EP3719428A1 - Verfahren zum betreiben eines wärmetauschers, anordnung mit wärmetauscher und anlage mit entsprechender anordnung - Google Patents

Verfahren zum betreiben eines wärmetauschers, anordnung mit wärmetauscher und anlage mit entsprechender anordnung Download PDF

Info

Publication number
EP3719428A1
EP3719428A1 EP19020258.0A EP19020258A EP3719428A1 EP 3719428 A1 EP3719428 A1 EP 3719428A1 EP 19020258 A EP19020258 A EP 19020258A EP 3719428 A1 EP3719428 A1 EP 3719428A1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
heat
operating mode
area
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19020258.0A
Other languages
English (en)
French (fr)
Inventor
Stefan Lochner
Ralph Spöri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP19020258.0A priority Critical patent/EP3719428A1/de
Publication of EP3719428A1 publication Critical patent/EP3719428A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0015Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • F25J1/0202Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration in a quasi-closed internal refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0247Different modes, i.e. 'runs', of operation; Process control start-up of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0248Stopping of the process, e.g. defrosting or deriming, maintenance; Back-up mode or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0251Intermittent or alternating process, so-called batch process, e.g. "peak-shaving"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0261Details of cold box insulation, housing and internal structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04787Heat exchange, e.g. main heat exchange line; Subcooler, external reboiler-condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04818Start-up of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04824Stopping of the process, e.g. defrosting or deriming; Back-up procedures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04945Details of internal structure; insulation and housing of the cold box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • F25J2270/06Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/10Control for or during start-up and cooling down of the installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/32Details on header or distribution passages of heat exchangers, e.g. of reboiler-condenser or plate heat exchangers

