EP3707423A1 - Cuve etanche et thermiquement isolante - Google Patents

Cuve etanche et thermiquement isolante

Info

Publication number
EP3707423A1
EP3707423A1 EP18801022.7A EP18801022A EP3707423A1 EP 3707423 A1 EP3707423 A1 EP 3707423A1 EP 18801022 A EP18801022 A EP 18801022A EP 3707423 A1 EP3707423 A1 EP 3707423A1
Authority
EP
European Patent Office
Prior art keywords
insulating
row
angle
support
dihedral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18801022.7A
Other languages
German (de)
English (en)
Other versions
EP3707423B1 (fr
Inventor
Antoine PHILIPPE
Marc BOYEAU
Sébastien DELANOE
Mickaël HERRY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gaztransport et Technigaz SA
Original Assignee
Gaztransport et Technigaz SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport et Technigaz SA filed Critical Gaztransport et Technigaz SA
Publication of EP3707423A1 publication Critical patent/EP3707423A1/fr
Application granted granted Critical
Publication of EP3707423B1 publication Critical patent/EP3707423B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/24Arrangement of ship-based loading or unloading equipment for cargo or passengers of pipe-lines
    • B63B27/25Arrangement of ship-based loading or unloading equipment for cargo or passengers of pipe-lines for fluidised bulk material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/013Reducing manufacturing time or effort
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the invention relates to the field of sealed and thermally insulating tanks, with membranes, for storing and / or transporting fluid, such as a cryogenic fluid.
  • Watertight and thermally insulating membrane tanks are used in particular for the storage of liquefied natural gas (LNG), which is stored at atmospheric pressure at about -162 ° C. These tanks can be installed on the ground or on a floating structure. In the case of a floating structure, the tank may be intended for the transport of liquefied natural gas or to receive liquefied natural gas used as fuel for the propulsion of the floating structure.
  • LNG liquefied natural gas
  • a sealed and thermally insulating diaphragm tank integrated in a bearing structure having a substantially polyhedral inner surface and comprising successively, in a thickness direction, a secondary insulation barrier, a barrier of secondary sealing, a primary insulation barrier and a primary sealing barrier.
  • WO-A-2014167214 or WO-A-2017006044 discloses a vessel wall in which the secondary insulating barrier consists essentially of secondary insulating blocks juxtaposed on the polyhedron inner surface of the supporting structure, the barrier secondary sealing consists of a corrugated metal membrane disposed on an inner surface of the secondary insulating blocks, the primary insulation barrier consists essentially of primary insulation blocks juxtaposed on the secondary metal membrane and anchored to the secondary insulation barrier by anchoring members carried by the secondary insulating blocks, and the primary sealing barrier consists of a corrugated metal membrane disposed on an inner surface of the primary insulating blocks.
  • the primary and secondary insulating blocks consist of prefabricated corner structures.
  • FIG. 1 partially illustrates an isolation barrier consisting essentially of insulating blocks juxtaposed on a polyhedral support surface 1 having two plane regions 2 and 3 forming an angle between them and joining at an edge 4.
  • the insulating blocks comprise a corner structure 5 disposed along the edge which has two respectively parallel to each of the two planar regions 2 and 3 and flat insulating panels 6 arranged on the flat regions of the support surface on either side of the corner structure 5.
  • an insulation barrier with insulating blocks is standardized as possible to reduce manufacturing costs.
  • the construction of a large supporting structure such as the hull of a ship is subject to high dimensional tolerances, for example several centimeters, which prevent fully planning the dimensions of a tank before its construction. It follows that it may be necessary to build at least some of the insulating blocks tailored to the actual dimensions of the carrier structure.
  • the invention provides a sealed and thermally insulating vessel for storing a fluid, the sealed and thermally insulating vessel having an insulation barrier and a sealing barrier disposed on an inner surface of the insulation barrier.
  • the isolation barrier being disposed on a support surface, for example substantially polyhedral, carrying organs anchoring and retaining on the support surface by said anchoring members, wherein the insulation barrier comprises insulating elements arranged in several parallel rows,
  • said anchoring member comprises a support member mounted on the support surface between two insulating members of a first of said parallel rows and movable relative to the support surface transversely to said first row between:
  • the second row insulative member can be easily placed when the support member is retracted and can be reliably retained on the support surface when the support member is deployed.
  • the support member since the support member is engaged with the insulating member laterally from one side of the insulating member facing the first row, and not through the insulating member in the thickness direction. , the structure of the insulating element of the second row can be relatively simple.
  • such a tank may comprise one or more of the following characteristics.
  • the anchoring member can be made in different ways.
  • the anchoring member further comprises a stud fixed to the support surface and projecting inwards in a space between the two insulating elements of the first row, and a nut screwed onto the stud. and adapted to clamp the support member toward the support surface to lock the position of the support member.
  • the support element can be realized in different ways.
  • the support element comprises a support bar having a slot through which the stud passes, so that when the nut does not tighten the support bar, the support bar can be slid in a direction transverse to the first row between the retracted position, in which the support bar is housed entirely between the two insulating elements, and the deployed position or positions in which a portion of the bar bearing protrudes beyond the first row to engage said at least one insulating member of the second row.
  • the support bar has a U-shaped section.
  • the insulating elements may be made in different ways, such as flat panels on planar portions of the support surface or in the form of dihedral blocks on edge regions of the support surface.
  • the insulating element of the second row is a planar insulating board which has a layer of insulating polymeric foam sandwiched between a rigid bottom plate and a rigid cover plate, the rigid cover plate and the layer of insulating polymeric foam having a recess in the thickness of the insulating panel to reveal a bearing area on the inner surface of the rigid bottom plate, said recess opening on an edge of the plane insulating board parallel to the first row and turned towards the first row, the anchor member being engaged with said bearing zone of the bottom plate.
  • the recess formed in the thickness of the insulating panel is a groove oriented perpendicularly to said edge of the insulating panel plane.
  • Such grooves may be provided at different locations, for example at the ends of the edge of the plane insulating panel facing the first row and / or in a central portion of this edge of the plane insulating board.
  • the planar insulating panel has a rectangular parallelepipedal shape, the recess being formed in a corner of the plane insulating panel.
  • the support surface carries a plurality of anchoring members distributed along the first row of insulating elements and comprising support elements mounted on the support surface between the insulating elements of the first row and movable relative to the support surface between the retracted position and the deployed position or positions, said bearing members engaging respective areas of said second row insulative member for retaining said insulating member on the support surface.
  • the retention of the insulating element of the second row on the support surface can be provided entirely by the movable support elements or by a combination of the movable support elements and other anchoring members.
  • the support surface has at least two plane regions forming an angle between them and joining at an edge region
  • the first row of insulating elements comprises a row of corner structures.
  • the second row of insulating elements comprises a row of planar insulating panels disposed on a said flat region of the support surface.
  • this arrangement also has the advantage of allowing to position these anchors relatively close to the ridge area, especially on secondary corner structures.
  • the secondary planar insulating panels adjacent to the secondary corner structures do not need to carry these anchors for the primary planar insulating boards, the custom dimensioning of these secondary planar insulating boards can be facilitated.
  • a said angle structure comprises:
  • a dihedral insulating block having two flats parallel to the two planar regions and forming an angle therebetween, said flange having a planar outer surface bearing against a corresponding plane region of the support surface and an inner planar surface parallel to said corresponding plane region and spaced from said planar outer surface in a thickness direction, and a metal bracket fixed to the flat interior surfaces of the dihedral insulation block to form said sealing barrier at the edge region of the support surface.
  • the metal angle has a protruding portion which projects relative to the dihedral insulating block in the direction of the edge zone,
  • two successive angle structures in said row are arranged to have a spacing in the direction of the edge region between the dihedral insulating blocks, said spacing being at least partially covered by the projecting portion of the metal angle of a two successive angle structures, and said support member of the anchoring member is mounted on the support surface between the dihedral insulating blocks of the two corner structures.
  • a block of insulating material is disposed in the spacing between the dihedral insulating blocks between the projecting portion of the metal bracket and the support element. Thanks to these characteristics, the insulation barrier can be made substantially continuous despite the spacing between the insulating blocks, to limit the convection phenomena.
  • At least one of the two successive angle structures has a cutout formed in the projecting portion of the metal angle to the right of said anchor member disposed between the dihedral insulating blocks, to provide access to said anchoring member.
  • a said metal angle whose protruding portion covers said spacing comprises a bore on its inner surface to receive a fixing member intended to cooperate with the dihedral insulating block to fix said metal angle on the dihedral insulating block of the angle structure, the fixing member being adapted to be engaged in the drilling from the inner surface of the metal angle.
  • the fastener comprises a screw or a rivet whose head is turned towards the inside of the tank and whose body passes through the bore of the metal angle to cooperate with the dihedral insulating block.
  • the dihedral insulating block carries an insert mounted on the flat inner surface of at least one pan for receiving and stopping said body of the fastener in the thickness direction of said at least one pan.
  • the insert is mounted on said planar inner surface with a clearance in a direction parallel to the planar inner surface.
  • said at least one part of the dihedral insulating block has a groove extending parallel to the edge region and opening onto said flat inner surface, the insert being slidably accommodated in said groove.
  • said groove has a width which decreases along the direction of thickness towards the planar inner surface, so as to block said insert in the direction of thickness.
  • the support surface comprises a third plane region transverse to the edge region at one end of the edge region, and a last angle structure of the angle structure row comprises, in addition to said dihedral insulating block, a third pan parallel to the third planar region and forming angles with said two sides of the dihedral insulating block.
  • said dihedral insulating block of the penultimate corner structure of the row of corner structures has a larger dimension in the direction of the edge area than corner structures in the along a central portion of the ridge zone, the metal angle of said penultimate corner structure being composed of two corner segments juxtaposed in the direction of the ridge zone and fixed on the flat interior surfaces of the dihedral insulating block.
  • a first angle segment of said penultimate corner structure is attached to said dihedral insulating block by means of a fastener located on the outer surface of the first corner segment and inaccessible from the inner surface.
  • a second angle segment of said penultimate corner structure located on the end side of the edge region has said bore on its inner surface for receiving said fixing member intended to cooperate with the dihedral insulating block for fixing said second angle segment on the dihedral insulating block of the angle structure, the fixing member being adapted to be engaged in the drilling from the inner surface the second corner segment.
  • a first angle segment of said penultimate corner structure has holes for the passage of anchors for securing said dihedral insulation block to the support surface and a second angle segment.
  • said second-to-last corner structure located on the end-side of the edge region has a continuous surface outside the or each bore receiving the or each fastener.
  • the penultimate corner structure can quite easily be adjusted to the size of the support structure in the direction of the edge area, to account for manufacturing tolerances of this support structure.
  • the sealing barrier comprises a closure part arranged astride the metal angles of the two successive angle structures so as to seal the metal angles of the two corner structures,
  • said closure piece covering a gap between the metal angles and the cutout of said or each protruding portion which covers the spacing between the dihedral insulating blocks.
  • the sealing barrier in line with one or each flat region of the support surface comprises a metal membrane carrying corrugations parallel to the ridge zone and corrugations perpendicular to the ridge zone and planar areas located between said corrugations, an edge of the metal diaphragm parallel to the ridge zone being welded to the metal angles of the successive corner structures, said corrugations perpendicular to the ridge zone being aligned with interstices between the metal angles of the successive corner structures.
  • the closure piece comprises a corrugation perpendicular to the ridge zone aligned with a corrugation of the membrane metal and two planar portions located on either side of the corrugation and respectively welded to the metal angles of the two corner structures.
  • the aforementioned features may be employed in the construction of an insulation barrier constructed directly on a supporting structure providing the support surface, or in the construction of a primary insulation barrier constructed on a pre-existing secondary barrier providing said surface of support.
