EP3719148B1 - Produit d'acier à dureté élevée et son procédé de fabrication - Google Patents
Produit d'acier à dureté élevée et son procédé de fabrication Download PDFInfo
- Publication number
- EP3719148B1 EP3719148B1 EP19167552.9A EP19167552A EP3719148B1 EP 3719148 B1 EP3719148 B1 EP 3719148B1 EP 19167552 A EP19167552 A EP 19167552A EP 3719148 B1 EP3719148 B1 EP 3719148B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- steel product
- less
- steel
- range
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 129
- 239000010959 steel Substances 0.000 title claims description 129
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 230000007797 corrosion Effects 0.000 claims description 54
- 238000005260 corrosion Methods 0.000 claims description 54
- 229910001566 austenite Inorganic materials 0.000 claims description 36
- 229910000734 martensite Inorganic materials 0.000 claims description 27
- 238000005096 rolling process Methods 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 19
- 238000005452 bending Methods 0.000 claims description 18
- 238000010791 quenching Methods 0.000 claims description 14
- 238000005259 measurement Methods 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 8
- 238000005098 hot rolling Methods 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 7
- 230000000171 quenching effect Effects 0.000 claims description 7
- 229910001563 bainite Inorganic materials 0.000 claims description 6
- 229910000859 α-Fe Inorganic materials 0.000 claims description 6
- 238000000137 annealing Methods 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 229910001562 pearlite Inorganic materials 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 239000000047 product Substances 0.000 description 62
- 238000005275 alloying Methods 0.000 description 23
- 238000005336 cracking Methods 0.000 description 19
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 16
- 239000010949 copper Substances 0.000 description 16
- 239000010955 niobium Substances 0.000 description 16
- 239000010936 titanium Substances 0.000 description 16
- 239000011572 manganese Substances 0.000 description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- 229910052799 carbon Inorganic materials 0.000 description 12
- 239000011651 chromium Substances 0.000 description 12
- 239000003973 paint Substances 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 239000011575 calcium Substances 0.000 description 11
- 238000012360 testing method Methods 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 238000005728 strengthening Methods 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 238000003303 reheating Methods 0.000 description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- JGIATAMCQXIDNZ-UHFFFAOYSA-N calcium sulfide Chemical compound [Ca]=S JGIATAMCQXIDNZ-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 230000001747 exhibiting effect Effects 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 238000009628 steelmaking Methods 0.000 description 4
- 238000005496 tempering Methods 0.000 description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000001627 detrimental effect Effects 0.000 description 3
- 230000009931 harmful effect Effects 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000002436 steel type Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 238000007546 Brinell hardness test Methods 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000003139 biocide Substances 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000003703 image analysis method Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
- C22C38/105—Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the present invention relates to a high-hardness steel strip product exhibiting excellent resistance to climatic corrosion, a good balance of high hardness and excellent mechanical properties such as impact strength and bendability.
- the present invention further relates to a method of manufacturing the high-hardness steel strip product.
- High hardness has a direct effect on wear resistance of a steel product, the higher hardness the better wear resistance.
- high hardness it is meant that the Brinell hardness is at least 450 HBW and especially in the range of 500 HBW to 650 HBW.
- Wear resistant steels are also known as abrasion resistant steels. They are used in applications in which high resistance against abrasive and shock wear is required. Such applications can be found in e.g. mining and earth moving industry, and waste transportation. Wear resistant steels are used for instance in gravel truck's bodies and excavator buckets, whereby longer service time of the vehicle components are achieved due to the high hardness provided by the wear resistant steels. The benefits of wear resistant steels are even more crucial when the paint layer on a machine's outer surface is frequently exposed to mechanical stresses such as impacts which can cause scratch to paint layers.
- Such high hardness in steel product is typically obtained by martensitic microstructure produced by quench hardening steel alloy having high content of carbon (0.41-0.50 wt. %) after austenitization in the furnace.
- steel plates are first hot-rolled, slowly cooled to room temperature from the hot-rolling heat, reheated to austenitization temperature, equalized and finally quench hardened.
- This process is hereinafter referred to as the reheating and quenching (RHQ) process.
- RHQ reheating and quenching
- steels produced in this way are wear resistant steels disclosed in CN102199737 or some commercial wear resistant steels. Due to the relatively high content of carbon, which is required to achieve the desired hardness, the resulting martensite reaction causes significant internal residual stresses to the steel.
- Stress corrosion cracking is the cracking induced from the combined influence of tensile stress and a corrosive environment. Usually, stress corrosion cracking starts as a pitting corrosion with hard-to-detect fine cracks penetrating into the material while most of the material surface appears intact. Stress corrosion cracking is classified as a catastrophic form of corrosion, as the detection of such fine cracks can be very difficult and the damage not easily predicted. There is a need of better approaches to decrease the carbon content without compromising the hardness or any of the other mechanical properties, such as impact strength, formability/bendability or resistance to stress corrosion cracking.
- CN102392186 and CN103820717 relate to RHQ steel plates having relatively low carbon content (0.25-0.30 wt. % in CN102392186 ; 0.22-0.29 wt. % in CN103820717 ) and also relatively low manganese content.
- a tempering step after quench hardening is required for making such RHQ steel plates, which inevitably increases the processing efforts and costs.
- EP2695960 relates to an abrasion-resistant steel product exhibiting excellent resistance to stress corrosion cracking, which steel sheet can be made in a process where direct quenching (DQ) may be performed immediately after hot rolling, without the reheating treatment after hot rolling as in the RHQ process.
- the steel sheet of EP2695960 has a relatively low carbon content (0.20-0.30 wt. %) and a relatively high manganese content (0.40-1.20 wt. %).
- the base phase or main phase of the microstructure of the steel product of EP2695960 must be made of tempered martensite.
- the area fraction of untempered martensite is restricted to 10% or less because the resistance to stress corrosion cracking is reduced in the presence of untempered martensite.
- the steel product of EP2695960 has a surface hardness of 520 HBW or less.
- JP 2009030093 relates to a wear-resistance steel plate excellent in the low-temperature-resistance tempering and embrittlement crack characteristics, and in which the surface hardness is more than 400HBW10/3000 with a Brinell hardness.
- AU 2013204206 relates to a wear resistant quenched and tempered steel plate having a hardness of 600 Brinell and a yield stress of at least 1800 MPa and a tensile strength of at least 2000 MPa.
- the present invention extends the utilization of the cost-effective thermomechanically controlled processing (TMCP) in conjunction with direct quenching (DQ) to produce a high-hardness steel strip product exhibiting improved resistance to climatic corrosion, guaranteed impact strength values and excellent formability/bendability.
- TMCP thermomechanically controlled processing
- DQ direct quenching
- the object of the present invention is to solve the problem of providing a high-hardness steel strip product exhibiting excellent resistance to climatic corrosion, guaranteed impact strength values and excellent formability/bendability.
- the problem is solved by the combination of specific alloy designs with cost-efficient TMCP procedures which produces a metallographic microstructure comprising mainly martensite.
