EP3705295B1 - Verfahren zum betrieb eines cij-druckers mit optischer überwachung der druckqualität, cij-drucker mit optischer überwachung der druckqualität und verfahren zum einlernen eines cij-druckers mit optischer überwachung der druckqualität - Google Patents

Verfahren zum betrieb eines cij-druckers mit optischer überwachung der druckqualität, cij-drucker mit optischer überwachung der druckqualität und verfahren zum einlernen eines cij-druckers mit optischer überwachung der druckqualität Download PDF

Info

Publication number
EP3705295B1
EP3705295B1 EP19161144.1A EP19161144A EP3705295B1 EP 3705295 B1 EP3705295 B1 EP 3705295B1 EP 19161144 A EP19161144 A EP 19161144A EP 3705295 B1 EP3705295 B1 EP 3705295B1
Authority
EP
European Patent Office
Prior art keywords
bitmap
printed image
cij printer
substrate
printer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19161144.1A
Other languages
English (en)
French (fr)
Other versions
EP3705295A1 (de
Inventor
Klaus Specker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Paul Leibinger GmbH and Co KG
Original Assignee
Paul Leibinger GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paul Leibinger GmbH and Co KG filed Critical Paul Leibinger GmbH and Co KG
Priority to EP19161144.1A priority Critical patent/EP3705295B1/de
Priority to US17/436,437 priority patent/US11858267B2/en
Priority to JP2021552743A priority patent/JP7332707B2/ja
Priority to CN201980093684.5A priority patent/CN113543977B/zh
Priority to PCT/EP2019/084488 priority patent/WO2020177912A1/de
Publication of EP3705295A1 publication Critical patent/EP3705295A1/de
Application granted granted Critical
Publication of EP3705295B1 publication Critical patent/EP3705295B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/12Ink jet characterised by jet control testing or correcting charge or deflection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/075Ink jet characterised by jet control for many-valued deflection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/125Sensors, e.g. deflection sensors