  • said insulation barrier is a primary insulation barrier and said sealing barrier is a primary sealing barrier
  • the vessel further comprising a secondary insulation barrier having a substantially polyhedral internal surface covered a secondary sealing barrier and forming said support surface
  • Such a tank can be part of a land storage facility, for example to store LNG or be installed in a floating structure, coastal or deep water, including a LNG tank, a floating storage and regasification unit (FSRU) , a floating production and remote storage unit (FPSO) and others.
  • FSRU floating storage and regasification unit
  • FPSO floating production and remote storage unit
  • a vessel for the transport of a cold liquid product comprises a double hull and a aforementioned tank disposed in the double hull.
  • the invention also provides a method for loading or unloading such a vessel, in which a fluid is conveyed through isolated pipes from or to a floating or land storage facility to or from the tank of the vessel. ship.
  • the invention also provides a transfer system for a fluid, the system comprising the abovementioned vessel, insulated pipes arranged to connect the vessel installed in the hull of the vessel to a floating or ground storage facility. and a pump for driving fluid through the insulated pipelines from or to the floating or land storage facility to or from the vessel vessel.
  • the invention also provides a manufacturing method for manufacturing a watertight and thermally insulating tank mentioned above, the method comprising:
  • the invention also provides an angle structure comprising:
  • each flange having a planar outer surface and an inner planar surface spaced from said planar outer surface in a thickness direction
  • a metal bracket fixed to the flat interior surfaces of the dihedral insulation block to form a sealing barrier, the metal bracket having a protruding portion which protrudes from the dihedral insulation block in the direction of the edge,
  • said metal angle comprises a bore on its inner surface to receive a fastener for cooperating with the dihedral insulating block to fix said metal angle on the dihedral insulating block of the corner structure, the fastener being suitable to be engaged in drilling from the inner surface of the metal angle.
  • FIG. 1 is a schematic sectional view of a modularly constructed thermal insulation barrier with modules generally parallelepiped on a polyhedral support surface, at a ridge.
  • FIG. 2 is a perspective view of a sealed and thermally insulating tank wall at a corner area of the tank, the primary sealing membrane being omitted.
  • Figure 3 is a view similar to Figure 2, wherein a primary corner structure is omitted but primary planar insulating panels adjacent to the primary corner structure are shown.
  • FIG. 4 is an enlarged perspective view showing a row of primary corner structures seen from a section plane IV-IV of FIG. 2 and for another angle value.
  • FIG. 5 is an enlarged perspective view of a detail of the row of primary corner structures.
  • FIG. 6 is a top view of a sealed and thermally insulating tank wall at a corner area of the tank, showing the location of a planar insulating board when grab bars are retracted. .
  • FIG. 7 is a perspective view showing an arrangement of secondary angle structures at the intersection between three walls of the vessel.
  • FIG. 8 is a perspective view showing an arrangement of the primary corner structures on the secondary corner structures of FIG. 7.
  • FIG. 9 is a perspective view of the vessel at the intersection between three walls of the vessel, partially showing the primary waterproofing membrane and a primary plane insulating panel.
  • Figure 10 is a view similar to Figure 9, wherein the primary sealing membrane covering the primary plane insulating board is shown.
  • FIG. 11 is a perspective view of a sealed and thermally insulating tank wall according to another embodiment, at a corner region of the tank and wherein the sealing membranes are omitted.
  • - Figure 12 is a schematic cutaway representation of a tank of LNG tanker and a loading / unloading terminal of this tank.
  • FIG. 13 is a perspective view of an angle structure according to another embodiment.
  • FIG. 14 is a perspective view of an insert housed in the corner structure of FIG. 13.
  • FIG. 15 shows a sealed and thermally insulating tank wall employing the angle structure of FIG. 13, viewed from above with respect to a planar primary insulating board.
  • FIG. 16 is a perspective view of the vessel wall of Figure 15 after placing a metal bracket fixed from the inside of the tank.
  • Each wall of the tank comprises, from the outside to the inside of the tank, a secondary thermally insulating barrier comprising secondary insulating elements juxtaposed and anchored to a bearing structure by secondary anchoring members, a secondary sealing membrane carried by the secondary insulating elements, a primary thermally insulating barrier comprising primary insulating elements juxtaposed and anchored to the secondary insulating elements by primary anchoring members 19 and a primary sealing membrane carried by the primary insulating elements and intended to be contact with the liquefied natural gas contained in the tank.
  • the supporting structure may in particular be formed of self-supporting metal sheets or, more generally, any type of rigid partition having appropriate mechanical properties.
  • the supporting structure may in particular be formed by the hull or the double hull of a ship.
  • the supporting structure comprises a plurality of walls defining the general shape of the vessel, usually a polyhedral shape.
  • planar areas of the tank can be made in different ways, for example according to the teaching of WO-A-2016046487 or WO-A-2017006044. In particular, a zone of angle of the vessel along an edge of the supporting structure will be described below.
  • FIGS. 2 and 3 show the structure of the walls of the tank at an edge 10 between a first bearing wall January 1 and a second bearing wall
  • the angle formed between the first carrier wall 11 and the second carrier wall 12 is about 90 ° in the illustrated embodiment.
  • the angle may however have any other value, for example of the order of 135 °.
  • the secondary heat-insulating barrier has a row of secondary corner structures 13 disposed along the edge 10, a single secondary corner structure 13 being shown in Figures 2 and 3.
  • the secondary corner structure 13 and the secondary sealing membrane 15 disposed on its inner surface 14 may be made in different ways, for example according to the teaching of WO-A-2017006044.
  • the secondary angle structure 13 here comprises a sandwich structure consisting of a layer of insulating polymer foam 16 sandwiched between two rigid plates 17, 18, for example of plywood.
  • the inner plate 18 has a network of perpendicular grooves 19 intended to receive the corrugations 24 of the secondary sealing membrane 15.
  • the corrugations 24 project outwards from the tank towards the supporting structure and are each received in a groove 19.
  • the orientation of the corrugations of the secondary sealing membrane is towards the inside of the tank.
  • the inner plate 18 is furthermore equipped with a plurality of metal plates 20, for example made of stainless steel or alloy with a low coefficient of thermal expansion, in particular invar®, intended for anchoring the edges of the diaphragm. secondary sealing.
  • the metal plates 20 are fixed in recesses formed in the inner plate 18 and fixed thereto by screws, rivets or staples for example.
  • the metal plates 20 are fixed directly on the layer of insulating polymer foam 16, for example by gluing.
  • the inner plate 18 is also equipped with anchoring plates 21 intended to ensure the attachment of primary angle structures 30 against the secondary angle structure 13.
  • the anchor plates 21 are for example glued to the inner plate 18 and or fixed thereto by screws, rivets or staples for example.
  • the secondary waterproofing membrane 15 has a plurality of orifices through each of which passes an anchoring member for anchoring the primary corner structures 30.
  • a blind nut 22 passes through each of the orifices and presents on its outer periphery a thread cooperating with a threaded bore 23 formed in one of the anchor plates 21.
  • the blind nut 22 has a threaded blind bore for receiving a stud for fixing the primary angle structures 30
  • the blind nut 22 further comprises a flange for sandwiching the secondary sealing membrane 15 between said flange and the anchoring plate 21. The periphery of this flange is welded to the secondary sealing membrane 15 in order to to seal.
  • the primary thermally insulating barrier comprises along the edge 10 of the vessel a plurality of primary corner structures 30.
  • the primary corner structure 30 is a preassembled assembly comprising a dihedral insulating block 31 and an angle iron 32.
  • dihedral insulation 31 has an inner face on which the angle 32 rests and an outer face resting against the secondary sealing membrane 15.
  • the dihedral insulation block 31 has a composite structure in its thickness, comprising a layer of insulating polymer foam 33 taken in sandwich between two plywood plates 34, 35 bonded to said polymeric foam layer 33.
  • the brackets 32 are metal angles, for example, made of stainless steel.
  • the bracket 32 has two wings resting against the inner face of the dihedral insulation block 31.
  • Each wing of an angle bracket 32 has unrepresented studs which are welded to the outer face of said wing and project into the interior of the tank for fix the bracket 32 to the dihedral insulation block 31, before mounting the primary corner structure 30 in the tank.
  • Each wing of the bracket 32 also has a stud 36 on its inner face, projecting towards the inside of the tank. The studs 36 make it possible to anchor a welding equipment during the welding of the elements of the primary waterproofing membrane on the brackets 32.
  • the angle 32 is provided with orifices 37, for example eight in number by angle 32, for mounting nuts on studs (not shown) carried by the plates 21, in order to securing the primary corner structure 30 to the secondary corner structure 13.
  • the primary corner structures 30 are disposed on the secondary corner structures 13 in the form of a row along the edge 10.
  • two primary corner structures 30 successive have a space 38 between the two dihedral insulating blocks 31.
  • insulating joint elements 39 are inserted in the space 38 between the two dihedral insulating blocks 31, so as to ensure continuity of the thermal insulation.
  • the secondary angle structure 13 may carry an anchoring member for cooperating with a primary insulating member. This case will be described more specifically with reference to FIGS. 3 to 5.
  • the anchoring element as a whole is cut in its median plane of symmetry in FIG. 4, so that the half-view is sufficient to understand its structure. .
  • the anchoring member comprises a plate 40 fixed on the inner surface of the secondary angle structure 13 between two plates 21.
  • the plate 40 can be fixed on the secondary angle structure 13 of different such as turntables 21. It has a tapped hole 41 for receiving a blind nut 42 shown in half-view in Figure 4.
  • the plate 40 may be present at the right of each space 38 or the right of some, for example a out of three, spaces 38.
  • the blind nut 42 passes through an orifice of the secondary sealing membrane, not shown, and has on its outer periphery a thread 43 cooperating with the threaded hole 41 formed in the plate 40. Moreover, the blind nut 42 has a blind bore. threaded 44 receiving a stud 45.
  • the blind nut 42 further comprises a flange 46 for sandwiching the secondary sealing membrane between said collar and the plate 40. The periphery of this collar is welded to the secondary sealing membrane 15 to ensure sealing.
  • the stud 45 protrudes inwards in the space 38 between the two dihedral insulating blocks 31 and serves to fix a support bar 50 oriented perpendicular to the edge 10.
  • the bar support 50 here has a U-shaped section whose base is turned towards the supporting structure. In the mounted state as shown, a first portion of the support bar 50 extends in the space 38 between the two dihedral insulating blocks 31 and has a slot 58 through which the stud 45 passes. the stud 45 makes it possible to tighten the support bar 50 towards the internal surface of the secondary angle structure 13.
  • a second portion 51 of the support bar 50 protrudes beyond the row of primary corner structures 30 to abut a planar primary insulating panel 29 adjacent to the row of primary corner structures 30.
  • slot length 58 allows a length adjustment of the second portion 51 projecting beyond the row of primary corner structures 30.
  • the slot 58 whose two ends 58a and 58b are indicated in the sectional view of FIG. 4, is long enough to allow the support bar 50 to be completely retracted into the space 38 between the two insulating blocks.
  • this retracted position shown in FIG. 6
  • the deployment movement of the support bar 50 is shown schematically by the arrow 98 in FIG. 6.
  • the length of the planar primary insulating panel 29 is nine times the width of the primary corner structure 30, so that four support bars spaced apart by an interval of three times the width of the the primary corner structure 30 engages the plane primary insulating board 29 along its edge turned towards the edge, namely two support bars 50 at both ends of this edge, i.e. at two corners of the plane primary insulating panel 29, and two support bars in a central zone of the edge of the primary plane insulating panel 29.
  • This central zone is shown in FIG.
  • the plane primary insulating panel 29 has the general shape of a rectangular parallelepiped with a longitudinal edge 26 parallel to the edge 10.
  • the flat primary insulating panel 29 has, for example, a composite structure consisting of a layer of insulating polymer foam sandwiched between a rigid bottom plate, an exposed area 28 of which is apparent, and a rigid cover plate 25.
  • the rigid cover plate 25 and the insulating polymeric foam layer are hollowed out with a groove 27 extending perpendicular to the edge 10 to the right of the plate 20 and opening on the longitudinal edge 26 to discover the uncovered area 28 of the rigid bottom plate.
  • the second portion 51 of the support bar 50 is engaged in the groove 27 and bears on the uncovered area 28 of the rigid bottom plate, possibly via a shim thick 48.
  • Another shim 49 may be interposed between the other end of the support bar 50 and the secondary membrane (not shown).
  • the shims 48 and 49 are dimensioned to ensure the parallelism between the support bar 50 and the bottom plate of the primary plane insulating panel 29. They are made of a sufficiently soft material to avoid the risk of punching, marking or For example, they may be made of plywood, plastic or epoxy resin.
  • the support bar 50 mounted in this way has several advantages: the second portion 51 is a length cantilever substantially parallel to the flat wall of the vessel which bears on the primary insulating panel plane 29, preferably to distance from the edge of this panel. It thus makes it possible to retain the plane primary insulating panel 29 on the secondary membrane without requiring complex arrangements on the primary insulating panel plane 29: it suffices to disengage a flat portion of the bottom plate.