- the present invention provides a hot-rolled steel strip product comprising a composition consisting of, in terms of weight percentages (wt. %): C 0.17 - 0.38, preferably 0.21 - 0.35, more preferably 0.22 - 0.28 Si 0.01 - 0.5, more preferably 0.03 - 0.25 Mn 0.1 - 0.4, preferably 0.15 - 0.3 Al 0.015 - 0.15 Cu 0.1 - 0.6, preferably 0.1 - 0.5, more preferably 0.1 - 0.35 Ni 0.2-0.8 Cr 0.1 - 1, preferably 0.3 - 1, more preferably 0.35 - 1, even more preferably 0.35 - 0.8 Mo 0.01 - 0.3, preferably 0.03 - 0.3, more preferably 0.05 - 0.3 Nb 0 - 0.005 Ti 0 - 0.05, preferably 0 - 0.035, more preferably 0 - 0.02 V 0-0.06 B 0.0005 - 0.005, preferably
- the steel strip product has a thickness of 10 mm or less, and the amount of Ti is in the range of 0 - 0.005 wt. % when the amount of N is in the range of 0 - 0.003 wt. %, the amount of Ti is more than 0.005 wt. % and not more than 0.05 wt. % when the amount of N is more than 0.003 wt. % and not more than 0.01 wt. %, and wherein the steel product has a Charpy-V impact toughness of at least 34 J/cm 2 at a temperature of -20 °C or -40 °C in transversal and/or longitudinal direction.
- the steel product is alloyed with the essential alloying elements Si, Cu, Ni and Cr, which provides good resistance against climatic corrosion and increases durability of a paint layer.
- the steel product has a low content of Mn, which is important for improving impact toughness and bendability.
- the Ca/S ratio is adjusted such that CaS cannot form thereby improving impact toughness and bendability.
- the Ca/S ratio is preferably in the range of 1 - 2, more preferably 1.1 - 1.7, and even more preferably 1.2 - 1.6.
- the level of Nb should be restricted to the lowest possible to increase formability or bendability of the steel product. Elements such as Nb may be present as residual contents that are not purposefully added.
- residual contents are controlled quantities of alloying elements, which are not considered to be impurities.
- a residual content as normally controlled by an industrial process does not have an essential effect upon the alloy.
- the present invention provides a method for manufacturing hot-rolled steel strip product comprising the following steps of
- a step of temper annealing is performed on the direct quenched and coiled strip product at a temperature in the range of 150 °C - 250 °C.
- the step of temper annealing is not required according to the present invention.
- the steel product is a steel strip having a thickness of 10 mm or less, preferably 8 mm or less, and more preferably 7 mm or less.
- the obtained steel product has a microstructure comprising, in terms of volume percentages (vol. %), at least 90 vol. % martensite, preferably at least 95 vol. % martensite, and more preferably at least 98 vol. % martensite, measured from 1 ⁇ 4 thickness of the steel strip product.
- the martensitic structure may be untempered, autotempered and/or tempered.
- the martensitic structure is not tempered. More preferably, the aforementioned microstructure comprises more than 10 vol. % untempered martensite.
- the microstructure comprises 0 - 1 vol. % residual austenite, and more preferably 0 - 0.5 vol. % residual austenite.
- the microstructure also comprises bainite, ferrite and/or pearlite.
- the obtained steel product has a prior austenite grain size of 50 ⁇ m or less, preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, measured from 1 ⁇ 4 thickness of the steel strip product.
- the aspect ratio of a prior austenite grain structure is one of the factors affecting a steel product's impact toughness and bendability.
- the prior austenite grain structure should have an aspect ratio of at least 1.5, preferably at least 2, and more preferably at least 3.
- the prior austenite grain structure should have an aspect ratio of 7 or less, preferably 5 or less, and more preferably 1.5 or less.
- the obtained steel product according to the present invention has a prior austenite grain structure with an aspect ratio in the range of 1.5 - 7, preferably 1.5 - 5, and more preferably 2-5, which ensures that a good balance of excellent impact toughness and excellent bendability can be achieved.
- the obtained steel product has a good balance of hardness and other mechanical properties such as improved resistance to climatic corrosion and excellent impact strength.
- the steel product has at least one of the following mechanical properties:
- the steel product exhibits excellent bendability or formability.
- the steel product has a minimum bending radius of 3.4 t or less in a measurement direction longitudinal to the rolling direction wherein the bending axis is longitudinal to rolling direction; a minimum bending radius of 2.7 t or less in a measurement direction transversal to the rolling direction wherein the bending axis is transversal to rolling direction; and wherein t is the thickness of the steel strip product.
- the steel product has a good balance of high hardness and excellent mechanical properties such as impact strength and formability/bendability. Consequently, the steel product exhibits excellent resistance to climatic corrosion.
- steel is defined as an iron alloy containing carbon (C).
- climatic corrosion refers to outdoor corrosion caused by local environmental conditions. Environmental conditions are formed from weather phenomena like rain and sunshine. They are also affected by different impurities in the air like chlorides from sea water and sulfur compounds coming from volcanic activity and industry or mining.
- Brinell hardness is a designation of hardness of steel.
- the Brinell hardness test is performed by pressing a 10 mm spherical tungsten carbide ball against a clean prepared surface using a 3000 kilogram force, producing an impression, measured and given a special numerical value.
- corrosion index refers to the American Society for Testing and Materials (ASTM) standard G101 which is currently the only available guide to quantify the atmospheric corrosion resistance of weathering steels as a function of their composition.
- accelerated continuous cooling refers to a process of accelerated cooling at a cooling rate down to a temperature without interruption.
- yield strength (YS, Rp 0.2 ) refers to 0.2 % offset yield strength defined as the amount of stress that will result in a plastic strain of 0.2 %.
- total elongation refers to the percentage by which the material can be stretched before it breaks; a rough indicator of formability, usually expressed as a percentage over a fixed gauge length of the measuring extensometer. Two common gauge lengths are 50 mm (A 50 ) and 80 mm (A 80 ).
- Minimum bending radius (Ri) is used to refer to the minimum radius of bending that can be applied to a test sheet without occurrence of cracks.
- the alloying content of steel together with the processing parameters determines the microstructure which in turn determines the mechanical properties of the steel.
- Alloy design is one of the first issues to be considered when developing a steel product with targeted mechanical properties.
- chemical composition according to the present invention is described in more details, wherein % of each component refers to weight percentage.
- Carbon C is used in the range of 0.17 % to 0.38 %.
- C alloying increases strength of steel by solid solution strengthening, and hence C content determines the strength level.
- C is used in the range of 0.17 % to 0.38% depending on targeted hardness. If the carbon content is less than 0.17%, it is difficult to achieve a Brinell hardness of more than 420 HBW. However, C has detrimental effects on weldability, impact toughness, formability or bendability, and resistance to stress corrosion cracking. Therefore, C content is set to not more than 0.38 %.
- C is used in the range of 0.21 % to 0.35 %, and more preferably 0.22 % to 0.28 %.
