EP3717545A1 - Method for preparing sioc-linked polyether siloxanes branched in the siloxane part - Google Patents
Method for preparing sioc-linked polyether siloxanes branched in the siloxane partInfo
- Publication number
- EP3717545A1 EP3717545A1 EP18752163.8A EP18752163A EP3717545A1 EP 3717545 A1 EP3717545 A1 EP 3717545A1 EP 18752163 A EP18752163 A EP 18752163A EP 3717545 A1 EP3717545 A1 EP 3717545A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- branched
- siloxane
- polyether
- radical
- siloxanes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- -1 siloxanes Chemical class 0.000 title claims abstract description 99
- 229920000570 polyether Polymers 0.000 title claims abstract description 59
- 239000004721 Polyphenylene oxide Substances 0.000 title claims abstract description 54
- 238000000034 method Methods 0.000 title claims abstract description 44
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims abstract description 77
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 claims abstract description 64
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 claims abstract description 63
- 239000000203 mixture Substances 0.000 claims abstract description 36
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000011067 equilibration Methods 0.000 claims abstract description 13
- 125000004122 cyclic group Chemical group 0.000 claims abstract description 7
- 239000012442 inert solvent Substances 0.000 claims abstract description 7
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 57
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 claims description 34
- 238000006243 chemical reaction Methods 0.000 claims description 29
- 238000002360 preparation method Methods 0.000 claims description 27
- 230000008569 process Effects 0.000 claims description 20
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 19
- 150000001875 compounds Chemical class 0.000 claims description 18
- 125000004432 carbon atom Chemical group C* 0.000 claims description 17
- 229910020175 SiOH Inorganic materials 0.000 claims description 15
- 239000002253 acid Substances 0.000 claims description 14
- 239000002904 solvent Substances 0.000 claims description 14
- 239000003054 catalyst Substances 0.000 claims description 13
- 229920001296 polysiloxane Polymers 0.000 claims description 13
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 13
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 11
- 239000011159 matrix material Substances 0.000 claims description 11
- 150000001298 alcohols Chemical class 0.000 claims description 10
- 239000007858 starting material Substances 0.000 claims description 10
- 229920006395 saturated elastomer Polymers 0.000 claims description 9
- 229910021529 ammonia Inorganic materials 0.000 claims description 8
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 8
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 8
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 claims description 7
- 238000004061 bleaching Methods 0.000 claims description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- 239000001257 hydrogen Substances 0.000 claims description 7
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 6
- CIUQDSCDWFSTQR-UHFFFAOYSA-N [C]1=CC=CC=C1 Chemical compound [C]1=CC=CC=C1 CIUQDSCDWFSTQR-UHFFFAOYSA-N 0.000 claims description 6
- 229930195735 unsaturated hydrocarbon Natural products 0.000 claims description 6
- 238000005133 29Si NMR spectroscopy Methods 0.000 claims description 5
- 230000021736 acetylation Effects 0.000 claims description 5
- 238000006640 acetylation reaction Methods 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 4
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 4
- 229920002554 vinyl polymer Polymers 0.000 claims description 4
- 239000000654 additive Substances 0.000 claims description 3
- 150000001412 amines Chemical class 0.000 claims description 3
- 125000003118 aryl group Chemical group 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 150000002431 hydrogen Chemical class 0.000 claims description 3
- 150000007524 organic acids Chemical class 0.000 claims description 3
- 239000000080 wetting agent Substances 0.000 claims description 3
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 claims description 2
- 125000000217 alkyl group Chemical group 0.000 claims description 2
- 229930195734 saturated hydrocarbon Natural products 0.000 claims description 2
- 230000000996 additive effect Effects 0.000 claims 1
- 239000002131 composite material Substances 0.000 claims 1
- 239000013530 defoamer Substances 0.000 claims 1
- 239000006260 foam Substances 0.000 claims 1
- 239000003381 stabilizer Substances 0.000 claims 1
- 238000003756 stirring Methods 0.000 description 25
- 150000003254 radicals Chemical class 0.000 description 20
- 238000010992 reflux Methods 0.000 description 17
- 239000011541 reaction mixture Substances 0.000 description 15
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 14
- 150000003839 salts Chemical class 0.000 description 14
- 238000004821 distillation Methods 0.000 description 13
- 239000007788 liquid Substances 0.000 description 13
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 11
- 238000009826 distribution Methods 0.000 description 11
- 238000006386 neutralization reaction Methods 0.000 description 11
- 238000001816 cooling Methods 0.000 description 9
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 8
- 125000004423 acyloxy group Chemical group 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- XMSXQFUHVRWGNA-UHFFFAOYSA-N Decamethylcyclopentasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 XMSXQFUHVRWGNA-UHFFFAOYSA-N 0.000 description 7
- 239000002585 base Substances 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 150000002924 oxiranes Chemical class 0.000 description 6
- 239000000376 reactant Substances 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 229920001342 Bakelite® Polymers 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 239000004637 bakelite Substances 0.000 description 5
- 238000005227 gel permeation chromatography Methods 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000005046 Chlorosilane Substances 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 125000002947 alkylene group Chemical group 0.000 description 4
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 4
- 150000001735 carboxylic acids Chemical class 0.000 description 4
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical compound Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 238000001212 derivatisation Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- HMMGMWAXVFQUOA-UHFFFAOYSA-N octamethylcyclotetrasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 HMMGMWAXVFQUOA-UHFFFAOYSA-N 0.000 description 4
- 229960004063 propylene glycol Drugs 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- 235000017557 sodium bicarbonate Nutrition 0.000 description 4
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 150000008064 anhydrides Chemical class 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 3
- 238000004587 chromatography analysis Methods 0.000 description 3
- 230000008034 disappearance Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 125000005375 organosiloxane group Chemical group 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- YYLGKUPAFFKGRQ-UHFFFAOYSA-N dimethyldiethoxysilane Chemical compound CCO[Si](C)(C)OCC YYLGKUPAFFKGRQ-UHFFFAOYSA-N 0.000 description 2
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 2
- 230000009969 flowable effect Effects 0.000 description 2
- 239000004872 foam stabilizing agent Substances 0.000 description 2
- 238000004508 fractional distillation Methods 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 150000002440 hydroxy compounds Chemical class 0.000 description 2
- 239000013067 intermediate product Substances 0.000 description 2
- 229910001507 metal halide Inorganic materials 0.000 description 2
- 150000005309 metal halides Chemical class 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 150000004756 silanes Chemical class 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- FPSURBCYSCOZSE-UHFFFAOYSA-N 1-ethenoxybutan-1-ol Chemical compound CCCC(O)OC=C FPSURBCYSCOZSE-UHFFFAOYSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 239000007848 Bronsted acid Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- IUMSDRXLFWAGNT-UHFFFAOYSA-N Dodecamethylcyclohexasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 IUMSDRXLFWAGNT-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- 238000005727 Friedel-Crafts reaction Methods 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 208000034874 Product colour issue Diseases 0.000 description 1
- AWMVMTVKBNGEAK-UHFFFAOYSA-N Styrene oxide Chemical compound C1OC1C1=CC=CC=C1 AWMVMTVKBNGEAK-UHFFFAOYSA-N 0.000 description 1
- SLINHMUFWFWBMU-UHFFFAOYSA-N Triisopropanolamine Chemical compound CC(O)CN(CC(C)O)CC(C)O SLINHMUFWFWBMU-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 125000005376 alkyl siloxane group Chemical group 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- BMWDUGHMODRTLU-UHFFFAOYSA-N azanium;trifluoromethanesulfonate Chemical compound [NH4+].[O-]S(=O)(=O)C(F)(F)F BMWDUGHMODRTLU-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 150000001719 carbohydrate derivatives Chemical class 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical compound C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 description 1
- 229920005645 diorganopolysiloxane polymer Polymers 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- JHEPBQHNVNUAFL-UHFFFAOYSA-N hex-1-en-1-ol Chemical compound CCCCC=CO JHEPBQHNVNUAFL-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000010550 living polymerization reaction Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000005055 methyl trichlorosilane Substances 0.000 description 1
- JLUFWMXJHAVVNN-UHFFFAOYSA-N methyltrichlorosilane Chemical compound C[Si](Cl)(Cl)Cl JLUFWMXJHAVVNN-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 150000003333 secondary alcohols Chemical group 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000011973 solid acid Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000010518 undesired secondary reaction Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C—Si linkages
- C07F7/18—Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
- C07F7/1804—Compounds having Si-O-C linkages
- C07F7/1872—Preparation; Treatments not provided for in C07F7/20
- C07F7/1892—Preparation; Treatments not provided for in C07F7/20 by reactions not provided for in C07F7/1876 - C07F7/1888
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C—Si linkages
- C07F7/20—Purification, separation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/06—Preparatory processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/42—Block-or graft-polymers containing polysiloxane sequences
- C08G77/46—Block-or graft-polymers containing polysiloxane sequences containing polyether sequences
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/06—Preparatory processes
- C08G77/08—Preparatory processes characterised by the catalysts used
Definitions
- the invention relates to a process for the preparation of siloxane-branched SiOC-linked polyether siloxanes. Furthermore, the invention also relates to preparations consisting of a SiOC-linked branched silicone polyether together with a polyetherol and a polyetherol end-capped by acetyl groups. Furthermore, the invention relates to the use of these siloxane-branched SiOC-linked polyether siloxanes as defoamers, as foam stabilizers, wetting agents, coating and leveling additives and as Dismulgatoren.