  • the length of the second portion 51 is easily adjustable by sliding the stud 45 in the length of the slot 58.
  • This arrangement is therefore easily adapted to planar insulating panels having different dimensions or grooves 27 having different lengths.
  • the length of the groove 27 can in particular be shortened following cutting of the edge 26 to reduce the width of the insulating panel 29.
  • the support bar 50 is anchored to a stud carried by the secondary angle structure 13, its position is not sensitive to the dimensioning of the secondary planar insulating panels (not shown) adjacent to the structure of the secondary structure. Secondary angle 13. This arrangement is therefore easily adapted to secondary insulating panels planes of different dimensions.
  • each bracket 32 has two projecting flanges 53 which protrude from the dihedral insulating block 31 at two ends of the bracket 32 opposite in the direction of the edge 10.
  • the space 38 between the two dihedral insulating blocks 31 is partially covered by the two projecting flanges 53 on either side thereof.
  • each of the two projecting flanges 53 on either side of the anchoring member is provided with a cutout 54 which is located in line with the stud 45 and which is formed in the end edge 55 oriented transversely to the edge 10.
  • all the projecting edges 53 of all the angles 32 may have this cutout 54 to standardize the manufacturing.
  • the cutouts 54 serve to provide sufficient space between the two projecting flanges 53 for the passage of a clamping tool 60, for example a pipe wrench having a cylindrical head 61 or a screwdriver.
  • the depth of the cutout 54 in the direction of the edge 10 can therefore be dimensioned to provide a distance D slightly greater than the diameter of the cylindrical head 61 between the bottoms of the two cutouts 54 vis-à-vis.
  • the length of the cutout 54 along the end edge 55 may be substantially equal to the same distance D, for example about 30mm.
  • the insulating joint 39 has at its base a pin inserted into the hollow section U-shaped the support bar 50.
  • the insulating joint 39 also has a cylindrical well 56 in line with the blind nut 42 to receive the stud 45 and the nut 47.
  • planar portions of the vessel wall on both sides of an edge can be performed identically or differently, and symmetrically or asymmetrically. Furthermore, if a single angle of the tank has been described above, the other corners of the tank may have the same or different arrangement.
  • the three walls which are here represented constitute respectively a bottom wall, an end wall and a lower oblique wall.
  • the lower oblique wall forms an angle of 135 ° with the bottom wall.
  • the lower oblique wall and the bottom wall are perpendicular to the end wall.
  • the arrangement corresponds to a tank having a generally polyhedral shape and having two octagonal end walls which are connected to one another by eight walls, namely a horizontal bottom wall and a ceiling wall. , two vertical side walls, two upper oblique walls each connecting one of the side walls to the ceiling wall and two lower oblique walls each connecting one of the side walls to the bottom wall.
  • the row of secondary corner structures 13 ends in a last secondary angle structure 113 which is formed of a set of three insulating panels which are respectively fixed against the supporting structure of each of the three supporting walls.
  • the three insulating panels of the last secondary corner structure 113 each have a sandwich structure identical to that of the secondary corner structures 13, namely consisting of a layer of insulating polymer foam 1 16 sandwiched between two rigid plates 117, 1 18 for example plywood.
  • the rigid plate 1 18 On each of the three insulating panels of the last secondary angle structure 1 13, the rigid plate 1 18 carries anchor plates 121 and 140 whose structures and functions are identical to those of the anchor plates 21 and 40 described above.
  • the anchoring plates 121 make it possible to fix a final primary angle structure 130 (FIG.7) on the last secondary angle structure 1 13.
  • the plate 40 makes it possible to fix an anchoring member in a space between the last primary corner structure 130 and a second-to-last primary corner structure 230 (FIG.7) of the row of primary corner structures.
  • This anchoring member comprises a pin 145 engaged in a slot 158 of a support bar 150 visible in FIG. 9.
  • Fig. 8 is also a view of the end region of the ridge, showing in addition the primary corner structures mounted on the secondary corner structures of Fig. 7.
  • the secondary sealing membrane is entirely omitted for simplify the representation.
  • the last primary angle structure 130 of the row consists of three insulating blocks respectively resting against each of the three insulating panels of the last secondary angle structure 1 13.
  • the insulating blocks of the last primary corner structure 130 each have an inner face on which rests an angle bracket 132 whose general structure is similar to the metal angle 32 of the primary corner structure 30, except the presence of a third wing 100 parallel to the lower oblique wall.
  • the angle bracket 132 comprises in particular studs 136, orifices 137 and flanges 153 whose structures and functions are similar to those of studs 36, orifices 37 and rims 53 described above.
  • the penultimate primary corner structure 230 is shown by employing reference numerals increased by 200 for elements similar or identical to those of the primary corner structure 30.
  • the dihedral insulating block 231 is longer than the insulating block dihedral 31 and carries on its inner surface two successive metal angles in the direction of the edge.
  • the metal angle 232 is substantially identical to the metal angle 32 of the primary angle structure 30, but because the dihedral insulating block 231 is elongate toward the last primary corner structure 130, it may have a larger dimension. long along the edge 10 and it extends only one side (not shown) of the dihedral insulating block 231.
  • the metal angle 65 is placed next to the metal angle 232 with a small gap between them and fixed on the dihedral insulating block 231 in the same manner as the metal angle 32 of the primary angle structure 30.
  • the metal angle 65 presents a protruding flange 253 protruding from the dihedral insulating block 231 in the direction of the ridge 10 above the space 138.
  • the space 138 is partially covered by the two projecting flanges 153 and 253 of the wall other of it.
  • the protruding flange 153 and / or the protruding flange 253 may include a cutout to facilitate access to the anchor member in the space 138.
  • a cutout 254 is present only in the projecting flange 253.
  • the fixing of the penultimate primary angle structure 230 on the secondary insulating barrier is carried out only at the furthest portion of the last primary corner structure 130, namely the portion carrying the angle metal 232 which is fixed on a penultimate secondary structure of secondary angle 13 underlying in the same manner as described above
  • the metal angle 232 also has orifices 237.
  • the metal angle 65 does not have orifices and can be continuous, since the portion of the dihedral insulating block 231 facing the last primary angle structure 130 spans the gap 66 between the penultimate structure of the secondary angle 13 and the last secondary angle structure 1 13 and extends on the last secondary angle structure 1 13 without being fixed thereto.
  • This arrangement has the advantage of being independent of the precise size of the gap 66 in the secondary insulation barrier, which can be easily adjusted to compensate for manufacturing tolerances.
  • FIG. 9 shows the same zone of the tank as FIG. 8, but with the addition of a final plane primary insulating panel 129 adjacent to the penultimate primary corner structure 230.
  • This primary plane insulating panel 129 presents , similarly to the groove 27 of Figure 3, a recess 127 made in line with a corner area of the rigid bottom plate (not shown) to discover said corner area.
  • Figure 9 also shows the support bar 150 which is engaged in the recess 127 and bears on the uncovered area as previously described.
  • the primary waterproofing membrane is for example a membrane having two series of mutually perpendicular corrugations. It can be performed essentially as described in WO-A-2017006044. Metal sheets 67 of the primary edge-sealing membrane are welded along their edge directed towards the edge on the metal angles 32, 232, 65, 132. Furthermore, metal corner pieces 68, 168, 268 are welded astride each interface between two successive metal angles 32, 232, 65, 132.
  • corner pieces 68, 168, 268 cover the orifices 37, 137, 237 and the cutouts 54, 254 of the metal angles provide the continuity of the corrugations of the primary waterproofing membrane oriented perpendicularly to the edge 10.
  • the first-to-last angle structure 1230 shown in perspective in Figure 13, is modified to allow the second metal angle 1065 (Fig. 16) to be mounted from inside the vessel, subsequent to the installation of the penultimate primary angle structure 1230 .
  • the two faces of the dihedral insulating block 231 have a respective groove 83 which extends parallel to the 10 and which opens on the inner surface of the inner plate 235 and on the side of the inner plate 235 facing the last primary corner structure 130.
  • the groove 83 has a width which increases along the direction of thickness from the inner surface, namely in the illustrated embodiment it comprises successively a narrower inlet portion and a wider bottom portion.
  • An insert 84 shown in perspective in FIG. 14 is slidably housed in the groove 83.
  • the insert 84 has a generally profiled shape with a wider base portion 85 intended to be housed in the bottom portion of the groove 83 and a a narrower head portion 86 for accommodating in the inlet portion of the groove 83.
  • the head portion 86 has a tapped hole 87 on its upper surface for receiving a fastening screw 88 (Fig. 16).
  • the insert 84 is slightly narrower than the groove 83 to allow a set of adjustment also in the direction transverse to the edge 10.
  • FIG. 15 is a plan view from above with respect to the last plane primary insulating panel 129. It shows that the penultimate primary angle structure 1230 is mounted on the secondary insulating barrier without the second metal angle 1065 being be present. This thus frees access to the space 138 between the last primary corner structure 130 and the first to last primary corner structure 1230.
  • This access from above makes it possible to easily adjust the position of the support bar 150 in the extended position to bear on the open area 128 of the bottom plate of the last planar primary insulating panel 129, as shown in Figure 15, and to lock it in position by clamping the nut 145.
  • the primary membrane can then be made as previously described.
  • the metal angle 1065 which is fixed from the inside of the tank allows easy access to an anchoring member. This solution can be used with anchors made in different forms.
  • FIG. 11 illustrates another embodiment of the vessel wall along the edge 10.
  • the primary and secondary sealing membranes are omitted to simplify the representation.
  • Elements similar or identical to those of FIGS. 2 to 4 bear the same reference number increased by 300 and will only be described to the extent that they differ from those of FIGS. 2 to 4.
  • the primary angle structure 330 is fixed to the secondary angle structure 313 by means of pins 345 disposed in each space 338 between two dihedral insulation blocks 331.
  • the rigid plate 334 is slightly more wide than the polymeric foam layer 333 so as to discover two lateral flanges of the rigid plate 334.
  • a support bar 350 has a bore, which can be oblong, traversed by the stud 345 and bears on the lateral flanges of the rigid plate 334 of the two primary angle structure 330 between which the stud 345 is disposed.
  • each primary corner structure 330 is retained by two support bars 350 in taken with the two lateral flanges of its rigid plate 334.
  • a not shown nut is screwed onto each stud 345 to tighten the support bar 350 in the direction of the supporting structure.
  • the cutouts 354 in the edges of the metal angles 332 facilitate the mounting of the stud 345 and the establishment of the nut in the manner previously described.
  • the orifices are removed in the metal angle 332, which can be continuous.
  • a row of studs 69 may be provided on each side of the row of primary corner structures 330. This may require to provide a larger secondary angle structure 313, as shown.
  • the pins 69 are removed and the support bar 350 is made sliding as the support bar 50 of Figure 6, to be placed in a deployed position straddling the primary corner structure 330 and the plane primary insulating panel 329, so as to jointly ensure the anchoring of these two insulating elements.
  • the length of the support bar 350 can be increased and the geometry of the primary plane insulating panel 329 can be adapted to receive the support bar 350 in a groove or recess exposing the bottom plate.
  • the secondary insulating barrier and the secondary sealing membrane are removed and the studs which anchor the primary insulating barrier are carried directly by the carrier walls 11, 12.
  • the technique described above for producing a sealed and thermally insulating tank for storing a fluid can be used in different types of tanks, for example to form an LNG tank in a land installation or in a floating structure such as a LNG tanker. Or other.
  • edge area is used for designate the connection between two planar portions in the two contexts and may correspond to a real edge or a rounded portion between the two planar portions.
  • a cutaway view of a LNG tank 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
  • the wall of the tank 71 comprises a primary sealed barrier intended to be in contact with the LNG contained in the tank, a secondary sealed barrier arranged between the primary waterproof barrier and the double hull 72 of the ship, and two insulating barriers arranged respectively between the primary watertight barrier and the secondary watertight barrier and between the secondary watertight barrier and the double hull 72.
  • loading / unloading lines 73 arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a terminal! marine or port to transfer a cargo of LNG to or from the tank 71.
  • FIG. 12 represents an example of a marine terminal comprising a loading and unloading station 75, an underwater pipe 76 and an onshore installation 77.
  • the loading and unloading station 75 is a fixed off-shore installation comprising an arm mobile 74 and a tower 78 which supports the movable arm 74.
  • the movable arm 74 carries a bundle of insulated flexible pipes 79 that can connect to the loading / unloading pipes 73.
  • the movable arm 74 can be adapted to all gauges of LNG carriers .
  • a connection pipe (not shown) extends inside the tower 78.
  • the loading and unloading station 75 enables the loading and unloading of the LNG tank 70 from or to the shore facility 77.
  • the underwater line 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the onshore installation 77 over a large distance, for example 5 km, which makes it possible to keep the tanker vessel 70 at great distance from the coast during the loading and unloading operations.