- Silicon Si is used in an amount of 0.01 to 0.5 %.
- Si is added to the composition to facilitate formation of a protective oxide layer under corrosive climate conditions, which provides good resistance against climatic corrosion and increases the durability of a paint layer that is easily damaged or removed from machines surfaces due to wear.
- Si is effective as a deoxidizing or killing agent that can remove oxygen from the melt during a steelmaking process.
- Si alloying enhances strength by solid solution strengthening, and enhances hardness by increasing austenite hardenability. Also the presence of Si can stabilize residual austenite.
- silicon content of higher than 0.5 % may unnecessarily increase carbon equivalent (CE) value thereby weakening the weldability.
- CE carbon equivalent
- Si is an important alloying element for providing sufficient hardness and good resistance to climatic corrosion, and for increasing durability of a paint layer.
- Si is used in the range of 0.01 % to 0.5 %, and more preferably 0.03 % to 0.25 %.
- Manganese Mn is used in the range of 0.1 % to 0.4 %.
- Mn alloying lowers martensite start temperature (Ms) and martensite finish temperature (Mf), which can suppress autotempering of martensite during quenching. Reduced autotempering of martensite leads to higher internal stresses that enhance the risk for quench-induced cracking or distortion of shape. Although a lower degree of autotempered martensitic microstructures is beneficial to higher hardness, its negative effects on impact strength should not be underestimated.
- Mn alloying also enhances strength by solid solution strengthening, and enhances hardness by increasing austenite hardenability. However, if the Mn content is too high, hardenability of the steel will increase at the expense of impact toughness. Excessive Mn alloying may also lead to C-Mn segregation and formation of MnS, which could induce formation of initiation sites for pitting corrosion and stress corrosion cracking.
- Mn is used in an amount of at least 0.1 % to ensure hardenability, but not more than 0.4 % to avoid the harmful effects as described above and to ensure excellent mechanical properties such as impact strength and bendability.
- a low level of Mn is used in the range of 0.15 % to 0.3 %.
- Aluminum Al is used in the range of 0.015 % to 0.15 %.
- Al is effective as a deoxidizing or killing agent that can remove oxygen from the melt during a steelmaking process.
- Al also removes N by forming stable AIN particles and provides grain refinement, which is beneficial to high toughness, especially at low temperatures.
- Al stabilizes residual austenite.
- an excess of Al may increase non-metallic inclusions thereby deteriorating cleanliness.
- Copper Cu is used in the range of 0.1 % to 0.6 %.
- Cu is added to the composition to facilitate formation of a protective oxide layer under corrosive climate conditions, which provides good resistance against climatic corrosion and increases the durability of a paint layer that is easily damaged or removed from machines surfaces due to wear.
- Cu may promote formation of low carbon bainitic structures, cause solid solution strengthening and contribute to precipitation strengthening.
- Cu may also have beneficial effects of inhibiting stress corrosion cracking. When added in excessive amounts, Cu deteriorates field weldability and the heat affected zone (HAZ) toughness. Therefore, the upper limit of Cu is set to 0.6%.
- Cu is an important alloying element for providing sufficient hardness and good resistance to climatic corrosion, and for increasing durability of a paint layer.
- Cu is used in the range of 0.1 % to 0.5 %, and more preferably 0.1 % to 0.35 %.
- Nickel Ni is used in in an amount of 0.2- to 0.8 %.
- Ni is used to avoid quench induced cracking and also to improve low temperature toughness.
- Ni is an alloying element that improves austenite hardenability thereby increasing strength with no or marginal loss of impact toughness and/or HAZ toughness.
- Ni also improves surface quality thereby preventing pitting corrosion, i.e. initiation site for stress corrosion cracking.
- Ni is added to the composition to facilitate formation of a protective oxide layer under corrosive climate conditions, which provides good resistance against climatic corrosion and increases the durability of a paint layer that is easily damaged or removed from machines surfaces due to wear.
- nickel contents of above 0.8 % would increase alloying costs too much without significant technical improvement.
- An excess of Ni may produce high viscosity iron oxide scales which deteriorate surface quality of the steel product.
- Higher Ni contents also have negative impacts on weldability due to increased CE value and cracking sensitivity coefficient.
- Ni is an important alloying element for providing sufficient hardness and good resistance to climatic corrosion with no or marginal loss of impact toughness, and for increasing durability of a paint layer. Ni is used in the range of 0.2 % to 0.8 %.
- Chromium Cr is used in the range of 0.1 % to 1 %.
- Cr is added to the composition to facilitate formation of a protective oxide layer under corrosive climate conditions, which provides good resistance against climatic corrosion and increases the durability of a paint layer that is easily damaged or removed from machines surfaces due to wear.
- Cr alloying provides better resistance against pitting corrosion thereby preventing stress corrosion cracking at an early stage.
- mid-strength carbide forming element Cr increases the strength of both the base steel and weld with marginal expense of impact toughness.
- Cr alloying also enhances strength and hardness by increasing austenite hardenability. However, if Cr is used in an amount above 1 % the HAZ toughness as well as field weldability may be adversely affected.
- Cr is an important alloying element for providing sufficient hardness and good resistance to climatic corrosion with no or marginal loss of impact toughness, and for increasing durability of a paint layer.
- Cr is used in the range of 0.3 % to 1 %, more preferably 0.35 % to 1 %, and even more preferably 0.35 % to 0.8 %.
- Molybdenum Mo is used in the range of 0.01 % to 0.3 %.
- Mo alloying improves impact strength, low-temperature toughness and tempering resistance.
- the presence of Mo enhances strength and hardness by increasing austenite hardenability.
- Mo can be added to the composition to provide hardenability in place of Mn.
- B alloying Mo is usually required to ensure the effectiveness of B.
- Mo is not an economically acceptable alloying element. If Mo is used in an amount of above 0.3 % toughness may be deteriorated thereby increasing the risk of brittleness. An excessive amount of Mo may also reduce the effect of B.
- the inventors have noticed that Mo alloying retards recrystallization of austenite thereby increasing the aspect ratio of a prior austenite grain structure. Therefore, the level of Mo content should be carefully controlled to prevent excessive elongation of the prior austenite grains which may deteriorate bendability of the steel product.
- Mo is used in the range of 0.03 % to 0.3 %, and more preferably 0.05 % to 0.3 %.
- Niobium Nb is used in an amount of 0.005 % or less.
- Nb forms carbides NbC and carbonitrides Nb(C,N).
- Nb is considered to be the major grain refining element.
- Nb contributes to strengthening and toughening of steels.
- Nb addition should be limited to 0.005 % since an excess of Nb deteriorates bendability, in particular when direct quenching is applied and/or when Mo is present in the composition.
- Nb can be harmful for HAZ toughness since Nb may promote the formation of coarse upper bainite structure by forming relatively unstable TiNbN or TiNb(C,N) precipitates.
- the level of Nb should be restricted to the lowest possible to increase formability or bendability of the steel product.
- Titanium Ti is used in an amount of 0.05 % or less.
