a flat sheet metal part made of a dual-phase steel.
  • Such a combined tailored welded blank can then subsequently be sufficiently heated and then formed, or formed, then heated and quenched, in a direct or indirect process.
  • a dual-phase steel which has a comparatively high aluminum content. According to the invention, it was found that aluminum lowers the sensitivity of the mechanical characteristics to the insertion temperature and greatly lowers the sensitivity to the cooling rate in the press.
  • Simple carbon-manganese alloys which are fully austenitically annealed in the furnace, show a strong dependence on the insertion temperature at high cooling rates in the press.
  • the remainder is iron and unavoidable impurities from the smelting process.
  • the degree of austenitization that occurs in the dual-phase steel is between 50 and 90% by volume, with the target structure being a fine dual-phase steel with a ferritic matrix and 5 to 20% by volume of martensite and possibly some bainite.
  • the target structure is achieved when the subsequent cooling process is adhered to and accordingly when manipulating the component or circuit board in the cooling press, i.e. during handling, a cooling rate of 5 to 500 Kelvin/sec is maintained and the insertion temperature in the cooling press is 400 to 850°C, preferably 450 to 750°C, the insertion temperature in the cooling press being set to 700 to 800°C during the form hardening process (indirect method).
  • the insertion temperature is set to 400 to 650°C, preferably to 440 to 600°C and particularly preferably to 450 to 520°C.
  • the special effect, especially in the direct process, i.e. press hardening at an insertion temperature of 450 to 520°C, is that the microstructure can be optimally adjusted, resulting in a particularly robust system with cooling rates.
  • the cooling rate in the press should be ⁇ 10 Kelvin/sec.
  • air cooling about 5 Kelvin/sec to 70 Kelvin/sec cooling rate
  • plate cooling cooling rates of more than 80 Kelvin/sec can be achieved without any problems
  • the behavior of both steels is similar in that the elongation values, depending on the insertion temperature, fluctuate so much that conventional dual-phase steels with the known process windows and the known variations in insertion temperature are not at all suitable as partners for a highly hardenable steel.
  • the microstructure of the lower-alloy steel from the two graphics is shown at an insertion temperature of 750° and a cooling rate that was achieved by water cooling.
  • the invention therefore, in order to ensure a sufficient amount of ferrite and thus a ferritic matrix in the dual-phase structure, it is possible to carry out intercritical annealing in the furnace, so that ferrite is also present in addition to austenite.
  • the Ac3 temperature must be kept high for the soft partner material, i.e. the dual-phase beam, so that intercritical annealing is possible at all. According to the invention, this Ac3 value is increased by aluminum.
  • the invention therefore has the advantage that the good properties of the dual-phase steel can be transferred to a method for press or form hardening, in particular for the production of a tailored welded blank.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Claims (13)