Abstract

L'invention concerne une cuve étanche et thermiquement isolante dans laquelle la barrière d'isolation comporte des éléments isolants disposés en plusieurs rangées parallèles, dans laquelle un organe d'ancrage comporte un élément d'appui (50) monté sur la surface de support entre deux éléments isolants (30) d'une première desdites rangées parallèles et mobile par rapport à la surface de support transversalement à ladite première rangée entre : une position escamotée dans laquelle l'élément d'appui (50) est logé entièrement entre les deux éléments isolants (30) de manière à laisser libre l'emplacement (99) d'une deuxième desdites rangées parallèles, la deuxième rangée étant adjacente à la première rangée, et une position déployée dans laquelle l'élément d'appui déborde sur l'emplacement (99) de la deuxième rangée et est en prise avec au moins un élément isolant de la deuxième rangée pour retenir ledit élément isolant de la deuxième rangée sur la surface de support.

Description

Cuve étanche et thermiquement isolante
Domaine technique
L'invention se rapporte au domaine des cuves, étanches et thermiquement isolantes, à membranes, pour le stockage et/ou le transport de fluide, tel qu'un fluide cryogénique.
Des cuves étanches et thermiquement isolantes à membranes sont notamment employées pour le stockage de gaz naturel liquéfié (GNL), qui est stocké, à pression atmosphérique, à environ -162°C. Ces cuves peuvent être installées à terre ou sur un ouvrage flottant. Dans le cas d'un ouvrage flottant, la cuve peut être destinée au transport de gaz naturel liquéfié ou à recevoir du gaz naturel liquéfié servant de carburant pour la propulsion de l'ouvrage flottant.
Arrière-plan technologique
On connaît différentes techniques pour la construction d'une cuve étanche et thermiquement isolante à membranes intégrée dans une structure porteuse présentant une surface interne sensiblement polyédrique et comportant successivement, dans une direction d'épaisseur, une barrière d'isolation secondaire, une barrière d'étanchéité secondaire, une barrière d'isolation primaire et une barrière d'étanchéité primaire.
On connaît, par exemple par WO-A-2014167214 ou WO-A-2017006044, une paroi de cuve dans laquelle la barrière d'isolation secondaire est essentiellement constituée de blocs isolants secondaires juxtaposés sur la surface interne polyédrique de la structure porteuse, la barrière d'étanchéité secondaire est constituée d'une membrane métallique ondulée disposée sur une surface interne des blocs isolants secondaires, la barrière d'isolation primaire est essentiellement constituée de blocs isolants primaires juxtaposés sur la membrane métallique secondaire et ancrés à la barrière d'isolation secondaire par des organes d'ancrage portés par les blocs isolants secondaires, et la barrière d'étanchéité primaire est constituée d'une membrane métallique ondulée disposée sur une surface interne des blocs isolants primaires. Le long des arêtes de la structure porteuse, les blocs isolants primaires et secondaires sont constitués de structures d'angle préfabriquées.
Résumé Certains aspects de l'invention vont maintenant être expliqués en référence à la figure 1. La figure 1 illustre partiellement une barrière d'isolation essentiellement constituée de blocs isolants juxtaposés sur une surface de support polyédrique 1 présentant deux régions planes 2 et 3 formant un angle entre elles et se rejoignant au niveau d'une arête 4. Les blocs isolants comportent une structure d'angle 5 disposée le long de l'arête qui présente deux pans respectivement parallèles à chacune des deux régions planes 2 et 3 et des panneaux isolants plans 6 disposés sur les régions planes de la surface de support de part et d'autre de la structure d'angle 5.
Comme visible sur la figure 1 , si les panneaux isolants plans 6 ont été montés en premier, il peut se produire un problème d'encombrement empêchant de placer la structure d'angle 5 le long de l'arête, comme indiqué par la flèche 7. Il s'ensuit qu'il peut être préférable de construire la barrière d'isolation en finissant par une région plane. Toutefois, une fois que la structure d'angle 5 a été placée le long de l'arête, toute une zone de la surface de support proche de l'arête 4 n'est plus accessible.
Par ailleurs, il est préférable de réaliser une barrière d'isolation avec des blocs isolants aussi standardisés que possible pour réduire les coûts de fabrication. Toutefois, la construction d'une structure porteuse de grande taille telle que la coque d'un navire est soumise à des tolérances dimensionnelles élevées, par exemple plusieurs centimètres, qui empêchent de planifier entièrement les dimensions d'une cuve avant sa construction. Il s'ensuit qu'il peut être nécessaire de construire au moins certains des blocs isolants sur mesure en fonction des dimensions réelles de la structure porteuse.
Une idée à la base de l'invention est de proposer une cuve étanche et thermiquement isolante à structure multicouche qui facilite la prise en compte d'au moins certaines des contraintes susmentionnées. Une autre idée à la base de l'invention est de fournir une structure multicouche étanche et isolante qui soit facile à réaliser sur des surfaces étendues.
Pour cela, l'invention fournit une cuve étanche et thermiquement isolante destinée au stockage d'un fluide, la cuve étanche et thermiquement isolante comportant une barrière d'isolation et une barrière d'étanchéité disposée sur une surface intérieure de la barrière d'isolation, la barrière d'isolation étant disposée sur une surface de support, par exemple sensiblement polyédrique, portant des organes d'ancrage et retenue sur la surface de support par lesdits organes d'ancrage, dans laquelle la barrière d'isolation comporte des éléments isolants disposés en plusieurs rangées parallèles,
dans laquelle un dit organe d'ancrage comporte un élément d'appui monté sur la surface de support entre deux éléments isolants d'une première desdites rangées parallèles et mobile par rapport à la surface de support transversalement à ladite première rangée entre :
une position escamotée dans laquelle l'élément d'appui est logé entièrement entre les deux éléments isolants de manière à laisser libre l'emplacement d'une deuxième desdites rangées parallèles, la deuxième rangée étant adjacente à la première rangée, et
une position déployée dans laquelle l'élément d'appui déborde sur l'emplacement de la deuxième rangée et est en prise avec au moins un élément isolant de la deuxième rangée pour retenir ledit élément isolant de la deuxième rangée sur la surface de support.
Grâce à ces caractéristiques, l'élément isolant de la deuxième rangée peut être mis en place facilement lorsque l'élément d'appui est escamoté et peut être retenu de manière fiable sur la surface de support lorsque l'élément d'appui est déployé. De plus, étant donné que l'élément d'appui est mis en prise avec l'élément isolant latéralement depuis un côté de l'élément isolant tourné vers la première rangée, et non en traversant l'élément isolant dans la direction d'épaisseur, la structure de l'élément isolant de la deuxième rangée peut être relativement simple.
Selon des modes de réalisation, une telle cuve peut comporter une ou plusieurs des caractéristiques suivantes.
L'organe d'ancrage peut être réalisé de différentes manières. Selon un mode de réalisation, l'organe d'ancrage comporte en outre un goujon fixé à la surface de support et faisant saillie vers l'intérieur dans un espace entre les deux éléments isolants de la première rangée, et un écrou vissé sur le goujon et apte à serrer l'élément d'appui en direction de la surface de support pour verrouiller la position de l'élément d'appui.
L'élément d'appui peut être réalisé de différentes manières. Selon un mode de réalisation, l'élément d'appui comporte une barre d'appui présentant une fente traversée par le goujon, de sorte que, lorsque l'écrou ne serre pas la barre d'appui, la barre d'appui peut être coulissée dans une direction transverse à la première rangée entre la position escamotée, dans laquelle la barre d'appui est logée entièrement entre les deux éléments isolants, et la ou les positions déployées dans lesquelles une portion de la barre d'appui fait saillie au-delà de la première rangée pour venir en prise avec ledit au moins un élément isolant de la deuxième rangée. Selon un mode de réalisation, la barre d'appui présente une section en forme de U.
Les éléments isolants peuvent être réalisés de différentes manières, notamment sous la forme de panneaux plans sur des portions planes de la surface de support ou sous la forme de blocs diédriques sur des zones d'arêtes de la surface de support.
Selon un mode de réalisation, l'élément isolant de la deuxième rangée est un panneau isolant plan qui comporte une couche de mousse polymère isolante prise en sandwich entre une plaque de fond rigide et une plaque de couvercle rigide, la plaque de couvercle rigide et la couche de mousse polymère isolante présentant un évidement ménagé dans l'épaisseur du panneau isolant pour découvrir une zone d'appui sur la surface interne de la plaque de fond rigide, ledit évidement débouchant sur un bord du panneau isolant plan parallèle à la première rangée et tourné vers la première rangée, l'organe d'ancrage étant en prise avec ladite zone d'appui de la plaque de fond.
Selon un mode de réalisation, l'évidement ménagé dans l'épaisseur du panneau isolant est une rainure orientée perpendiculairement audit bord du panneau isolant plan. De telles rainures peuvent être ménagées à différents emplacements, par exemple aux extrémités du bord du panneau isolant plan tourné vers la première rangée et/ou dans une portion centrale de ce bord du panneau isolant plan.
Selon un mode de réalisation, le panneau isolant plan présente une forme de parallélépipède rectangle, l'évidement étant ménagé dans un coin du panneau isolant plan.
Selon un mode de réalisation, la surface de support porte une pluralité d'organes d'ancrage distribués le long de la première rangée d'éléments isolants et comportant des éléments d'appui montés sur la surface de support entre les éléments isolants de la première rangée et mobiles par rapport à la surface de support entre la position escamotée et la ou les positions déployées, lesdits éléments d'appui venant en prise avec des zones respectives dudit élément isolant de la deuxième rangée pour retenir ledit élément isolant sur la surface de support. Ainsi, la retenue de l'élément isolant de la deuxième rangée sur la surface de support peut être assurée entièrement par les éléments d'appui mobiles ou par une combinaison des éléments d'appui mobiles et d'autres organes d'ancrage.
Selon un mode de réalisation, la surface de support présente au moins deux régions planes formant un angle entre elles et se rejoignant au niveau d'une zone d'arête, et la première rangée d'éléments isolants comporte une rangée de structures d'angle disposées le long de ladite zone d'arête de la surface de support et la deuxième rangée d'éléments isolants comporte une rangée de panneaux isolants plans disposés sur une dite région plane de la surface de support.
Grâce à ces caractéristiques, il est possible de réaliser l'ancrage d'un panneau isolant plan adjacent à la rangée de structures d'angle au moyen d'un ou plusieurs organes d'ancrage situés entre les structures d'angle successives. Cet agencement simplifie le positionnement et la mise en œuvre des organes d'ancrage, notamment lorsque le panneau isolant plan adjacent à la rangée de structures d'angle doit être dimensionné sur mesure et ne peut donc pas être standardisé.
Dans le cas où la surface de support est fournie par une barrière secondaire elle-même constitué de structures d'angle secondaires et de panneaux isolants plans secondaires, cet agencement présente également l'avantage de permettre de positionner ces organes d'ancrage relativement près de la zone d'arête, notamment sur les structures d'angle secondaires. Ainsi, du fait que les panneaux isolants plans secondaires adjacents aux structures d'angle secondaires n'ont pas besoin de porter ces organes d'ancrage pour les panneaux isolants plans primaires, le dimensionnement sur mesure de ces panneaux isolants plans secondaires peut être facilité.
La structure d'angle peut être réalisée de différentes manières. Selon un mode de réalisation, une dite structure d'angle comporte :
un bloc isolant diédrique présentant deux pans parallèles aux deux régions planes et formant un angle entre eux, ledit pan comportant une surface extérieure plane en appui contre une région plane correspondante de la surface de support et une surface intérieure plane parallèle à ladite région plane correspondante et espacée de ladite surface extérieure plane dans une direction d'épaisseur, et une cornière métallique fixée sur les surfaces intérieures planes du bloc isolant diédrique pour former ladite barrière d'étanchéité au droit de la zone d'arête de la surface de support.
Selon un mode de réalisation, la cornière métallique présente une portion saillante qui fait saillie par rapport au bloc isolant diédrique selon la direction de la zone d'arête,
deux structures d'angle successives dans ladite rangée sont disposées de manière à présenter un espacement selon la direction de la zone d'arête entre les blocs isolants diédriques, ledit espacement étant au moins partiellement recouvert par la portion saillante de la cornière métallique d'une des deux structures d'angle successives, et ledit élément d'appui de l'organe d'ancrage est monté sur la surface de support entre les blocs isolants diédriques des deux structures d'angle.
Selon un mode de réalisation, un bloc de matière isolante est disposé dans l'espacement entre les blocs isolants diédriques entre la portion saillante de la cornière métallique et l'élément d'appui. Grâce à ces caractéristiques, la barrière d'isolation peut être rendue sensiblement continue malgré l'espacement entre les blocs isolants, pour limiter les phénomènes de convection.
Il peut être souhaité de faciliter l'accès à l'organe d'ancrage entre les blocs isolants diédriques des deux structures d'angle. Pour cela, selon un mode de réalisation, au moins une des deux structures d'angle successives présente une découpe formée dans la portion saillante de la cornière métallique au droit dudit organe d'ancrage disposé entre les blocs isolants diédriques, pour ménager un accès audit organe d'ancrage.
Selon un autre mode de réalisation, une dite cornière métallique dont la portion saillante recouvre ledit espacement comporte un perçage sur sa surface interne pour recevoir un organe de fixation destiné à coopérer avec le bloc isolant diédrique pour fixer ladite cornière métallique sur le bloc isolant diédrique de la structures d'angle, l'organe de fixation étant apte à être engagé dans le perçage depuis la surface interne de la cornière métallique. Par exemple, l'organe de fixation comporte une vis ou un rivet dont la tête est tournée vers l'intérieur de la cuve et dont le corps traverse le perçage de la cornière métallique pour coopérer avec le bloc isolant diédrique. Selon un mode de réalisation, le bloc isolant diédrique porte un insert monté sur la surface intérieure plane d'au moins un pan pour recevoir et arrêter ledit corps de l'organe de fixation dans la direction d'épaisseur dudit au moins un pan.