- TiC precipitates are able to deeply trap a significant amount of hydrogen H, which decreases the H diffusivity in the materials and removes some of the detrimental H from the microstructure to prevent stress corrosion cracking.
- Ti is also added to bind free N that is harmful to toughness by forming stable TiN that together with NbC can efficiently prevent austenite grain growth in the reheating stage at high temperatures.
- TiN precipitates can further prevent grain coarsening in the HAZ during welding thereby improving toughness.
- TiN formation suppresses BN precipitation, thereby leaving B free to make its contribution to hardenability.
- the ratio of Ti/N is at least 3.4. However, if Ti content is too high, coarsening of TiN and precipitation hardening due to TiC develop and the low-temperature toughness may be deteriorated. Therefore, it is necessary to restrict titanium so that it is less than 0.05%.
- Ti is used in an amount of 0.035 % or less, and more preferably 0.02 % or less. If the steel product has a low nitrogen content of 0.003 % or less, it is unnecessary to add Ti to ensure the boron hardenability effect, and the Ti content can be as low as 0.005 % or less. If the nitrogen content is more than 0.003 % but no more than 0.01 %, the Ti content can be more than 0.005 % but no more than 0.05%.
- Vanadium V is used in an amount of 0 to 0.06 %.
- V has substantially the same but smaller effects as Nb.
- V 4 C 3 precipitates are able to deeply trap a significant amount of hydrogen H, which decreases the H diffusivity in the materials and removes some of the detrimental H from the microstructure to prevent HIC.
- V is a strong carbide and nitride former, but V(C,N) can also form and its solubility in austenite is higher than that of Nb or Ti.
- V alloying has potential for dispersion and precipitation strengthening, because large quantities of V are dissolved and available for precipitation in ferrite.
- an addition of more than 0.2 % V has negative effects on weldability and hardenability.
- V is used in an amount of 0.06 % or less.
- Boron B is used in the range of 0.0005 % to 0.005 %.
- B is a well-established microalloying element to increase hardenability.
- the most effective B alloying would preferably require the presence of Ti in an amount of at least 3.42 N to prevent formation of BN.
- the Ti content can be lowered to 0.005 % or less, which is beneficial to low-temperature toughness. Hardenability deteriorates if the B content exceeds 0.005 %.
- B is used in the range of 0.0008 % to 0.005 %.
- Calcium Ca is used in an amount of 0.0008 to 0.003 %.
- Ca addition during a steelmaking process is for refining, deoxidation, desulphurization, and control of shape, size and distribution of oxide and sulphide inclusions.
- Ca is usually added to improve subsequent coating.
- an excessive amount of Ca should be avoided to achieve clean steel thereby preventing the formation of calcium sulfide (CaS) or calcium oxide (CaO) or mixture of these (CaOS) that may deteriorate the mechanical properties such as bendability and SCC resistance.
- Ca is used in an amount of 0.0008 % to 0.003 % to ensure excellent mechanical properties such as impact strength and bendability.
- the Ca/S ratio is adjusted such that CaS cannot form thereby improving impact toughness and bendability.
- the inventors have noticed that, in general, during the steelmaking process the optimal Ca/S ratio is in the range of 1 - 2, preferably 1.1 - 1.7, and more preferably 1.2 - 1.6 for clean steel.
- Unavoidable impurities can be phosphor P, sulfur S, nitrogen N.
- Their content in terms of weight percentages is preferably defined as follows: P 0 - 0.025, preferably 0.001 - 0.025, more preferably 0.001 - 0.012 S 0 - 0.008, preferably 0 - 0.005, more preferably 0 - 0.002 N 0 - 0.01, preferably 0 - 0.005, more preferably 0 - 0.004
- the steel product with the targeted mechanical properties is produced in a process that determines a specific microstructure which in turn dictates the mechanical properties of the steel product.
- the first step is to provide a steel slab by means of, for instance a process of continuous casting, also known as strand casting.
- the steel slab is heated to the austenitizing temperature of 1200 - 1350 °C, and thereafter subjected to a temperature equalizing step that may take 30 to 150 minutes.
- the reheating and equalizing steps are important for controlling the austenite grain growth. An increase in the heating temperature can cause dissolution and coarsening of alloy precipitates, which may result in abnormal grain growth.
- the final steel product has a prior austenite grain size of 50 ⁇ m or less, preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, measured from 1 ⁇ 4 thickness of the steel strip product.
- the slab is hot rolled to the desired thickness at a temperature in the range of Ar3 to 1300°C, wherein the finish rolling temperature (FRT) is in the range of 800 °C to 960 °C, preferably 870°C - 930°C, more preferably 885°C - 930°C.
- FRT finish rolling temperature
- the aspect ratio of a prior austenite grain structure is one of the factors affecting a steel product's impact toughness and bendability.
- the prior austenite grain structure should have an aspect ratio of at least 1.5, preferably at least 2, and more preferably at least 3.
- the prior austenite grain structure should have an aspect ratio of 7 or less, preferably 5 or less, and more preferably 1.5 or less.
- a desired aspect ratio of prior austenite grains can be achieved by adjusting a number of parameters such as finish rolling temperature, strain/deformation, strain rate, and/or alloying with the elements such as Mo that retard recrystallization of austenite.
- the obtained steel product according to the present invention has a prior austenite grain structure with an aspect ratio in the range of 1.5 - 7, preferably 1.5 - 5, and more preferably 2-5, which ensures that a good balance of excellent impact toughness and excellent bendability can be achieved.
- the obtained steel strip product has a thickness of 10 mm or less, preferably 8 mm or less, more preferably 7 mm or less.
- the hot-rolled steel strip product is direct quenched to a cooling end and coiling temperature of 450 °C or less, preferably 250 °C or less, more preferably 150 °C or less, and even more preferably 100 °C or less.
- the cooling rate is at least 30 °C/s.
- the direct quenched steel strip product is coiled at temperature of 450 °C or less, preferably 250 °C or less, more preferably 150 °C or less, and even more preferably 100 °C or less.
- the obtained steel strip product has a microstructure comprising, in terms of volume percentages (vol. %), at least 90 vol. % martensite, preferably at least 95 vol. % martensite, and more preferably at least 98 vol. % martensite, measured from 1 ⁇ 4 thickness of the steel strip product.
- the martensitic structure may be untempered, autotempered and/or tempered.
- the martensitic structure is not tempered. More preferably, the aforementioned microstructure comprises more than 10 vol. % untempered martensite.
- the microstructure comprises 0 - 1 vol. % residual austenite, and more preferably 0 - 0.5 vol. % residual austenite.
- the microstructure also comprises bainite, ferrite and/or pearlite.
- an extra step of temper annealing is performed at a temperature in the range of 150 °C - 250 °C.
- the steel strip product has a good balance of hardness and other mechanical properties such as excellent impact strength, improved resistance to climatic corrosion and excellent formability/bendability.
- the steel strip product has a high Brinell hardness in the range of 420 - 580 HBW, preferably 450 - 550 HBW, and more preferably 470 - 530 HBW.