- Older processes for the preparation of branched SiOC-linked polyethersiloxanes are based essentially on chlorosilane chemistry (methyltrichlorosilane and dimethyldichlorosilane) and provide for the attachment of the polyether substituents by reacting the SiCI-group-carrying siloxanes with the respective polyetherol in the presence of suitable auxiliary bases in order to obtain the Linkage reaction liberated hydrochloric acid in the form of salts to bind.
- the simple chlorosilanes originating directly from the Müller-Rochow synthesis directly synthesis
- the storage and handling of these corrosive educts on a production scale raises many problems, for example questions about material resistance, exhaust gas, waste, etc. What makes such legacy processes increasingly unattractive from today's perspective.
- EP17156421.4, EP 17169876.4 are aimed at mixtures of cyclic-branched D / T-type siloxanes and teach their further processing into functionalized branched siloxanes and / or branched silicone oils.
- the further processing disclosed therein is carried out by acid equilibration of the D / T-structured siloxanes with silanes and / or siloxanes.
- branched SiOC-linked polyethersiloxanes in the siloxane moiety are accessible, for example, by equilibrating mixtures of cyclic branched D / T-type siloxanes with diethoxydimethylsilane and then carrying out, for example, the metal-catalyzed replacement of the ethoxy substituents by polyalkyleneoxy radicals in the context of transesterification.
- diethoxydimethylsilane is a costly modification agent, limiting its widespread use.
- the technical problem to be solved is to find a simple and at the same time economical process that allows the production of branched in siloxane SiOC-linked polyether siloxanes.
- educts such as chlorosilanes / chlorosiloxanes and intermediates such as the mineral acid alkylhalosiloxanes, for example the well-known chlorosiloxanyl sulfates, should be deliberately avoided.
- the branched in siloxane SiOC-linked polyether siloxanes should have a good performance quality.
- sulfo-bridged siloxanes are reactive species which, for example, can undergo undesired secondary reactions upon storage and depending on the temperature and any moisture that may be introduced into the system with liberation of sulfuric acid.
- Borisov and Sviridova describe the opening of cyclic dimethylsiloxanes with acetic anhydride in the presence of catalytic amounts of iron (III) chloride to short-chain ⁇ , ⁇ -acetoxysiloxanes (SN Borisov, NG Sviridova, J. Organomet Chem 1, 1968, 27-33). , Lewis et al.
- US Pat. No. 3,346,610 also discloses access to acetoxy group-bearing short-chain siloxanes which is based on metal halide-induced acetoxy modification of strained cyclic siloxanes by reacting them with acetoxy group-containing silicone compounds.
- a variety of Friedel-Crafts active metal halides act as a catalyst, with zinc chloride being preferred.
- a particular objective of US 3346610 is the acetoxy modification of strained diorganosiloxane cycles, with deliberate avoidance of equilibration events.
- the prior art thus relates to work which provide the opening of cyclic siloxanes - here sometimes strained cyclosiloxanes - with reactants containing acyloxy groups and whose objective is to obtain defined linear short-chain and siloxane species which are still to be separated by fractional distillation.
- the molecular mass-defined, chain-pure acetoxy-modified siloxane compounds synthesized in this way are not suitable for the preparation of organomodified siloxanes, in particular polyethersiloxanes, which are used in demanding technical applications, for example in PU foam stabilization or in the defoaming of fuels, etc. to take.
- Agents that effectively address such a field of application are always characterized by a broad oligomer distribution comprising high, medium and low molecular weights, since the oligomers contained in them very often differentiated surfactant depending on their molecular weight and thus their diffusion behavior Tasks in different time windows of the respective process are attributable.
- Acyloxyorganopolysiloxanes and in particular organosiloxanes with terminal acyloxy groups are known as starting materials for subsequent reactions.
- the acyloxy groups can be hydrolyzed in a diorganosiloxane, whereupon the hydrolyzate can be dehydrated and the dehydrated hydrolyzate polymerized to form a flowable diorganopolysiloxane.
- These flowable polysiloxanes are useful as starting materials for the preparation of viscous oils and rubbers which can be cured to silicone elastomers.
- Organosiloxanes provided with terminal acyloxy groups can be obtained, for example, by reacting an alkylsiloxane and an organic acid and / or anhydride thereof in the presence of sulfuric acid as a catalyst. Such a process is described in US Pat. No. 2,910,496 (Bailey et al.). Although in principle organosiloxanes having terminal acyloxy groups are also obtained by this process, the disadvantage of the process is that the reaction product consists of a mixture of acyloxy-containing siloxanes and acyl-containing silanes of different composition.
- alkylsiloxane copolymers composed of M, D and T units are cleaved by the process into trimethylacyloxysilane, di-acyloxydimethylsiloxane and methyltriacacylsilane.
- octamethylcyclotetrasiloxane with acetic anhydride and acetic acid
- acetic anhydride after neutralization of the sulfuric acid used as a catalyst, separation of the salts and removal of water, residual acetic acid and acetic anhydride
- Bailey obtains a complex mixture and in no case an equilibrate, which he subjects to fractional distillation (see Example) , ibid.).
- the material identity of the resulting fractions II and IV remains unclear, so that it is difficult thereafter to obtain defined products, or to separate them in high yields from the mixture.
- branched SiOC-linked polyethersiloxanes can be prepared starting from cyclic-branched siloxanes of the D / T type in the siloxane moiety by reacting
- cyclic-branched D / T type siloxanes acid-catalyzed with acetic anhydride, optionally in admixture with simple siloxane cycles, to give branched siloxanes bearing acetoxy groups, and in a second step, the equilibration of the acetoxy-modified branched siloxane with trifluoromethanesulfonic performs and
- both mixtures of cyclic branched D / T type siloxanes which consist exclusively of siloxanes having D and T units and their total fraction of the D present in the siloxane matrix can be determined by 29 Si NMR spectroscopy and T units which have Si-alkoxy and / or SiOH groups, less than 2 mol%, preferably less than 1 mol%, and furthermore advantageously at least 5% by weight of siloxane cycles, preferably octamethylcyclotetrasiloxane (D 4 ) , Dekamethylcyclopentasiloxan (Ds) and / or mixtures thereof,
- inert solvent encompasses all those solvents which do not react under the conditions of the reaction carried out here with potential reactants or at most to a negligible extent.
- the inert solvent is an aromatic, preferably alkylaromatic solvent and very particularly preferably toluene.
- the simple siloxane cycles optionally added in the acetylation step include, in particular, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane and / or their mixtures of any desired composition, which corresponds to a preferred embodiment of the invention.
- the Si-alkoxy or SiOH groups of 0.43 mole percent (Examples 2, 3, 4 and 5) also the inventive use of a cyclic-branched siloxane with a target Dl T ratio of 6: 1 and a content of spectroscopically detected Si units, the Si-alkoxy or SiOH groups have shown by 4.0 mole percent. (Examples 7 and 8).
- another object and another preferred embodiment of this invention is the salt-free exchange of acetoxy groups attached to branched siloxane moieties by polyetheroxy groups by subjecting the branched siloxane bearing trifluoromethanesulfonic acid acetoxy group optionally in the presence of bases in a solvent together with the polyetherol Stirring brings to a reaction and then in the course of a distillation, the resulting and optionally present in the system already present acetic acid and residues used Acetanhydrids optionally together with portions of the solvent used.