Selon un mode de réalisation, l'insert est monté sur ladite surface intérieure plane avec un jeu dans une direction parallèle à la surface intérieure plane. Un tel jeu permet notamment un ajustement de position de la cornière métallique après montage, par exemple en réponse à la mise en froid, et permet ainsi de réduire les contraintes thermiques.
Selon un mode de réalisation, ledit au moins un pan du bloc isolant diédrique présente une rainure s'étendant parallèlement à la zone d'arête et débouchant sur ladite surface intérieure plane, l'insert étant logé coulissant dans ladite rainure.
Selon un mode de réalisation, ladite rainure présente une largeur qui diminue le long de la direction d'épaisseur vers la surface intérieure plane, de manière à bloquer ledit insert dans la direction d'épaisseur.
Selon un mode de réalisation, la surface de support comporte une troisième région plane transverse à la zone d'arête à une extrémité de la zone d'arête, et une dernière structure d'angle de la rangée de structures d'angle comporte, outre ledit bloc isolant diédrique, un troisième pan parallèle à la troisième région plane et formant des angles avec lesdits deux pans du bloc isolant diédrique.
Selon un mode de réalisation, ledit bloc isolant diédrique de l'avant-dernière structure d'angle de la rangée de structures d'angle présente une plus grande dimension selon la direction de la zone d'arête que des structures d'angle situées le long d'une portion centrale de la zone d'arête, la cornière métallique de ladite avant- dernière structure d'angle étant composé de deux segments de cornière juxtaposés selon la direction de la zone d'arête et fixés sur les surfaces intérieures planes du bloc isolant diédrique.
Selon un mode de réalisation, un premier segment de cornière de ladite avant-dernière structure d'angle est fixé audit bloc isolant diédrique au moyen d'un organe de fixation situé sur la surface externe du premier segment de cornière et inaccessible depuis la surface interne du premier segment de cornière,
et un deuxième segment de cornière de ladite avant-dernière structure d'angle situé du côté de l'extrémité de la zone d'arête comporte ledit perçage sur sa surface interne pour recevoir ledit organe de fixation destiné à coopérer avec le bloc isolant diédrique pour fixer ledit deuxième segment de cornière sur le bloc isolant diédrique de la structures d'angle, l'organe de fixation étant apte à être engagé dans le perçage depuis la surface interne du deuxième segment de cornière.
Selon un mode de réalisation, un premier segment de cornière de ladite avant-dernière structure d'angle présente des orifices pour le passage d'organes d'ancrage servant à fixer ledit bloc isolant diédrique sur la surface de support et un deuxième segment de cornière de ladite avant-dernière structure d'angle situé du côté de l'extrémité de la zone d'arête présente une surface continue en dehors du ou de chaque perçage recevant le ou chaque organe de fixation.
Grâce à ces caractéristiques, l'avant-dernière structure d'angle peut assez facilement être ajustée à la dimension de la structure de support selon la direction de la zone d'arête, pour tenir compte des tolérances de fabrication de cette structure de support.
Selon un mode de réalisation, la barrière d'étanchéité comporte une pièce de fermeture disposée à cheval sur les cornières métalliques des deux structures d'angle successives de manière à relier de manière étanche les cornières métalliques des deux structures d'angle,
ladite pièce de fermeture recouvrant un interstice situé entre les cornières métalliques et la découpe de ladite ou chaque portion saillante qui recouvre l'espacement entre les blocs isolants diédriques.
Selon un mode de réalisation, la barrière d'étanchéité au droit d'une ou chaque région plane de la surface de support comporte une membrane métallique portant des ondulations parallèles à la zone d'arête et des ondulations perpendiculaires à la zone d'arête et des zones planes situées entre lesdites ondulations, un bord de la membrane métallique parallèle à la zone d'arête étant soudé sur les cornières métalliques des structures d'angle successives, lesdites ondulations perpendiculaires à la zone d'arête étant alignées avec des interstices situés entre les cornières métalliques des structures d'angle successives.
Selon un mode de réalisation, la pièce de fermeture comporte une ondulation perpendiculaire à la zone d'arête alignée avec une ondulation de la membrane métallique et deux portions planes situées de part et d'autre de l'ondulation et soudées respectivement sur les cornières métalliques des deux structures d'angle.
Les caractéristiques précitées peuvent être employées dans la construction d'une barrière d'isolation construite directement sur une structure porteuse fournissant la surface de support, ou dans la construction d'une barrière d'isolation primaire construite sur une barrière secondaire préexistante fournissant ladite surface de support.
Selon un mode de réalisation, ladite barrière d'isolation est une barrière d'isolation primaire et ladite barrière d'étanchéité est une barrière d'étanchéité primaire, la cuve comportant en outre une barrière d'isolation secondaire présentant une surface interne sensiblement polyédrique recouverte d'une barrière d'étanchéité secondaire et formant ladite surface de support.
Une telle cuve peut faire partie d'une installation de stockage terrestre, par exemple pour stocker du GNL ou être installée dans une structure flottante, côtière ou en eau profonde, notamment un navire méthanier, une unité flottante de stockage et de regazéification (FSRU), une unité flottante de production et de stockage déporté (FPSO) et autres.
Selon un mode de réalisation, un navire pour le transport d'un produit liquide froid comporte une double coque et une cuve précitée disposée dans la double coque.
Selon un mode de réalisation, l'invention fournit aussi un procédé de chargement ou déchargement d'un tel navire, dans lequel on achemine un fluide à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
Selon un mode de réalisation, l'invention fournit aussi un système de transfert pour un fluide, le système comportant le navire précité, des canalisations isolées agencées de manière à relier la cuve installée dans la coque du navire à une installation de stockage flottante ou terrestre et une pompe pour entraîner un fluide à travers les canalisations isolées depuis ou vers l'installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
L'invention fournit aussi un procédé de fabrication pour fabriquer une cuve étanche et thermiquement isolante susmentionnée, le procédé comportant :
fournir une surface de support, monter un organe d'ancrage sur la surface de support, ledit organe d'ancrage comportant un élément d'appui monté mobile par rapport à la surface de support, monter la première rangée d'éléments isolants sur la surface de support, de manière que l'élément d'appui soit logé entièrement entre deux éléments isolants de la première rangée d'éléments isolants et que ledit élément d'appui soit monté mobile transversalement à ladite première rangée,
disposer une deuxième rangée d'éléments isolants sur la surface de support, la deuxième rangée étant parallèle et adjacente à la première rangée,
déplacer l'élément d'appui jusqu'à une position déployée dans laquelle l'élément d'appui déborde sur l'emplacement de la deuxième rangée et est en prise avec au moins un élément isolant de la deuxième rangée pour retenir ledit élément isolant de la deuxième rangée sur la surface de support, et
verrouiller l'élément d'appui en position déployée.
L'invention fournit aussi une structure d'angle comportant :
un bloc isolant diédrique présentant deux pans respectivement parallèles à chacune des deux régions planes et formant un angle entre eux, chaque pan comportant une surface extérieure plane et une surface intérieure plane espacée de ladite surface extérieure plane dans une direction d'épaisseur, et
une cornière métallique fixée sur les surfaces intérieures planes du bloc isolant diédrique pour former une barrière d'étanchéité, la cornière métallique présentant une portion saillante qui fait saillie par rapport au bloc isolant diédrique selon la direction de l'arête,
dans laquelle ladite cornière métallique comporte un perçage sur sa surface interne pour recevoir un organe de fixation destiné à coopérer avec le bloc isolant diédrique pour fixer ladite cornière métallique sur le bloc isolant diédrique de la structures d'angle, l'organe de fixation étant apte à être engagé dans le perçage depuis la surface interne de la cornière métallique.
Brève description des figures
L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l'invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés. - La figure 1 est une vue schématique en section d'une barrière d'isolation thermique construite de manière modulaire avec des modules globalement parallélépipédiques sur une surface de support polyédrique, au niveau d'une arête.
- La figure 2 est une vue en perspective d'une paroi de cuve étanche et thermiquement isolante au niveau d'une zone d'angle de la cuve, la membrane d'étanchéité primaire étant omise.
- La figure 3 est une vue analogue à la figure 2, dans laquelle une structure d'angle primaire est omise mais des panneaux isolants plans primaires adjacents à la structure d'angle primaire sont montrés.
- La figure 4 est une vue en perspective agrandie représentant une rangée de structures d'angle primaires, vue depuis un plan de coupe IV-IV de la figure 2 et pour une autre valeur d'angle.
- La figure 5 est une vue en perspective agrandie d'un détail de la rangée de structures d'angle primaires.
- La figure 6 est une vue de dessus d'une paroi de cuve étanche et thermiquement isolante au niveau d'une zone d'angle de la cuve, montrant l'emplacement d'un panneau isolant plan lorsque des barres d'appui sont escamotées.
- La figure 7 est une vue en perspective représentant une disposition des structures d'angle secondaires à l'intersection entre trois parois de la cuve.
- La figure 8 est une vue en perspective représentant une disposition des structures d'angle primaires sur les structures d'angle secondaires de la figure 7.
- La figure 9 est une vue en perspective de la cuve à l'intersection entre trois parois de la cuve, représentant partiellement la membrane d'étanchéité primaire et un panneau isolant plan primaire.
- La figure 10 est une vue analogue à la figure 9, dans laquelle la membrane d'étanchéité primaire recouvrant le panneau isolant plan primaire est représentée.
- La figure 11 est une vue en perspective d'une paroi de cuve étanche et thermiquement isolante selon un autre mode de réalisation, au niveau d'une zone d'angle de la cuve et dans laquelle les membranes d'étanchéité sont omises. - La figure 12 est une représentation schématique écorchée d'une cuve de navire méthanier et d'un terminal de chargement/déchargement de cette cuve.
- La figure 13 est une vue en perspective d'une structure d'angle selon un autre mode de réalisation.
- La figure 14 est une vue en perspective d'un insert logé dans la structure d'angle de la figure 13.
- La figure 15 représente une paroi de cuve étanche et thermiquement isolante employant la structure d'angle de la figure 13, vue de dessus par rapport à un panneau isolant primaire plan.
- La figure 16 est une vue en perspective de la paroi de cuve de la figure 15 après mise en place d'une cornière métallique fixée depuis l'intérieur de la cuve.
Description détaillée de modes de réalisation
Par convention, les termes «externe » et « interne » sont utilisés pour définir la position relative d'un élément par rapport à un autre, par référence à l'intérieur et à l'extérieur de la cuve.
On va décrire ci-dessous la structure multicouche d'une cuve étanche et thermiquement isolante de stockage de de gaz naturel liquéfié. Chaque paroi de la cuve comporte, depuis l'extérieur vers l'intérieur de la cuve, une barrière thermiquement isolante secondaire comportant des éléments isolants secondaires juxtaposés et ancrés à une structure porteuse par des organes d'ancrage secondaires, une membrane d'étanchéité secondaire portée par les éléments isolants secondaires, une barrière thermiquement isolante primaire comportant des éléments isolants primaires juxtaposés et ancrés aux éléments isolants secondaires par des organes d'ancrage primaires 19 et une membrane d'étanchéité primaire portée par les éléments isolants primaires et destinée à être en contact avec le gaz naturel liquéfié contenu dans la cuve.
La structure porteuse peut notamment être formée de tôles métalliques autoporteuses ou, plus généralement, de tout type de cloison rigide présentant des propriétés mécaniques appropriées. La structure porteuse peut notamment être formée par la coque ou la double coque d'un navire. La structure porteuse comporte une pluralité de parois définissant la forme générale de la cuve, habituellement une forme polyédrique.
Les zones planes de la cuve peuvent être réalisées de différentes manières, par exemple selon l'enseignement de WO-A-2016046487 ou de WO-A-2017006044. On décrira ci-dessous plus particulièrement une zone d'angle de la cuve le long d'une arête de la structure porteuse.
Aux figures 2 et 3, on observe la structure des parois de la cuve au niveau d'une arête 10 entre une première paroi porteuse 1 1 et une deuxième paroi porteuse 12.
L'angle formé entre la première paroi porteuse 11 et la deuxième paroi porteuse 12 est d'environ 90° dans le mode de réalisation représenté. L'angle peut toutefois présenter toute autre valeur, par exemple de l'ordre de 135°.
La barrière thermiquement isolante secondaire comporte une rangée de structures d'angle secondaires 13 disposée le long de l'arête 10, une seule structure d'angle secondaire 13 étant représentée sur les figures 2 et 3. La structure d'angle secondaire 13 et la membrane d'étanchéité secondaire 15 disposée sur sa surface interne 14 peuvent être réalisées de différentes manières, par exemple selon l'enseignement de WO-A-2017006044.
La structure d'angle secondaire 13 comporte ici une structure sandwich constituée d'une couche de mousse polymère isolante 16 en sandwich entre deux plaques rigides 17, 18, par exemple en bois contreplaqué. La plaque interne 18 présente un réseau de rainures 19 perpendiculaires destinées à recevoir les ondulations 24 de la membrane d'étanchéité secondaire 15. Les ondulations 24 font saillie vers l'extérieur de la cuve en direction de la structure porteuse et sont chacune reçues dans une rainure 19.
Dans une variante de réalisation non représentée, l'orientation des ondulations de la membrane d'étanchéité secondaire est vers l'intérieur de la cuve.
La plaque interne 18 est en outre équipée d'une pluralité de platines métalliques 20, par exemple en acier inoxydable ou en alliage à faible coefficient de dilatation thermique, notamment l'invar®, destinées à l'ancrage de bords de la membrane d'étanchéité secondaire. Les platines métalliques 20 sont fixées dans des évidements ménagés dans la plaque interne 18 et fixées à celle-ci, par des vis, des rivets ou des agrafes par exemple. Alternativement, les platines métalliques 20 sont fixées directement sur la couche de mousse polymère isolante 16, par exemple par collage.