Definitions

  • the invention relates to a method for operating a heat exchanger, an arrangement with a heat exchanger that can be operated accordingly, and an installation with a corresponding arrangement according to the preambles of the respective independent claims.
  • heat exchangers In a large number of areas of application, heat exchangers (technically more correct: heat exchangers) are used with cryogenic fluids, i.e. Fluids operated at temperatures well below 0 ° C, in particular well below -100 ° C.
  • cryogenic fluids i.e. Fluids operated at temperatures well below 0 ° C, in particular well below -100 ° C.
  • the present invention is mainly described with reference to the main heat exchangers of air separation plants, but it is basically also suitable for use in other areas of application, for example for plants for storing and recovering energy using liquid air or natural gas liquefaction or plants in the petrochemical industry.
  • the present invention is also particularly suitable in plants for liquefying gaseous air products, for example gaseous nitrogen.
  • gaseous air products for example gaseous nitrogen.
  • Corresponding systems can be supplied with gaseous nitrogen, in particular by air separation systems, and liquefy it. The liquefaction is not followed by a rectification, as in an air separation plant. Therefore, when the problems explained below are overcome, these systems can be completely switched off and kept on standby until the next use, for example when there is no need for corresponding liquefaction products.
  • heat exchangers from air separation plants and other heat exchangers through which warm and cryogenic media flow achieve temperature equalization and heat up when the associated plant is shut down and the heat exchanger is shut down, or the temperature profile that develops in a corresponding heat exchanger in stationary operation can be in such a Case not be held. If, for example, cryogenic gas is then fed into a heated heat exchanger when it is restarted, or vice versa, there are high thermal stresses as a result of different thermal expansion due to differential temperature differences, which can damage the heat exchanger or require a disproportionately high amount of material and manufacturing costs to avoid such To avoid damage.
  • the temperatures at the previously warm end and at the previously cold end are equalized due to the good thermal conduction (longitudinal heat conduction) in its metallic material.
  • the previously warm end of the heat exchanger becomes colder over time and the previously cold end of the heat exchanger becomes warmer until the said temperatures are at or near an average temperature.
  • the present invention therefore has the object of specifying measures which enable a corresponding heat exchanger, in particular in one of the aforementioned systems, to be restarted after a long period of shutdown without the aforementioned disadvantageous effects occurring.
  • the present invention proposes a method for operating a heat exchanger, an arrangement with a heat exchanger that can be operated accordingly, and a system with a corresponding arrangement with the features of the respective independent claims.
  • a “heat exchanger” is an apparatus which is designed for the indirect transfer of heat between at least two fluid flows, for example, which are guided in countercurrent to one another.
  • a heat exchanger for use in the context of the present invention can be formed from a single or several parallel and / or serially connected heat exchanger sections, for example from one or more plate heat exchanger blocks.
  • a heat exchanger has “passages” which are set up to guide fluid and are separated from other passages by metal dividers or only connected on the inlet and outlet side via the respective headers. The passages are separated from the outside by means of side bars.
  • the passages mentioned are referred to below as “heat exchanger passages”. In the following, following the common usage, the two The terms "heat exchanger” and “heat exchanger” are used synonymously. The same applies to the terms “heat exchange” and “heat exchange”.
  • the present invention relates in particular to the apparatus referred to in the German version of ISO 15547-2: 2005 as plate-fin heat exchangers. If a “heat exchanger” is used below, this should therefore be understood to mean, in particular, a fin-plate heat exchanger.
  • a fin-plate heat exchanger has a large number of flat chambers or elongated channels lying one above the other, each of which is formed by corrugated or otherwise structured and interconnected, for example soldered plates, usually. made of aluminum, are separated from each other.
  • the panels are stabilized by means of side bars and connected to one another via these.
  • the structuring of the heat exchanger plates serves in particular to enlarge the heat exchange surface, but also to increase the stability of the heat exchanger.
  • the invention particularly relates to brazed fin and plate heat exchangers made of aluminum. In principle, however, corresponding heat exchangers can also be made from other materials, for example from stainless steel, or from various different materials.
  • the present invention can be used in air separation plants of a known type, but also, for example, in plants for storing and recovering energy using liquid air.
  • the storage and recovery of energy using liquid air is also known as Liquid Air Energy Storage (LAES).
  • LAES Liquid Air Energy Storage
  • a corresponding system is, for example, in the EP 3 032 203 A1 disclosed.
  • Systems for liquefying nitrogen or other gaseous air products are also known from the technical literature and also with reference to the Figure 3 described.
  • the present invention can also be used in any further systems in which a heat exchanger can be operated accordingly.
  • It can be, for example, plants for natural gas liquefaction and separation of natural gas, the LAES plants mentioned, plants for air separation, liquefaction cycles of all kinds (especially for air and nitrogen) with and without air separation, ethylene plants (i.e. in particular separation plants that process gas mixtures Steam crackers are set up), plants in which cooling circuits, for example with ethane or ethylene on different Pressure levels are used, and systems in which carbon monoxide and / or carbon dioxide cycles are provided act.
  • plants for natural gas liquefaction and separation of natural gas the LAES plants mentioned, plants for air separation, liquefaction cycles of all kinds (especially for air and nitrogen) with and without air separation, ethylene plants (i.e. in particular separation plants that process gas mixtures Steam crackers are set up), plants in which cooling circuits, for example with ethane or ethylene on different Pressure levels are used, and systems in which carbon monoxide and / or carbon dioxide cycles are provided act.
  • air in LAES systems is compressed, cooled, liquefied and stored in an insulated tank system in a first operating mode with corresponding electricity consumption.
  • the electricity supply is low, the liquefied air stored in the tank system is heated in a second operating mode, in particular after a pressure increase by means of a pump, and thus converted into the gaseous or supercritical state.
  • a pressure flow obtained in this way is expanded in an expansion turbine, which is coupled to a generator.
  • the electrical energy obtained in the generator is fed back into an electrical network, for example.
  • cryogenic liquids formed using air can also be stored in the first operating mode and used in the second operating mode to generate electrical energy.
  • corresponding cryogenic liquids are liquid nitrogen or liquid oxygen or component mixtures which predominantly consist of liquid nitrogen or liquid oxygen.
  • external heat and fuel can also be coupled in to increase efficiency and output power, in particular using a gas turbine, the exhaust gas of which is expanded together with the pressure flow formed from the air product in the second operating mode.
  • the invention is also suitable for such systems.
  • Air separation plants can be used to provide the corresponding cryogenic liquids. If liquid air is used, it is also possible to use pure air liquefaction systems.
  • air processing systems is therefore also used below as a generic term for air separation systems and air liquefaction systems.
  • the present invention relates in particular to known so-called nitrogen liquefiers.
  • cold gas from a tank or exhaust gas from the stationary system can flow through a heat exchanger during a shutdown of the associated system in order to avoid heating or to maintain the temperature profile developed in stationary operation (i.e. in particular the usual production operation of a corresponding system) .
  • Such an operation can, however, only be implemented with great effort in conventional methods.
  • the supplied warm process streams can be at least partially relaxed in an expansion machine and transferred as cold streams (which in this case, however, do not yet have the low temperature that is present at the cold end in normal operation) the cold end can be returned to the warm end.
  • the heat exchanger can be slowly brought to its normal temperature profile by means of Joule-Thomson cooling.
  • the present invention relates in particular to this case, that is to say processes in which, after restarting, the cold end of the heat exchanger is not directly acted upon by cold process streams (at the final temperature present in normal operation).
  • downstream of the heat exchanger there is a process unit with a significant buffer capacity for cold e.g. a rectification column system with accumulation of cryogenic liquids, as is the case in an air separation plant
  • a process unit with a significant buffer capacity for cold e.g. a rectification column system with accumulation of cryogenic liquids, as is the case in an air separation plant
  • the above-described Measures to minimize the occurrence of thermal voltages at this point, at the same time warmed cold In the end, however, the sudden onset of the flow of colder fluid can lead to the occurrence of thermal stresses due to impermissibly high (temporal and local) temperature gradients. Keeping the warm end warm even promotes the formation of higher temperature differences at the cold end and thus the occurrence of increased thermal stresses.
  • the present invention relates in particular to the first case explained above.
  • the cold end of the heat exchanger is operated without being cooled during standstill phases.
  • the present invention proposes a method for operating a heat exchanger.
  • the heat exchanger can in particular be part of a corresponding arrangement, which in turn can be designed as part of a larger system.
  • the present invention can be used in particular in air processing systems of the type explained in detail above and below. In principle, however, it can also be used in other areas of application in which a flow through a corresponding heat exchanger is prevented during certain times and the heat exchanger heats up during these times or a temperature profile formed in the heat exchanger is equalized.
  • the present invention can be used less in an air separation plant and more in a pure condenser, since in the latter there is no corresponding buffer capacity at the cold end and therefore it is not necessary to keep the cold end cold during standstill phases.
  • the present invention relates to those measures which avoid excessive thermal stress on the warm end of a heat exchanger.
  • measures of this kind are not combined with further measures aimed at reducing thermal stresses at the cold end of the heat exchanger.
  • the measures proposed according to the invention and corresponding configurations can offer particular advantages by dispensing with fluidic or non-fluidic cooling of the cold end of the heat exchanger, for example by dispensing with a flow through the cold part of the heat exchanger or its cold end using corresponding cold gas flows.
  • the present invention is based on the knowledge that such cooling is not necessary in the cases mentioned.
  • the operation of the heat exchanger proposed according to the invention offers advantages by dispensing with the measures mentioned, because it reduces the consumption of cold fluids and does not have to be laboriously provided with the corresponding hardware and control technology.
  • the present invention proposes carrying out the method in a first operating mode in first time periods and in a second operating mode in second time periods which alternate with the first time periods.
  • the first time periods and the second time periods do not overlap within the scope of the present invention.
  • the first periods of time or the first operating mode carried out in this first period corresponds within the scope of the present invention to the production operation of a corresponding plant, in the case of an air gas liquefaction plant that is to the operating period in which a liquefaction product is provided, or in the case of an air separation plant would correspond to the according to the invention is less in focus, that Operating mode in which liquid and / or gaseous air products are provided by air separation.
  • the second operating mode which is carried out in the second operating time periods, represents an operating mode in which corresponding products are not formed.
  • Corresponding second periods of time or a second operating mode serve in particular to save energy, for example in systems for liquefying and re-evaporation of air products for energy generation or in the previously mentioned LAES systems.
  • the heat exchanger is preferably not flowed through in the second operating mode or is flowed through to a significantly lesser extent than in the first operating mode.
  • the present invention does not fundamentally rule out that certain quantities of gases are also passed through a corresponding heat exchanger in the second operating mode, although the cold end of the heat exchanger is not cooled, i.e. without an active dissipation of heat.
  • the amount of fluids passed through the heat exchanger in the second operating mode is always well below the amounts of fluids that are passed through the heat exchanger in a regular first operating mode.
  • the amount of fluids passed through the heat exchanger in the second operating mode is within the scope of the present invention, for example, no more than 20%, 10%, 5% or 1% or 0.1%, based on the fluids through the heat exchanger in the first operating mode amount of fluid carried.
  • the first operating mode and the second operating mode are carried out alternately in the respective periods of time, as mentioned, that is, on a respective first period in which the first operating mode is carried out, a second period in which the second operating mode is always followed is carried out and on the second period or the second operating mode then again a first period with the first operating mode, etc.
  • this does not preclude in particular that further periods with further operating modes can be provided between the respective first and second periods, in particular one according to the invention possibly provided third time period with a third operating mode.
  • a third operating mode in the case of a third operating mode, the following sequence results in particular: first operating mode - second operating mode - third operating mode - first operating mode, etc.
  • a first fluid flow is formed at a first temperature level, fed into the heat exchanger in a first area at the first temperature level, and partially or completely cooled in the heat exchanger.
  • a gas or gas mixture that is only to be liquefied and rather less a gas mixture to be broken down by a gas mixture decomposition process can be used as a corresponding first fluid flow, since the invention is more the operation of liquefaction systems for air gases or corresponding air products and less the Operation of (air) separation plants concerns.
  • a second fluid flow is formed at a second temperature level, fed into the heat exchanger in a second area at the second temperature level and partially or completely heated in the heat exchanger.
  • the formation of the second fluid flow can in particular represent the formation of a return flow in a gas liquefaction system.
  • a part of the pressure flow is expanded to perform work in gas liquefaction systems, is thereby cooled, and used as a refrigerant in a heat exchanger.
  • a second part of the pressure flow which has not been correspondingly expanded, is liquefied in the heat exchanger due to the pressure and quantity difference present. This is also referring to Figure 3 explained again below.
  • the second temperature level corresponds in particular to the temperature at which a corresponding return flow is formed in a liquefaction plant. It is preferably at cryogenic temperatures, in particular from -50 ° C to -200 ° C, for example from -100 ° C to -200 ° C or from -150 ° C to -200 ° C.
  • the first temperature level is at the first fluid flow is formed and fed to the heat exchanger in the first region, preferably at bypass temperature, but in any case typically at a temperature level well above 0 ° C, for example from 10 ° C to 50 ° C.
  • first or second fluid flow is formed at the first or second temperature level, this does not, of course, apply excluded that further fluid flows are formed at the first or second temperature level.
  • further fluid flows can have the same or a different composition as or than the fluid of the first or second fluid flow.
  • a total flow can initially be formed, from which the second fluid flow is formed by branching off.
  • a plurality of fluid flows can optionally also be formed and then combined with one another and used in this way to form the second fluid flow.
  • a fluid flow in the heat exchanger is "partially or completely" cooled, this is understood to mean that either the entire fluid flow is passed through the heat exchanger, either from a warm end or an intermediate temperature level to the cold end or an intermediate temperature level or vice versa, or that the corresponding fluid flow in the heat exchanger is divided into two or more partial flows that are taken from the heat exchanger at the same or different temperature levels.
  • a corresponding fluid flow is fed into the heat exchanger, specifically at the first or second temperature level, and this is cooled or heated in the heat exchanger (alone or together with other flows as explained above).
  • further fluid streams can also be cooled or heated in the heat exchanger, namely to the same or different temperature levels and / or starting from the same or different temperature levels as the first or the second fluid stream .
  • Corresponding measures are customary and known in the field of air separation, so that reference can be made in this regard to the relevant specialist literature, as cited at the beginning.
  • the first fluid flow and the second fluid flow are fed into the heat exchanger and the respective cooling or heating in the heat exchanger partially or fully exposed.
  • the first fluid flow which is passed through the heat exchanger in the first operating mode and is cooled in the heat exchanger
  • no fluid can be passed through the heat exchanger.
  • the heat exchanger passages of the heat exchanger, which are used in the first operating mode to cool the first fluid flow remain impervious to flow in this case.
  • the first fluid flow which is passed through the heat exchanger and cooled in the first operating mode, to pass a different fluid flow through the heat exchanger, in particular in a significantly smaller amount.
  • the second fluid flow which can be replaced by another gas in the second operating mode, but without causing cooling at the cold end of the heat exchanger, i.e. the mentioned second area, within the scope of the present invention.
  • This second temperature level can be set slowly in the context of the present invention, where there is no significant buffer capacity for fluid at the cold end.
  • heat is supplied to the first area in that this heat is provided by means of a heating device and applied from outside the heat exchanger the first area is transferred.
  • this heat can be provided by means of the heating device and transferred to the first area via a gas space located outside the heat exchanger, or this heat can be fed to the heat exchanger block via a component that contacts the heat exchanger, for example via metallic or non-metallic supports, suspensions or fastenings
  • Solid contact electrical heating tapes can also be used within the scope of the present invention.
  • the heat transfer takes place in the configuration in which the heat is transferred via the gas space, predominantly or exclusively without solid body contact, ie predominantly or exclusively in the form of heat transfer in the gas space, ie without or predominantly without heat transfer by solid heat conduction.
  • the term "predominantly” here denotes a proportion of the amount of heat of less than 20% or less than 10%. In the case of the use of other heating devices such as electrical heating strips, these ratios will of course vary accordingly.
  • the present invention therefore provides for active heating of the warm end of a corresponding heat exchanger to be carried out in the second period or in a separate further period.
  • the term “outside of the heat exchanger” distinguishes the present invention from alternatively likewise possible heating by means of a targeted fluid flow through the heat exchanger passages. The heating does not take place here by the transfer of heat from a fluid guided through the heat exchanger passages.
  • the second area of the heat exchanger is operated without active heat dissipation and thus without being cooled, while the heat is supplied to the first area in the second period or in the third period.
  • active heat dissipation is intended to denote an intentionally brought about heat dissipation to the environment, for example in that the second area is exposed to, ie contacted or flowed through, a fluid that has a lower temperature than the second area at the time of the fluid exposure.
  • Heat can also be dissipated here, for example, in that heat flows off to colder areas. However, there is no flow of fluid that causes the second region to cool down.
  • heating of the second area is permitted, while the heat is simultaneously supplied to the first area in the second period or in the third period.
  • the permitted heating can in particular be more than 10 K, more than 20 K, more than 30 K, more than 40 K or more than 50 K. With a corresponding duration, it can in particular also take place at a temperature to which the first end is heated by the supply of heat in the second period or in the third period.
  • the heating of the second area can in particular also take place at least partially by active heating of the first area and an inflow of heat by conduction. In particular, heat can also be introduced through the surroundings.
  • the heat transfer by means of the heating device can be transferred to the heat exchanger from outside the heat exchanger passages by solid-state heat conduction via a heat conducting element contacting the first area.
  • This can be done, for example, as already mentioned, via supports or metallic or non-metallic elements as heat conducting elements which contact the heat exchanger and which in turn are heated, for example, by means of a resistive or inductive heater.
  • a corresponding arrangement can in principle as in U.S. 5,233,839 A proposed to be formed.
  • the present invention proposes to operate the second region of the heat exchanger in the second time periods or, if necessary, in the third time periods without being cooled.
  • the present invention therefore proposes a new and unobvious method compared to this prior art.
  • the heat provided by the heating device can also be transferred to the first area via a gas space located outside the heat exchanger, as explained, namely at least partially convectively and / or radiatively.
  • the present invention in the embodiment in which heat is transferred from the heating device to the first region via the gas space located outside the heat exchanger, the particular advantage that, for example in contrast to the one mentioned U.S. 5,233,839 A no suspension of a corresponding area is required, which is provided there for the transfer of heat.
  • the present invention allows temperature control even in cases in which a heat exchanger block is stored in other areas, for example at the bottom or in the middle, in order in this way to relieve the stresses on the lines that connect a corresponding heat exchanger to the environment to decrease.
  • the method presented in the prior art on the other hand, can only be used if a corresponding heat exchanger block is suspended from the top.
  • Another disadvantage of the method described in the mentioned prior art compared to the mentioned embodiment of the invention is that heat is only introduced there to a limited extent at the supports and not over the entire surface of a heat exchanger in a corresponding area. This can, for example, lead to icing at the sheet metal jacket transitions of a corresponding heat exchanger.
  • the present invention in the mentioned embodiment enables an advantageous introduction of heat and in this way an effective temperature control without the disadvantages described above.
  • the heat is at least partially convective and / or radiative to the first region via the gas space.
  • gas turbulence can be induced for convective heat transfer, so that heat build-up can be avoided.
  • Pure radiant heating on the other hand, can act directly on the first area of the first heat exchanger via the corresponding infrared radiation.
  • the method of the present invention is particularly suitable for use in the context of a gas liquefaction process, for example in the context of a process for liquefying nitrogen, air or natural gas, in which a correspondingly liquefied gas mixture is not fed to any decomposition.
  • the gas liquefaction process provides for the first fluid stream to be at least partially liquefied and undivided, that is to say, in particular, to be provided as a process product in an essentially unchanged material composition. Certain changes, albeit minor changes compared to decomposition, can result from the liquefaction itself due to the different condensation temperatures.
  • the present invention extends to an arrangement with a heat exchanger, the arrangement having means which are set up to carry out a first operating mode in first periods of time and to carry out a second operating mode in second periods of time which alternate with the first periods of time, in which first operating mode to form a first fluid flow at a first temperature level, to feed it into the heat exchanger in a first area at the first temperature level, and to cool partially or completely in the heat exchanger, in the first operating mode to further form a second fluid flow at a second temperature level, in to feed a second region at the second temperature level into the heat exchanger, and to partially or completely heat it in the heat exchanger, and partially or completely to feed the first fluid flow and the second fluid flow into the heat exchanger in the second operating mode etting.
  • a heating device which is set up to supply heat to the first area either in the second time period or in a third time period that lies between at least one of the second time periods and the subsequent first time period by providing the heat by means of a heating device and is transferred from outside the heat exchanger to the first area.
  • the second area is operated without active heat dissipation, while the heat is simultaneously supplied to the first area in the second period or in the third period.
  • the heat exchanger is advantageously arranged in a cold box, a gas space through which the heat can be transferred being formed by an area within the cold box free of insulating material.
  • the first area of the heat exchanger can be arranged in the gas space within the coldbox in particular without suspensions contacting the first area.
  • the heating device can be designed as a radiant heater that can be heated electrically or using heating gas, for example.
  • the heating device can, however, also be designed, in particular, as a resistive or convective heating device, which heats up a heat-conducting element that contacts the first region of the heat exchanger.
  • the present invention also extends to a plant, which is characterized in that it has an arrangement here as explained above.
  • the plant can in particular be designed as a gas liquefaction plant or, less preferably, as a gas mixture separation plant. It is also distinguished in particular by the fact that it is set up to carry out a method, as was previously explained in embodiments.
  • Figure 1 illustrates temperature profiles in a heat exchanger after shutdown (through which there is no flow) without the use of measures according to advantageous embodiments of the present invention in the form of a temperature diagram.
  • the temperature H at the warm end of the heat exchanger at the start of decommissioning which still corresponds to the temperature in regular operation of the heat exchanger, is approx. 20 ° C and the temperature C at the cold end is approx. -175 ° C. These temperatures gradually equalize over time.
  • the high thermal conductivity of the materials built into the heat exchanger is responsible for this. In other words, here heat flows from the warm end towards the cold end. Together with the heat input from the environment, this results in an average temperature of approx. -90 ° C.
  • the significant temperature increase at the cold end is largely due to the internal temperature compensation in the heat exchanger and only to a lesser extent due to external heat input.
  • thermal stresses can also arise if a system downstream of the heat exchanger immediately supplies cryogenic fluids again, for example cryogenic liquids from a rectification column system of an air separation system.
  • the present invention relates to plants in which the latter problem occurs less or not at all.
  • FIG. 2 an arrangement with a heat exchanger according to a particularly preferred embodiment of the present invention is illustrated and overall labeled 10.
  • the heat exchanger is provided with the reference number 1. It has a first area 2 and a second area 3, which are each illustrated here by dotted lines, but in reality are not structurally differentiated from the rest of the heat exchanger 1.
  • the first area 2 and the second area 3 are characterized, in particular, by the supply and withdrawal of fluid flows.
  • two fluid flows A and B are passed through the heat exchanger 1, the fluid flow A previously being referred to as the first fluid flow and the fluid flow B being previously referred to as the second fluid flow.
  • the first fluid flow A is cooled in the heat exchanger 1, while the second fluid flow B is heated.
  • the heat exchanger is not flowed through by the corresponding fluid flows A and B or not to the same extent as in the first operating mode.
  • the second operating mode other than fluid flows A and B or fluid flows A and B can be used in a smaller amount.
  • the heat exchanger 1 is accommodated in the arrangement 10 in a cold box 4 which is partially filled with an insulating material, for example perlite, which is arranged up to a filling level 6 in the cold box 4 and is illustrated here by hatching.
  • a heating device 7 is provided in the arrangement 10, which heats the first region 2 of the heat exchanger 1 during certain periods of the second operating mode, during the entire second operating mode or, as mentioned, in separate periods of time in a third operating mode.
  • heat illustrated here in the form of a wavy arrow 8
  • the transfer of heat via the gas space 5 is illustrated here, this can in principle also take place via a, for example, metallic heat conducting element, if the heating device 7 is designed accordingly.
  • In the first operating mode there is typically no corresponding heat transfer.
  • the second area 3 of the heat exchanger remains uncooled or no heat is actively dissipated from it.
  • FIG 3 an air liquefaction system 100 with an arrangement 10 which has a heat exchanger 1 is illustrated schematically.
  • a corresponding system is also referred to as a "nitrogen liquefier".
  • the air liquefaction system 100 is used, for example, to provide liquid nitrogen or to liquefy gaseous nitrogen.
  • an air separation plant can be provided to provide the gaseous nitrogen.
  • the present invention is particularly suitable for use in connection with systems for liquefying gaseous air products, since no further rectification system is connected to them themselves, they can therefore be simplified and put out of operation more frequently if necessary, and after Restarting, there is still no cold fluid available with which the cold end of the heat exchanger 1 is directly applied.
  • the heat exchanger 1 is also illustrated here with the first area 2 and the second area 3. However, these areas are only indicated here. As explained in detail below, in a first operating mode the heat exchanger 1 is supplied with several first fluids to be cooled in the first area 2 at a first temperature level and passed through the heat exchanger 1, and in the first operating mode several second fluids to be heated are supplied to the heat exchanger 1 fed to the second area 3 at a second temperature level below the first temperature level and passed through the heat exchanger 1. The first fluids are cooled and the second fluids are heated.
  • the heat exchanger 1 here has a number of heat exchanger passages, which are designated by W to Z.
  • a gaseous nitrogen stream a is compressed to a liquefaction pressure level together with a nitrogen stream b in a multi-stage compressor arrangement 101, to which a further nitrogen stream c is fed at an intermediate stage.
  • the correspondingly compressed nitrogen is divided into two substreams d and e, of which substream d is fed to the heat exchanger 1 or its first region 2.
  • the partial flow e is divided into two Turbine boosters 102 and 103 are further compressed and then likewise fed to heat exchanger 1 or its first region 2.
  • liquefied nitrogen which is part of the substream e, is withdrawn from the heat exchanger 1.
  • This liquefied nitrogen is flashed into a container 105 via a valve 104.
  • Liquid nitrogen withdrawn from the bottom of the container 105 can be fed in the form of a liquid nitrogen flow f to the warm end of a subcooler 106, which is cooled using a partial flow g of the liquid nitrogen flow f, the amount of which is adjusted via a valve 107.
  • the partial flow g is further heated in the heat exchanger 1 and returned to the compression in the form of the nitrogen flow b already mentioned.
  • the remainder of the liquid nitrogen flow f illustrated here in the form of a liquid nitrogen flow h, can, for example, be delivered as a product or stored in a tank 108.
  • the turbine boosters 102 and 103 are driven using the partial flow d and a further partial flow of the partial flow e, which is denoted here by i.
  • the substreams d and i are withdrawn from the heat exchanger 1 at suitable intermediate temperatures.
  • the correspondingly relaxed substream d is fed to the heat exchanger 1 at an intermediate temperature, in the heat exchanger 1 with nitrogen, which is withdrawn in gaseous form from the top of the container 106 and fed to the heat exchanger 1 at the cold end, combined, heated and in the form of the already mentioned nitrogen flow c returned to compression.
  • the partial flow i is fed into the container 105 after a corresponding expansion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben eines Wärmetauschers (1), bei dem in ersten Zeiträumen ein erster Betriebsmodus durchgeführt wird und in zweiten Zeiträumen, die sich mit den ersten Zeiträumen abwechseln, ein zweiter Betriebsmodus durchgeführt wird, in dem ersten Betriebsmodus ein erster Fluidstrom (A) auf einem ersten Temperaturniveau gebildet, in einem ersten Bereich (2) auf dem ersten Temperaturniveau in den Wärmetauscher (1) eingespeist, und in dem Wärmetauscher (1) teilweise oder vollständig abgekühlt wird, in dem ersten Betriebsmodus ein zweiter Fluidstrom (B) auf einem zweiten Temperaturniveau gebildet, in einem zweiten Bereich (3) auf dem zweiten Temperaturniveau in den Wärmetauscher (1) eingespeist, und in dem Wärmetauscher (1) teilweise oder vollständig erwärmt wird, und in dem zweiten Betriebsmodus die Einspeisung des ersten Fluidstroms (A) und des zweiten Fluidstroms (B) in den Wärmetauscher (1) teilweise oder vollständig ausgesetzt wird. Entweder in dem zweiten Zeitraum oder in einem dritten Zeitraum, der zwischen zumindest einem der zweiten Zeiträume und dem darauf folgenden ersten Zeitraum liegt, wird dem ersten Bereich (2) Wärme zugeführt, indem die Wärme mittels einer außerhalb des Wärmetauschers (1) angeordneten Heizeinrichtung (7) bereitgestellt wird und indem die Wärme von außerhalb des Wärmetauschers (1) zu dem ersten Bereich (2) übertragen wird. Der zweite Bereich (3) wird ohne aktive Wärmeabfuhr betrieben, während in dem zweiten Zeitraum oder in dem dritten Zeitraum gleichzeitig dem ersten Bereich (2) die Wärme zugeführt wird. Eine entsprechende Anordnung (10) und eine Anlage (100) mit einer derartigen Anordnung (10) sind ebenfalls Gegenstand der vorliegenden Erfindung.