- toluene is most preferred.
- the use of toluene therefore corresponds to a preferred embodiment of the invention.
- the boiling points of toluene and acetic acid are with 1 10.6 and 1 18.5 ° C and the boiling point of the binary Azeotrope at 105.4 ° C indicated.
- the azeotrope has a composition of 72 weight percent toluene and 28 weight percent acetic acid (Source: Handbook of Chemistry and Physics, 58th Edition, page D2, CRC Press (1977-1978), West Palm Beach).
- the mixture obtained according to the invention after the second step comprising a siloxane-branched, acetoxy-bearing, equilibrated siloxane and optionally unreacted acetic anhydride and the catalyst acid therein, are reacted with a polyetherol in the third step without adding a base, then depending on the selected stoichiometry of the reactants, the temperature and the reaction time, in addition to the SiOC-linked branched silicone polyether also changing proportions of an acetyl group end-capped polyether. This corresponds to a preferred embodiment of the invention.
- an auxiliary base such as, for example, sodium bicarbonate is introduced into the polyetherol and then charged with the mixture resulting from the second step comprising an siloxane-branched, equilibrated siloxane containing acetoxy groups in addition to unreacted acetic anhydride and the catalyst acid present therein, the early neutralization of the Acid to that no esterification of hydroxy-functional polyether observed (Example 4).
- the replacement of the siloxane-bound acetoxy groups in the presence of a base in particular in the presence of sodium bicarbonate, ammonia or an organic amine.
- the preparation obtained according to the invention consists of a SiOC-linked branched silicone polyether together with a polyetherol and an acetyl-terminated polyetherol.
- Such reduced hydroxy functionality formulations may be of interest in particular applications and are also an object of the present invention.
- This invention-typical by-product can be detected by accompanying 13 C-NMR and 1 H-NMR spectroscopy, since in particular the shift of the polyether-esterified carboxylate carbon with d about 171, 5 ppm is characteristic.
- Another object and another preferred embodiment of this invention is the salt-free replacement of branched siloxane scaffolds by polyetheroxy groups by reacting the branched siloxane bearing trifluoromethanesulfonic acid acetoxy groups with the polyetherol to release acetic acid.
- the acetoxy functionalization of the DT cycles can in principle be catalyzed both by the use of homogeneous and heterogeneous acids. It has also been found that both certain Lewis and Bronsted acids are suitable for this purpose.
- anhydrous iron (III) chloride, Filtrol ® (strongly acidic bleaching earth and acid-treated bleaching earth), concentrated sulfuric acid, and most preferably trifluoromethanesulfonic acid to catalyze the acetylation step can be used. This corresponds to a preferred embodiment of the invention.
- the trifluoromethanesulfonic acid not only facilitates the incorporation of acetoxy functions into the branched siloxane, but also ensures complete equilibration of the thus obtained acetoxy group-bearing, branched siloxane.
- GPC gel permeation chromatography
- a simple hand test is already suitable for practically evaluating the equilibration quality achieved, in which a volume of from 0.2 to 0.4 ml of the branched test piece is applied to a black bakelite lid.
- trifluoromethanesulfonsauren acetoxysiloxane applies and allowed to cure in air.
- the incompletely equilibrated acetoxysiloxanes can then be subjected to equilibration with trifluoromethanesulfonic acid.
- trifluoromethanesulfonic acid is particularly preferred in that they no tendency to product discoloration as iron (III) chloride has not and as the solid acid Filtrol ® must be necessarily separated by filtration from the intermediate product.
- trifluoromethanesulfonic acid should remain in the branched siloxane intermediate product carrying acetoxy groups (see Inventive Example 1 and Inventive Example 2).
- trifluoromethanesulfonic acid is preferably present in concentrations of from 0.05 to 0.2 percent by weight (% by weight), more preferably in concentrations of from 0.07 to 0.15 percent by weight (% by weight), based on the total mass of the reaction mixture used. This corresponds to a preferred embodiment of the invention.
- branched acetoxysiloxanes can be produced very rapidly and advantageously by catalysing the cyclic-branched D / T-type trifluoromethanesulfonic acid siloxanes catalyzed with acetic anhydride, optionally in admixture with simple siloxane cycles with the addition of acetic acid Reacting acetoxy-bearing, branched siloxanes, which corresponds to a very particularly preferred embodiment of the invention.
- Acetic acid is preferred in amounts of 0.4 to 3.5 weight percent, preferably 0.5 to 3 weight percent, preferably 0.8 to 1, 8 weight percent, more preferably in amounts of 1, 0 to 1, 5 weight percent based on the reaction matrix consisting of acetic anhydride, cyclic-branched D / T-type siloxanes and optionally simple siloxane cycles, which corresponds to a very particularly preferred embodiment of the invention.
- this total cycle content should preferably be less than 8 Percent by weight, preferably less than 7 percent by weight, of the branched isopropoxysiloxane siloxane matrix.
- anhydrous ferric chloride, Filtrol® (strong acid bleaching earth) and concentrated sulfuric acid as catalysts address only the first step of the process of the invention, while trifluoromethanesulfonic acid as catalyst densifies the first and second steps advantageously into one process step, that is, both the acetylation the cyclic-branched D / T-type siloxanes as well as the equilibration of the acetoxysiloxane catalyzes.
- the trifluoromethanesulfonic acid as explained, can be used for reworking incompletely equilibrated acetoxysiloxanes.
- the first step of the process according to the invention ie the acid-catalyzed reaction of mixtures of cyclic branched D / T-type siloxanes optionally in admixture with simple Siloxan cycles with acetic anhydride and the preferred with the addition of acetic acid to branched siloxanes carrying acetoxy groups
- the second step ie the equilibration of the acetoxy-modified branched siloxanes, be compacted into a single process step.
- polyetheroils which can be used according to the invention are preferably those of the formula (I)
- A is either hydrogen or a saturated or unsaturated organic radical having at least one carbon atom, preferably an organic radical of an organic starting compound having at least one carbon atom for preparing the compound, particularly preferably a methyl, ethyl, propyl, butyl, vinyl or allyl group is
- R 'independently of one another is a saturated alkyl group having 2-18 C atoms or an aromatic radical, or preferably an ethyl group or a phenyl radical,
- Z is either hydrogen, a linear or branched, saturated or unsaturated hydrocarbon radical having 1-18 C atoms, preferably a methyl, ethyl, propyl, butyl, vinyl or allyl group, or
- m is 0 to 50, preferably 0 to 30, more preferably 0 to 20
- n is 0 up to 250, preferably 3 up to 220, more preferably 5 up to 200
- o is 0 up to 250, preferably 3 up to 220, more preferably 5 up to 200
- a is 1 to 8, preferably greater than 1 to 6, particularly preferably 1, 2, 3 or 4,
- index numbers reproduced here and the value ranges of the specified indices can be understood as mean values (weight average) of the possible statistical distribution of the actual structures present and / or their mixtures. This also applies to as such per se exactly reproduced structural formulas, such as for formula (I).
- the units denoted by m, n and o can optionally be mixed randomly or else in blocks in the chain.
- Statistical distributions can be constructed block by block with an arbitrary number of blocks and an arbitrary sequence or a randomized distribution, they can also be of alternating construction or also form a gradient over the chain, in particular they can also form all mixed forms in which optionally groups of different Distributions can follow one another. Special designs may cause statistical distributions to be constrained by execution. For all areas that are not affected by the restriction, the statistical distribution does not change.
- the radical A is preferably understood as meaning radicals of substances which form the beginning of the compound of the formula (I) to be prepared, which is obtained by the addition of alkylene oxides.
- the starting compound is preferably selected from the group of alcohols, polyethers or phenols.
- the starting compound containing the group A is preferably a monohydric or polyhydric polyether alcohol and / or monohydric or polyhydric alcohol, or any desired mixtures thereof.
- the index a may also be subject to a statistical distribution.
- Z can also be the remainder of a starting compound Z-OH.
- the monomers used in the alkoxylation reaction are preferably ethylene oxide, propylene oxide, butylene oxide and / or styrene oxide, as well as any desired mixtures of these epoxides.
- the different monomers can be used in pure form or mixed.