La plaque interne 18 est également équipée de platines d'ancrage 21 destinées à assurer la fixation de structures d'angle primaires 30 contre la structure d'angle secondaire 13. Les platines d'ancrage 21 sont par exemples collées sur la plaque interne 18 et/ou fixées à celle-ci, par des vis, des rivets ou des agrafes par exemple.
Par ailleurs, la membrane d'étanchéité secondaire 15 présente une pluralité d'orifices au travers de chacun desquels passe un organe d'ancrage permettant d'ancrer les structures d'angle primaires 30. Un écrou borgne 22 traverse chacun des orifices et présente sur sa périphérie extérieure un filetage coopérant avec un alésage fileté 23 ménagé dans l'une des platines d'ancrage 21. Par ailleurs, l'écrou borgne 22 présente un alésage borgne fileté destiné à recevoir un goujon de fixation des structures d'angle primaires 30. L'écrou borgne 22 comporte en outre une collerette permettant de prendre en sandwich la membrane d'étanchéité secondaire 15 entre ladite collerette et la platine d'ancrage 21. La périphérie de cette collerette est soudée sur la membrane d'étanchéité secondaire 15 afin d'assurer l'étanchéité.
La barrière thermiquement isolante primaire comporte le long de l'arête 10 de la cuve une pluralité de structures d'angle primaires 30. La structure d'angle primaire 30 est un ensemble préassemblé comprenant un bloc isolant diédrique 31 et une cornière 32. Le bloc isolant diédrique 31 présente une face interne sur laquelle repose la cornière 32 et une face externe reposant contre la membrane d'étanchéité secondaire 15. Le bloc isolant diédrique 31 présente une structure composite dans son épaisseur, comportant une couche de mousse polymère isolante 33 prise en sandwich entre deux plaques de bois contreplaqués 34, 35 collées sur ladite couche de mousse polymère 33.
Les cornières 32 sont des cornières métalliques, par exemple, réalisées en acier inoxydable. La cornière 32 présente deux ailes reposant contre la face interne du bloc isolant diédrique 31. Chaque aile d'une cornière 32 présente des goujons non représentés qui sont soudés sur la face externe de ladite aile et font saillie vers l'intérieur de la cuve pour fixer la cornière 32 au bloc isolant diédrique 31 , avant le montage de la structure d'angle primaire 30 dans la cuve. Chaque aile de la cornière 32 présente également un goujon 36 sur sa face interne, faisant saillie vers l'intérieur de la cuve. Les goujons 36 permettent d'ancrer un équipement de soudage lors du soudage des éléments de la membrane d'étanchéité primaire sur les cornières 32.
Comme décrit dans WO-A-2017006044, la cornière 32 est pourvue d'orifices 37, par exemple au nombre de huit par cornière 32, permettant de monter des écrous sur des goujons (non représentés) portés par les platines 21 , afin d'assurer la fixation de la structure d'angle primaire 30 à la structure d'angle secondaire 13.
Comme mieux visible sur les figures 2 et 4, les structures d'angle primaires 30 sont disposées sur les structures d'angle secondaire 13 sous la forme d'une rangée longeant l'arête 10. Dans cette rangée, deux structures d'angle primaires 30 successives présentent un espace 38 entre les deux blocs isolants diédriques 31. Généralement, des éléments isolants de jointure 39 sont insérés dans l'espace 38 entre les deux blocs isolants diédriques 31 , de manière à assurer une continuité de l'isolation thermique.
Dans au moins certains des espaces 38, la structure d'angle secondaire 13 peut porter un organe d'ancrage destiné à coopérer avec un élément isolant primaire. Ce cas va être décrit plus précisément en référence aux figures 3 à 5. L'organe d'ancrage dans son ensemble est coupé dans son plan médian de symétrie sur la figure 4, de sorte que la demi-vue suffit à en comprendre la structure.
Dans ce mode de réalisation, l'organe d'ancrage comporte une platine 40 fixée sur la surface interne de la structure d'angle secondaire 13 entre deux platines 21. La platine 40 peut être fixée sur la structure d'angle secondaire 13 de différentes manières comme les platines 21. Elle présente un trou taraudé 41 destiné à recevoir un écrou borgne 42 représenté en demi-vue sur la figure 4. La platine 40 peut être présente au droit de chaque espace 38 ou au droit de certains, par exemple un sur trois, des espaces 38.
L'écrou borgne 42 traverse un orifice de la membrane d'étanchéité secondaire non représentée et présente sur sa périphérie extérieure un filetage 43 coopérant avec le trou taraudé 41 ménagé dans la platine 40. Par ailleurs, l'écrou borgne 42 présente un alésage borgne fileté 44 recevant un goujon 45. L'écrou borgne 42 comporte en outre une collerette 46 permettant de prendre en sandwich la membrane d'étanchéité secondaire entre ladite collerette et la platine 40. La périphérie de cette collerette est soudée sur la membrane d'étanchéité secondaire 15 afin d'assurer l'étanchéité.
Comme visible sur la figure 4, le goujon 45 fait saillie vers l'intérieur dans l'espace 38 entre les deux blocs isolants diédriques 31 et sert à fixer une barre d'appui 50 orientée perpendiculairement à l'arête 10. La barre d'appui 50 présente ici une section en forme de U dont la base est tournée vers la structure porteuse. A l'état monté tel que représenté, une première portion de la barre d'appui 50 s'étend dans l'espace 38 entre les deux blocs isolants diédriques 31 et présente une fente 58 traversée par le goujon 45. Un écrou 47 visé sur le goujon 45 permet de serrer la barre d'appui 50 vers la surface interne de la structure d'angle secondaire 13.
Une deuxième portion 51 de la barre d'appui 50 fait saillie au-delà de la rangée de structures d'angle primaires 30 pour venir en appui sur un panneau isolant primaire plan 29 adjacent à la rangée de structures d'angle primaires 30. La longueur de la fente 58 permet un réglage de longueur de la deuxième portion 51 faisant saillie au-delà de la rangée de structures d'angle primaires 30.
De préférence, la fente 58 dont les deux extrémités 58a et 58b sont indiquées sur la vue en coupe de la figure 4, est assez longue pour permettre d'escamoter complètement la barre d'appui 50 dans l'espace 38 entre les deux blocs isolants diédriques 31. Ainsi, avant que l'écrou 47 ne soit serré, on peut faire coulisser la barre d'appui 50 entre cette position escamotée (représentée sur la figure 6), qui facilite la pose du panneau isolant primaire plan 29 en libérant complètement son emplacement indiqué en trait mixte au chiffre 99, et la position déployée illustrée sur la figure 4. Le mouvement de déploiement de la barre d'appui 50 est schématisé par la flèche 98 sur la figure 6.
Dans un mode de réalisation, la longueur du panneau isolant primaire plan 29 est égale à neuf fois la largeur de la structure d'angle primaire 30, de sorte que quatre barres d'appui mutuellement espacées d'un intervalle de trois fois la largeur de la structure d'angle primaire 30 viennent en prise avec le panneau isolant primaire plan 29 le long de son bord tourné vers l'arête, à savoir deux barres d'appui 50 aux deux extrémités de ce bord, c'est-à-dire au niveau de deux coins du panneau isolant primaire plan 29, et deux barres d'appui dans une zone centrale du bord du panneau isolant primaire plan 29. Cette zone centrale est représentée sur la figure 3. Comme partiellement représenté sur la figure 3, le panneau isolant primaire plan 29 présente une forme générale de parallélépipède rectangle avec un bord longitudinal 26 parallèle à l'arête 10. Le panneau isolant primaire plan 29 présente par exemple une structure composite constituée d'un couche de mousse polymère isolante prise en sandwich entre un plaque de fond rigide, dont une zone découverte 28 est apparente, et une plaque de couvercle rigide 25. La plaque de couvercle rigide 25 et la couche de mousse polymère isolante sont creusées d'une rainure 27 s'étendant perpendiculairement à l'arête 10 au droit de la platine 20 et débouchant sur le bord longitudinal 26 pour découvrir la zone découverte 28 de la plaque de fond rigide.
A l'état monté, la deuxième portion 51 de la barre d'appui 50 est engagée dans la rainure 27 et prend appui sur la zone découverte 28 de la plaque de fond rigide, éventuellement par l'intermédiaire d'une cale d'épaisseur 48. Une autre cale d'épaisseur 49 peut être intercalée entre l'autre extrémité de la barre d'appui 50 et la membrane secondaire (non représentée). Les cales d'épaisseur 48 et 49 sont dimensionnées pour assurer le parallélisme entre la barre d'appui 50 et la plaque de fond du panneau isolant primaire plan 29. Elles sont faites en un matériau suffisamment tendre pour éviter le risque de poinçonner, marquer ou endommager la membrane d'étanchéité secondaire 15. Par exemple, elles peuvent être faites en contreplaqué, en matière plastique ou en résine époxy.
La barre d'appui 50 montée de cette manière présente plusieurs avantages : la deuxième portion 51 est une longueur en porte-à-faux sensiblement parallèle à la paroi plane de la cuve qui prend appui sur le panneau isolant primaire plan 29, de préférence à distance du bord de ce panneau. Elle permet donc de retenir le panneau isolant primaire plan 29 sur la membrane secondaire sans nécessiter d'aménagement complexe sur le panneau isolant primaire plan 29 : il suffit de dégager une portion plane de la plaque de fond.
De plus, la longueur de la deuxième portion 51 est facilement ajustable par coulissement du goujon 45 dans la longueur de la fente 58. Cette disposition s'adapte donc facilement à des panneaux isolants primaires plans ayant différentes dimensions ou des rainures 27 ayant différentes longueurs. La longueur de la rainure 27 peut notamment être raccourcie suite à un découpage du bord 26 pour réduire la largeur du panneau isolant 29. De plus, étant donné que la barre d'appui 50 est ancrée sur un goujon porté par la structure d'angle secondaire 13, sa position n'est pas sensible au dimensionnement des panneaux isolants secondaires plans (non représentés) adjacents à la structure d'angle secondaire 13. Cette disposition s'adapte donc facilement à des panneaux isolants secondaires plans de différentes dimensions.
Comme visible sur la figure 4, chaque cornière 32 présente deux rebords saillants 53 qui font saillie par rapport au bloc isolant diédrique 31 à deux extrémités de la cornière 32 opposées selon la direction de l'arête 10. Ainsi, l'espace 38 entre les deux blocs isolants diédriques 31 est partiellement recouvert par les deux rebords saillants 53 de part et d'autre de celui-ci.
Pour préserver l'accès à l'organe d'ancrage disposé dans l'espace 38, au moins chacun des deux rebords saillants 53 de part et d'autre de l'organe d'ancrage est muni d'une découpe 54 qui est située à l'aplomb du goujon 45 et qui est formée dans le bord d'extrémité 55 orienté transversalement à l'arête 10.
Optionnellement, comme esquissé sur la figure 2, tous les rebords saillants 53 de toutes les cornières 32 peuvent présenter cette découpe 54 pour uniformiser la fabrication.
Comme mieux visible sur la figure 5, les découpes 54 servent à ménager un espace suffisant entre les deux rebords saillants 53 pour le passage d'un outil de serrage 60, par exemple une clé à pipe présentant une tête cylindrique 61 ou un tournevis. La profondeur de la découpe 54 dans la direction de l'arête 10 peut donc être dimensionnée pour ménager une distance D légèrement supérieure au diamètre de la tête cylindrique 61 entre les fonds des deux découpes 54 en vis-à-vis. La longueur de la découpe 54 le long du bord d'extrémité 55 peut être sensiblement égale à la même distance D, par exemple environ 30mm.
La séquence de montage de la zone d'angle de la cuve va être maintenant brièvement décrite :
- montage de la barrière isolante secondaire et de la membrane étanche secondaire 15, y compris les écrous borgnes 42
mise en place des barres d'appui 50 en position rétractée, la fente 58 de la barre d'appui étant positionnée au droit de l'écrou borgne 42. - Insertion et vissage du goujon 45 dans l'écrou borgne 42 à travers la fente 58 de la barre d'appui 50, mise en place de l'écrou 47 sur le goujon 45 en position non serrée
- mise en place des jointures isolantes 39 entre les emplacements des structures d'angle primaires 30. Là où la barre d'appui 50 est présente, la jointure isolante 39 présente à sa base un tenon inséré dans la section creuse en forme de U de la barre d'appui 50. La jointure isolante 39 présente aussi un puits cylindrique 56 au droit de l'écrou borgne 42 pour recevoir le goujon 45 et l'écrou 47.
- fixation des structures d'angle primaires 30 sur les structures d'angle secondaires 13, de part et d'autre des jointures isolantes 39.
- pose des panneaux isolants primaires plans 29 adjacents à la rangée de structures d'angle primaires 30
Déplacement des barres d'appui 50 en position déployée, la jointure isolante 39 restant immobilisée par le goujon 45 engagé dans le puits cylindrique 56
- Vissage de l'écrou 47 sur le goujon 45 à travers les découpes 54 des cornières 32 et le puits cylindrique 56 de la jointure isolante 39, pour réaliser le serrage de la barre d'appui 50
Insertion d'un bouchon cylindrique 57 dans le puits cylindrique 56 pour l'obturer.
- Mise en place de la membrane d'étanchéité primaire.
La construction des portions planes de la paroi de cuve situées des deux côtés d'une arête peut être réalisée de manière identique ou de manière différente, et de manière symétrique ou dissymétrique. Par ailleurs, si un seul angle de la cuve a été décrit ci-dessus, les autres angles de la cuve peuvent présenter un agencement identique ou différent.
En référence aux figures 7 à 10, on va maintenant décrire la structure de la paroi de cuve à une extrémité de l'arête 10, c'est-à-dire à l'intersection entre trois parois planes. Les trois parois qui sont ici représentées constituent respectivement une paroi de fond, une paroi d'extrémité et une paroi oblique inférieure. La paroi oblique inférieure forme un angle de 135 ° avec la paroi de fond. La paroi oblique inférieure et la paroi de fond sont perpendiculaires à la paroi d'extrémité. Un tel agencement correspond par exemple à une cuve qui présente une forme générale polyédrique et qui comporte deux parois d'extrémité de forme octogonales qui sont reliées l'une à l'autre par huit parois, à savoir une paroi de fond et une paroi de plafond horizontales, deux parois latérales verticales, deux parois obliques supérieures reliant chacune l'une des parois latérales à la paroi de plafond et deux parois obliques inférieures reliant chacune l'une des parois latérales à la paroi de fond.
Dans cette zone, comme représenté sur la figure 7, la rangée de structures d'angle secondaires 13 se termine par une dernière structure d'angle secondaire 113 qui est formée d'un jeu de trois panneaux isolants qui sont respectivement fixés contre la structure porteuse de chacune des trois parois porteuses. Les trois panneaux isolants de la dernière structure d'angle secondaire 113 présentent chacun une structure sandwich identique à celle des structures d'angle secondaires 13, à savoir constituée d'une couche de mousse polymère isolante 1 16 en sandwich entre deux plaques rigides 117, 1 18 par exemple en bois contreplaqué.