Description

  • Die Erfindung betrifft ein Verfahren zum Betreiben eines Wärmetauschers, eine Anordnung mit einem entsprechend betreibbaren Wärmetauscher und eine Anlage mit einer entsprechenden Anordnung gemäß den Oberbegriffen derjeweiligen unabhängigen Patentansprüche.
  • Stand der Technik
  • In einer Vielzahl von Anwendungsgebieten werden Wärmetauscher (technisch korrekter: Wärmeübertrager) mit tiefkalten Fluiden, d.h. Fluiden mit Temperaturen von deutlich unter 0° C, insbesondere deutlich unter-100° C, betrieben. Nachfolgend wird die vorliegende Erfindung überwiegend unter Bezugnahme auf die Hauptwärmetauscher von Luftzerlegungsanlagen beschrieben, sie eignet sich jedoch grundsätzlich auch zum Einsatz in anderen Anwendungsgebieten, beispielsweise für Anlagen zum Speichern und Rückgewinnen von Energie unter Verwendung von Flüssigluft oder die Erdgasverflüssigung bzw. Anlagen in der Petrochemie.
  • Die vorliegende Erfindung eignet sich aus den nachfolgend erläuterten Gründen auch in besonderer Weise in Anlagen zur Verflüssigung gasförmiger Luftprodukte, beispielsweise von gasförmigem Stickstoff. Entsprechende Anlagen können insbesondere von Luftzerlegungsanlagen mit gasförmigem Stickstoff versorgt werden und diesen verflüssigen. Der Verflüssigung ist dabei nicht, wie in einer Luftzerlegungsanlage, eine Rektifikation nachgeschaltet. Daher können diese Anlagen bei Überwindung der nachfolgend erläuterten Probleme beispielsweise dann, wenn kein Bedarf an entsprechenden Verflüssigungsprodukten besteht, vollständig abgeschaltet und bis zur nächsten Verwendung im Standby gehalten werden.
  • Zum Aufbau und Betrieb von Hauptwärmetauschern von Luftzerlegungsanlagen und anderer Wärmetauscher sei auf einschlägige Fachliteratur, beispielsweise H.-W. Häring (Hrsg.), Industrial Gases Processing, Wiley-VCH, 2006, insbesondere Abschnitt 2.2.5.6, "Apparatus" verwiesen. Details zu Wärmetauschern allgemein sind beispielsweise der Veröffentlichung "The Standards of the Brazed Aluminium Plate-Fin Heat Exchanger Manufacturers' Association", 2. Auflage, 2000, insbesondere Abschnitt 1.2.1, "Components of an Exchanger" zu entnehmen.
  • Ohne zusätzliche Maßnahmen vollziehen Wärmetauscher von Luftzerlegungsanlagen und andere mit warmen und tiefkalten Medien durchströmte Wärmetauscher einen Temperaturausgleich und erwärmen sich beim Stillstand der zugehörigen Anlage und damit der Außerbetriebnahme des Wärmetauschers, bzw. das sich in einem entsprechenden Wärmetauscher im stationären Betrieb ausbildende Temperaturprofil kann in einem solchen Fall nicht gehalten werden. Wird anschließend beispielsweise bei der Wiederinbetriebnahme in einen erwärmten Wärmetauscher tiefkaltes Gas eingespeist oder umgekehrt, kommt es zu hohen thermischen Spannungen infolge unterschiedlicher Wärmedehnung wegen differentiellen Temperaturunterschieden, die zur Schädigung des Wärmetauschers führen können bzw. einen überproportional hohen Material- bzw. Fertigungsaufwand erfordern, um derartige Schädigungen zu vermeiden.
  • Insbesondere kommt es bei einer Außerbetriebnahme eines Wärmetauschers bevor dieser sich insgesamt erwärmt aufgrund der guten Wärmeleitung (Wärmelängsleitung) in dessen metallischem Material zu einem Angleich der Temperaturen am zuvor warmen Ende und am zuvor kalten Ende. Mit anderen Worten wird das zuvor warme Ende des Wärmetauschers über die Zeit kälter und das zuvor kalte Ende des Wärmetauschers wärmer, bis die genannten Temperaturen bei oder nahe bei einer Durchschnittstemperatur liegen. Dies ist auch in der beigefügten Figur 1 nochmals veranschaulicht. Die Temperaturen, die hier zum Zeitpunkt der Außerbetriebnahme bei ca. -175 °C bzw. +20 °C lagen, gleichen sich dabei über mehrere Stunden aneinander an und erreichen nahezu eine mittlere Temperatur.
  • Dieses Verhalten wird insbesondere dann beobachtet, wenn beim Abschalten einer Luftzerlegungsanlage der Hauptwärmetauscher, der kälteisoliert untergebracht ist, zusammen mit der Rektifikationseinheit eingeblockt wird, d.h. wenn von außen kein Gas mehr zugeführt wird. In einem solchen Fall wird typischerweise lediglich Gas, das durch thermische Isolationsverluste entsteht, kalt abgeblasen. Entsprechendes gilt auch, wenn eine Anlage zur Verflüssigung eines gasförmigen Luftprodukts, beispielsweise von Flüssigstickstoff, abgeschaltet wird.
  • Bei einer ggf. anschließend erfolgenden Einspeisung von warmem Fluid am abgekühlten warmen Ende des Wärmetauschers bei seiner Wiederinbetriebnahme erhöht sich dort schlagartig die Temperatur. Entsprechend verringert sich die Temperatur am erwärmten kalten Ende bei der Wiederinbetriebnahme, falls dort entsprechendes kaltes Fluid eingespeist wird, schlagartig. Dies führt zu den bereits erwähnten Materialspannungen und damit ggf. zu Schäden.
  • Die vorliegende Erfindung stellt sich daher die Aufgabe, Maßnahmen anzugeben, die eine Wiederinbetriebnahme eines entsprechenden Wärmetauschers, insbesondere in einer der zuvor genannten Anlagen, nach längerer Außerbetriebnahme ermöglichen, ohne dass die erwähnten nachteiligen Effekte auftreten.
  • Offenbarung der Erfindung
  • Vor diesem Hintergrund schlägt die vorliegende Erfindung ein Verfahren zum Betreiben eines Wärmetauschers, eine Anordnung mit einem entsprechend betreibbaren Wärmetauscher und eine Anlage mit einer entsprechenden Anordnung mit den Merkmalen der jeweiligen unabhängigen Patentansprüche vor.
  • Zunächst werden nachfolgend einige zur Beschreibung der vorliegenden Erfindung verwendete Begriffe erläutert und definiert.
  • Ein "Wärmetauscher" ist im hier verwendeten Sprachgebrauch ein Apparat, der zur indirekten Übertragung von Wärme zwischen zumindest zwei z.B. im Gegenstrom zueinander geführten Fluidströmen ausgebildet ist. Ein Wärmetauscher zum Einsatz im Rahmen der vorliegenden Erfindung kann aus einem einzelnen oder mehreren parallel und/oder seriell verbundenen Wärmetauscherabschnitten gebildet sein, z.B. aus einem oder mehreren Plattenwärmetauscherblöcken. Ein Wärmetauscher weist "Passagen" auf, die zur Fluidführung eingerichtet und von anderen Passagen durch Trennbleche getrennt bzw. nur über die jeweiligen Header ein- und ausgangsseitig verbunden sind. Die Trennung der Passagen nach außen erfolgt über Seitenstäbe (engl. Side Bars). Die genannten Passagen werden nachfolgend als "Wärmetauscherpassagen" bezeichnet. Nachfolgend werden, dem gängigen Sprachgebrauch folgend, die beiden Begriffe "Wärmetauscher" und "Wärmeübertrager" synonym verwendet. Entsprechendes gilt auch für die Begriffe "Wärmetausch" und "Wärmeaustausch".
  • Die vorliegende Erfindung betrifft insbesondere die gemäß der deutschen Fassung der ISO 15547-2:2005 als Rippen-Platten-Wärmeaustauscher (engl. Plate-Fin Heat Exchangers) bezeichnete Apparate. Ist nachfolgend von einem "Wärmetauscher" die Rede, sei daher hierunter insbesondere ein Rippen-Platten-Wärmeaustauscher verstanden. Ein Rippen-Platten-Wärmeaustauscher weist eine Vielzahl übereinanderliegender flacher Kammern bzw. langgestreckter Kanäle auf, die jeweils durch gewellte oder anderweitig strukturierte und miteinander verbundene, beispielsweise verlötete Platten, i.d.R. aus Aluminium, voneinander getrennt sind. Die Platten werden mittels Seitenstäben stabilisiert und über diese miteinander verbunden. Die Strukturierung der Wärmetauscherplatten dient insbesondere dazu, die Wärmeaustauschfläche zu vergrößern, aber auch dazu, die Stabilität des Wärmetauschers zu erhöhen. Die Erfindung bezieht sich insbesondere auf gelötete Rippen-Platten-Wärmeaustauscher aus Aluminium. Grundsätzlich können entsprechende Wärmetauscher aber auch aus anderen Materialien, beispielsweise aus Edelstahl, oder aus verschiedenen unterschiedlichen Materialien hergestellt sein.
  • Wie erwähnt, kann die vorliegende Erfindung in Luftzerlegungsanlagen bekannter Art, aber auch beispielsweise in Anlagen zum Speichern und Rückgewinnen von Energie unter Verwendung von Flüssigluft zum Einsatz kommen. Die Speicherung und Rückgewinnung von Energie unter Verwendung von Flüssigluft wird im Englischen auch als Liquid Air Energy Storage (LAES) bezeichnet. Eine entsprechende Anlage ist beispielsweise in der EP 3 032 203 A1 offenbart. Anlagen zur Verflüssigung von Stickstoff oder anderen gasförmigen Luftprodukten sind ebenfalls aus der Fachliteratur bekannt und zudem unter Bezugnahme auf die Figur 3 beschrieben. Grundsätzlich kann die vorliegende Erfindung auch in beliebigen weiteren Anlagen zum Einsatz kommen, in denen ein Wärmeübertrager entsprechend betrieben werden kann. Es kann sich beispielsweise um Anlagen zur Erdgasverflüssigung und Trennung von Erdgas, die erwähnten LAES-Anlagen, Anlagen zur Luftzerlegung, Verflüssigungskreisläufe aller Art (insbesondere für Luft und Stickstoff) mit und ohne Luftzerlegung, Ethylenanlagen (also insbesondere Trennanlagen, die zur Bearbeitung von Gasgemischen aus Steamcrackern eingerichtet sind), Anlagen, in denen Kühlkreisläufe, beispielsweise mit Ethan oder Ethylen auf unterschiedlichen Druckniveaus zum Einsatz kommen, und Anlagen, in denen Kohlenmonoxid- und/oder Kohlendioxidkreisläufe vorgesehen sind, handeln.
  • Zu Zeiten hohen Stromangebots wird in LAES-Anlagen in einem ersten Betriebsmodus Luft unter entsprechendem Stromverbrauch verdichtet, abgekühlt, verflüssigt und in einem isolierten Tanksystem gespeichert. Zu Zeiten geringen Stromangebots wird in einem zweiten Betriebsmodus die in dem Tanksystem gespeicherte verflüssigte Luft, insbesondere nach einer Druckerhöhung mittels einer Pumpe, angewärmt und damit in den gasförmigen oder überkritischen Zustand überführt. Ein hierdurch erhaltener Druckstrom wird in einer Entspannungsturbine entspannt, die mit einem Generator gekoppelt ist. Die in dem Generator gewonnene elektrische Energie wird beispielsweise in ein elektrisches Netz zurückgespeist.
  • Eine entsprechende Speicherung und Rückgewinnung von Energie ist grundsätzlich nicht nur unter Verwendung von Flüssigluft möglich. Vielmehr können in dem ersten Betriebsmodus auch andere unter Verwendung von Luft gebildete tiefkalte Flüssigkeiten gespeichert und in dem zweiten Betriebsmodus zur Gewinnung von elektrischer Energie verwendet werden. Beispiele für entsprechende tiefkalte Flüssigkeiten sind flüssiger Stickstoff oder flüssiger Sauerstoff bzw. Komponentengemische, die überwiegend aus flüssigem Stickstoff oder flüssigem Sauerstoff bestehen. In entsprechenden Anlagen können auch externe Wärme und Brennstoff eingekoppelt werden, um die Effizienz und die Ausgangsleistung zu steigern, insbesondere unter Verwendung einer Gasturbine, deren Abgas zusammen mit dem im zweiten Betriebsmodus aus dem Luftprodukt gebildeten Druckstrom entspannt wird. Auch für derartige Anlagen eignet sich die Erfindung.
  • Zur Bereitstellung entsprechender tiefkalter Flüssigkeiten können klassische Luftzerlegungsanlagen dienen. Wenn Flüssigluft verwendet wird, ist es auch möglich, reine Luftverflüssigungsanlagen einzusetzen. Als Oberbegriff für Luftzerlegungsanlagen und Luftverflüssigungsanlagen wird daher nachfolgend auch der Begriff "Luftbearbeitungsanlagen" verwendet. Die vorliegende Erfindung betrifft insbesondere bekannte sogenannte Stickstoffverflüssiger.
  • Vorteile der Erfindung
  • Grundsätzlich kann ein Wärmetauscher während eines Stillstands der zugehörigen Anlage mit kaltem Gas aus einem Tank oder Abgas aus der stehenden Anlage durchströmt werden, um eine Erwärmung zu vermeiden bzw. das im stationären Betrieb (d.h. insbesondere dem üblichen Produktionsbetrieb einer entsprechenden Anlage) ausgebildete Temperaturprofil zu halten. Ein derartiger Betrieb ist jedoch in herkömmlichen Verfahren ggf. nur aufwendig zu realisieren.