- the steel strip product has a corrosion index (ASTM G101-04) of at least 5, preferably at least 5.5, and more preferably at least 6, which indicates improved resistance against climatic corrosion.
- the durability of a paint layer is increased and the repainting interval can be 1.5 - 2 times longer by using the steel product of the invention.
- the corrosion index (ASTM G101-04) is used for estimating long term atmospheric corrosion of low alloy steels in various environments.
- the corrosion index (ASTM G101-04) equation is formed with a statistical method from long term outdoor corrosion exposure tests, which equation is represented as follows.
- I ASTGM 101 26.01 % Cu + 3.88 % Ni + 1.20 % Cr + 1.49 % Si + 17.28 % P ⁇ 7.29 % Cu % Ni ⁇ 9.10 % Ni % P ⁇ 33.39 % Cu 2
- the steel strip product with high hardness has a Charpy-V impact toughness of at least 34 J/cm 2 at a temperature of -20 °C or -40 °C thereby fulfilling the conventional impact strength requirements.
- the steel strip product exhibits excellent bendability or formability.
- the steel product has a minimum bending radius of 3.4 t or less in a measurement direction longitudinal to the rolling direction wherein the bending axis is longitudinal to rolling direction; a minimum bending radius of 2.7 t or less in a measurement direction transversal to the rolling direction wherein the bending axis is transversal to rolling direction; and wherein t is the thickness of the steel strip product.
- Microstructure can be characterized from SEM micrographs and the volume fraction can be determined using point counting or image analysis method.
- the microstructures of the tested inventive examples no. 1 - 4 all have a main phase of at least 90 vol. % martensite.
- Figure 1 is an SEM image on the RD-ND plane from 1 ⁇ 4 thickness of the steel strip no. 1, where the prior austenite grain boundaries are visualized.
- the prior austenite grain structure of the steel strip no. 1 has an aspect ratio of 3.4.
- each one of the inventive examples no. 1 - 4 exhibits a Brinell harness in the range of 475 - 491 HBW.
- the comparative example no. 5 exhibits a Brinell harness of 486 HBW while the comparative example no. 6 exhibits a Brinell harness of 469 HBW.
- the corrosion index (ASTM G101-04) is calculated based on the American Society for Testing and Materials (ASTM) standard G101. As shown in Table 3, each one of the inventive examples no. 1 - 4 has a corrosion index (ASTM G101-04) of at least 5.28. On the other hand, the comparative examples no. 5 and 6 have a much lower corrosion index (ASTM G101-04) of 3.4 and 1.04 respectively.
- the impact toughness values at -20 °C or -40 °C were obtained by Charpy V-notch tests according to the ASME (American Society of Mechanical Engineers) Standards.
- the inventive examples no. 1 and 2 have a Charpy-V impact toughness of 63 J/cm 2 and 45 J/cm 2 respectively at a temperature of -20 °C (Table 3).
- Each one of the inventive examples no. 1 - 4 has a Charpy-V impact toughness in the range of 38 - 120 J/cm 2 at a temperature of -40 °C if the measurement direction is longitudinal to the rolling direction.
- the comparative example no. 5 has a better Charpy-V impact toughness values than the inventive examples no. 1 and 2 at the expense of bendability.
- Elongation was determined according ASTM E8 standard using transverse specimens of a produced batch of 2000 ton of plates.
- the mean value of total elongation (A 50 ) of the inventive examples no. 1 and 2 is 11.6 and 11.3 respectively (Table 3), which is better than the comparative examples no. 5 and 6 having a mean A 50 value of 10.1 and 9.1 respectively.
- the comparative examples no. 5 and 6 have better A 50 values than the inventive examples no. 3 and 4 at the expense of Charpy-V impact toughness.
- the bend test consists of subjecting a test piece to plastic deformation by three-point bending, with one single stroke, until a specified angle 90° of the bend is reached after unloading.
- the inspection and assessment of the bends is a continuous process during the whole test series. This is to be able to decide if the punch radius (R) should be increased, maintained or decreased.
- the limit of bendability (R/t) for a material can be identified in a test series if a minimum of 3 m bending length, without any defects, is fulfilled with the same punch radius (R) both longitudinally and transversally. Cracks, surface necking marks and flat bends (significant necking) are registered as defects.
- each one of the inventive examples no. 1 - 4 has a minimum bending radius of 3.3 t or less in a measurement direction longitudinal to the rolling direction; a minimum bending radius of 2.6 t or less in a measurement direction transversal to the rolling direction; and wherein t is the thickness of the steel strip product (Table 3).
- the comparative example no. 5 exhibits lower bendability with a minimum bending radius of 3.7 t in a measurement direction longitudinal to the rolling direction and a minimum bending radius of 2.2 t in a measurement direction transversal to the rolling direction.
- Yield strength was determined according ASTM E8 standard using transverse specimens of a produced batch of 2000 ton of plates.
- Each one of the inventive examples no. 1 - 4 has a mean value of yield strength (Rp 0.2 ) in the range of 1302 MPa to 1399 MPa, measured in the longitudinal direction (Table 3).
- the comparative examples no. 5 and 6 have a mean value of yield strength (Rp 0.2 ) of 1262 MPa and 1338 MPa respectively, measured in the longitudinal direction (Table 3).
- Tensile strength was determined according ASTM E8 standard using transverse specimens of a produced batch of 2000 ton of plates.
- Each one of the inventive examples no. 1 - 4 has a mean value of ultimate tensile strength (Rm) in the range of 1509 MPa to 1566 MPa, measured in the longitudinal direction (Table 3).
- the comparative examples no. 5 and 6 have a mean value of ultimate tensile strength (Rm) of 1550 MPa and 1552 MPa respectively, measured in the longitudinal direction (Table 3).