- the metering of another epoxide to an epoxide already present in the reaction mixture can be carried out continuously over time, so that an increasing concentration gradient of the continuously added Epoxides is created.
- the resulting polyoxyalkylenes are thus subject to a statistical distribution in the final product, with restrictions by the dosage can be determined.
- a structure gradient can then be expected over the chain length.
- the relationships between dosage and product structure are known in the art.
- the compounds of the formula (I) used are preferably those which have a weight average molecular weight of from 76 to 10,000 g / mol, preferably from 100 to 8,000 g / mol and more preferably from 200 to 6,000 g / mol.
- the radical A is derived from compounds selected from the group of mono- or polyhydric monomeric, oligomeric or polymeric alcohols, phenols, carbohydrates or carbohydrate derivatives, with particular preference being given to those compounds in which the radical A of one or several alcohols from the group of butanol, 1-hexenol, octanol, dodecanol, stearyl alcohol, vinyloxybutanol, 2-ethylhexanol, cyclohexanol, benzyl alcohol, ethylene glycol, propylene glycol, di-, tri- or polyethylene glycol, 1, 2-propylene glycol, di- and polypropylene glycol , 1, 4-butanediol, 1, 6-hexanediol, trimethylolpropane, glycerol, pentaerythritol, sorbitol, allyl alcohol, vinyl alcohol or derived from natural compounds, hydroxyl-bearing compounds.
- Particularly preferred compounds are those which are liquid at a pressure of 101325 Pa and a temperature of 23 ° C. Among them, butyl diglycol, dipropylene glycol and propylene glycol are most preferred.
- a usually low molecular weight that is, having a molecular weight of less than 200 g / mol
- hydroxy-functional starters such as butanol, allyl alcohol, propylene glycol or glycerol in the presence of the alkaline catalyst with an alkylene oxide such as ethylene oxide, propylene oxide, butylene oxide or a mixture of different Alkylene oxides reacted to a polyoxyalkylene polyether.
- alkylene oxide such as ethylene oxide, propylene oxide, butylene oxide or a mixture of different Alkylene oxides reacted to a polyoxyalkylene polyether.
- the strongly alkaline reaction conditions in this so-called living polymerization promote various side reactions.
- the compounds of formula (II) may also be prepared by double metal cyanide catalysis.
- Polyethers prepared by double metal cyanide catalysis generally have a particularly low level of unsaturated end groups of less than or equal to 0.02 meq / gram of polyether compound (meq / g), preferably less than or equal to 0.015 meq / g, more preferably less than or equal to 0.01 meq / g (method of determination ASTM D2849-69), contain significantly fewer monols and usually have a low polydispersity of less than 1.5.
- the preparation of such polyethers z. For example, in US-A 5158922 and EP-A 0654302 described.
- the polyetheroic compounds to be used according to the invention may have a primary or secondary OH function.
- the use of those polyether oils which have a secondary alcohol function is preferred within the scope of the inventive teaching.
- inventive replacement of the acetoxy groups by reaction with polyethers to SiOC-linked polyethersiloxanes can be carried out in the presence of solvents or preferably without solvent by intimate mixing of the reactants with stirring at reaction temperatures of preferably 20 ° C to 60 ° C.
- the molar ratio of the reactants is in particular dimensioned such that at least 1 mol of OH functionality bound to the polyether is used per mole of acetoxy group of the branched siloxane. Preference is given to 1 to 2 moles of OH functionality bonded to the polyether, preferably from 1.1 to 1.6 moles of OH functionality bound to the polyether, more preferably 1.2 to 1.4 moles of OH functionality bonded to the polyether per mole of the branched alkoxy group Siloxane used.
- the SiOC-linked, branched polyether siloxanes used in a variety of surface-active applications are often characterized as containing polyether radicals of different composition and / or molecular weight.
- a possible embodiment of the method according to the invention is the acetoxy-containing, equilibrated branched siloxane to implement in the third step with a mixture of different types Polyetheroie.
- a person skilled in the art is familiar with the sometimes different reaction behavior of the polyetheroie employed, so that the aim is to induce a special interfacial activity, make some orienting hand tests with polyetherol mixtures and then evaluate these products in each case in terms of performance, in order to achieve an optimum result.
- the replacement of the acetoxy groups by reaction with polyether alcohols is carried out according to the invention preferably in the course of 30 minutes to 3 hours.
- the invention furthermore relates to a preparation prepared by the process according to the invention as described above, containing at least one SiOC-linked, branched silicone polyether, a polyetherol and a polyether end-capped with an acetyl group, with the proviso that the polyether radical present in the silicone polyether is chemically identical is with the polyether radical of the polyetherol and with the polyether radical of the polyetherol end-capped with an acetyl group, and that the proportion of the SiOC-linked branched silicone polyether is at least 50% by mass, based on the total preparation.
- Another object of the invention is the use of this preparation, prepared by the novel process as described above, as defoamers, as foam stabilizers, wetting agents, coating and leveling additives and as Dismulgatoren.
- the DT cycles used in the examples are prepared by the methods of European patent application EP 17195510.7, EP 17169876.4, not yet disclosed, and European patent application EP 3 321 304 A1, respectively.
- the gas chromatograms are fitted on a GC 7890B GC machine from Agilent Technologies with an HP-1 column; 30m x 0.32mm ID x 0.25pm dF (Agilent Technologies # 19091Z-413E) and hydrogen as the carrier gas with the following parameters:
- the total cyanogen content determined by gas chromatography is defined as the sum of the D4, Ds, D6 contents based on the siloxane matrix and determined after the derivatization of the ⁇ , ⁇ -diacetoxypolydimethylsiloxanes to the corresponding ⁇ , ⁇ -diisopropoxypolydimethylsiloxanes ,
- the derivatization to the ⁇ , ⁇ -diisopropoxypolydimethylsiloxanes is hereby deliberately chosen in order to prevent a thermally induced cleavage reaction of the ⁇ , ⁇ -diacetoxy-polydimethylsiloxanes, which optionally takes place under the conditions of the gas chromatographic analysis (for the cleavage reaction see, inter alia, J.
- the polyetheroie used have water contents of about 0.2% by mass and are used without further predrying.
- Toluene used has a water content of 0.03% by mass and is also used without predrying.
- the branched acetoxysiloxanes prepared according to the invention are not initially stored in glass bottles at 23 ° C. storage temperature over a period of 3 weeks unless they are explicitly described differently in the respective synthesis examples, before they are mixed with the polyether alcohols to give the corresponding SiOC. linked, branched siloxane-polyoxyalkylene block copolymers or to the corresponding branched isopropoxysiloxanes are reacted.
- the toluene used as solvent is distilled off.
- the distillation bottoms is a colorless, readily mobile liquid whose 29 Si NMR spectrum assigns a D / T ratio of 5.2: 1 (aimed at 6.0: 1).
- the Si-alkoxy or SiOH groups have a proportion of 0.43 mole percent.
- the gas chromatographic analysis of the liquid also shows a proportion of about 15 weight percent of simple siloxane cycles in the form of D 4 , Ds and Ü6.
- the reflux condenser is replaced by a distillation bridge with template and under application of an auxiliary vacuum of ⁇ 1 mbar (oil pump) is distilled off at a bottom temperature of 100 ° C in the course of 3 hours acetic acid.
- an auxiliary vacuum of ⁇ 1 mbar oil pump
- the distillation bottom is treated with 1.9 g of NaHCO 3.
- the bicarbonate is allowed to stir for 30 minutes and then the salts are separated using a filter press on a Seitz K 300 filter disc.
- Example 5 (according to the invention) (step 3)
- reaction mixture is heated to 50 ° C for 30 minutes with continuous stirring. Then, in the course of a further 30 minutes, the amount of gaseous ammonia required for neutralization is first introduced into the reaction matrix. Over a further 45 minutes, a slight stream of ammonia is passed in, so that the reaction mixture shows a clearly alkaline reaction (wet indicator paper).
- the precipitated salts are separated by a double-fold filter from the toluene phase.
- the reflux condenser is replaced by a distillation bridge with template and under application of an auxiliary vacuum of ⁇ 1 mbar (oil pump) is distilled off at a bottom temperature of 100 ° C in the course of 3 hours acetic acid.
- an auxiliary vacuum of ⁇ 1 mbar oil pump
- the distillation bottom is treated with 1.9 g of NaHCO 3.