  1. Procédé de fabrication d'un composant en tôle d'acier au moyen d'un procédé de trempe sous presse ou de formage à chaud, dans lequel le composant en tôle d'acier est produit en ce qu'une ébauche constituée d'au moins une zone en un acier au carbone-manganèse-bore hautement durcissable et d'au moins un acier Dual Phase est formée à froid, puis chauffée et trempée dans une presse de refroidissement, ou une ébauche constituée d'au moins une zone en un acier au carbone-manganèse-bore hautement durcissable et d'au moins une zone en un acier Dual Phase est chauffée à une température supérieure à la température d'austénitisation du matériau d'acier hautement durcissable, puis est formée en composant en tôle d'acier dans une presse de formage et de refroidissement, par un ou plusieurs mouvements, caractérisé en ce que
    un acier Dual Phase est utilisé comme matériau plus tendre et comme partenaire de l'acier au carbone-manganèse-bore hautement durcissable, dont la valeur Ac3 est si élevée qu'il ne se produit qu'une austénitisation partielle de l'acier Dual Phase aux températures de recuit requises pour austénitiser l'acier au carbone-manganèse-bore, de sorte que lorsqu'il est inséré dans la presse de refroidissement, l'acier Dual Phase possède une matrice ferritique, en plus de laquelle de l'austénite est présente.
  2. Procédé selon la revendication 1,
    caractérisé en ce que
    les températures de recuit sont > 800°C, de préférence 840°C, notamment > 870°C, mais inférieures à Ac3 de l'acier Dual Phase.
  3. Procédé selon la revendication 1 ou 2,
    caractérisé en ce que
    le temps de maintien au four est compris entre 0 et 600 secondes, de préférence 5 et 300 secondes.
  4. Procédé selon une des revendications précédentes,
    caractérisé en ce que
    la valeur Ac3 de l'acier Dual Phase est si élevée que le degré d'austénitisation qui s'établit en présence du temps de maintien et de la température se situe entre 50 % et 90 % en volume.
  5. Procédé selon une des revendications précédentes,
    caractérisé en ce que
    la vitesse de refroidissement lors du transfert du composant formé ou de l'ébauche du four dans la presse de refroidissement et/ou de formage est comprise entre 5 Kelvin/sec et 500 Kelvin/sec, notamment 5 Kelvin/sec et 100 Kelvin/sec, de manière particulièrement préférée entre 10 Kelvin/sec et 70 Kelvin/sec.
  6. Procédé selon une des revendications précédentes,
    caractérisé en ce que
    la température d'insertion dans la presse est comprise entre 450 et 850°C, de préférence entre 450 et 750°C.
  7. Procédé selon la revendication 6,
    caractérisé en ce que
    la température d'insertion dans le cadre du processus de formage à chaud est réglée à 700 à 850°C.
  8. Procédé selon la revendication 6,
    caractérisé en ce que
    la température d'insertion dans le cadre du processus de trempe sous presse est réglée à 400 à 650°C, de préférence à 440 à 600°C et de manière particulièrement préférée à 450 à 520°C.
  9. Procédé selon une des revendications précédentes,
    caractérisé en ce que
    la vitesse de refroidissement dans la presse est ≥ 10 Kelvin/sec.
  10. Procédé selon une des revendications précédentes,
    caractérisé en ce que
    un acier est utilisé comme acier Dual Phase qui contient 0,5 à 1,5 %, de préférence 0,6 à 1,3 % d'aluminium.
  11. Procédé selon une des revendications précédentes,
    caractérisé en ce que
    la température de recuit est réglée de telle sorte que l'acier Dual Phase soit recuit de manière intercritique, c'est-à-dire entre sa température Ac1 et Ac3.
  12. Matériau en acier Dual Phase destiné à être utilisé dans le procédé selon une des revendications précédentes,
    caractérisé en ce que
    le matériau a la composition suivante en % en masse :
    C 0,02-0,12 %,
    Si 0,01-2,0%,
    Mn 0,5-2,0 %,
    Cr 0,3-1,0%,
    Al 0,5-1,5 %,
    Nb < 0,10 %,
    Ti < 0,10 %
    le reste étant du fer et des impuretés inévitables causées par le processus de fusion, dans lequel le matériau possède un degré d'austénitisation de 50 à 90 % à une température de recuit de 800 à 950°C et un temps de maintien au four allant jusqu'à 300 secondes et possède, après trempe, une structure Dual Phase existante avec une matrice ferritique et 5 à 20 % de martensite et le cas échéant un peu de bainite.
  13. Ébauche soudée comprenant au moins un matériau Dual Phase et un acier hautement durcissable, notamment un acier au carbone-manganèse-bore,
    caractérisé en ce que
    le matériau Dual Phase a la composition suivante en % en masse :
    C 0,02-0,12 %,
    Si 0,01-2,0 %,
    Mn 0,5-2,0 %,
    Cr 0,3-1,0 %,
    Al 0,5-1,5 %,
    Nb < 0,10 %
    Ti < 0,10 %
    le reste étant du fer et des impuretés inévitables causées par le processus de fusion.
EP18836369.1A 2017-12-22 2018-12-21 Procédé destiné à produire des composants métalliques à propriétés de composants adaptées Active EP3728656B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017131253.6A DE102017131253A1 (de) 2017-12-22 2017-12-22 Verfahren zum Erzeugen metallischer Bauteile mit angepassten Bauteileigenschaften
PCT/EP2018/086685 WO2019122372A1 (fr) 2017-12-22 2018-12-21 Procédé destiné à produire des composants métalliques à propriétés de composants adaptées

Publications (2)

Publication Number Publication Date
EP3728656A1 EP3728656A1 (fr) 2020-10-28
EP3728656B1 true EP3728656B1 (fr) 2022-02-02

Family

ID=65033559

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18836369.1A Active EP3728656B1 (fr) 2017-12-22 2018-12-21 Procédé destiné à produire des composants métalliques à propriétés de composants adaptées