- Table 1 Chemical compositions (wt. %).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Claims (11)
- Produit de bande d'acier laminées à chaud comprenant une composition constituée, en termes de pourcentages en poids (% en poids), de :
C de 0,17 à 0,38, de préférence de 0,21 à 0,35, plus préférablement de 0,22 à 0,28 Si de 0,01 à 0,5, plus préférablement de 0,03 à 0,25 Mn de 0,1 à 0,4, de préférence de 0,15 à 0,3 Al de 0,015 à 0,15 Cu de 0,1 à 0,6, de préférence de 0,1 à 0,5, plus préférablement de 0,1 à 0,35 Ni de 0,2 à 0,8 Cr de 0,1 à 1, de préférence de 0,3 à 1, plus préférablement de 0,35 à 1, encore plus préférablement de 0,35 à 0,8 Mo de 0,01 à 0,3, de préférence de 0,03 à 0,3, plus préférablement de 0,05 à 0,3 Nb de 0 à 0,005 Ti de 0 à 0,05, de préférence de 0 à 0,035, plus préférablement de 0 à 0,02 V de 0 à 0,06 B de 0,0005 à 0,005, de préférence de 0,0008 à 0,005 P de 0 à 0,025, de préférence de 0,001 à 0,025, plus préférablement de 0,001 à 0,012 S de 0 à 0,008, de préférence de 0 à 0,005, plus préférablement de 0 à 0,002 N de 0 à 0,01, de préférence de 0 à 0,005, plus préférablement de 0 à 0,004 Ca de 0,0008 à 0,003 du reste de Fe et des impuretés inévitables, le produit d'acier ayant une dureté Brinell dans la plage comprise entre 420 et 580 HBW, etun indice de corrosion (ASTM G101-04) d'au moins 5, etle produit d'acier ayant une microstructure constituée, en termes de pourcentage en volume (% en volume), de :martensite ≥ 90, austénite résiduelle 0 à 1, le reste de la bainite, de la ferrite et/ou de la perlite, etle produit de bande d'acier ayant une épaisseur de 10 mm ou moins, etla quantité de Ti étant dans la plage comprise entre 0 et 0,005 % en poids lorsque la quantité de N est dans la plage comprise entre 0 et 0,003 % en poids, la quantité de Ti étant supérieure à 0,005 % en poids et pas plus de 0,05 % en poids lorsque la quantité de N est supérieure à 0,003 % en poids et pas plus de 0,01 % en poids, et le produit d'acier ayant une ténacité Charpy-V d'au moins 34 J/cm2 à une température de -20 °C ou -40 °C dans le sens transversal et/ou longitudinal. - Produit d'acier selon la revendication 1, dans lequel[Ni] > [Cu]/3, de préférence [Ni] > [Cu]/2, et[Ni] étant la quantité de Ni dans la composition,[Cu] étant la quantité de Cu dans la composition.
- Produit d'acier selon l'une quelconque des revendications précédentes, dans lequel le rapport Ca/S est dans la plage comprise entre 1 et 2, de préférence entre 1,1 et 1,7, et plus préférablement entre 1,2 et 1,6.
- Produit d'acier selon l'une quelconque des revendications précédentes, dans lequel le produit d'acier a une dureté Brinell dans la plage de 450 à 550 HBW, de préférence de 470 à 530 HBW.
- Produit d'acier selon l'une quelconque des revendications précédentes, dans lequel le produit d'acier a un indice de corrosion (ASTM G101-04) d'au moins 5,5, de préférence d'au moins 6.
- Produit d'acier selon l'une quelconque des revendications précédentes, dans lequel le produit d'acier a un rayon de courbure minimum de 3,4 t ou moins dans une direction de mesure longitudinale à la direction de laminage ; un rayon de courbure minimal de 2,7 t ou moins dans une direction de mesure transversale à la direction de laminage ; et t étant l'épaisseur du produit de bande d'acier.
- Produit d'acier selon l'une quelconque des revendications précédentes, dans lequel le produit d'acier a une microstructure constituée, en termes de pourcentages en volume (% en volume), de :martensite de préférence ≥ 95, plus préférablement ≥ 98 austénite résiduelle de préférence entre 0 et 0,5,le reste de la bainite, de la ferrite et/ou de la perlite.
- Produit d'acier selon l'une quelconque des revendications précédentes, dans lequel le produit d'acier a une taille de grain d'austénite antérieure de 50 µm ou moins, de préférence de 30 µm ou moins, plus préférablement de 20 µm ou moins.
- Produit d'acier selon l'une quelconque des revendications précédentes, dans lequel le produit d'acier a une structure antérieure de grains d'austénite avec un rapport d'aspect dans la plage comprise entre 1,5 et 7, de préférence entre 1,5 et 5, plus préférablement entre 2 et 5.
- Produit d'acier selon l'une quelconque des revendications précédentes, de préférence de 8 mm ou moins, et plus préférablement de 7 mm ou moins.
- Procédé de fabrication du produit d'acier selon l'une quelconque des revendications précédentes, comprenant les étapes suivantes- la fourniture d'une dalle d'acier constituée de la composition chimique selon l'une quelconque des revendications 1 à 3 ;- le chauffage de la dalle d'acier à la température d'austénitisation entre 1200 et 1350 °C ;- l'égalisation de la température pendant 30 à 150 minutes ;- le laminage à chaud à l'épaisseur souhaitée à une température dans la plage comprise entre Ar3 et 1300 °C, la température de laminage de finition étant dans la plage comprise entre 800 °C et 960 °C, de préférence entre 870 °C et 930 °C, plus préférablement entre 885 °C et 930 °C ;- la trempe directe du produit de bande d'acier laminé à chaud à une extrémité de refroidissement et à une température d'enroulement de 450 °C ou moins, de préférence de 250 °C ou moins, plus préférablement de 150 °C ou moins, et encore plus préférablement de 100 °C ou moins ; et- éventuellement, un recuit de revenu à une température dans la plage comprise entre 150 °C et 250 °C.
Priority Applications (16)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL19167552.9T PL3719148T3 (pl) | 2019-04-05 | 2019-04-05 | Wyrób stalowy o wysokiej twardości i sposób jego wytwarzania |
EP19167552.9A EP3719148B1 (fr) | 2019-04-05 | 2019-04-05 | Produit d'acier à dureté élevée et son procédé de fabrication |
SI201930516T SI3719148T1 (sl) | 2019-04-05 | 2019-04-05 | Izdelek iz jekla visoke trdote in način njegove izdelave |
EP19185759.8A EP3719149B1 (fr) | 2019-04-05 | 2019-07-11 | Produit d'acier à dureté élevée et son procédé de fabrication |
JP2021559152A JP2022528420A (ja) | 2019-04-05 | 2020-04-02 | 高硬度鋼材およびその製造方法 |
CA3135141A CA3135141A1 (fr) | 2019-04-05 | 2020-04-02 | Produit en acier de haute durete et procede de fabrication d'un tel produit |
CA3135144A CA3135144A1 (fr) | 2019-04-05 | 2020-04-02 | Produit en acier haute durete et procede de fabrication associe |
US17/601,234 US20220177997A1 (en) | 2019-04-05 | 2020-04-02 | High-Hardness Steel Product and Method of Manufacturing the Same |
KR1020217035749A KR20210149123A (ko) | 2019-04-05 | 2020-04-02 | 고-경도 강 제품 및 그 제조 방법 |