- the bicarbonate is allowed to stir for 30 minutes and then the salts are separated using a filter press on a Seitz K 300 filter disc.
- Example 9 (preferred step 2 according to the invention)
- Ds Dekamethylcyclopentasiloxan
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Silicon Polymers (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17204277.2A EP3492513B1 (en) | 2017-11-29 | 2017-11-29 | Method of manufacturing sioc linked polyether branched in siloxane section |
PCT/EP2018/072087 WO2019105608A1 (en) | 2017-11-29 | 2018-08-15 | Method for preparing sioc-linked polyether siloxanes branched in the siloxane part |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3717545A1 true EP3717545A1 (en) | 2020-10-07 |
Family
ID=60673244
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17204277.2A Active EP3492513B1 (en) | 2017-11-29 | 2017-11-29 | Method of manufacturing sioc linked polyether branched in siloxane section |
EP18752163.8A Pending EP3717545A1 (en) | 2017-11-29 | 2018-08-15 | Method for preparing sioc-linked polyether siloxanes branched in the siloxane part |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17204277.2A Active EP3492513B1 (en) | 2017-11-29 | 2017-11-29 | Method of manufacturing sioc linked polyether branched in siloxane section |
Country Status (6)
Country | Link |
---|---|
US (1) | US11725017B2 (en) |
EP (2) | EP3492513B1 (en) |
CN (1) | CN111386300B (en) |
CA (1) | CA3084463A1 (en) |
ES (1) | ES2901137T3 (en) |
WO (1) | WO2019105608A1 (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11359056B2 (en) | 2018-05-17 | 2022-06-14 | Evonik Operations Gmbh | Linear polydimethylsiloxane-polyoxyalkylene block copolymers of the structure type ABA |
US11345783B2 (en) | 2018-05-17 | 2022-05-31 | Evonik Operations Gmbh | Linear polydimethylsiloxane-polyoxyalkylene block copolymers of the structure type ABA |
EP3611215A1 (en) * | 2018-08-15 | 2020-02-19 | Evonik Operations GmbH | Method for producing acetoxy groups carrying siloxanes |
EP3611214A1 (en) | 2018-08-15 | 2020-02-19 | Evonik Operations GmbH | Sioc-linked, linear polydimethylsiloxane polyoxyalkylene block copolymers |
ES2970332T3 (en) | 2018-12-04 | 2024-05-28 | Evonik Operations Gmbh | Reactive Siloxanes |
EP3744753B1 (en) | 2019-05-28 | 2022-04-06 | Evonik Operations GmbH | Method for purifying acetoxy siloxanes |
EP3744754B1 (en) | 2019-05-28 | 2024-10-02 | Evonik Operations GmbH | Method for producing siloxanes bearing acetoxy groups |
EP3744759B1 (en) | 2019-05-28 | 2024-07-17 | Evonik Operations GmbH | Method of manufacturing sioc linked polyether branched in siloxane section |
EP3744756B1 (en) | 2019-05-28 | 2024-07-03 | Evonik Operations GmbH | Acetoxy systems |
DK3744763T3 (en) * | 2019-05-28 | 2024-11-04 | Evonik Operations Gmbh | TAILOR-MADE SIOC BASED POLYETHERSILOXANE |
EP3744745A1 (en) | 2019-05-28 | 2020-12-02 | Evonik Operations GmbH | Production of pu foams |
EP3744760A1 (en) | 2019-05-28 | 2020-12-02 | Evonik Operations GmbH | Method of manufacturing sioc linked polyether branched in siloxane section |
EP3744755B1 (en) | 2019-05-28 | 2024-10-09 | Evonik Operations GmbH | Method for producing siloxanes bearing acetoxy groups |
EP3744774B1 (en) | 2019-05-28 | 2021-09-01 | Evonik Operations GmbH | Method for recycling of silicones |
CN114430757A (en) | 2019-09-27 | 2022-05-03 | 赢创运营有限公司 | Silicone (meth) acrylates, method for the production thereof and use thereof in curable compositions |
JP7158361B2 (en) * | 2019-10-29 | 2022-10-21 | 信越化学工業株式会社 | PAINT ADDITIVES, PAINT COMPOSITIONS AND COATING LAYERS |
EP3865531A1 (en) | 2020-02-14 | 2021-08-18 | Evonik Operations GmbH | Sioc-linked, linear polydimethylsiloxane polyoxyalkylene block copolymers |
EP3885096B1 (en) | 2020-03-27 | 2024-02-14 | Evonik Operations GmbH | Recycling of siliconized flat/planar sheets |
EP3919550A1 (en) * | 2020-06-02 | 2021-12-08 | Evonik Operations GmbH | Linear acetoxy group bearing siloxanes and secondary products |
US11732092B2 (en) | 2020-10-19 | 2023-08-22 | Evonik Operations Gmbh | Upcycling process for processing silicone wastes |
US12060460B2 (en) | 2021-04-29 | 2024-08-13 | Evonik Operations Gmbh | Process for producing endcapped, liquid siloxanes from silicone wastes |
Family Cites Families (131)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE558554A (en) | 1956-06-26 | |||
DE1039516B (en) * | 1956-06-26 | 1958-09-25 | Union Carbide Corp | Process for the preparation of acyloxysilicon compounds |
US3115512A (en) * | 1960-02-18 | 1963-12-24 | Goldschmidt Ag Th | Process for the production of polyalkyl silicic acid esters |
NL128226C (en) * | 1962-12-03 | |||
US3356758A (en) | 1963-08-07 | 1967-12-05 | Union Carbide Corp | Siloxane-oxyalkylene block copolymers and process therefor |
NL128599C (en) | 1963-08-07 | 1970-04-15 | ||
US3595885A (en) | 1964-02-12 | 1971-07-27 | Goldschmidt Ag Th | Organopolysiloxanes and the process for their preparation |
DE1570647B1 (en) * | 1965-02-01 | 1970-06-25 | Goldschmidt Ag Th | Process for the production of polyalkylene oxide-polysiloxane block copolymers |
DE1595730B2 (en) * | 1966-03-03 | 1976-07-08 | Th. Goldschmidt Ag, 4300 Essen | PROCESS FOR THE PRODUCTION OF POLYALKYLENE OXYDE-POLYSILOXANE BLOCK MIXED POLYMERIZATES |
US3775452A (en) | 1971-04-28 | 1973-11-27 | Gen Electric | Platinum complexes of unsaturated siloxanes and platinum containing organopolysiloxanes |
US3980688A (en) * | 1974-09-20 | 1976-09-14 | Union Carbide Corporation | Polysiloxane-polyoxyalkylene block copolymers |
GB1548224A (en) * | 1976-02-12 | 1979-07-04 | Goldschmidt Ag Th | Organosilicon compounds and textile fibre dressings which contain these compounds |
US4066680A (en) | 1976-10-18 | 1978-01-03 | Sws Silicones Corporation | Process for making alpha,omega-siloxanediols |
DE2802668A1 (en) * | 1978-01-21 | 1979-07-26 | Bayer Ag | PROCESS FOR THE PRODUCTION OF SILICON-FUNCTIONAL POLYORGANOSILOXANES |
DE2855927A1 (en) * | 1978-12-23 | 1980-07-24 | Bayer Ag | METHOD FOR PRODUCING SILICON-FUNCTIONAL POLYORGANOSILOXANES |
DE2919559A1 (en) * | 1979-05-15 | 1980-11-27 | Bayer Ag | METHOD FOR PRODUCING MULTIPLE BRANCHED SILICON-FUNCTIONAL POLYORGANOSILOXANES |
DE3038984A1 (en) | 1980-10-15 | 1982-05-27 | Bayer Ag, 5090 Leverkusen | METHOD FOR CONTINUOUS COLORING AND SIMULTANEOUS EQUIPMENT OF TEXTILE MATERIALS |
DE3133869C1 (en) | 1981-08-27 | 1983-05-05 | Th. Goldschmidt Ag, 4300 Essen | Process for the addition of organic silicon compounds with SiH groups to compounds with olefinic double bonds |
DE3643459A1 (en) * | 1986-12-19 | 1988-06-23 | Bayer Ag | POLYETHERSILOXANE - GRAFT POLYMERISATE |
US5158922A (en) | 1992-02-04 | 1992-10-27 | Arco Chemical Technology, L.P. | Process for preparing metal cyanide complex catalyst |
US5470813A (en) | 1993-11-23 | 1995-11-28 | Arco Chemical Technology, L.P. | Double metal cyanide complex catalysts |
DE4411079A1 (en) * | 1994-03-30 | 1995-10-05 | Bayer Ag | Novel polysiloxane polyether-based copolymers, a process for their preparation and their use |