Sur chacun des trois panneaux isolants de la dernière structure d'angle secondaire 1 13, la plaque rigide 1 18 porte des platines d'ancrage 121 et 140 dont les structures et fonctions sont identiques à celles des platines d'ancrage 21 et 40 décrites plus haut en relation avec la structure d'angle secondaire 13. En particulier, les platines d'ancrage 121 permettent de fixer une dernière structure d'angle primaire 130 (Fig. 7) sur la dernière structure d'angle secondaire 1 13.
La platine 40 permet de fixer un organe d'ancrage dans un espace entre la dernière structure d'angle primaire 130 et une avant-dernière structure d'angle primaire 230 (Fig. 7) de la rangée de structures d'angle primaires. Cet organe d'ancrage comporte un goujon 145 engagé dans une fente 158 d'une barre d'appui 150 visibles sur la figure 9.
La figure 8 est aussi une vue de la zone d'extrémité de l'arête, montrant en plus les structures d'angle primaires montées sur les structures d'angle secondaires de la figure 7. La membrane d'étanchéité secondaire est entièrement omise pour simplifier la représentation.
Comme représenté, la dernière structure d'angle primaire 130 de la rangée est constituée de trois blocs isolants reposant respectivement contre chacun des trois panneaux isolants de la dernière structure d'angle secondaire 1 13. Par ailleurs, les blocs isolants de la dernière structure d'angle primaire 130 comportent chacun une face interne sur laquelle repose une cornière à trois pans 132 dont la structure générale est similaire à la cornière métallique 32 de la structure d'angle primaire 30, hormis la présence d'une troisième aile 100 parallèle à la paroi oblique inférieure. La cornière à trois pans 132 comporte notamment des goujons 136, des orifices 137 et des rebords 153 dont les structures et fonctions sont similaires à celles des goujons 36, orifices 37 et rebords 53 décrits plus hauts.
L'avant-dernière structure d'angle primaire 230 est représentée en employant des chiffres de référence augmentés de 200 pour des éléments analogues ou identiques ceux de la structure d'angle primaire 30. Le bloc isolant diédrique 231 est plus long que le bloc isolant diédrique 31 et porte sur sa surface interne deux cornières métalliques successives dans la direction de l'arête. La cornière métallique 232 est sensiblement identique à la cornière métallique 32 de la structure d'angle primaire 30 mais, du fait que le bloc isolant diédrique 231 est allongé en direction de la dernière structure d'angle primaire 130, elle peut présenter une dimension plus longue le long de l'arête 10 et elle ne dépasse que d'un seul côté (non illustré) du bloc isolant diédrique 231.
La cornière métallique 65 est placée à côté de la cornière métallique 232 avec un petit interstice entre elles et fixée sur le bloc isolant diédrique 231 de la même manière que la cornière métallique 32 de la structure d'angle primaire 30. La cornière métallique 65 présente un rebord saillant 253 qui fait saillie par rapport au bloc isolant diédrique 231 selon la direction de l'arête 10 au-dessus de l'espace 138. L'espace 138 est partiellement recouvert par les deux rebords saillants 153 et 253 de part et d'autre de celui-ci.
Le rebord saillant 153 et/ou le rebord saillant 253 peut comporter une découpe pour faciliter l'accès à l'organe d'ancrage situé dans l'espace 138. Ici, une découpe 254 est présente uniquement dans le rebord saillant 253.
Par ailleurs, la fixation de l'avant-dernière structure d'angle primaire 230 sur la barrière isolante secondaire est réalisée uniquement au niveau de la portion la plus éloignée de la dernière structure d'angle primaire 130, à savoir la portion portant la cornière métallique 232 qui est fixée sur une avant-dernière structure d'angle secondaire 13 sous-jacente de la même manière que décrite précédemment Pour cela, la cornière métallique 232 présente aussi les orifices 237. A contrario, la cornière métallique 65 ne comporte pas d'orifices et peut être continue, puisque la portion du bloc isolant diédrique 231 tournée vers la dernière structure d'angle primaire 130 enjambe l'interstice 66 entre l'avant-dernière structure d'angle secondaire 13 et la dernière structure d'angle secondaire 1 13 et se prolonge sur la dernière structure d'angle secondaire 1 13 sans être fixée à celle-ci.
Cet agencement présente l'avantage d'être indépendant de la dimension précise de l'interstice 66 dans la barrière d'isolation secondaire, lequel peut être ajusté facilement pour compenser les tolérances de fabrication.
De plus, pour ajuster la barrière d'isolation primaire aux tolérances dimensionnelles de fabrication de la structure porteuse, il est possible de découper sur mesure l'avant-dernière structure d'angle primaire 230, à savoir découper l'extrémité du bloc isolant diédrique 231 et l'extrémité de la cornière métallique 65 tournées vers la dernière structure d'angle primaire 130. Compte tenu de l'absence de fixation de cette portion d'extrémité à la barrière d'isolation secondaire, ce découpage n'entraine aucune complication. Dans ce cas la découpe 254 est ajoutée après découpage de la cornière métallique 65 à la longueur souhaitée.
La figure 9 montre la même zone de la cuve que la figure 8, mais avec l'ajout d'un dernier panneau isolant primaire plan 129 adjacent à l'avant-dernière structure d'angle primaire 230. Ce panneau isolant primaire plan 129 présente, de manière analogue à la rainure 27 de la figure 3, un évidement 127 réalisé au droit d'une zone de coin de la plaque de fond rigide (non représentée) pour découvrir ladite zone de coin. La figure 9 montre également la barre d'appui 150 qui est engagée dans l'évidement 127 et prend appui sur la zone découverte de la manière précédemment décrite.
En référence aux figures 9 et 10, on va maintenant décrire la structure de la membrane d'étanchéité primaire au niveau des angles de la cuve.
La membrane d'étanchéité primaire est par exemple une membrane présentant deux séries d'ondulations mutuellement perpendiculaires. Elle peut être réalisée essentiellement comme décrit dans WO-A-2017006044. Des tôles métalliques 67 de la membrane d'étanchéité primaire bordant une arête sont soudées le long de leur bord dirigé vers l'arête sur les cornières métalliques 32, 232, 65, 132. Par ailleurs, des pièces d'angle 68,168, 268 métalliques, sont soudées à cheval sur chaque interface entre deux cornières métalliques successives 32, 232, 65, 132.
Les pièces d'angle 68,168, 268 recouvrent les orifices 37, 137, 237 et les découpes 54, 254 des cornières métalliques réalisent la continuité des ondulations de la membrane d'étanchéité primaire orientées perpendiculairement à l'arête 10.
En référence aux figures 13 à 16, on va maintenant décrire un deuxième mode de réalisation de la structure de la paroi de cuve à l'extrémité de l'arête 10. Dans ce mode de réalisation, l'avant-demière structure d'angle primaire 1230, représentée en perspective sur la figure 13, est modifiée pour permettre de monter la deuxième cornière métallique 1065 (Fig. 16) depuis l'intérieur de la cuve, postérieurement au montage de l'avant-dernière structure d'angle primaire 1230.
Pour cela, du côté de l'avant-dernière structure d'angle primaire 1230 qui est tourné vers la dernière structure d'angle primaire 130, les deux pans du bloc isolant diédrique 231 présentent une rainure respective 83 qui s'étend parallèlement à l'arête 10 et qui débouche sur la surface intérieure de la plaque intérieure 235 et sur le côté de de la plaque intérieure 235 tourné vers la dernière structure d'angle primaire 130. La rainure 83 présente une largeur qui augmente le long de la direction d'épaisseur depuis la surface intérieure, à savoir dans le mode de réalisation illustré elle comporte successivement une portion d'entrée plus étroite et une portion de fond plus large.
Un insert 84 représenté en perspective sur la figure 14 est logé coulissant dans la rainure 83. L'insert 84 présente une forme globale profilée avec une portion de base 85 plus large destinée à être logée dans la portion de fond de la rainure 83 et une portion de tête 86 plus étroite destinée à être logée dans la portion d'entrée de la rainure 83. La portion de tête 86 présente un trou taraudé 87 sur sa surface supérieure pour recevoir une vis de fixation 88 (Fig. 16). De préférence l'insert 84 est légèrement plus étroit que la rainure 83 pour autoriser un jeu de réglage également dans la direction transverse à l'arête 10.
Les figures 15 et 16 représentent la zone de la paroi de cuve située à l'extrémité de l'arête avant que la membrane d'étanchéité primaire ne soit montée. La figure 15 est une vue plane de dessus par rapport au dernier panneau isolant primaire plan 129. Elle montre que l'avant-dernière structure d'angle primaire 1230 est montée sur la barrière isolante secondaire sans que la deuxième cornière métallique 1065 ne soit présente. Cela libère donc un accès à l'espace 138 entre la dernière structure d'angle primaire 130 et l'avant-demière structure d'angle primaire 1230. Cet accès par le dessus permet de régler facilement la position de la barre d'appui 150 en position déployée pour prendre appui sur la zone découverte 128 de la plaque de fond du dernier panneau isolant primaire plan 129, comme montré sur la figure 15, et de la verrouiller en position par serrage de l'écrou 145.
Ensuite, des garnitures isolantes non représentées sont placées dans l'espace 138 et dans l'évidement 127, pour compléter la barrière isolante primaire, puis la deuxième cornière métallique 1065 est fixée sur l'avant-dernière structure d'angle primaire 1230 comme montré sur la figure 16. Pour cela, une vis de fixation 88 est engagée dans un perçage de chacun des deux pans de la deuxième cornière métallique 1065 et vissée dans le trou taraudé 87 de l'insert 84. Alternativement, un rivet pourrait être employé.
La membrane primaire peut ensuite être réalisée comme décrit précédemment.
La cornière métallique 1065 qui se fixe depuis l'intérieur de la cuve permet de ménager un accès facile à un organe d'ancrage. Cette solution peut être utilisée avec des organes d'ancrage réalisés sous différentes formes.
La figure 1 1 illustre un autre mode de réalisation de la paroi de cuve le long de l'arête 10. Les membranes d'étanchéité primaire et secondaire sont omises pour simplifier la représentation. Des éléments analogues ou identiques à ceux des figures 2 à 4 portent le même chiffre de référence augmenté de 300 et ne seront décrits que dans la mesure où ils différent de ceux des figures 2 à 4.
Dans ce mode de réalisation, la structure d'angle primaire 330 est fixée sur la structure d'angle secondaire 313 au moyen de goujons 345 disposés dans chaque espace 338 entre deux blocs isolants diédriques 331. Pour cela, la plaque rigide 334 est légèrement plus large que la couche de mousse polymère 333 de manière à découvrir deux rebords latéraux de la plaque rigide 334.
Une barre d'appui 350 présente un perçage, pouvant être oblong, traversé par le goujon 345 et prend appui sur les rebords latéraux de la plaque rigide 334 des deux structure d'angle primaire 330 entre lesquels le goujon 345 est disposé. Ainsi, chaque structure d'angle primaire 330 est retenue par deux barres d'appui 350 en prise avec les deux rebords latéraux de sa plaque rigide 334. Un écrou non représenté est vissé sur chaque goujon 345 pour serrer la barre d'appui 350 en direction de la structure porteuse. Les découpes 354 dans les bords des cornières métalliques 332 facilitent le montage du goujon 345 puis la mise en place de l'écrou de la manière précédemment décrite.
Du fait de ce mode de fixation des structures d'angle primaires 330, les orifices sont supprimés dans la cornière métallique 332, qui peut donc être continue.
Pour l'ancrage du panneau isolant primaire plan 329 adjacent à la rangée de structures d'angle primaires 330 sur la barrière secondaire, une rangée de goujons 69 peut être prévue de chaque côté de la rangée de structures d'angle primaires 330. Ceci peut nécessiter de prévoir une structure d'angle secondaire 313 plus large, comme représenté.
Dans une variante de la figure 1 1 , non représentée, les goujons 69 sont supprimés et la barre d'appui 350 est rendue coulissante comme la barre d'appui 50 de la figure 6, pour pouvoir être placée dans une position déployée à cheval sur la structure d'angle primaire 330 et sur le panneau isolant primaire plan 329, de manière à assurer conjointement l'ancrage de ces deux éléments isolants. Pour cela, la longueur de la barre d'appui 350 peut être augmentée et la géométrie du panneau isolant primaire plan 329 peut être adaptée pour recevoir la barre d'appui 350 dans une rainure ou un évidement découvrant la plaque de fond.
Dans un mode de réalisation, la barrière isolante secondaire et la membrane d'étanchéité secondaire sont supprimées et les goujons qui ancrent la barrière isolante primaire sont portés directement par les parois porteuses 1 1 , 12.
La technique décrite ci-dessus pour réaliser une cuve étanche et thermiquement isolante de stockage d'un fluide peut être utilisée dans différents types de réservoirs, par exemple pour constituer un réservoir de GNL dans une installation terrestre ou dans un ouvrage flottant comme un navire méthanier ou autre.
La technique illustrée ci-dessus dans le cadre d'une surface de support réellement polyédrique, dans laquelle des portions planes se rejoignent au niveau d'arêtes, est aussi applicable à une surface de support approximativement polyédrique qui, à la place des arêtes, présenterait des portions arrondies réalisant une liaison entre des portions planes. Le terme zone d'arête est employé pour désigner la liaison entre deux portions planes dans les deux contextes et peut correspondre à une arête réelle ou à une portion arrondie entre les deux portions planes.
En référence à la figure 12, une vue écorchée d'un navire méthanier 70 montre une cuve étanche et isolée 71 de forme générale prismatique montée dans la double coque 72 du navire. La paroi de la cuve 71 comporte une barrière étanche primaire destinée à être en contact avec le GNL contenu dans la cuve, une barrière étanche secondaire agencée entre la barrière étanche primaire et la double coque 72 du navire, et deux barrières isolante agencées respectivement entre la barrière étanche primaire et la barrière étanche secondaire et entre la barrière étanche secondaire et la double coque 72.
De manière connue en soi, des canalisations de chargement/déchargement 73 disposées sur le pont supérieur du navire peuvent être raccordées, au moyen de connecteurs appropriées, à un termina! maritime ou portuaire pour transférer une cargaison de GNL depuis ou vers la cuve 71 .
La figure 12 représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 78. Le poste de chargement et de déchargement 75 permet le chargement et le déchargement du méthanier 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 70 à grande distance de la côte pendant les opérations de chargement et de déchargement.
Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en œuvre des pompes embarquées dans le navire 70 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75.
Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.
L'usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n'exclut pas la présence d'autres éléments ou d'autres étapes que ceux énoncés dans une revendication. L'usage de l'article indéfini « un » ou « une » pour un élément ou une étape n'exclut pas, sauf mention contraire, la présence d'une pluralité de tels éléments ou étapes.
Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.