  • In bestimmten Fällen kann, wie beispielsweise auch in der US 5,233,839 A vorgeschlagen, zur Vermeidung der Abkühlung des warmen Endes eines entsprechenden Wärmetauschers dort auch eine Einleitung von Wärme aus der Umgebung über Wärmebrücken vorgenommen werden. Befindet sich stromab des Wärmetauschers keine Prozesseinheit mit signifikanter Pufferkapazität für Kälte (z.B. kein Rektifikationskolonnensystem mit Ansammlung kryogener Flüssigkeiten) wie beispielsweise in einer reinen Luftverflüssigungsanlage, so kann durch eine derartige Warmhaltung das Auftreten übermäßiger thermischer Spannungen beim schlagartigen Zuführen warmer Prozessströme am warmen Ende bei der Wiederinbetriebnahme reduziert werden. Die zugeführten warmen Prozessströme können in diesem Fall beispielsweise nach dem Austritt am kalten Ende des Wärmetauschers zumindest teilweise in einer Expansionsmaschine entspannt und als kalte Ströme (die jedoch in diesem Fall noch nicht die tiefe Temperatur aufweisen, wie sie im Regelbetrieb am kalten Ende vorliegt) über das kalte Ende zum warmen Ende rückgeführt werden. Auf diese Weise kann der Wärmetauscher durch eine Joule-Thomson-Abkühlung langsam in sein Normaltemperaturprofil gefahren werden. Die vorliegende Erfindung betrifft insbesondere diesen Fall, also Prozesse, in denen nach dem Wiederanfahren das kalte Ende des Wärmetauschers nicht unmittelbar mit kalten Prozessströmen (auf der im Regelbetrieb vorliegenden Endtemperatur) beaufschlagt wird.
  • Befindet sich jedoch, wie im Rahmen der vorliegenden Erfindung vorzugsweise nicht der Fall, stromab des Wärmetauschers eine Prozesseinheit mit einer nennenswerten Pufferkapazität für Kälte (z.B. ein Rektifikationskolonnensystem mit Ansammlung kryogener Flüssigkeiten, wie in einer Luftzerlegungsanlage der Fall), so kann man mittels der zuvor beschriebenen Maßnahmen zwar das Auftreten von Thermospannungen an dieser Stelle minimieren, am zugleich angewärmten kalten Ende kann es jedoch hier durch das schlagartige Einsetzen der Durchströmung mit kälterem Fluid zum Auftreten von Thermospannungen durch unzulässig hohe (zeitliche und örtliche) Temperaturgradienten kommen. Hierbei fördert die Warmhaltung des warmen Endes sogar noch die Bildung von höheren Temperaturunterschieden am kalten Ende und damit das Auftreten von erhöhten Thermospannungen.
  • Die vorliegende Erfindung betrifft, wie erwähnt, insbesondere den ersten zuvor erläuterten Fall. Mit anderen Worten wird im Rahmen der vorliegenden Erfindung (neben der stets vorgesehenen Erwärmung am warmen Ende des Wärmetauschers) das kalte Ende des Wärmetauschers während Stillstandsphasen unabgekühlt betrieben.
  • Die vorliegende Erfindung schlägt vor diesem Hintergrund ein Verfahren zum Betreiben eines Wärmetauschers vor. Der Wärmetauscher kann, wie nachfolgend auch noch im Detail erläutert, insbesondere Teil einer entsprechenden Anordnung sein, die ihrerseits als Teil einer größeren Anlage ausgebildet sein kann. Die vorliegende Erfindung kann insbesondere in Luftbearbeitungsanlagen der zuvor und nachfolgend noch im Detail erläuterten Art zum Einsatz kommen. Grundsätzlich ist jedoch auch ein Einsatz in anderen Einsatzgebieten möglich, in denen eine Durchströmung eines entsprechenden Wärmetauschers während bestimmter Zeiten unterbunden wird und sich der Wärmetauscher während dieser Zeiten erwärmt bzw. sich ein in dem Wärmetauscher ausgebildetes Temperaturprofil ausgleicht. Insbesondere kann die vorliegende Erfindung weniger in einer Luftzerlegungsanlage und eher in einem reinen Verflüssiger zum Einsatz kommen, da in letzterem keine entsprechende Pufferkapazität am kalten Ende vorliegt und daher das Kalthalten des kalten Endes während Stillstandsphasen nicht erforderlich ist.
  • Die vorliegende Erfindung betrifft dabei solche Maßnahmen, die eine übermäßige thermische Beanspruchung des warmen Endes eines Wärmetauschers vermeiden. Derartige Maßnahmen werden im Rahmen der vorliegenden Erfindung nicht mit weiteren Maßnahmen kombiniert, die auf eine Reduktion thermischer Spannungen am kalten Ende des Wärmetauschers gerichtet sind. So können die erfindungsgemäß vorgeschlagenen Maßnahmen und entsprechende Ausgestaltungen durch einen Verzicht auf eine fluidische oder nichtfluidische Kühlung des kalten Endes des Wärmetauschers besondere Vorteile bieten, beispielsweise durch einen Verzicht auf eine Durchströmung des kalten Teils des Wärmetauschers bzw. dessen kalten Endes unter Verwendung entsprechender kalter Gasströme. Die vorliegende Erfindung beruht auf der Erkenntnis, dass eine derartige Kühlung in den genannten Fällen nicht erforderlich ist. Der erfindungsgemäß vorgeschlagene Betrieb des Wärmetauschers bietet durch den Verzicht auf die genannten Maßnahmen deshalb Vorteile, weil hierdurch sowohl der Verbrauch kalter Fluide reduziert wird als auch entsprechende Hardware sowie Steuer- und Regelungstechnik nicht aufwendig bereitgestellt werden muss.
  • Im Gegensatz zu einer Temperierung des warmen und des kalten Endes eines entsprechenden Wärmetauschers unter Verwendung von Maßnahmen, wie sie in der zuvor bereits erwähnten US 5,233,839 A offenbart sind, kann das erfindungsgemäß vorgeschlagene Warmhalten des warmen Endes des Wärmetauschers ohne eine Kühlung am kalten Ende einfacher und kostengünstiger erfolgen. Dieses Warmhalten kann im Rahmen der vorliegenden Erfindung unter Verwendung entsprechender Steuer- und/oder Regelstrategien auf Grundlage einer oder mehrerer gemessener Temperaturen an dem Wärmetauscher erfolgen. Im Rahmen der vorliegenden Erfindung ist insbesondere nicht vorsehen, dass während einer Stillstandsphase der Anlage, deren Teil der diskutierte Wärmetauscher ist, ein kaltes Ende des Wärmetauschers oder der Wärmetauscher insgesamt mit abdampfendem Gas aus einem oder mehreren Speicherbehältern der Anlage durchströmt wird, wie in der erwähnten US 5,233,839 A beschrieben. Daher kann entsprechendes abdampfendes Gas, soweit vorhanden, im Rahmen der vorliegenden Erfindung anderweitig genutzt werden.
  • Die vorliegende Erfindung schlägt vor, das Verfahren in ersten Zeiträumen in einem ersten Betriebsmodus und in zweiten Zeiträumen, die sich mit den ersten Zeiträumen abwechseln, in einem zweiten Betriebsmodus durchzuführen. Die ersten Zeiträume und die zweiten Zeiträume überlappen einander dabei im Rahmen der vorliegenden Erfindung nicht. Die ersten Zeiträume bzw. der in diesem ersten Zeitraum durchgeführte erste Betriebsmodus entspricht dabei im Rahmen der vorliegenden Erfindung dem Produktionsbetrieb einer entsprechenden Anlage, im Fall einer Luftgasverflüssigungsanlage also jenem Betriebszeitraum, in dem ein Verflüssigungsprodukt bereitgestellt wird, bzw. entspräche im Fall einer Luftzerlegungsanlage, die erfindungsgemäß weniger im Fokus steht, jenem Betriebsmodus, in dem flüssige und/oder gasförmige Luftprodukte durch Luftzerlegung bereitgestellt werden. Entsprechend stellt der zweite Betriebsmodus, der in den zweiten Betriebszeiträumen durchgeführt wird, einen Betriebsmodus dar, in dem entsprechende Produkte nicht gebildet werden. Entsprechende zweite Zeiträume bzw. ein zweiter Betriebsmodus dienen insbesondere zur Energieeinsparung, beispielsweise in Anlagen zur Verflüssigung und Rückverdampfung von Luftprodukten zur Energiegewinnung oder in den zuvor bereits erwähnten LAES-Anlagen.
  • Wie bereits erwähnt, wird der Wärmetauscher im zweiten Betriebsmodus vorzugsweise nicht bzw. in einem deutlich geringeren Umfang durchströmt als in dem ersten Betriebsmodus. Die vorliegende Erfindung schließt aber nicht grundsätzlich aus, dass in dem zweiten Betriebsmodus auch gewisse Mengen an Gasen durch einen entsprechenden Wärmetauscher geführt werden, wobei jedoch das kalte Ende des Wärmetauschers unabgekühlt, d.h. ohne eine aktive Abfuhr von Wärme, betrieben wird. Die Menge durch den Wärmetauscher geführter Fluide in dem zweiten Betriebsmodus liegt stets deutlich unter den Mengen von Fluiden, die in einem regulären ersten Betriebsmodus durch den Wärmetauscher geführt werden. Die Menge der in dem zweiten Betriebsmodus durch den Wärmetauscher geführten Fluide beträgt im Rahmen der vorliegenden Erfindung beispielsweise insgesamt nicht mehr als 20%, 10%, 5% oder 1% oder 0,1%, bezogen auf die in dem ersten Betriebsmodus durch den Wärmetauscher geführte Fluidmenge.
  • Im Rahmen der vorliegenden Erfindung werden der erste Betriebsmodus und der zweite Betriebsmodus in den jeweiligen Zeiträumen, wie erwähnt, abwechselnd durchgeführt, d.h. auf einem jeweiligen ersten Zeitraum, in dem der erste Betriebsmodus durchgeführt wird, folgt stets ein zweiter Zeitraum, in dem der zweite Betriebsmodus durchgeführt wird und auf den zweiten Zeitraum bzw. den zweiten Betriebsmodus sodann wieder ein erster Zeitraum mit dem ersten Betriebsmodus usw. Dies schließt jedoch insbesondere nicht aus, dass zwischen den jeweiligen ersten und zweiten Zeiträumen weitere Zeiträume mit weiteren Betriebsmodi vorgesehen sein können, insbesondere ein erfindungsgemäß ggf. vorgesehener dritter Zeitraum mit einem dritten Betriebsmodus. Im Rahmen der vorliegenden Erfindung ergibt sich für den Fall eines dritten Betriebsmodus dabei insbesondere die folgende Abfolge: erster Betriebsmodus - zweiter Betriebsmodus - dritter Betriebsmodus - erster Betriebsmodus usw.
  • Im Rahmen der vorliegenden Erfindung wird in dem ersten Betriebsmodus ein erster Fluidstrom auf einem ersten Temperaturniveau gebildet, in einem ersten Bereich auf dem ersten Temperaturniveau in den Wärmetauscher eingespeist, und in dem Wärmetauscher teilweise oder vollständig abgekühlt. Als ein entsprechender erster Fluidstrom kann im Rahmen der vorliegenden Erfindung dabei insbesondere ein lediglich zu verflüssigendes Gas oder Gasgemisch und eher weniger ein durch ein Gasgemischzerlegungsverfahren zu zerlegendes Gasgemisch verwendet werden, da die Erfindung eher den Betrieb von Verflüssigungsanlagen für Luftgase bzw. entsprechende Luftprodukte und weniger den Betrieb von (Luft-) Zerlegungsanlagen betrifft.
  • Ferner wird in dem ersten Betriebsmodus ein zweiter Fluidstrom auf einem zweiten Temperaturniveau gebildet, in einem zweiten Bereich auf dem zweiten Temperaturniveau in den Wärmetauscher eingespeist und in dem Wärmetauscher teilweise oder vollständig erwärmt. Die Bildung des zweiten Fluidstroms kann dabei insbesondere eine Bildung eines Rückstroms in einer Gasverflüssigungsanlage darstellen. Zur Abkühlung des zu verflüssigenden Gases wird in Gasverflüssigungsanlagen ein Teil Druckstroms arbeitsleistend entspannt, hierdurch abgekühlt, und als Kältemittel in einem Wärmetauscher verwendet. Ein zweiter Teil des Druckstroms, der nicht entsprechend entspannt wurde, wird in dem Wärmetauscher aufgrund des vorliegenden Druck- und Mengenunterschieds verflüssigt. Dies wird auch unter Bezugnahme auf Figur 3 unten nochmals erläutert.
  • Das zweite Temperaturniveau entspricht insbesondere der Temperatur, auf der ein entsprechender Rückstrom in einer Verflüssigungsanlage gebildet wird. Es liegt vorzugsweise bei kryogenen Temperaturen, insbesondere bei -50° C bis -200° C, beispielsweise bei -100° C bis -200° C oder bei -150° C bis -200° C. Hingegen liegt das erste Temperaturniveau, auf dem der erste Fluidstrom gebildet und dem Wärmetauscher in dem ersten Bereich zugeführt wird, vorzugsweise bei Umgehungstemperatur, jedenfalls aber typischerweise bei einem Temperaturniveau deutlich oberhalb von 0° C, beispielsweise von 10 °C bis 50 °C.
  • Ist hier davon die Rede, dass ein erster oder zweiter Fluidstrom auf dem ersten oder zweiten Temperaturniveau gebildet wird, ist hiermit selbstverständlich nicht ausgeschlossen, dass weitere Fluidströme auf dem ersten oder zweiten Temperaturniveau gebildet werden. Entsprechende weitere Fluidströme können eine gleiche oder andere Zusammensetzung wie bzw. als das Fluid des ersten oder zweiten Fluidstroms aufweisen. Beispielsweise kann zunächst ein Gesamtstrom gebildet werden, aus dem durch Abzweigen des zweiten Fluidstroms dieser gebildet wird. Ferner können im Rahmen der vorliegenden Erfindung ggf. auch mehrere Fluidströme gebildet und anschließend miteinander vereinigt und auf diese Weise zur Bildung des zweiten Fluidstroms verwendet werden.
  • Ist hier davon die Rede, dass ein Fluidstrom in dem Wärmetauscher "teilweise oder vollständig" abgekühlt erwärmt wird, sei hierunter verstanden, dass entweder der gesamte Fluidstrom durch den Wärmetauscher geführt wird, und zwar entweder von einem warmen Ende oder einem Zwischentemperaturniveau zum kalten Ende oder einem Zwischentemperaturniveau oder umgekehrt, oder dass der entsprechende Fluidstrom in dem Wärmetauscher in zwei oder mehrere Teilströme aufgeteilt wird, die dem Wärmetauscher auf gleichen oder unterschiedlichen Temperaturniveaus entnommen werden. Selbstverständlich ist auch möglich, dem jeweiligen Fluidstrom in dem Wärmetauscher einen weiteren Fluidstrom zuzuspeisen und einen auf diese Weise gebildeten Sammelstrom in dem Wärmetauscher weiter abzukühlen bzw. zu erwärmen. In jedem Fall wird jedoch ein entsprechender Fluidstrom in den Wärmetauscher eingespeist, und zwar auf dem ersten bzw. zweiten Temperaturniveau, und dieser wird in dem Wärmetauscher (alleine oder gemeinsam mit weiteren Strömen wie zuvor erläutert) abgekühlt bzw. erwärmt.