DE19724948A1 (en) * | 1997-06-12 | 1998-12-17 | Wacker Chemie Gmbh | Organosilicon compounds containing (meth) acrylate groups and oxyalkylene groups |
CA2298240C (en) | 1999-02-24 | 2007-08-21 | Goldschmidt Ag | Synergistic catalyst system and process for carrying out hydrosilylation reactions |
DE10024776C1 (en) | 2000-05-19 | 2001-09-06 | Goldschmidt Ag Th | Zinc treated with metal hydride is used in organometallic synthesis, especially synthesis of cyclopropane derivatives and zinc organyl compounds and in Reformatsky and analogous reactions |
DE10104338A1 (en) | 2001-02-01 | 2002-08-08 | Goldschmidt Ag Th | Production of flat, metallic integral foams |
DE10104339A1 (en) | 2001-02-01 | 2002-08-08 | Goldschmidt Ag Th | Process for the production of metal foam and metal body produced thereafter |
US6915834B2 (en) | 2001-02-01 | 2005-07-12 | Goldschmidt Ag | Process for producing metal foam and metal body produced using this process |
WO2002068506A1 (en) | 2001-02-27 | 2002-09-06 | Goldschmidt Ag | Method for treating polyether siloxanes |
DE10123899A1 (en) | 2001-05-16 | 2002-11-21 | Goldschmidt Ag Th | Production of metal molded parts comprises placing a metal body with closed surfaces on all sides and a hollow structure inside into a mold, and filling the remaining mold hollow space with a metal or metal alloy |
ATE357304T1 (en) | 2001-05-19 | 2007-04-15 | Goldschmidt Gmbh | PRODUCTION OF METAL FOAM |
DE10127716A1 (en) | 2001-06-07 | 2002-12-12 | Goldschmidt Ag Th | Production of metal/metal foam composite components comprises inserting a flat or molded metal part into the hollow chamber of a casting mold, inserting a mixture of molten metal |
DE10232115A1 (en) | 2002-07-16 | 2004-02-05 | Goldschmidt Ag | Organopolysiloxanes for defoaming aqueous systems |
DE50200219D1 (en) | 2002-09-26 | 2004-02-26 | Goldschmidt Ag Th | New siloxane compounds and their use as homogenizing agents in release agents with a matting effect for the production of moldings from plastics with matt surfaces |
DE50206131D1 (en) | 2002-12-21 | 2006-05-11 | Goldschmidt Gmbh | Process for the preparation of polyether siloxanes |
DE10301355A1 (en) | 2003-01-16 | 2004-07-29 | Goldschmidt Ag | Equilibration of siloxanes |
DE102005001039B4 (en) | 2005-01-07 | 2017-11-09 | Evonik Degussa Gmbh | Process for the preparation of equilibration products of organosiloxanes and the organopolysiloxanes obtainable in this way |
DE102005004676A1 (en) * | 2005-02-02 | 2006-08-10 | Goldschmidt Gmbh | Solvent-free procedure for the conversion of branched polyorganosiloxane with an alcohol e.g. aromatic, aliphatic-aromatic and halogenated mono/poly alcohols in the presence of group-III elements as catalysts |
DE102005039398A1 (en) | 2005-08-20 | 2007-02-22 | Goldschmidt Gmbh | Process for the preparation of addition products of compounds containing SiH groups to olefin-containing reactants in aqueous media |
DE102005039931A1 (en) | 2005-08-24 | 2007-03-01 | Goldschmidt Gmbh | Process for the preparation of SiOC-linked linear polydimethylsiloxane-polyoxyalkylene block copolymers |
DE102005057857A1 (en) | 2005-12-03 | 2010-02-25 | Evonik Goldschmidt Gmbh | Block-type polyether-modified polysiloxanes and their use for the preparation of cosmetic formulations |
DE102006061353A1 (en) | 2006-12-22 | 2008-06-26 | Evonik Goldschmidt Gmbh | Process for the reaction of polyorganosiloxanes and their use |
DE102006061350A1 (en) | 2006-12-22 | 2008-06-26 | Evonik Goldschmidt Gmbh | Process for the preparation of SiOC-linked, linear polydimethylsiloxane-polyoxyalkylene block copolymers and their use |
DE102006061351A1 (en) | 2006-12-22 | 2008-06-26 | Evonik Goldschmidt Gmbh | Process for the preparation of SiOC-linked, linear polydimethylsiloxane-polyoxyalkylene block copolymers and their use |
DE102007035646A1 (en) | 2007-07-27 | 2009-01-29 | Evonik Goldschmidt Gmbh | About SIC and via carboxylic acid ester groups linked linear polydimethylsiloxane-polyoxyalkylene block copolymers, a process for their preparation and their use |
DE102007055485A1 (en) * | 2007-11-21 | 2009-06-04 | Evonik Goldschmidt Gmbh | Process for the preparation of branched SiH-functional polysiloxanes and their use for the preparation of SiC- and SiOC-linked, branched organomodified polysiloxanes |
DE102007055484A1 (en) | 2007-11-21 | 2009-05-28 | Evonik Goldschmidt Gmbh | Process for the preparation of polydimethylsiloxanes on sulfonic acid cation exchange resins |
DE102007057145A1 (en) | 2007-11-28 | 2009-06-04 | Evonik Goldschmidt Gmbh | Process for the preparation of polyether alcohols with DMC catalysts using compounds bearing SiH groups as additives |
DE102007057146A1 (en) | 2007-11-28 | 2009-06-04 | Evonik Goldschmidt Gmbh | Process for the preparation of polyether alcohols with DMC catalysts using special additives with aromatic hydroxy functionalization |
DE102008000266A1 (en) | 2008-02-11 | 2009-08-13 | Evonik Goldschmidt Gmbh | The invention relates to the use of foam stabilizers, which are produced on the basis of renewable raw materials, for the production of polyurethane foams |
DE102008000360A1 (en) | 2008-02-21 | 2009-08-27 | Evonik Goldschmidt Gmbh | New alkoxysilyl-carrying polyether alcohols by alkoxylation of epoxide-functional alkoxysilanes to double metal cyanide (DMC) catalysts, and to processes for their preparation |
DE102008000903A1 (en) | 2008-04-01 | 2009-10-08 | Evonik Goldschmidt Gmbh | New polyether alcohols carrying organosiloxane groups by alkoxylation of epoxide-functional (poly) organosiloxanes on double metal cyanide (DMC) catalysts, and also processes for their preparation |
DE102008002713A1 (en) | 2008-06-27 | 2009-12-31 | Evonik Goldschmidt Gmbh | New polyether siloxanes containing alkoxylation products by direct alkoxylation of organo-modified alpha, omega-dihydroxysiloxanes on double metal cyanide (DMC) catalysts, and to processes for their preparation |
DE102008041601A1 (en) | 2008-08-27 | 2010-03-04 | Evonik Goldschmidt Gmbh | Process for the preparation of branched SiH-functional polysiloxanes and their use for the preparation of liquid, SiC or SiOC-linked, branched organomodified polysiloxanes |
DE102008042181B4 (en) | 2008-09-18 | 2020-07-23 | Evonik Operations Gmbh | Equilibration of siloxanes on water-containing sulfonic acid cation exchange resins |
DE102008043218A1 (en) | 2008-09-24 | 2010-04-01 | Evonik Goldschmidt Gmbh | Polymeric materials and adhesives and coating materials based on multialkoxysilyl-functional prepolymers |
DE102008043245A1 (en) | 2008-10-29 | 2010-05-06 | Evonik Goldschmidt Gmbh | Silicone polyether copolymer systems and processes for their preparation by alkoxylation reaction |
DE102008043343A1 (en) | 2008-10-31 | 2010-05-06 | Evonik Goldschmidt Gmbh | Silicone polyether block copolymers with defined polydispersity in the polyoxyalkylene part and their use as stabilizers for the production of polyurethane foams |
CN102209744B (en) | 2008-12-05 | 2013-04-03 | 赢创高施米特有限公司 | Novel polyethersiloxanes carrying alkoxysilyl groups and method for the production thereof |