Claims

REVENDICATIONS
1. Cuve étanche et thermiquement isolante destinée au stockage d'un fluide, la cuve étanche et thermiquement isolante comportant une barrière d'isolation et une barrière d'étanchéité disposée sur une surface intérieure de la barrière d'isolation, la barrière d'isolation étant disposée sur une surface de support portant des organes d'ancrage et retenue sur la surface de support par lesdits organes d'ancrage,
dans laquelle la barrière d'isolation comporte des éléments isolants disposés en plusieurs rangées parallèles,
dans laquelle un dit organe d'ancrage comporte un élément d'appui (50, 150) monté sur la surface de support entre deux éléments isolants (30, 130, 230, 1230) d'une première desdites rangées parallèles et mobile par rapport à la surface de support transversalement à ladite première rangée entre :
une position escamotée dans laquelle l'élément d'appui (50, 150) est logé entièrement entre les deux éléments isolants (30, 130, 230, 1230) de manière à laisser libre l'emplacement (99) d'une deuxième desdites rangées parallèles, la deuxième rangée étant adjacente à la première rangée, et
une position déployée dans laquelle l'élément d'appui déborde sur l'emplacement de la deuxième rangée et est en prise avec au moins un élément isolant (129) de la deuxième rangée pour retenir ledit élément isolant (29, 129) de la deuxième rangée sur la surface de support.
2. Cuve selon la revendication 1 , dans laquelle l'organe d'ancrage comporte en outre un goujon (45, 145) fixé à la surface de support et faisant saillie vers l'intérieur dans un espace entre les deux éléments isolants (30, 130, 230, 1230) de la première rangée, et
un écrou (47) vissé sur le goujon et apte à serrer l'élément d'appui (50, 150) en direction de la surface de support pour verrouiller la position de l'élément d'appui.
3. Cuve selon la revendication 2, dans laquelle l'élément d'appui comporte une barre d'appui (50, 150) présentant une fente (58, 158) traversée par le goujon (45, 145), de sorte que, lorsque l'écrou ne serre pas la barre d'appui, la barre d'appui peut être coulissée dans une direction transverse à la première rangée entre : la position escamotée dans laquelle la barre d'appui (50, 150) est logée entièrement entre les deux éléments isolants( 30, 130, 230, 1230), et
la ou les positions déployées dans lesquelles une portion (51 ) de la barre d'appui fait saillie au-delà de la première rangée pour venir en prise avec ledit au moins un élément isolant (29, 129) de la deuxième rangée.
4. Cuve selon l'une quelconque des revendications 1 à 3, dans laquelle l'élément isolant de la deuxième rangée est un panneau isolant plan (29, 129) qui comporte une couche de mousse polymère isolante prise en sandwich entre une plaque de fond rigide et une plaque de couvercle rigide (25), la plaque de couvercle rigide et la couche de mousse polymère isolante présentant un évidement (127) ménagé dans l'épaisseur du panneau isolant pour découvrir une zone d'appui (28) sur la surface interne de la plaque de fond rigide, ledit évidement débouchant sur un bord (26) du panneau isolant plan parallèle à la première rangée et tourné vers la première rangée, l'organe d'ancrage étant en prise avec ladite zone d'appui (28) de la plaque de fond.
5. Cuve selon la revendication 4, dans laquelle le panneau isolant plan présente une forme de parallélépipède rectangle, l'évidement (127) étant ménagé dans un coin du panneau isolant plan.
6. Cuve selon l'une quelconque des revendications 1 à 5, dans laquelle la surface de support porte une pluralité d'organes d'ancrage (45, 145) distribués le long de la première rangée d'éléments isolants et comportant des éléments d'appui (50, 150) montés sur la surface de support entre les éléments isolants (30, 130, 230, 1230) de la première rangée et mobiles par rapport à la surface de support entre la position escamotée et la position déployée,
lesdits éléments d'appui venant en prise avec des zones respectives dudit élément isolant (29, 129) de la deuxième rangée pour retenir ledit élément isolant sur la surface de support.
7. Cuve selon l'une quelconque des revendications 1 à 6, dans laquelle la surface de support présente au moins deux régions planes formant un angle entre elles et se rejoignant au niveau d'une zone d'arête (10),
dans laquelle la première rangée d'éléments isolants comporte une rangée de structures d'angle (30, 130, 230, 1230) disposées le long de ladite zone d'arête de la surface de support et la deuxième rangée d'éléments isolants comporte une rangée de panneaux isolants plans (29, 129) disposés sur une dite région plane de la surface de support.
8. Cuve selon la revendication 7, dans laquelle une dite structure d'angle (30, 130, 230, 1230) comporte :
un bloc isolant diédrique (31 , 131 , 231 ) présentant deux pans parallèles aux deux régions planes et formant un angle entre eux, ledit pan comportant une surface extérieure plane en appui contre une région plane correspondante de la surface de support et une surface intérieure plane parallèle à ladite région plane correspondante et espacée de ladite surface extérieure plane dans une direction d'épaisseur, et une cornière métallique (32, 232, 65, 1065, 132) fixée sur les surfaces intérieures planes du bloc isolant diédrique pour former ladite barrière d'étanchéité au droit de la zone d'arête de la surface de support.
9. Cuve selon la revendication 8, dans laquelle la cornière métallique présente une portion saillante (53, 153, 253) qui fait saillie par rapport au bloc isolant diédrique selon la direction de la zone d'arête,
dans laquelle deux structures d'angle successives dans ladite rangée sont disposées de manière à présenter un espacement (38, 138) selon la direction de la zone d'arête entre les blocs isolants diédriques, ledit espacement étant au moins partiellement recouvert par la portion saillante (53, 153, 253) de la cornière métallique d'une des deux structures d'angle successives,
dans laquelle ledit élément d'appui de l'organe d'ancrage (45, 145) est monté sur la surface de support entre les blocs isolants diédriques (31 , 131 , 231 ) des deux structures d'angle.
10. Cuve selon la revendication 9, dans laquelle un bloc de matière isolante (39) est disposé dans l'espacement (38, 138) entre les blocs isolants diédriques entre la portion saillante (53, 153, 253) de la cornière métallique et l'élément d'appui.
1 1. Cuve selon la revendication 9 ou 10, dans laquelle une dite cornière métallique (1065) dont la portion saillante (253) recouvre ledit espacement comporte un perçage sur sa surface interne pour recevoir un organe de fixation (88) destiné à coopérer avec le bloc isolant diédrique (1230) pour fixer ladite cornière métallique sur le bloc isolant diédrique de la structures d'angle, l'organe de fixation étant apte à être engagé dans le perçage depuis la surface interne de la cornière métallique (1065).
12. Cuve selon la revendication 11 , dans laquelle l'organe de fixation (88) comporte une vis ou un rivet dont la tête est tournée vers l'intérieur de la cuve et dont le corps traverse le perçage de la cornière métallique pour coopérer avec le bloc isolant diédrique.
13. Cuve selon la revendication 12, dans laquelle le bloc isolant diédrique porte un insert (84) monté sur la surface intérieure plane d'au moins un pan pour recevoir et arrêter ledit corps de l'organe de fixation dans la direction d'épaisseur dudit au moins un pan.
14. Cuve selon la revendication 13, dans laquelle l'insert (84) est monté sur ladite surface intérieure plane avec un jeu dans une direction parallèle à la surface intérieure plane.
15. Cuve selon la revendication 14, dans laquelle ledit au moins un pan du bloc isolant diédrique présente une rainure (83) s'étendant parallèlement à la zone d'arête (10) et débouchant sur ladite surface intérieure plane, l'insert (84) étant logé coulissant dans ladite rainure.
16. Cuve selon la revendication 15, dans laquelle ladite rainure (83) présente une largeur qui diminue le long de la direction d'épaisseur vers la surface intérieure plane, de manière à bloquer ledit insert (84) dans la direction d'épaisseur.
17. Cuve selon l'une quelconque des revendications 8 à 16, dans laquelle la surface de support comporte une troisième région plane transverse à la zone d'arête à une extrémité de la zone d'arête (10), dans laquelle une dernière structure d'angle (130) de la rangée de structures d'angle comporte, outre ledit bloc isolant diédrique, un troisième pan (100) parallèle à la troisième région plane et formant des angles avec lesdits deux pans du bloc isolant diédrique (130), et dans laquelle ledit bloc isolant diédrique (231 ) de l'avant-demière structure d'angle (230) de la rangée de structures d'angle présente une plus grande dimension selon la direction de la zone d'arête que des structures d'angle situées le long d'une portion centrale de la zone d'arête, la cornière métallique de ladite avant-dernière structure d'angle étant composé de deux segments de cornière (232, 1065) juxtaposés selon la direction de la zone d'arête et fixés sur les surfaces intérieures planes du bloc isolant diédrique (231 ),
dans laquelle un premier segment de cornière (232) de ladite avant-dernière structure d'angle est fixé audit bloc isolant diédrique (231 ) au moyen d'un organe de fixation situé sur la surface externe du premier segment de cornière et inaccessible depuis la surface interne du premier segment de cornière,
et un deuxième segment de cornière (1065) de ladite avant-dernière structure d'angle situé du côté de l'extrémité de la zone d'arête comporte ledit perçage sur sa surface interne pour recevoir ledit organe de fixation destiné à coopérer avec le bloc isolant diédrique (231 ) pour fixer ledit deuxième segment de cornière (1065) sur le bloc isolant diédrique de la structures d'angle, l'organe de fixation étant apte à être engagé dans le perçage depuis la surface interne du deuxième segment de cornière (1065).
18. Cuve selon la revendication 17, dans laquelle le premier segment de cornière (232) de ladite avant-dernière structure d'angle présente des orifices (237) pour le passage d'organes d'ancrage servant à fixer ledit bloc isolant diédrique (231 ) sur la surface de support et le deuxième segment de cornière (1065) de ladite avant-dernière structure d'angle situé du côté de l'extrémité de la zone d'arête présente une surface continue en dehors du ou de chaque perçage recevant le ou chaque organe de fixation.
19. Cuve selon l'une quelconque des revendications 1 à 18, dans laquelle ladite barrière d'isolation est une barrière d'isolation primaire et ladite barrière d'étanchéité est une barrière d'étanchéité primaire, la cuve comportant en outre une barrière d'isolation secondaire (13, 1 13, 213) présentant une surface interne sensiblement polyédrique recouverte d'une barrière d'étanchéité secondaire (15) et formant ladite surface de support.
20. Navire (70) pour le transport d'un fluide, le navire comportant une double coque (72) et une cuve (71 ) selon l'une quelconque des revendications 1 à 19 disposée dans la double coque.
21 . Système de transfert pour un fluide, le système comportant un navire (70) selon la revendication 20, des canalisations isolées (73, 79, 76, 81 ) agencées de manière à relier la cuve (71 ) installée dans la coque du navire à une installation de stockage flottante ou terrestre (77) et une pompe pour entraîner un fluide à travers les canalisations isolées depuis ou vers l'installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
22. Procédé de chargement ou déchargement d'un navire (70) selon la revendication 20, dans lequel on achemine un fluide à travers des canalisations isolées (73, 79, 76, 81 ) depuis ou vers une installation de stockage flottante ou terrestre (77) vers ou depuis la cuve du navire (71 ).
23. Procédé de fabrication pour fabriquer une cuve étanche et thermiquement isolante selon l'une des revendications 1 à 19, le procédé comportant :
fournir une surface de support,
monter un organe d'ancrage sur la surface de support, ledit organe d'ancrage comportant un élément d'appui (50, 150) monté mobile par rapport à la surface de support,
monter la première rangée d'éléments isolants (30, 130, 230, 1230) sur la surface de support, de manière que l'élément d'appui (50, 150) soit logé entièrement entre deux éléments isolants de la première rangée d'éléments isolants et que ledit élément d'appui soit monté mobile transversalement à ladite première rangée,
disposer une deuxième rangée d'éléments isolants (29, 129) sur la surface de support, la deuxième rangée étant parallèle et adjacente à la première rangée, déplacer l'élément d'appui (50, 150) jusqu'à une position déployée dans laquelle l'élément d'appui déborde sur l'emplacement (99) de la deuxième rangée et est en prise avec au moins un élément isolant (29, 129) de la deuxième rangée pour retenir ledit élément isolant de la deuxième rangée sur la surface de support, et verrouiller l'élément d'appui en position déployée.
EP18801022.7A 2017-11-06 2018-10-26 Cuve etanche et thermiquement isolante Active EP3707423B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1760382A FR3073271B1 (fr) 2017-11-06 2017-11-06 Cuve etanche et thermiquement isolante
PCT/FR2018/052669 WO2019086788A1 (fr) 2017-11-06 2018-10-26 Cuve etanche et thermiquement isolante

Publications (2)

Publication Number Publication Date
EP3707423A1 true EP3707423A1 (fr) 2020-09-16
EP3707423B1 EP3707423B1 (fr) 2023-07-05

Family

ID=61027907

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18801022.7A Active EP3707423B1 (fr) 2017-11-06 2018-10-26 Cuve etanche et thermiquement isolante

Country Status (12)

Country Link
EP (1) EP3707423B1 (fr)
JP (1) JP7334152B2 (fr)
KR (1) KR102487422B1 (fr)
CN (1) CN111587341B (fr)
DK (1) DK3707423T3 (fr)
ES (1) ES2957301T3 (fr)
FR (1) FR3073271B1 (fr)
MY (1) MY197460A (fr)
PT (1) PT3707423T (fr)
RU (1) RU2764345C2 (fr)
SG (1) SG11202004103SA (fr)
WO (1) WO2019086788A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3102533B1 (fr) * 2019-10-25 2023-12-22 Gaztransport Et Technigaz Dispositif et procédé de fabrication de structure d’angle de cuve étanche et thermiquement isolante
FR3133900A1 (fr) 2022-03-28 2023-09-29 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1432307A1 (ru) * 1987-01-19 1988-10-23 Всесоюзный Научно-Исследовательский И Проектный Институт "Теплопроект" Теплоизол ционна конструкци изотермического резервуара
FR2813111B1 (fr) * 2000-08-18 2002-11-29 Gaz Transport & Technigaz Cuve etanche et thermiquement isolante aretes longitudinales ameliorees
KR100499710B1 (ko) * 2004-12-08 2005-07-05 한국가스공사 선박 내부에 설치되는 액화천연가스 저장용 탱크 구조 및 탱크 제조방법
KR20090115644A (ko) * 2008-05-02 2009-11-05 삼성중공업 주식회사 화물창 인슐레이션 패널의 고정장치 및 이를 이용하는 인슐레이션 패널
EP2284072B1 (fr) * 2008-05-02 2018-07-25 Samsung Heavy Ind. Co., Ltd. Dispositif de fixation pour panneau isolant de cale à marchandise et panneau isolant utilisant un tel dispositif de fixation
FR2977562B1 (fr) * 2011-07-06 2016-12-23 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante integree dans une structure porteuse
FR2984992B1 (fr) * 2011-12-21 2015-03-27 Gaztransp Et Technigaz Cuve etanche et isolante munie d'un dispositif de retenue
FR3004509B1 (fr) 2013-04-12 2016-11-25 Gaztransport Et Technigaz Structure d'angle d'une cuve etanche et thermiquement isolante de stockage d'un fluide
FR3004510B1 (fr) * 2013-04-12 2016-12-09 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante de stockage d'un fluide
FR3026459B1 (fr) 2014-09-26 2017-06-09 Gaztransport Et Technigaz Cuve etanche et isolante comportant un element de pontage entre les panneaux de la barriere isolante secondaire
FR3038690B1 (fr) * 2015-07-06 2018-01-05 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante ayant une membrane d'etancheite secondaire equipee d'un arrangement d'angle a toles metalliques ondulees
RU2600419C1 (ru) * 2015-08-13 2016-10-20 Общество с ограниченной ответственностью проектно-конструкторское бюро "БАЛТМАРИН" Мембранный танк для сжиженного природного газа (тип вм)
FR3042253B1 (fr) * 2015-10-13 2018-05-18 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante
KR101792479B1 (ko) * 2016-03-04 2017-11-03 삼성중공업 주식회사 코너벽체 및 그를 이용한 액화가스 화물창의 시공방법

Also Published As

Publication number Publication date
JP7334152B2 (ja) 2023-08-28
KR102487422B1 (ko) 2023-01-11
CN111587341B (zh) 2022-04-29
EP3707423B1 (fr) 2023-07-05
FR3073271A1 (fr) 2019-05-10
ES2957301T3 (es) 2024-01-16
RU2020114932A (ru) 2021-12-08
DK3707423T3 (da) 2023-10-09
RU2020114932A3 (fr) 2021-12-20
WO2019086788A1 (fr) 2019-05-09
KR20200085826A (ko) 2020-07-15
MY197460A (en) 2023-06-19
SG11202004103SA (en) 2020-06-29
RU2764345C2 (ru) 2022-01-17
JP2021501860A (ja) 2021-01-21
CN111587341A (zh) 2020-08-25
FR3073271B1 (fr) 2019-11-01
PT3707423T (pt) 2023-09-05

Similar Documents

Publication Publication Date Title
EP3198186B1 (fr) Cuve étanche et isolante comportant un élément de pontage entre les panneaux de la barrière isolante secondaire
EP3320256B1 (fr) Cuve etanche et thermiquement isolante ayant une membrane d'etancheite secondaire equipee d'un arrangement d'angle a toles metalliques ondulees
EP2984384B1 (fr) Structure d'angle d'une cuve etanche et thermiquement isolante de stockage d'un fluide
EP2984383B1 (fr) Cuve etanche et thermiquement isolante de stockage d'un fluide
EP3707424B1 (fr) Cuve etanche et thermiquement isolante
FR3058498B1 (fr) Structure d'angle d'une cuve etanche et thermiquement isolante et son procede d'assemblage
EP4108976A1 (fr) Cuve etanche et thermiquement isolante
WO2017103500A1 (fr) Bloc isolant convenant pour realiser une paroi isolante dans une cuve etanche
EP3283813A2 (fr) Cuve équipée d'une paroi présentant une zone singulière au travers de laquelle passe un élément traversant
EP3365592B1 (fr) Cuve comprenant des blocs isolants de coin equipes de fentes de relaxation
WO2017207938A1 (fr) Bloc isolant et cuve etanche et thermiquement isolante integree dans une structure porteuse polyedrique
WO2016170254A1 (fr) Cuve etanche et thermiquement isolante equipee d'un element traversant
FR3049678A1 (fr) Bloc de bordure thermiquement isolant pour la fabrication d'une paroi de cuve
EP3473915A1 (fr) Cuve etanche et thermiquement isolante
WO2017207904A1 (fr) Cuve etanche et thermiquement isolante integree dans une structure porteuse polyedrique
EP3707423B1 (fr) Cuve etanche et thermiquement isolante
WO2023186866A1 (fr) Cuve étanche et thermiquement isolante

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200430

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230206

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1585138

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018052915

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3707423

Country of ref document: PT

Date of ref document: 20230905

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20230831

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20231006

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20230919

Year of fee payment: 6

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1585138

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2957301

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20240116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231006

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231114

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231005

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231105

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231006

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231023

Year of fee payment: 6

Ref country code: DK

Payment date: 20231025

Year of fee payment: 6

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705