  • Es versteht sich ferner, dass neben dem ersten und zweiten Fluidstrom auch noch weitere Fluidströme in dem Wärmetauscher abgekühlt bzw. erwärmt werden können, und zwar auf gleiche oder unterschiedliche Temperaturniveaus und/oder ausgehend von gleichen oder unterschiedlichen Temperaturniveaus wie der erste bzw. der zweite Fluidstrom. Entsprechende Maßnahmen sind im Bereich der Luftzerlegung üblich und bekannt, so dass diesbezüglich auf einschlägige Fachliteratur, wie sie eingangs zitiert wurde, verwiesen werden kann.
  • In dem zweiten Betriebsmodus wird im Rahmen der vorliegenden Erfindung die Einspeisung des ersten Fluidstroms und des zweiten Fluidstroms in den Wärmetauscher und die jeweilige Abkühlung bzw. Erwärmung in dem Wärmetauscher teilweise oder vollständig ausgesetzt. Beispielsweise kann anstelle des ersten Fluidstroms, der in dem ersten Betriebsmodus durch den Wärmetauscher geführt und in dem Wärmetauscher abgekühlt wird, kein Fluid durch den Wärmetauscher geführt werden. Die Wärmetauscherpassagen des Wärmetauschers, die in dem ersten Betriebsmodus zur Abkühlung des ersten Fluidstroms verwendet werden, bleiben also in diesem Fall undurchströmt. Es ist jedoch auch möglich, anstelle des ersten Fluidstroms, der in dem ersten Betriebsmodus durch den Wärmetauscher geführt und abgekühlt wird, einen anderen Fluidstrom durch den Wärmetauscher zu führen, insbesondere in deutlich geringerer Menge. Entsprechendes gilt auch für den zweiten Fluidstrom, der in dem zweiten Betriebsmodus durch anderes Gas ersetzt werden kann, jedoch ohne im Rahmen der vorliegenden Erfindung eine Abkühlung am kalten Ende des Wärmetauschers, also dem erwähnten zweiten Bereich, zu bewirken.
  • Ist hier von einer Abkühlung des kalten Endes des Wärmetauschers die Rede, erfolgt diese insbesondere auf das zweite Temperaturniveau, auf dem dieses kalte Ende in dem ersten Betriebsmodus vorliegt. Dieses zweite Temperaturniveau kann sich im Rahmen der vorliegenden Erfindung, wo am kalten Ende keine nennenswerte Pufferkapazität für Fluid vorhanden ist, langsam einstellen.
  • Erfindungsgemäß ist nun vorgesehen, dass in dem zweiten oder in einem dritten Zeitraum, der zwischen zumindest einem der zweiten Zeiträume und dem darauffolgenden ersten Zeitraum liegt, dem ersten Bereich dadurch Wärme zugeführt wird, dass diese Wärme mittels einer Heizeinrichtung bereitgestellt und von außerhalb des Wärmetauschers auf den ersten Bereich übertragen wird. Beispielsweise kann diese Wärme mittels der Heizeinrichtung bereitgestellt und über einen außerhalb des Wärmetauschers befindlichen Gasraum zu dem ersten Bereich übertragen werden, oder diese Wärme kann über ein den Wärmetauscher kontaktierendes Bauelement, beispielsweise über metallische oder nichtmetallische Träger, Aufhängungen oder Befestigungen, dem Wärmetauscherblock zugeführt werden Im Rahmen der vorliegenden Erfindung können auch elektrische Heizbänder mit Festkörperkontakt verwendet werden. Die Wärmeübertragung erfolgt in der Ausgestaltung, in der die Wärme über den Gasraum übertragen wird, überwiegend oder ausschließlich ohne Festkörperkontakt, d.h. überwiegend oder ausschließlich in Form einer Wärmeübertragung im Gasraum, d.h. ohne oder überwiegend ohne Wärmeübertragung durch Festkörperwärmeleitung. Der Begriff "überwiegend" bezeichnet dabei hier einen Anteil an der Wärmemenge von weniger als 20% oder weniger als 10%. Im Falle der Verwendung von anderen Heizeinrichtungen wie elektrischen Heizbändern weichen diese Verhältnisse natürlich entsprechend ab.
  • Die vorliegende Erfindung sieht also vor, in dem zweiten Zeitraum oder in einem separaten weiteren Zeitraum eine aktive Erwärmung des warmen Endes eines entsprechenden Wärmetauschers durchzuführen. Der Begriff "außerhalb des Wärmetauschers" grenzt die vorliegende Erfindung dabei ab von einer alternativ ebenfalls möglichen Erwärmung mittels einer gezielten Fluiddurchströmung der Wärmetauscherpassagen. Die Erwärmung erfolgt also hier nicht durch Übertragung von Wärme von einem durch die Wärmetauscherpassagen geführten Fluid.
  • In diesem Zusammenhang sei insbesondere darauf hingewiesen, dass, wenn hier von einem "Bereich" eines Wärmetauschers (dem ersten Bereich bzw. dem zweiten Bereich) die Rede ist, sich derartige Bereiche nicht auf die unmittelbare Einspeisestelle des ersten bzw. zweiten Fluidstroms in den Wärmetauscher beschränken müssen, sondern dass diese Bereiche auch insbesondere terminale Abschnitte eines entsprechenden Wärmetauschers darstellen können, die sich eine vorgegebene Strecke in Richtung der Mitte des Wärmetauschers erstrecken können. Entsprechende Bereiche können dabei insbesondere die terminalen 10%, 20% oder 30% eines entsprechenden Wärmetauschers umfassen. Entsprechende Bereiche sind baulich typischerweise nicht dezidiert von dem Rest des Wärmetauschers abgegrenzt.
  • Der zweite Bereich des Wärmetauschers wird erfindungsgemäß ohne aktive Wärmeabfuhr und damit unabgekühlt betrieben, während in dem zweiten Zeitraum oder in dem dritten Zeitraum dem ersten Bereich die Wärme zugeführt wird. Hierbei soll der Begriff "aktive Wärmeabfuhr" eine intentionell herbeigeführte Wärmeabgabe an die Umgebung bezeichnen, beispielsweise indem der zweite Bereich mit einem Fluid beaufschlagt, d.h. kontaktiert oder durchströmt, wird, das eine geringere Temperatur als der zweite Bereich zum jeweiligen Zeitpunkt der Fluidbeaufschlagung aufweist. Eine Wärmeabfuhr kann auch hier gleichwohl stattfinden, beispielsweise indem Wärme zu kälteren Bereichen abströmt. Es erfolgt jedoch keine Fluiddurchströmung, die eine Abkühlung des zweiten Bereichs bewirkt.
  • Im Rahmen der vorliegenden Erfindung wird insbesondere eine Erwärmung des zweiten Bereichs zugelassen, während in dem zweiten Zeitraum oder in dem dritten Zeitraum gleichzeitig dem ersten Bereich die Wärme zugeführt wird. Die zugelassene Erwärmung kann insbesondere mehr als 10 K, mehr als 20 K, mehr als 30 K, mehr als 40 K oder mehr als 50 K betragen. Sie kann bei entsprechender Dauer auch insbesondere auf eine Temperatur erfolgen, auf die das erste Ende durch die Zufuhr der Wärme in dem zweiten Zeitraum oder in dem dritten Zeitraum erwärmt wird. Die Erwärmung des zweiten Bereichs kann insbesondere auch zumindest teilweise durch die aktive Erwärmung des ersten Bereichs und eine Wärmeeinströmung durch Wärmeleitung erfolgen. Insbesondere kann dabei auch ein Wärmeeintrag durch die Umgebung erfolgen.
  • Im Rahmen der vorliegenden Erfindung kann die Wärmeübertragung mittels der Heizeinrichtung durch Festkörperwärmeleitung über ein den ersten Bereich kontaktierendes Wärmeleitelement von außerhalb der Wärmetauscherpassagen auf den Wärmetauscher übertragen werden. Dies kann beispielsweise, wie bereits angesprochen, über Träger oder metallische oder nichtmetallische Elemente als Wärmeleitelemente erfolgen, die den Wärmetauscher kontaktieren, und die ihrerseits beispielsweise mittels einer resistiven oder induktiven Heizung erwärmt werden. Eine entsprechende Anordnung kann dabei grundsätzlich wie in der US 5,233,839 A vorgeschlagen ausgebildet sein. Es sei jedoch betont, dass die vorliegende Erfindung vorschlägt, den zweiten Bereich des Wärmetauschers in den zweiten Zeiträumen bzw. ggf. in den dritten Zeiträumen unabgekühlt zu betreiben. Daher schlägt die vorliegende Erfindung auch gegenüber diesem Stand der Technik ein neues und nicht naheliegendes Verfahren vor.
  • Alternativ zu der Wärmeübertragung durch Festkörperwärmeleitung kann die mittels der Heizeinrichtung bereitgestellte Wärme aber auch über einen außerhalb des Wärmetauschers befindlichen Gasraum zu dem ersten Bereich übertragen werden, wie erläutert, und zwar zumindest teilweise konvektiv und/oder radiativ.
  • Die vorliegende Erfindung in der Ausgestaltung, in der Wärme von der Heizeinrichtung über den außerhalb des Wärmetauschers befindlichen Gasraum zu dem ersten Bereich übertragen wird, den besonderen Vorteil, dass, beispielsweise im Gegensatz zu der erwähnten US 5,233,839 A keine Aufhängung eines entsprechenden Bereichs erforderlich ist, die dort zur Übertragung der Wärme vorgesehen ist. Die vorliegende Erfindung erlaubt damit in dieser Ausgestaltung eine Temperierung auch in Fällen, in denen ein Wärmetauscherblock in anderen Bereichen, beispielweise unten oder mittig, gelagert wird, um auf diese Weise die Spannungen auf die Leitungen, die einen entsprechenden Wärmetauscher mit der Umgebung verbinden, zu verringern. Das im Stand der Technik vorgestellte Verfahren kann hingegen nur zum Einsatz kommen, wenn ein entsprechender Wärmetauscherblock oben abgehängt wird. Ein weiterer Nachteil des im erwähnten Stand der Technik beschriebenen Verfahrens gegenüber der erwähnten Ausgestaltung der Erfindung ist es, dass Wärme dort nur begrenzt an den Auflagern eingebracht wird und nicht über die gesamte Fläche eines Wärmetauschers in einem entsprechenden Bereich. Hierdurch kann es beispielsweise zu Auseisungen an den Blechmantelübergängen eines entsprechenden Wärmetauschers kommen. Die vorliegende Erfindung ermöglicht in der erwähnten Ausgestaltung demgegenüber eine vorteilhafte Einbringung von Wärme und auf diese Weise eine effektive Temperierung ohne die zuvor beschriebenen Nachteile.
  • Insbesondere kann im Rahmen der vorliegenden Erfindung, wie erwähnt, vorgesehen sein, die Wärme über den Gasraum zumindest teilweise konvektiv und/oder radiativ zu dem ersten Bereich zu übertragen. Zu konvektiven Wärmeübertragung kann dabei insbesondere eine Gasverwirbelung induziert werden, so dass sich Wärmestaus vermeiden lassen. Eine reine Strahlungsheizung kann hingegen direkt über die entsprechende Infrarotstrahlung auf die den ersten Bereich des ersten Wärmetauschers einwirken.
  • Das Verfahren der vorliegenden Erfindung eignet sich, wie mehrfach erwähnt, insbesondere zum Einsatz im Rahmen eines Gasverflüssigungsverfahrens, beispielsweise im Rahmen eines Verfahrens zur Verflüssigung von Stickstoff, von Luft oder von Erdgas, bei dem ein entsprechend verflüssigtes Gasgemisch keiner Zerlegung zugeführt wird. In dem Gasverflüssigungsverfahren ist, mit anderen Worten, vorgesehen, den ersten Fluidstrom zumindest teilweise zu verflüssigen und unzerlegt, d.h. insbesondere in im Wesentlichen unveränderter stofflicher Zusammensetzung als Verfahrensprodukt bereitzustellen. Gewisse, jedoch im Vergleich zur Zerlegung geringfügige Veränderungen können sich durch die Verflüssigung selbst aufgrund der unterschiedlichen Kondensationstemperaturen ergeben.
  • Die vorliegende Erfindung erstreckt sich auf eine Anordnung mit einem Wärmetauscher, wobei die Anordnung Mittel aufweist, die dafür eingerichtet sind, in ersten Zeiträumen einen ersten Betriebsmodus durchzuführen und in zweiten Zeiträumen, die sich mit den ersten Zeiträumen abwechseln, einen zweiten Betriebsmodus durchzuführen, in dem ersten Betriebsmodus einen ersten Fluidstrom auf einem ersten Temperaturniveau zu bilden, in einem ersten Bereich auf dem ersten Temperaturniveau in den Wärmetauscher einzuspeisen, und in dem Wärmetauscher teilweise oder vollständig abzukühlen, in dem ersten Betriebsmodus ferner einen zweiten Fluidstrom auf einem zweiten Temperaturniveau zu bilden, in einem zweiten Bereich auf dem zweiten Temperaturniveau in den Wärmetauscher einzuspeisen, und in dem Wärmetauscher teilweise oder vollständig zu erwärmen, und in dem zweiten Betriebsmodus die Einspeisung des ersten Fluidstroms und des zweiten Fluidstroms in den Wärmetauscher teilweise oder vollständig auszusetzen.
  • Erfindungsgemäß ist eine Heizeinrichtung vorgesehen, die dafür eingerichtet ist, entweder in dem zweiten Zeitraum oder in einem dritten Zeitraum, der zwischen zumindest einem der zweiten Zeiträume und dem darauffolgenden ersten Zeitraum liegt, dem ersten Bereich Wärme zuzuführen, indem die Wärme mittels einer Heizeinrichtung bereitgestellt und von außerhalb des Wärmetauschers zu dem ersten Bereich übertragen wird. Erfindungsgemäß ist ferner vorgesehen, dass der zweite Bereich ohne aktive Wärmeabfuhr betrieben wird, während in dem zweiten Zeitraum oder in dem dritten Zeitraum gleichzeitig dem ersten Bereich die Wärme zugeführt wird.