DE102009022628A1 (en) | 2008-12-05 | 2010-06-10 | Evonik Goldschmidt Gmbh | Method for modifying surfaces |
DE102009002417A1 (en) | 2009-04-16 | 2010-10-21 | Evonik Goldschmidt Gmbh | Use of organomodified silicone branched siloxanes for the preparation of cosmetic or pharmaceutical compositions |
DE102009003274A1 (en) * | 2009-05-20 | 2010-11-25 | Evonik Goldschmidt Gmbh | Compositions containing polyether-polysiloxane copolymers |
DE102009022631A1 (en) | 2009-05-25 | 2010-12-16 | Evonik Goldschmidt Gmbh | Curable silyl group-containing compositions and their use |
DE102009022630A1 (en) | 2009-05-25 | 2010-12-02 | Evonik Goldschmidt Gmbh | Emulsions based on silyl-group-bearing hydroxyl compounds |
DE102009022627A1 (en) | 2009-05-25 | 2010-12-02 | Evonik Goldschmidt Gmbh | Reactive silyl-bearing hydroxyl compounds as ceramic binder |
DE102009034607A1 (en) | 2009-07-24 | 2011-01-27 | Evonik Goldschmidt Gmbh | Novel silicone polyether copolymers and processes for their preparation |
DE102009028636A1 (en) | 2009-08-19 | 2011-02-24 | Evonik Goldschmidt Gmbh | Novel urethane-containing silylated prepolymers and process for their preparation |
DE102009028640A1 (en) | 2009-08-19 | 2011-02-24 | Evonik Goldschmidt Gmbh | Curable composition containing urethane-containing silylated polymers and their use in sealants and adhesives, binders and / or surface modifiers |
DE102010001350A1 (en) | 2010-01-29 | 2011-08-04 | Evonik Goldschmidt GmbH, 45127 | Novel linear polydimethylsiloxane-polyether copolymers having amino and / or quaternary ammonium groups and their use |
DE102010001531A1 (en) | 2010-02-03 | 2011-08-04 | Evonik Goldschmidt GmbH, 45127 | Novel organomodified siloxanes with primary amino functions, novel organomodified siloxanes with quaternary ammonium functions and the process for their preparation |
DE102010001528A1 (en) | 2010-02-03 | 2011-08-04 | Evonik Goldschmidt GmbH, 45127 | New particles and composite particles, their uses and a new process for their preparation from alkoxysilyl-bearing alkoxylation products |
DE102010002180A1 (en) | 2010-02-22 | 2011-08-25 | Evonik Goldschmidt GmbH, 45127 | Nitrogen-containing silicon-organic graft copolymers |
DE102010002178A1 (en) | 2010-02-22 | 2011-08-25 | Evonik Goldschmidt GmbH, 45127 | Process for the preparation of amine-amide-functional siloxanes |
DE102010029723A1 (en) | 2010-06-07 | 2011-12-08 | Evonik Goldschmidt Gmbh | Process for the preparation of organic silicon compounds |
DE102010031087A1 (en) | 2010-07-08 | 2012-01-12 | Evonik Goldschmidt Gmbh | Novel polyester-modified organopolysiloxanes |
DE102010062156A1 (en) | 2010-10-25 | 2012-04-26 | Evonik Goldschmidt Gmbh | Polysiloxanes with nitrogen-containing groups |
DE102011076019A1 (en) | 2011-05-18 | 2012-11-22 | Evonik Goldschmidt Gmbh | Alkoxylation products and processes for their preparation by means of DMC catalysts |
DE102011079465A1 (en) | 2011-07-20 | 2013-01-24 | Evonik Goldschmidt Gmbh | Process for the reduction of carboxylic acid esters or lactones to the corresponding ethers |
DE102011109541A1 (en) * | 2011-08-03 | 2013-02-07 | Evonik Goldschmidt Gmbh | Use of polysiloxanes containing branched polyether radicals for the production of polyurethane foams |
DE102011109540A1 (en) | 2011-08-03 | 2013-02-07 | Evonik Goldschmidt Gmbh | Alkylcarbonate end-capped polyethersilioxanes and process for their preparation |
DE102011085492A1 (en) | 2011-10-31 | 2013-05-02 | Evonik Goldschmidt Gmbh | New amino group-containing siloxanes, process for their preparation and use |
DE102011088787A1 (en) | 2011-12-16 | 2013-06-20 | Evonik Industries Ag | Siloxan lemon and its application |
KR102043605B1 (en) * | 2012-01-18 | 2019-11-12 | 다우 실리콘즈 코포레이션 | Methods of making saccharide siloxane copolymers |
DE102012202527A1 (en) * | 2012-02-20 | 2013-08-22 | Evonik Goldschmidt Gmbh | Compositions containing polymers and metal atoms or ions and their use |
DE102012202521A1 (en) | 2012-02-20 | 2013-08-22 | Evonik Goldschmidt Gmbh | Branched polysiloxanes and their use |
DE102012203737A1 (en) | 2012-03-09 | 2013-09-12 | Evonik Goldschmidt Gmbh | Modified alkoxylation products having at least one non-terminal alkoxysilyl group and containing a plurality of urethane groups and their use |
DE102012210553A1 (en) | 2012-06-22 | 2013-12-24 | Evonik Industries Ag | Silicone polyethers and process for their preparation from methylidene-bearing polyethers |
DE102013208328A1 (en) | 2013-05-07 | 2014-11-13 | Evonik Industries Ag | Polyoxyalkylenes with pendant long-chain acyloxy and process for their preparation by means of DMC catalysts |
DE102013106906A1 (en) | 2013-07-01 | 2015-01-08 | Evonik Industries Ag | Siloxane polymers having a central polysiloxane polymer block with terminal organofunctional radicals comprising urea and / or carbamate groups and amino acid radicals |
DE102013106905A1 (en) | 2013-07-01 | 2015-01-08 | Evonik Industries Ag | Siloxane polymers having a central polysiloxane polymer block having organofunctional radicals each having at least two bivalent groups selected from urea and / or carbamate groups and at least one UV / Vis chromophore as the remainder |
DE102013213655A1 (en) | 2013-07-12 | 2015-01-15 | Evonik Industries Ag | Curable silyl group-containing compositions with improved storage stability |
DE102013214081A1 (en) | 2013-07-18 | 2015-01-22 | Evonik Industries Ag | Novel amino acid modified siloxanes, process for their preparation and use |
DE102013216751A1 (en) | 2013-08-23 | 2015-02-26 | Evonik Industries Ag | Modified alkoxylation products containing alkoxysilyl groups containing urethane groups and their use |
DE102013216787A1 (en) | 2013-08-23 | 2015-02-26 | Evonik Degussa Gmbh | Guanidinruppen containing semi-organic silicon group-containing compounds |
DE102014209408A1 (en) | 2014-05-19 | 2015-11-19 | Evonik Degussa Gmbh | Ethoxylate preparation using highly active double metal cyanide catalysts |
DE102014209407A1 (en) | 2014-05-19 | 2015-11-19 | Evonik Degussa Gmbh | Highly active double metal cyanide catalysts and process for their preparation |
DE102014213507A1 (en) | 2014-07-11 | 2016-01-14 | Evonik Degussa Gmbh | Platinum-containing composition |
EP3020749B1 (en) | 2014-11-12 | 2020-09-30 | Evonik Operations GmbH | Method for the production of compositions containing platinum |
EP3029087A1 (en) | 2014-12-05 | 2016-06-08 | Evonik Degussa GmbH | Method for the preparation of low-viscosity polyether siloxanes |
ES2616348T3 (en) | 2015-01-28 | 2017-06-12 | Evonik Degussa Gmbh | Modified alkoxylation products having at least one non-terminal alkoxysilyl group, with increased storage stability and enhanced dilation and polymers produced using them |
WO2017051016A1 (en) * | 2015-09-24 | 2017-03-30 | Philip Morris Products S.A. | Aerosol-generating article with capacitor |
EP3168273B1 (en) | 2015-11-11 | 2018-05-23 | Evonik Degussa GmbH | Curable polymers |
PL3168274T3 (en) | 2015-11-11 | 2018-10-31 | Evonik Degussa Gmbh | Curable polymers |
EP3380542A1 (en) | 2015-11-26 | 2018-10-03 | Evonik Degussa GmbH | Binder systems containing alkoxysilane groups-carrying prepolymers and epoxide compounds, and the use thereof |