Country Status (5)

Country Link
US (1) US11459628B2 (fr)
EP (1) EP3728656B1 (fr)
DE (1) DE102017131253A1 (fr)
ES (1) ES2907011T3 (fr)
WO (1) WO2019122372A1 (fr)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1767659A1 (fr) * 2005-09-21 2007-03-28 ARCELOR France Procédé de fabrication d'une pièce en acier de microstructure multi-phasée
WO2008110670A1 (fr) 2007-03-14 2008-09-18 Arcelormittal France Acier pour formage a chaud ou trempe sous outil a ductilite amelioree
JP5217395B2 (ja) 2007-11-30 2013-06-19 Jfeスチール株式会社 伸びの面内異方性が小さい高強度冷延鋼板およびその製造方法
DE102007062597A1 (de) * 2007-12-22 2009-06-25 Daimler Ag Karosserieteil für eine Karosserie eines Kraftwagens
DE102009030489A1 (de) 2009-06-24 2010-12-30 Thyssenkrupp Nirosta Gmbh Verfahren zum Herstellen eines warmpressgehärteten Bauteils, Verwendung eines Stahlprodukts für die Herstellung eines warmpressgehärteten Bauteils und warmpressgehärtetes Bauteil
KR100958019B1 (ko) 2009-08-31 2010-05-17 현대하이스코 주식회사 복합조직강판 및 이를 제조하는 방법
DE102009052210B4 (de) * 2009-11-06 2012-08-16 Voestalpine Automotive Gmbh Verfahren zum Herstellen von Bauteilen mit Bereichen unterschiedlicher Duktilität
DE102010055148B4 (de) 2010-12-18 2016-10-27 Tu Bergakademie Freiberg Verfahren zur Herstellung formgehärteter Bauteile
JP5727037B2 (ja) 2010-12-24 2015-06-03 フォエスタルピネ シュタール ゲーエムベーハー 硬化構造要素の製造方法
DE102012002079B4 (de) 2012-01-30 2015-05-13 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines kalt- oder warmgewalzten Stahlbandes aus einem höchstfesten Mehrphasenstahl
CN104603297A (zh) 2012-07-30 2015-05-06 塔塔钢铁荷兰科技有限责任公司 用于制备碳钢钢带材的方法
RU2605014C2 (ru) 2012-09-26 2016-12-20 Ниппон Стил Энд Сумитомо Метал Корпорейшн Лист двухфазной стали и способ его изготовления
DE102014011212A1 (de) 2014-07-29 2016-02-04 Hans Wilcke Verfahren und Einrichtungen für die Sicherheit auf gasbetriebenen Schiffen
DE102014112126A1 (de) * 2014-08-25 2016-02-25 Voestalpine Stahl Gmbh Mikrolegierter Stahl und zusammengesetzte Platinen aus mikrolegiertem Stahl und pressgehärtetem Stahl
DE102014017274A1 (de) * 2014-11-18 2016-05-19 Salzgitter Flachstahl Gmbh Höchstfester lufthärtender Mehrphasenstahl mit hervorragenden Verarbeitungseigenschaften und Verfahren zur Herstellung eines Bandes aus diesem Stahl
JP6224574B2 (ja) 2014-12-10 2017-11-01 株式会社神戸製鋼所 ホットスタンプ用鋼板、および該鋼板を用いたホットスタンプ成形部品
WO2017144419A1 (fr) 2016-02-23 2017-08-31 Tata Steel Ijmuiden B.V. Pièce formée à chaud et son procédé de fabrication
DE102017131247A1 (de) 2017-12-22 2019-06-27 Voestalpine Stahl Gmbh Verfahren zum Erzeugen metallischer Bauteile mit angepassten Bauteileigenschaften

Also Published As

Publication number Publication date
EP3728656A1 (fr) 2020-10-28
ES2907011T3 (es) 2022-04-21
WO2019122372A1 (fr) 2019-06-27
DE102017131253A1 (de) 2019-06-27
US20210164066A1 (en) 2021-06-03
US11459628B2 (en) 2022-10-04