  • Zu weiteren Aspekten einer derartigen Anordnung sei auf die obigen Erläuterungen bezüglich des erfindungsgemäßen Verfahrens und seiner Ausgestaltungen ausdrücklich verwiesen. Die erfindungsgemäße Anordnung profitiert von den Vorteilen, die für entsprechende Verfahren und Verfahrensvarianten beschrieben wurden. Vorteilhafterweise ist der Wärmetauscher im Rahmen der vorliegenden Erfindung in einer Coldbox angeordnet, wobei ein Gasraum, durch den die Wärme übertragen werden kann, durch einen an Isoliermaterial freien Bereich innerhalb der Coldbox gebildet ist. Der erste Bereich des Wärmetauschers kann in diesem Fall insbesondere ohne den ersten Bereich kontaktierende Aufhängungen in dem Gasraum innerhalb der Coldbox angeordnet sein. Auch zu dem diesbezüglichen Vorteil sei auf die obigen Erläuterungen verwiesen.
  • Im Rahmen der vorliegenden Erfindung kann die Heizeinrichtung als Heizstrahler ausgebildet sein, die beispielsweise elektrisch oder unter Verwendung von Heizgas beheizt werden kann. Die Heizeinrichtung kann aber auch insbesondere als resistive oder konvektive Heizeinrichtung ausgebildet sein, die ein den ersten Bereich des Wärmetauschers kontaktierendes Wärmeleitelement aufheizt.
  • Die vorliegende Erfindung erstreckt sich ferner auf eine Anlage, die dadurch gekennzeichnet ist, dass hier eine Anordnung aufweist, wie sie zuvor erläutert wurde. Die Anlage kann insbesondere als Gasverflüssigungsanlage oder, weniger bevorzugt, als Gasgemischzerlegungsanlage ausgebildet sein. Sie zeichnet sich ferner insbesondere dadurch aus, dass sie zur Durchführung eines Verfahrens eingerichtet ist, wie es zuvor in Ausgestaltungen erläutert wurde.
  • Die Erfindung wird nachfolgend unter Bezugnahme auf die beigefügten Zeichnungen näher erläutert, die eine Ausführungsform der Erfindung und entsprechende Wärmeaustauschdiagramme zeigen.
  • Kurze Beschreibung der Zeichnungen
    • Figur 1 veranschaulicht Temperaturverläufe in einem Wärmetauscher nach Außerbetriebnahme ohne Einsatz von Maßnahmen gemäß einer Ausgestaltung der vorliegenden Erfindung.
    • Figur 2 veranschaulicht eine Anordnung mit einem Wärmetauscher gemäß einer besonders bevorzugten Ausführungsform der Erfindung.
    • Figur 3 veranschaulicht eine Luftverflüssigungsanlage, die mit einer Anordnung gemäß einer Ausführungsform der Erfindung ausgestattet sein kann.
  • In den Figuren sind identische oder einander funktional oder bedeutungsmäßig entsprechende Elemente mit identischen Bezugszeichen angegeben und werden der Übersichtlichkeit halber nicht wiederholt erläutert.
  • Ausführliche Beschreibung der Zeichnungen
  • Figur 1 veranschaulicht Temperaturverläufe in einem Wärmetauscher nach Außerbetriebnahme (der nicht durchströmt wird) ohne Einsatz von Maßnahmen gemäß vorteilhaften Ausgestaltungen der vorliegenden Erfindung in Form eines Temperaturdiagramms.
  • In dem in Figur 1 dargestellten Diagramm sind eine mit H bezeichnete Temperatur am warmen Ende eines entsprechenden Wärmetauschers und eine mit C bezeichnete Temperatur am kalten Ende jeweils in °C auf der Ordinate gegenüber einer Zeit in Stunden auf der Abszisse dargestellt.
  • Wie aus Figur 1 ersichtlich, beträgt die Temperatur H am warmen Ende des Wärmeaustauschers zu Beginn der Außerbetriebnahme, die noch der Temperatur in einem regulären Betrieb des Wärmetauschers entspricht, ca. 20 °C und die Temperatur C am kalten Ende ca. -175 °C. Diese Temperaturen gleichen sich über die Zeit zunehmend einander an. Hierfür ist die hohe Wärmeleitfähigkeit der in dem Wärmetauscher verbauten Materialien verantwortlich. Mit anderen Worten fließt hier Wärme vom warmen Ende in Richtung des kalten Endes. Zusammen mit dem Wärmeeintrag aus der Umgebung ergibt sich eine mittlere Temperatur von ca. -90 °C. Die deutliche Temperaturerhöhung am kalten Ende kommt zum größten Teil durch den internen Temperaturausgleich in dem Wärmetauscher zustande und nur in einem geringeren Anteil durch externen Wärmeeintrag.
  • Wie mehrfach erwähnt, kann es im dargestellten Fall zu starken thermischen Spannungen kommen, wenn das warme Ende des Wärmetauschers nach einiger Zeit der Regeneration ohne weitere Maßnahmen wieder mit einem warmen Fluid von im dargestellten Beispiel ca. 20 °C beaufschlagt wird. Entsprechend kann es aber auch zu thermischen Spannungen kommen, wenn eine dem Wärmetauscher nachgeschaltete Anlage sofort wieder tiefkalte Fluide liefert, beispielsweise tiefkalte Flüssigkeiten aus einem Rektifikationskolonnensystem einer Luftzerlegungsanlage. Die vorliegende Erfindung betrifft jedoch Anlagen, in denen das letztere Problem auftritt, weniger oder gar nicht.
  • In Figur 2 ist eine Anordnung mit einem Wärmetauscher gemäß einer besonders bevorzugten Ausgestaltung der vorliegenden Erfindung veranschaulicht und insgesamt mit 10 bezeichnet. Der Wärmetauscher ist mit dem Bezugszeichen 1 versehen. Er weist einen ersten Bereich 2 und einen zweiten Bereich 3 auf, die hier jeweils durch punktierte Linien abgegrenzt veranschaulicht sind, in der Realität jedoch nicht baulich von einem Rest des Wärmetauschers 1 unterschieden sind. Der erste Bereich 2 und der zweite Bereich 3 sind insbesondere durch die Einspeisung bzw. Entnahme von Fluidströmen gekennzeichnet. Im dargestellten Beispiel werden durch den Wärmetauscher 1 zwei Fluidströme A und B geführt, wobei der Fluidstrom A zuvor als erster Fluidstrom und der Fluidstrom B zuvor als zweiter Fluidstrom bezeichnet wurde. Der erste Fluidstrom A wird in dem Wärmetauscher 1 abgekühlt, der zweite Fluidstrom B hingegen erwärmt. Zu weiteren Details sei auf die obigen Erläuterungen verwiesen. Es sei insbesondere betont, dass in dem mehrfach erläuterten zweiten Betriebsmodus der Wärmetauscher nicht oder nicht in dem Umfang wie in dem ersten Betriebsmodus von den entsprechenden Fluidströmen A und B durchströmt wird. Beispielsweise können im zweiten Betriebsmodus andere als die Fluidströme A und B bzw. die Fluidströme A und B in geringerer Menge verwendet werden.
  • Der Wärmetauscher 1 ist in der Anordnung 10 in einer Coldbox 4 aufgenommen, die teilweise mit einem Isoliermaterial, beispielsweise Perlit, gefüllt ist, das bis zu einer Füllhöhe 6 in der Coldbox 4 angeordnet und hier schraffiert veranschaulicht ist. Ein an dem Isoliermaterial freier Bereich, der zugleich einen den ersten Bereich 2 des Wärmetauscher 1 umgebenden Gasraum darstellt, ist mit 5 angegeben.
  • In der Anordnung 10 ist eine Heizeinrichtung 7 vorgesehen, die während gewisser Zeiträume des zweiten Betriebsmodus, während des gesamten zweiten Betriebsmodus oder, wie erwähnt, in separaten Zeiträumen in einem dritten Betriebsmodus den ersten Bereich 2 des Wärmetauschers 1 erwärmt. Hierzu kann mittels der Heizeinrichtung 7 in der Anordnung 10 Wärme, hier in Form eines gewellten Pfeils 8 veranschaulicht, auf das erste Ende 2 bzw. den ersten Bereich 2 des Wärmetauschers 1 übertragen werden. Wenngleich hier die Übertragung der Wärme über den Gasraum 5 veranschaulicht ist, kann diese grundsätzlich auch über ein beispielsweise metallisches Wärmeleitelement erfolgen, falls die Heizeinrichtung 7 entsprechend ausgebildet ist. In dem ersten Betriebsmodus erfolgt typischerweise keine entsprechende Wärmeübertragung. Der zweite Bereich 3 des Wärmetauschers bleibt unabgekühlt bzw. wird von diesem keine Wärme aktiv abgeführt.
  • In Figur 3 ist eine Luftverflüssigungsanlage 100 mit einer Anordnung 10 welche einen Wärmetauscher 1 aufweist, schematisch veranschaulicht. Eine entsprechende Anlage wird auch als "Stickstoffverflüssiger" bezeichnet. Zu weiteren Details bezüglich der Anordnung 10 sei insbesondere auf die zuvor erläuterte Figur 2 verwiesen. Die Luftverflüssigungsanlage 100 dient beispielsweise zur Bereitstellung von Flüssigstickstoff bzw. zur Verflüssigung von gasförmigem Stickstoff. Zur Bereitstellung des gasförmigen Stickstoffs kann beispielsweise eine Luftzerlegungsanlage vorgesehen sein.
  • Wie mehrfach zuvor erläutert, eignet sich die vorliegende Erfindung insbesondere für die Verwendung im Zusammenhang mit Anlagen zur Verflüssigung gasförmiger Luftprodukte, da an diese selbst kein weiteres Rektifikationssystem mehr angebunden ist, diese daher bei Bedarf vereinfacht und häufiger außer Betrieb gesetzt werden können, und nach der Wiederinbetriebnahme noch kein kaltes Fluid bereitsteht, mit dem das kalte Ende des Wärmetauschers 1 unmittelbar beaufschlagt wird.
  • Der Wärmetauscher 1 ist auch hier mit dem ersten Bereich 2 und dem zweiten Bereich 3 veranschaulicht. Diese Bereiche sind hier jedoch nur angedeutet. Wie nachfolgend im Detail erläutert, werden in einem ersten Betriebsmodus dem Wärmeaustauscher 1 mehrere abzukühlende erste Fluide in dem ersten Bereich 2 auf einem ersten Temperaturniveau zugeführt und durch den Wärmeaustauscher 1 geführt, und dem Wärmetauscher 1 werden in dem ersten Betriebsmodus mehrere zu erwärmende zweite Fluide in dem zweiten Bereich 3 auf einem zweiten Temperaturniveau unterhalb des ersten Temperaturniveaus zugeführt und durch den Wärmeaustauscher 1 geführt. Die ersten Fluide werden dabei abgekühlt, die zweiten Fluide erwärmt.
  • Der Wärmeaustauscher 1 weist hier eine Anzahl von Wärmetauscherpassagen auf, die mit W bis Z bezeichnet sind. In dem ersten Betriebsmodus, der in Figur 3 veranschaulicht ist, und der einem Normalbetrieb der Verflüssigungsanlage 100 entspricht, d.h. einem Produktionsbetrieb, wird ein gasförmiger Stickstoffstrom a zusammen mit einem Stickstoffstrom b in einer mehrstufigen Verdichteranordnung 101, welcher auf einer Zwischenstufe ein weiterer Stickstoffstrom c zugespeist wird, auf ein Verflüssigungsdruckniveau verdichtet. Der entsprechend verdichtete Stickstoff wird auf zwei Teilströme d und e aufgeteilt, von denen der Teilstrom d dem Wärmetauscher 1 bzw. dessen erstem Bereich 2 zugeführt wird. Der Teilstrom e wird in zwei Turbinenboostern 102 und 103 weiter verdichtet und anschließend ebenfalls dem Wärmetauscher 1 bzw. dessen erstem Bereich 2 zugeführt.
  • In dem zweiten Bereich 3 wird dem Wärmetauscher 1 verflüssigter Stickstoff, bei dem es sich um einen Teil des Teilstroms e handelt, entnommen. Dieser verflüssigte Stickstoff wird über ein Ventil 104 in einen Behälter 105 geflasht. Vom Boden des Behälters 105 abgezogener flüssiger Stickstoff kann in Form eines flüssigen Stickstoffstroms f dem warmen Ende eines Unterkühlers 106 zugeführt werden, welcher unter Verwendung eines Teilstroms g des flüssigen Stickstoffstroms f, dessen Menge über ein Ventil 107 eingestellt wird, gekühlt wird. Der Teilstrom g wird nach Verdampfung in dem Unterkühler 106 in dem Wärmetauscher 1 weiter erwärmt und in Form des bereits erwähnten Stickstoffstroms b zur Verdichtung zurückgeführt. Der verbleibende Rest des flüssigen Stickstoffstroms f, hier in Form eines flüssigen Stickstoffstroms h veranschaulicht, kann beispielsweise als Produkt abgegeben bzw. in einen Tank 108 eingespeichert werden.
  • Die Turbinenbooster 102 und 103 werden unter Verwendung des Teilstroms d und eines weiteren Teilstroms des Teilstroms e, der hier mit i bezeichnet ist, angetrieben. Die Teilströme d und i werden dabei jeweils auf geeigneten Zwischentemperaturen dem Wärmetauscher 1 entnommen. Der entsprechend entspannte Teilstrom d wird dem Wärmetauscher 1 auf einer Zwischentemperatur zugeführt, in dem Wärmetauscher 1 mit Stickstoff, der gasförmig vom Kopf des Behälters 106 abgezogen und dem Wärmetauscher 1 am kalten Ende zugeführt wird, vereinigt, erwärmt und in Form des bereits erwähnten Stickstoffstroms c zur Verdichtung zurückgeführt. Der Teilstrom i wird nach einer entsprechenden Entspannung in den Behälter 105 eingespeist.
  • Es versteht sich, dass in einem zweiten Betriebsmodus, in dem die Einspeisung der erwähnten Fluidströme in den Wärmetauscher 1 ausgesetzt wird, ein zu Figur 1 erläuterter Temperaturausgleich einsetzt. Daher werden die zu Figur 2 erläuterten Maßnahmen ergriffen. Da hier kein kältepufferndes Rektifikationskolonnensystem kaltseitig des Wärmetauschers 1 bereitgestellt ist, wird der zweite Bereich 3 bei Wiederinbetriebnahme nicht unmittelbar mit kaltem Fluid beaufschlagt, sondern dieser kann durch die Entspannung in den Ventilen 104 und 107 sukzessive kaltgefahren werden. Eine Erwärmung am warmen Ende reicht daher aus.