CN202080026935.0A CN113785078B (zh) | 2019-04-05 | 2020-04-02 | 高硬度钢产品及其制造方法 |
BR112021019860A BR112021019860A2 (pt) | 2019-04-05 | 2020-04-02 | Produto de aço de alta dureza e método de fabricação do mesmo |
BR112021019865A BR112021019865A2 (pt) | 2019-04-05 | 2020-04-02 | Produto de aço de alta dureza e método de fabricação do mesmo |
PCT/EP2020/059423 WO2020201437A1 (fr) | 2019-04-05 | 2020-04-02 | Produit en acier de haute dureté et procédé de fabrication d'un tel produit |
CN202080026939.9A CN113785079B (zh) | 2019-04-05 | 2020-04-02 | 高硬度钢产品及其制造方法 |
PCT/EP2020/059424 WO2020201438A1 (fr) | 2019-04-05 | 2020-04-02 | Produit en acier haute dureté et procédé de fabrication associé |
US17/601,227 US20220177996A1 (en) | 2019-04-05 | 2020-04-02 | High-Hardness Steel Product and Method of Manufacturing the Same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19167552.9A EP3719148B1 (fr) | 2019-04-05 | 2019-04-05 | Produit d'acier à dureté élevée et son procédé de fabrication |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3719148A1 EP3719148A1 (fr) | 2020-10-07 |
EP3719148B1 true EP3719148B1 (fr) | 2023-01-25 |
Family
ID=66101932
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19167552.9A Active EP3719148B1 (fr) | 2019-04-05 | 2019-04-05 | Produit d'acier à dureté élevée et son procédé de fabrication |
EP19185759.8A Active EP3719149B1 (fr) | 2019-04-05 | 2019-07-11 | Produit d'acier à dureté élevée et son procédé de fabrication |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19185759.8A Active EP3719149B1 (fr) | 2019-04-05 | 2019-07-11 | Produit d'acier à dureté élevée et son procédé de fabrication |
Country Status (10)
Country | Link |
---|---|
US (2) | US20220177997A1 (fr) |
EP (2) | EP3719148B1 (fr) |
JP (1) | JP2022528420A (fr) |
KR (1) | KR20210149123A (fr) |
CN (2) | CN113785078B (fr) |
BR (2) | BR112021019865A2 (fr) |
CA (2) | CA3135141A1 (fr) |
PL (1) | PL3719148T3 (fr) |
SI (1) | SI3719148T1 (fr) |
WO (2) | WO2020201437A1 (fr) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102175570B1 (ko) * | 2018-09-27 | 2020-11-06 | 주식회사 포스코 | 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법 |
CN113195759B (zh) | 2018-10-26 | 2023-09-19 | 欧瑞康美科(美国)公司 | 耐腐蚀和耐磨镍基合金 |
CA3136967A1 (fr) | 2019-05-03 | 2020-11-12 | Oerlikon Metco (Us) Inc. | Charge d'alimentation pulverulente destinee au soudage en vrac resistant a l'usure, concue pour optimiser la facilite de production |
WO2023067544A1 (fr) * | 2021-10-20 | 2023-04-27 | Tata Steel Limited | Acier laminé à chaud faiblement allié de haute dureté et son procédé de fabrication |
JP2024526658A (ja) | 2021-11-02 | 2024-07-19 | エルジー エナジー ソリューション リミテッド | 二次電池用正極活物質 |
EP4180544A1 (fr) * | 2021-11-11 | 2023-05-17 | SSAB Technology AB | Procédé de bande d'acier laminée à chaud et son procédé de production |
CN114774772B (zh) * | 2022-03-07 | 2023-10-31 | 江阴兴澄特种钢铁有限公司 | 一种耐腐蚀500hb马氏体耐磨钢板及其生产方法 |
CN115058572B (zh) * | 2022-06-13 | 2023-07-04 | 北京科技大学 | 一种添加中间层的不锈钢/碳钢层状复合板及其制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2013204206A1 (en) * | 2012-10-19 | 2014-05-08 | Bluescope Steel Limited | Steel Plate |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101270439A (zh) * | 2007-03-23 | 2008-09-24 | 宝山钢铁股份有限公司 | 一种高强度热轧防弹钢板及其制造方法 |
JP5145804B2 (ja) * | 2007-07-26 | 2013-02-20 | Jfeスチール株式会社 | 耐低温焼戻し脆化割れ特性に優れた耐磨耗鋼板 |
CN101660108A (zh) * | 2009-10-16 | 2010-03-03 | 江苏省沙钢钢铁研究院有限公司 | 非调质针状组织高强度低屈强比耐候钢及其生产方法 |
WO2011099408A1 (fr) * | 2010-02-15 | 2011-08-18 | 新日本製鐵株式会社 | Procédé de production de tôles d'acier épaisses |
CN102199737B (zh) | 2010-03-26 | 2012-09-19 | 宝山钢铁股份有限公司 | 一种600hb级耐磨钢板及其制造方法 |
CN103261451B (zh) * | 2010-06-03 | 2015-06-24 | 新日铁住金株式会社 | 安全气囊用钢管的制造方法 |
EP2695960B1 (fr) | 2011-03-29 | 2018-02-21 | JFE Steel Corporation | Tôle d'acier résistant à l'abrasion qui présente une excellente résistance à une fissuration par corrosion sous tension et procédé de production de cette dernière |
FI20115702L (fi) * | 2011-07-01 | 2013-01-02 | Rautaruukki Oyj | Menetelmä suurlujuuksisen rakenneteräksen valmistamiseksi ja suurlujuuksinen rakenneteräs |
CN102392186B (zh) | 2011-11-07 | 2012-11-07 | 南京钢铁股份有限公司 | 一种hb500级低锰耐磨钢板的制造方法 |
US9803256B2 (en) * | 2013-03-14 | 2017-10-31 | Tenaris Coiled Tubes, Llc | High performance material for coiled tubing applications and the method of producing the same |
FI20135775L (fi) * | 2013-07-16 | 2014-09-03 | Rautaruukki Oyj | Menetelmä valmistaa galvannealed-käsitelty teräsnauhatuote kuumapuristusmuovaukseen, menetelmä valmistaa kuumapuristettu teräskomponentti, ja galvannealed-käsitelty teräsnauhatuote |
EP2789699B1 (fr) * | 2013-08-30 | 2016-12-28 | Rautaruukki Oy | Produit d'acier laminé à chaud de grande dureté et procédé de fabrication de celui-ci |
CN106103749A (zh) * | 2014-01-24 | 2016-11-09 | 罗奇钢铁公司 | 热轧超高强度钢带产品 |
CN103820717A (zh) | 2014-01-28 | 2014-05-28 | 莱芜钢铁集团有限公司 | 钢板及其制备方法 |
JP6394378B2 (ja) * | 2014-12-26 | 2018-09-26 | 新日鐵住金株式会社 | 耐摩耗鋼板およびその製造方法 |
EP3390040B2 (fr) * | 2015-12-15 | 2023-08-30 | Tata Steel IJmuiden B.V. | Bande d'acier galvanisé à chaud haute résistance |
US10174398B2 (en) * | 2016-02-22 | 2019-01-08 | Nucor Corporation | Weathering steel |
WO2017183059A1 (fr) * | 2016-04-19 | 2017-10-26 | Jfeスチール株式会社 | Tôle d'acier résistante à l'abrasion et procédé de production de tôle d'acier résistante à l'abrasion |
US11035018B2 (en) * | 2016-04-19 | 2021-06-15 | Jfe Steel Corporation | Abrasion-resistant steel plate and method of producing abrasion-resistant steel plate |
US20190368014A1 (en) * | 2017-01-26 | 2019-12-05 | Ssab Technology Ab | Quench hardened steel |
MX2019010416A (es) * | 2017-03-13 | 2019-10-15 | Jfe Steel Corp | Placa de acero resistente a la abrasion y metodo de fabricacion de la misma. |
-
2019
- 2019-04-05 SI SI201930516T patent/SI3719148T1/sl unknown
- 2019-04-05 PL PL19167552.9T patent/PL3719148T3/pl unknown
- 2019-04-05 EP EP19167552.9A patent/EP3719148B1/fr active Active
- 2019-07-11 EP EP19185759.8A patent/EP3719149B1/fr active Active
-
2020
- 2020-04-02 BR BR112021019865A patent/BR112021019865A2/pt unknown
- 2020-04-02 US US17/601,234 patent/US20220177997A1/en active Pending
- 2020-04-02 JP JP2021559152A patent/JP2022528420A/ja active Pending
- 2020-04-02 US US17/601,227 patent/US20220177996A1/en active Pending
- 2020-04-02 WO PCT/EP2020/059423 patent/WO2020201437A1/fr active Application Filing
- 2020-04-02 CN CN202080026935.0A patent/CN113785078B/zh active Active
- 2020-04-02 CA CA3135141A patent/CA3135141A1/fr active Pending
- 2020-04-02 BR BR112021019860A patent/BR112021019860A2/pt unknown