Similar Documents

Publication Publication Date Title
DE102008051992B4 (de) Verfahren zur Herstellung eines Werkstücks, Werkstück und Verwendung eines Werkstückes
DE102008010168B4 (de) Panzerung für ein Fahrzeug
DE102005014298B4 (de) Panzerung für ein Fahrzeug
EP2383353B1 (fr) Acier à résistance élevée comprenant du Mn, produit plat en acier composé d&#39;un tel acier et son procédé de fabrication
EP2297367B1 (fr) Procédé de production d&#39;une pièce moulée en acier à structure à prédominance ferritique-bainitique
EP3728657B1 (fr) Procédé destiné à produire des composants métalliques à propriétés de composants adaptées
EP3504349B1 (fr) Procédé de fabrication d&#39;une bande d&#39;acier à résistance très élevée présentant des propriétés améliorées lors du traitement ultérieur et une telle bande d&#39;acier
DE102005052069B4 (de) Verfahren zum Herstellen von Vormaterial aus Stahl durch Warmverformen
EP2374910A1 (fr) Acier, produit plat en acier, composant en acier et procédé de fabrication d&#39;un composant en acier
EP3027784A2 (fr) Acier multiphase à haute résistance, micro-allié et contenant du silicium, présentant une résistance minimale à la traction de 750 mpa et des propriétés améliorées et procédé de fabrication d&#39;une bande à partir de cet acier
EP3625046A1 (fr) Acier résistant à l&#39;usure ou acier de sécurité à trois couches, procédé de fabrication d&#39;un élément et utilisation
EP1939308A1 (fr) Procédé de fabrication d&#39;un composant par trempe de compression thermique et composant haute résistance présentant une amélioration de l&#39;allongement de rupture
WO2016078643A9 (fr) Acier polyphasé, trempé à l&#39;air et à haute résistance, ayant d&#39;excellentes propriétés de mise en oeuvre et procédé de production d&#39;une bande avec cet acier
EP3625047A1 (fr) Acier de sécurité ou acier résistant à l&#39;usure et utilisation correspondante
EP2749659A1 (fr) Procédé de fabrication d&#39;un composant de véhicule automobile et composant de véhicule automobile
DE102019122515A1 (de) Verfahren zur Herstellung von hochfesten Blechen oder Bändern aus einem niedrig legierten, hochfesten bainitischen Stahl sowie ein Stahlband oder Stahlblech hieraus
EP3724359A1 (fr) Produit plat en acier laminé à chaud, à rigidité élevée, doté d&#39;une résistance à la fissuration de bords élevée ainsi que d&#39;une capacité de durcissement à la cuisson élevée, procédé de fabrication d&#39;un tel produit plat en acier
DE102008022401A1 (de) Verfahren zum Herstellen eines Stahlformteils mit einem überwiegend bainitischen Gefüge
EP3728656B1 (fr) Procédé destiné à produire des composants métalliques à propriétés de composants adaptées
EP3625049A1 (fr) Procédé de production de matériaux composites à base d&#39;acier
DE102019219235B3 (de) Verfahren zur Herstellung eines warmumgeformten und pressgehärteten Stahlblechbauteils
DE112014004087B4 (de) Verfahren zur Herstellung eines hochfesten bzw. höchstfesten Formteils aus härtbarem Stahl
WO2021063747A1 (fr) Procédé de fabrication d&#39;un élément en tôle d&#39;acier au moins partiellement trempée et revenue et élément ainsi fabriqué
DE102020212469A1 (de) Verfahren zur Herstellung eines zumindest teilweise vergüteten Stahlblechbauteils und zumindest teilweise vergütetes Stahlblechbauteil
DE102020103831A1 (de) Verfahren zur Herstellung eines Stahlbauteils und Stahlbauteil

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200615

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DIE WEITEREN ERFINDER HABEN AUF IHR RECHT VERZICHTET, ALS SOLCHE BEKANNT GEMACHT ZU WERDEN.

Inventor name: PICHLER, ANDREAS

Inventor name: KURZ, THOMAS

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210602

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20211013

INTG Intention to grant announced

Effective date: 20211104

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1466606

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018008710

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2907011

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220421

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220602

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220502

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018008710

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20221103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221221

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231227

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231227

Year of fee payment: 6

Ref country code: FR

Payment date: 20231227

Year of fee payment: 6

Ref country code: AT

Payment date: 20231204

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240102

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231229

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20181221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220202

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502018008710

Country of ref document: DE

Representative=s name: WSL PATENTANWAELTE PARTNERSCHAFT MBB, DE