Claims (14)

  1. Verfahren zum Betreiben eines Wärmetauschers (1), bei dem
    - in ersten Zeiträumen ein erster Betriebsmodus durchgeführt wird und in zweiten Zeiträumen, die sich mit den ersten Zeiträumen abwechseln, ein zweiter Betriebsmodus durchgeführt wird,
    - in dem ersten Betriebsmodus ein erster Fluidstrom (A) auf einem ersten Temperaturniveau gebildet, in einem ersten Bereich (2) auf dem ersten Temperaturniveau in den Wärmetauscher (1) eingespeist, und in dem Wärmetauscher (1) teilweise oder vollständig abgekühlt wird,
    - in dem ersten Betriebsmodus ein zweiter Fluidstrom (B) auf einem zweiten Temperaturniveau gebildet, in einem zweiten Bereich (3) auf dem zweiten Temperaturniveau in den Wärmetauscher (1) eingespeist, und in dem Wärmetauscher (1) teilweise oder vollständig erwärmt wird, und
    - in dem zweiten Betriebsmodus die Einspeisung des ersten Fluidstroms (A) und des zweiten Fluidstroms (B) in den Wärmetauscher (1) teilweise oder vollständig ausgesetzt wird,
    dadurch gekennzeichnet, dass
    - entweder in dem zweiten Zeitraum oder in einem dritten Zeitraum, der zwischen zumindest einem der zweiten Zeiträume und dem darauf folgenden ersten Zeitraum liegt, dem ersten Bereich (2) Wärme zugeführt wird, indem die Wärme mittels einer außerhalb des Wärmetauschers (1) angeordneten Heizeinrichtung (7) bereitgestellt wird und indem die Wärme von außerhalb des Wärmetauschers (1) zu dem ersten Bereich (2) übertragen wird, und
    - der zweite Bereich (3) ohne aktive Wärmeabfuhr betrieben wird, während in dem zweiten Zeitraum oder in dem dritten Zeitraum gleichzeitig dem ersten Bereich (2) die Wärme zugeführt wird.
  2. Verfahren nach Anspruch 1, bei dem eine Erwärmung des zweiten Bereichs (3) zugelassen wird, während in dem zweiten Zeitraum oder in dem dritten Zeitraum gleichzeitig dem ersten Bereich (2) die Wärme zugeführt wird.
  3. Verfahren nach Anspruch 1 oder 2, bei dem die Übertragung der mittels der Heizeinrichtung (7) bereitgestellten Wärme durch Festkörperwärmeleitung über ein den ersten Bereich (2) kontaktierendes Wärmeleitelement vorgenommen wird.
  4. Verfahren nach Anspruch 1 oder 2, bei dem die Übertragung der mittels der Heizeinrichtung (7) bereitgestellten Wärme über einen außerhalb des Wärmetauschers (1) befindlichen Gasraum zu dem ersten Bereich (2) übertragen wird, wobei die Wärme über den Gasraum (3) zumindest teilweise konvektiv und/oder radiativ zu dem ersten Bereich (2) übertragen wird.
  5. Verfahren nach einem der vorstehenden Ansprüche, bei dem der Wärmetauscher (1) im Rahmen eines Gasverflüssigungsverfahrens betrieben wird.
  6. Verfahren nach Anspruch 5, bei dem das Gasverflüssigungsverfahren umfasst, den ersten Fluidstrom (A) zumindest teilweise zu verflüssigen und unzerlegt als Verfahrensprodukt bereitzustellen.
  7. Anordnung (10) mit einem Wärmetauscher (1), wobei die Anordnung (10) Mittel aufweist, die dafür eingerichtet sind,
    - in ersten Zeiträumen einen ersten Betriebsmodus durchzuführen und in zweiten Zeiträumen, die sich mit den ersten Zeiträumen abwechseln, einen zweiten Betriebsmodus durchzuführen,
    - in dem ersten Betriebsmodus einen ersten Fluidstrom (A) auf einem ersten Temperaturniveau zu bilden, in einem ersten Bereich (2) auf dem ersten Temperaturniveau in den Wärmetauscher (1) einzuspeisen, und in dem Wärmetauscher (1) teilweise oder vollständig abzukühlen,
    - in dem ersten Betriebsmodus einen zweiten Fluidstrom (B) auf einem zweiten Temperaturniveau zu bilden, in einem zweiten Bereich (3) auf dem zweiten Temperaturniveau in den Wärmetauscher (1) einzuspeisen, und in dem Wärmetauscher (1) teilweise oder vollständig zu erwärmen, und
    - in dem zweiten Betriebsmodus die Einspeisung des ersten Fluidstroms (A) und des zweiten Fluidstroms (B) in den Wärmetauscher (1) teilweise oder vollständig auszusetzen,
    dadurch gekennzeichnet, dass
    - eine außerhalb des Wärmetauschers (1) angeordnete Heizeinrichtung (7) bereitgestellt ist, die dafür eingerichtet ist, entweder in dem zweiten Zeitraum oder in einem dritten Zeitraum, der zwischen zumindest einem der zweiten Zeiträume und dem darauf folgenden ersten Zeitraum liegt, dem ersten Bereich (2) Wärme zuzuführen, indem Wärme mittels der Heizeinrichtung (7) bereitgestellt und von außerhalb des Wärmetauschers (1) zu dem zweiten Bereich (2) übertragen wird, und
    - der zweite Bereich (3) ohne aktive Wärmeabfuhr betrieben wird, während in dem zweiten Zeitraum oder in dem dritten Zeitraum gleichzeitig dem ersten Bereich (2) die Wärme zugeführt wird.
  8. Anordnung (10) nach Anspruch 7, bei der der Wärmetauscher (1) in einer Coldbox (4) angeordnet ist, wobei ein Gasraum (5) durch einen an Isoliermaterial freien Bereich innerhalb der Coldbox (4) gebildet ist.
  9. Anordnung (10) nach Anspruch 8, die dafür eingerichtet ist, die mittels der Heizeinrichtung (7) bereitgestellte Wärme über den Gasraum (5) zu dem zweiten Bereich (2) zu übertragen.
  10. Anordnung (10) nach einem der Ansprüche 7 bis 9, bei der der erste Bereich (2) des Wärmetauschers (1) ohne den ersten Bereich kontaktierende Aufhängungen in dem Gasraum (5) innerhalb der Coldbox (4) angeordnet ist.
  11. Anordnung (10) nach Anspruch 7 oder 8, bei der die Heizeinrichtung (7) über ein Wärmeleitelement mit dem ersten Bereich (2) gekoppelt ist.
  12. Anordnung (10) nach einem der Ansprüche 7 bis 11, bei der die Heizeinrichtung (7) als Heizstrahler und/oder als resistiver und/oder induktiver Heizer ausgebildet ist.
  13. Anlage (100), gekennzeichnet durch eine Anordnung nach einem der Ansprüche 9 bis 12, wobei die Anlage (100) als Gasverflüssigungsanlage ausgebildet ist.
  14. Anlage (100) nach Anspruch 13, dadurch gekennzeichnet, dass sie zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 6 eingerichtet ist.
EP19020258.0A 2019-04-05 2019-04-05 Verfahren zum betreiben eines wärmetauschers, anordnung mit wärmetauscher und anlage mit entsprechender anordnung Withdrawn EP3719428A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19020258.0A EP3719428A1 (de) 2019-04-05 2019-04-05 Verfahren zum betreiben eines wärmetauschers, anordnung mit wärmetauscher und anlage mit entsprechender anordnung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19020258.0A EP3719428A1 (de) 2019-04-05 2019-04-05 Verfahren zum betreiben eines wärmetauschers, anordnung mit wärmetauscher und anlage mit entsprechender anordnung