- 2020-04-02 CN CN202080026939.9A patent/CN113785079B/zh active Active
- 2020-04-02 KR KR1020217035749A patent/KR20210149123A/ko unknown
- 2020-04-02 CA CA3135144A patent/CA3135144A1/fr active Pending
- 2020-04-02 WO PCT/EP2020/059424 patent/WO2020201438A1/fr active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2013204206A1 (en) * | 2012-10-19 | 2014-05-08 | Bluescope Steel Limited | Steel Plate |
Also Published As
Publication number | Publication date |
---|---|
US20220177997A1 (en) | 2022-06-09 |
BR112021019865A2 (pt) | 2021-12-07 |
CN113785079B (zh) | 2024-04-05 |
PL3719148T3 (pl) | 2023-05-08 |
US20220177996A1 (en) | 2022-06-09 |
WO2020201437A1 (fr) | 2020-10-08 |
EP3719149A1 (fr) | 2020-10-07 |
SI3719148T1 (sl) | 2023-06-30 |
BR112021019860A2 (pt) | 2021-12-07 |
CN113785078B (zh) | 2023-10-27 |
CN113785078A (zh) | 2021-12-10 |
CN113785079A (zh) | 2021-12-10 |
CA3135141A1 (fr) | 2020-10-08 |
KR20210149123A (ko) | 2021-12-08 |
JP2022528420A (ja) | 2022-06-10 |
WO2020201438A1 (fr) | 2020-10-08 |
EP3719149B1 (fr) | 2023-03-22 |
EP3719148A1 (fr) | 2020-10-07 |
CA3135144A1 (fr) | 2020-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3719148B1 (fr) | Produit d'acier à dureté élevée et son procédé de fabrication | |
EP3080322B1 (fr) | Acier martensitique présentant de la résistance à la rupture différée et procédé de fabrication s'y rapportant | |
EP2546375B1 (fr) | Pièce emboutie haute résistance et son procédé de production | |
EP2157203B1 (fr) | Tôle d'acier hautement résistante à formabilité supérieure | |
EP2258886B1 (fr) | Tôle d'acier galvanisée par immersion à chaud, à haute résistance, présentant une excellente aptitude au traitement et son procédé de fabrication | |
EP1870483B1 (fr) | Tole d'acier laminee a chaud, procede de sa production et article moule forme a partir de ce tole d'acier laminee a chaud | |
EP2735623B1 (fr) | Feuille d'acier à haute résistance pour le formage à chaud et son procédé de fabrication | |
EP1918400A1 (fr) | Tuyau d acier sans couture pour tuyau d'oléoduc et procédé de fabrication idoine | |
US20180044759A1 (en) | High-strength air-hardening multi-phase steel comprising outstanding processing properties and method for the production of a steel strip from said steel | |
EP2792762A1 (fr) | Tôle d'acier laminée à froid haute résistance et à rapport d'élasticité élevé et procédé permettant de produire cette dernière | |
CN110621794B (zh) | 具有优异延展性和可拉伸翻边性的高强度钢片 | |
EP3269837B1 (fr) | Acier micro allié et procédé de production dudit acier | |
KR20220088903A (ko) | 강판 및 도금 강판 | |
KR102674055B1 (ko) | 내마모 박강판 및 그의 제조 방법 | |
EP3964600A1 (fr) | Feuille d'acier très haute résistance offrant une excellente ouvrabilité de cisaillement et son procédé de fabrication | |
JPH06145891A (ja) | 延性と耐遅れ破壊特性に優れた高強度冷延鋼板およびその製造方法 | |
EP4180544A1 (fr) | Procédé de bande d'acier laminée à chaud et son procédé de production | |
KR102468035B1 (ko) | 열적 안정성이 우수한 고항복비 고강도 강판 및 그 제조방법 | |
EP4450671A1 (fr) | Produit en acier et son procédé de fabrication | |
JP2023547428A (ja) | 耐水素脆性及び耐衝突性に優れた熱間成形用めっき鋼板、熱間成形部材及びそれらの製造方法 | |
CN118284716A (zh) | 冷轧钢板及其制造方法 | |
KR20210063135A (ko) | 내구성 및 연신율이 우수한 후물 변태조직강 및 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210209 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: VIROLAINEN, ESA Inventor name: GLADH, MAGNUS Inventor name: LIIMATAINEN, TOMMI Inventor name: LARSSON, MAGNUS Inventor name: SUIKKANEN, PASI Inventor name: HEMMILAE, MIKKO |
|
17Q | First examination report despatched |
Effective date: 20210331 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22C 38/54 20060101ALI20221102BHEP Ipc: C22C 38/44 20060101ALI20221102BHEP Ipc: C22C 38/42 20060101ALI20221102BHEP Ipc: C22C 38/04 20060101ALI20221102BHEP Ipc: C21D 8/02 20060101AFI20221102BHEP |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
INTG | Intention to grant announced |
Effective date: 20221121 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: GLADH, MAGNUS Inventor name: LARSSON, MAGNUS Inventor name: SUIKKANEN, PASI Inventor name: VIROLAINEN, ESA Inventor name: LIIMATAINEN, TOMMI Inventor name: HEMMILAE, MIKKO |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1545951 Country of ref document: AT Kind code of ref document: T Effective date: 20230215 Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602019024692 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20230125 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1545951 Country of ref document: AT Kind code of ref document: T Effective date: 20230125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230125 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230525 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230425 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230125 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230125 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230125 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230125 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230125 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230525 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230426 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230125 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602019024692 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230125 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230125 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230125 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230125 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230125 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230425 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230405 |
|
26N | No opposition filed |
Effective date: 20231026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230425 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230125 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230430 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230425 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230430 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230125 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240329 Year of fee payment: 6 Ref country code: PL Payment date: 20240307 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240415 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SI Payment date: 20240311 Year of fee payment: 6 Ref country code: FR Payment date: 20240422 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20240416 Year of fee payment: 6 |