EP3202816B1 (en) | 2016-02-04 | 2018-09-19 | Evonik Degussa GmbH | Adhesive materials containing alkoxysilyl with improved tearing resistance |
ES2814123T3 (en) | 2016-04-04 | 2021-03-26 | Evonik Operations Gmbh | Treatment of alkaline catalyzed alkoxylation products |
EP3272331B1 (en) | 2016-07-22 | 2018-07-04 | Evonik Degussa GmbH | Method for the preparation of siloxanes-containing glycerin substituents |
PL3321304T3 (en) | 2016-11-15 | 2019-11-29 | Evonik Degussa Gmbh | Mixtures of cyclic branched d/t-type siloxanes and their ensuing products |
EP3401353B1 (en) | 2017-05-08 | 2021-06-23 | Evonik Operations GmbH | Mixtures of cyclic branched d/t-type siloxanes and their ensuing products |
EP3415547B1 (en) | 2017-06-13 | 2020-03-25 | Evonik Operations GmbH | Method for producing sic-linked polyether siloxanes |
EP3415548B1 (en) | 2017-06-13 | 2020-03-25 | Evonik Operations GmbH | Method for producing sic-linked polyether siloxanes |
EP3438158B1 (en) | 2017-08-01 | 2020-11-25 | Evonik Operations GmbH | Production of sioc-linked siloxanes |
EP3467006B1 (en) | 2017-10-09 | 2022-11-30 | Evonik Operations GmbH | Mixtures of cyclic branched d/t-type siloxanes and their ensuing products |
WO2019076552A1 (en) | 2017-10-17 | 2019-04-25 | Evonik Degussa Gmbh | Zinc ketoiminate complexes as catalysts for the production of polyurethanes |
US11359056B2 (en) | 2018-05-17 | 2022-06-14 | Evonik Operations Gmbh | Linear polydimethylsiloxane-polyoxyalkylene block copolymers of the structure type ABA |
US11345783B2 (en) | 2018-05-17 | 2022-05-31 | Evonik Operations Gmbh | Linear polydimethylsiloxane-polyoxyalkylene block copolymers of the structure type ABA |
EP3611214A1 (en) | 2018-08-15 | 2020-02-19 | Evonik Operations GmbH | Sioc-linked, linear polydimethylsiloxane polyoxyalkylene block copolymers |
EP3611215A1 (en) | 2018-08-15 | 2020-02-19 | Evonik Operations GmbH | Method for producing acetoxy groups carrying siloxanes |
EP3744774B1 (en) | 2019-05-28 | 2021-09-01 | Evonik Operations GmbH | Method for recycling of silicones |
EP3744759B1 (en) | 2019-05-28 | 2024-07-17 | Evonik Operations GmbH | Method of manufacturing sioc linked polyether branched in siloxane section |
EP3744761B1 (en) * | 2019-05-28 | 2021-06-30 | Evonik Operations GmbH | Sioc-based polyether siloxanes |
EP3744753B1 (en) | 2019-05-28 | 2022-04-06 | Evonik Operations GmbH | Method for purifying acetoxy siloxanes |
EP3744755B1 (en) | 2019-05-28 | 2024-10-09 | Evonik Operations GmbH | Method for producing siloxanes bearing acetoxy groups |
EP3744756B1 (en) | 2019-05-28 | 2024-07-03 | Evonik Operations GmbH | Acetoxy systems |
EP3744754B1 (en) | 2019-05-28 | 2024-10-02 | Evonik Operations GmbH | Method for producing siloxanes bearing acetoxy groups |
EP3744760A1 (en) | 2019-05-28 | 2020-12-02 | Evonik Operations GmbH | Method of manufacturing sioc linked polyether branched in siloxane section |
EP3865527A1 (en) | 2020-02-14 | 2021-08-18 | Evonik Operations GmbH | Production of pu foams |
EP3865531A1 (en) | 2020-02-14 | 2021-08-18 | Evonik Operations GmbH | Sioc-linked, linear polydimethylsiloxane polyoxyalkylene block copolymers |
EP3885096B1 (en) | 2020-03-27 | 2024-02-14 | Evonik Operations GmbH | Recycling of siliconized flat/planar sheets |
EP3919550A1 (en) | 2020-06-02 | 2021-12-08 | Evonik Operations GmbH | Linear acetoxy group bearing siloxanes and secondary products |
US12060460B2 (en) * | 2021-04-29 | 2024-08-13 | Evonik Operations Gmbh | Process for producing endcapped, liquid siloxanes from silicone wastes |
-
2017
- 2017-11-29 EP EP17204277.2A patent/EP3492513B1/en active Active
- 2017-11-29 ES ES17204277T patent/ES2901137T3/en active Active
-
2018
- 2018-08-15 CA CA3084463A patent/CA3084463A1/en active Pending
- 2018-08-15 WO PCT/EP2018/072087 patent/WO2019105608A1/en unknown
- 2018-08-15 US US16/759,413 patent/US11725017B2/en active Active
- 2018-08-15 EP EP18752163.8A patent/EP3717545A1/en active Pending
- 2018-08-15 CN CN201880076865.2A patent/CN111386300B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CA3084463A1 (en) | 2019-06-06 |
EP3492513B1 (en) | 2021-11-03 |
EP3492513A1 (en) | 2019-06-05 |
CN111386300A (en) | 2020-07-07 |
ES2901137T3 (en) | 2022-03-21 |
US11725017B2 (en) | 2023-08-15 |
CN111386300B (en) | 2022-03-18 |
WO2019105608A1 (en) | 2019-06-06 |
US20200339612A1 (en) | 2020-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3492513B1 (en) | Method of manufacturing sioc linked polyether branched in siloxane section | |
EP3744759B1 (en) | Method of manufacturing sioc linked polyether branched in siloxane section | |
EP3744760A1 (en) | Method of manufacturing sioc linked polyether branched in siloxane section | |
EP3794060A1 (en) | Linear polydimethylsiloxane-polyoxyalkylene block copolymers of the structural type aba | |
WO2019219446A1 (en) | Linear polydimethylsiloxane-polyoxyalkylene block copolymers of the structural type aba | |
EP3438158B1 (en) | Production of sioc-linked siloxanes | |
EP2289976B1 (en) | Silicone polyether copolymers and method for their manufacture | |
EP2196487B1 (en) | Silicone polyether copolymer systems and method for production of same using alkoxylation reaction | |
EP2352779B1 (en) | Polyethersiloxanes carrying alkoxysilyl groups and method for the production thereof | |
EP2107077B1 (en) | Polyether alcohols containing organosiloxane groups by means of alkoxylation of epoxide-functional (poly)organosiloxanes on double metal cyanide (DMC) catalysts and method for their production | |
EP3020749B1 (en) | Method for the production of compositions containing platinum | |
EP3744761B1 (en) | Sioc-based polyether siloxanes | |
EP2138526B1 (en) | New alkoxylisation products containing polyether siloxanes by means of direct alkoxylisation of organomodified alpha, omega dihydroxy siloxanes to double metal cyanide (DMC) catalysts and method for its production | |
EP3744763B1 (en) | Tailored sioc-based polyether siloxanes | |
EP3611214A1 (en) | Sioc-linked, linear polydimethylsiloxane polyoxyalkylene block copolymers | |
EP2676986A1 (en) | Silicone polyethers and method for preparing them from methylidene group supporting polyethers | |
EP3744753A1 (en) | Method for purifying acetoxy siloxanes | |
CN112011060B (en) | Preparation of SiOC-bonded polyether siloxanes | |
EP3919550A1 (en) | Linear acetoxy group bearing siloxanes and secondary products | |
EP3744762A1 (en) | Method for the preparation of polyoxyalkylene polysiloxane block polymerisates | |
EP3611216A1 (en) | Linear polydimethylsiloxane polyoxyalkylene block copolymers of structure type aba | |
DE102011109545A1 (en) | Process for the preparation of polyethersiloxanes containing polyethercarbonate base structures | |
EP3611217B1 (en) | Linear polydimethylsiloxane polyoxyalkylene block copolymers of structure type aba | |
EP2563846A2 (en) | Hydrophilic polyorganosiloxanes | |
EP4349883A1 (en) | Preparation of alkoxysiloxanes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200514 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20230911 |