Publications (1)

Publication Number Publication Date
EP3719428A1 true EP3719428A1 (de) 2020-10-07

Family

ID=66102352

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19020258.0A Withdrawn EP3719428A1 (de) 2019-04-05 2019-04-05 Verfahren zum betreiben eines wärmetauschers, anordnung mit wärmetauscher und anlage mit entsprechender anordnung

Country Status (1)

Country Link
EP (1) EP3719428A1 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1589674A (de) * 1968-06-14 1970-04-06
DE4207941A1 (de) * 1991-03-13 1992-09-17 Air Liquide Verfahren zum betreiben eines waermeaustauschers und waermeaustauscher zur durchfuehrung des verfahrens
US5233839A (en) 1991-03-13 1993-08-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for operating a heat exchanger
KR20030046252A (ko) * 2001-12-05 2003-06-12 주식회사 포스코 공기분리장치의 한냉손실방지를 위한 운전방법
EP3032203A1 (de) 2014-12-09 2016-06-15 Linde Aktiengesellschaft Verfahren und Kombinationsanlage zum Speichern und Rückgewinnen von Energie
EP3339784A1 (de) * 2016-12-22 2018-06-27 Linde Aktiengesellschaft Verfahren zum betreiben einer anlage und anordnung mit einer anlage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1589674A (de) * 1968-06-14 1970-04-06
DE4207941A1 (de) * 1991-03-13 1992-09-17 Air Liquide Verfahren zum betreiben eines waermeaustauschers und waermeaustauscher zur durchfuehrung des verfahrens
US5233839A (en) 1991-03-13 1993-08-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for operating a heat exchanger
KR20030046252A (ko) * 2001-12-05 2003-06-12 주식회사 포스코 공기분리장치의 한냉손실방지를 위한 운전방법
EP3032203A1 (de) 2014-12-09 2016-06-15 Linde Aktiengesellschaft Verfahren und Kombinationsanlage zum Speichern und Rückgewinnen von Energie
EP3339784A1 (de) * 2016-12-22 2018-06-27 Linde Aktiengesellschaft Verfahren zum betreiben einer anlage und anordnung mit einer anlage

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Industrial Gases Processing", 2006, WILEY-VCH
"The Standards of the Brazed Aluminium Plate-Fin Heat Exchanger Manufacturers' Association", 2000

Similar Documents

Publication Publication Date Title
EP4018143A1 (de) Verfahren zum betreiben eines wärmetauschers, anordnung mit wärmetauscher und anlage mit entsprechender anordnung
DE69413493T2 (de) Kühlsystem für die Eintrittsluft in eine Gasturbine
EP0949471B1 (de) Luftzerlegungsanlage mit zwei verschiedenen Betriebsmodi
DE2810972A1 (de) Verfahren zum kuehlen von gas und anordnung eines plattenwaermeaustauschers
DE69211237T2 (de) Vakuumbehälter mit einem gekühlten Element
EP3270066A1 (de) Verfahren zum betreiben eines energieversorgungssystems mit einem latentwärmespeicher, energieversorgungssystem zur durchführung des verfahrens sowie kollektorfeld für ein energieversorgungssystem
EP2713130B1 (de) Thermischer Speicher für Kälteanlagen
EP1742234B1 (de) Unterkühlte Horizontalkryostatanordnung
EP1745248B1 (de) Kühlsystem und verfahren zur herstellung einer verdampferplatine für ein tieftemperaturkühlsystem
EP3948124B1 (de) Verfahren zum betreiben eines wärmetauschers, anordnung mit wärmetauscher und anlage mit entsprechender anordnung
WO2020011396A1 (de) Verfahren zum betreiben eines wärmeübertragers, anordnung mit einem wärmeübertrager und luftbearbeitungsanlage mit einer entsprechenden anordnung
WO2019201475A1 (de) Verfahren zum betreiben eines wärmetauschers, anordnung mit einem wärmetauscher und luftbearbeitungsanlage mit einer entsprechenden anordnung
EP2215412A1 (de) Anlage für die kälte-, heiz- oder klimatechnik, insbesondere kälteanlagen
EP3719428A1 (de) Verfahren zum betreiben eines wärmetauschers, anordnung mit wärmetauscher und anlage mit entsprechender anordnung
EP3322947B1 (de) Verfahren zum abkühlen eines prozessstromes
EP3587971A1 (de) Verfahren zum betreiben eines wärmetauschers, anordnung mit einem wärmetauscher und luftbearbeitungsanlage mit einer entsprechenden anordnung
DE2839638A1 (de) Trockenkuehlsystem fuer kraftwerkanlagen
DE102012006746A1 (de) Verfahren und Vorrichtung zur Erzeugung elektrischer Energie
DE102010021967A1 (de) Vorrichtung zur Kühlung in Verbindung mit einer Vorrichtung zum Verdampfen eines unter hohem Druck gespeicherten, verflüssigten Gases
EP3293475A1 (de) Verfahren und methode zur speicherung und rückgewinnung von energie
EP3176526A1 (de) Verfahren und anordnung zum überführen von fluid
DE102019006886A1 (de) Wärmepumpe für ein Kraftfahrzeug, insbesondere für einen Kraftwagen
EP4070023A1 (de) Verfahren zum betreiben einer luftzerlegungsanlage mit einem destillationssäulensystem, einem wärmetauscher und einem adsorber sowie luftzerlegungsanlage
DE102011115987B4 (de) Erdgasverflüssigung
DE19719376C2 (de) Verfahren und Vorrichtung zum Anwärmen eines aus einem Speicherbehälter abgezogenen verflüssigten Gases oder Gasgemisches

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210408