Definitions

  • Inkjet printers are a popular class of printers.
  • a family of this class which is particularly suitable for industrial applications and has therefore achieved a high degree of acceptance in this field, are the so-called continuous inkjet printers (CIJ printers).
  • CIJ printers continuous inkjet printers
  • a continuous inkjet printer prints with an ink that contains a variable component of solvent. Accordingly, there is a mixing tank in which solvent from a solvent tank and the concentrated ink from an ink tank are mixed together to obtain the ink used for printing.
  • solvent is used hereinafter, it means the liquid used for printing; the term “concentrated ink” is used for the liquid provided in the ink tank.
  • the ink is fed under pressure to a nozzle on the print head, where the drops required for the actual printing process are created from the ink jet according to the basic principle of Rayleigh's decomposition of laminar liquid jets.
  • the formation of drops and in particular the size of the drops is controlled by a modulation which is impressed on the ink jet, for example by suitably excited piezo elements.
  • the droplets thus produced are electrically charged in a suitable manner and set on a desired trajectory by deflection electrodes directed, which leads them either to a desired position of a substrate to be printed or, if no printing process is to take place, interception at the print head, for example on a catcher tube, and recycling of the ink droplet, ie its return to the mixing tank, allowed.
  • the element to be printed e.g. a letter or a number
  • a matrix or bitmap of ink drops e.g. in many cases by a 7x5 matrix, whereby one dimension, i.e. lines or Columns of the matrix or bitmap are realized and the other dimension is realized by a material feed of the material to be printed.
  • the CIJ printer therefore usually prints a sequence of so-called "strokes", i.e. rows of ink droplets arranged side by side; In its controller, the character to be displayed is converted into a matrix or bitmap corresponding to the resolution, which is then processed line by line or column by column.
  • an essential goal is to ensure that the ink drops land in the right place on the substrate to be printed as reproducibly as possible by activating the deflection electrodes, so that the print image on a given substrate is neither distorted nor does the position of the print image change significantly on substrates that are printed one after the other becomes.
  • Such significant changes can occur as a result of fluctuations in operating parameters, and it is desirable to determine them as quickly as possible in order to be able to produce the desired print image again by appropriately adjusting the settings on the one hand and on the other hand to pull products that have misprints out of the production line in good time to be able to
  • a known way of approaching this goal is to carry out camera monitoring of the printed image, with the camera preferably being in signal communication with the CIJ printer, so that data determined by the camera and images recorded can be shown on a display of the CIJ printer .
  • the time interval between two consecutive printing processes, in which different copies of the product to be printed are printed is often very short, so that the aim is to identify misprints as quickly as possible in order to reduce the number of defective prints printed products as low as possible.
  • a further significant difficulty with camera monitoring of the printed image is that a learning process must be carried out, at least if this is to be (also) automated.
  • the object of the invention is therefore to improve CIJ printers with optical monitoring, in particular with regard to the reaction time during monitoring and/or with regard to the time required for teaching the optical monitoring system.
  • the pattern to be recognized or checked is much simpler, which makes pattern recognition easier and more reliable and reduces the computing time and hardware requirements.
  • the verification rate is significantly increased, so that an error can be detected more quickly.
  • At least one control signal for sequentially driving charging electrodes and/or deflection electrodes of the CIJ printer is used in the automated comparison of the bitmap of the desired print image and the captured with the optical monitoring means, applied to the substrate print image to determine the expected print image of the respective row or column.
  • At least one further control signal is used for the sequential activation of charging electrodes and/or deflection electrodes of the CIJ printer during the automated comparison of the bitmap of the desired print image and the print image recorded with the optical monitoring means and applied to the substrate is used to determine the expected print image of the respective row or column.
  • this control signal can be used directly to define a target position for monitoring.
  • the CIJ printer has multiple processors or one processor with multiple processor cores, with the bitmap of the desired print image being generated on one processor and the control signals for the sequential activation of charging electrodes and/or deflection electrodes being generated of the CIJ printer is controlled and the automated comparison of the bitmap of the desired print image and the print image applied to the substrate detected by the optical monitoring means takes place on the other processor.
  • the image processing does not have a negative impact on the actual printing operation, even if a high level of CPU performance is required.
  • the CIJ printer according to the invention for carrying out the method according to the invention comprises a hydraulic module for ink supply, a droplet generator comprising a nozzle and an oscillator for pressure modulation, which is supplied with ink by the hydraulic module and generates ink droplets, at least one charging electrode for applying a defined charge to the droplet generator generated ink drops, at least one deflection electrode for influencing the trajectory of the ink drops generated by the drop generator, a controller that is set up to transform a bitmap to be printed line by line or column by column into a sequence of control signals with which the charging electrode and/or the deflection electrode be controlled so that an image of this row or column is formed from drops of a droplet sequence on a substrate to be printed, and an optical monitoring means, which can be embodied in particular as a CCD camera, for monitoring the image formed on the substrate to be printed.
  • a controller that is set up to transform a bitmap to be printed line by line or column by column into a sequence of control signals with which the charging electrode and
  • the CIJ printer has a data processing device that is set up to carry out the step of automated comparison according to one of claims 1 to 5.
  • the CIJ printer has a first processor or a first processor core that is assigned to the controller and has a second processor or processor core that is assigned to the data processing device. In this way, an undesired influencing of the printing speed by the image analyzes to be carried out can be avoided.
  • the controller is in signal communication with the data processing device, so that the respective sequences of control signals or control commands corresponding to these sequences are forwarded from the controller to the data processing device.
  • the former corresponds to analog signal transmission, the latter to digital signal transmission.
  • the CIJ printer in at least one pass, generates a bitmap that contains a sequence of control signals for driving charging electrodes and/or deflection electrodes of the CIJ printer the execution of a stroke is generated, that a real print image of this bitmap is realized by applying ink drops to a substrate to be printed, that an image of the real print image is recorded with the optical monitoring means and evaluated in such a way that the respective reaction to a Control signal for a given stroke on the substrate applied part of the real print image is identified and stored as this stroke or control signal assigned to expected print image.
  • this sequence includes all control signals; but it can also suffice if it only includes specific, distinctive control signals for strokes whose printed image shows specific deviations to be expected.
  • this bitmap can also be generated stroke by stroke, i.e. the CIJ printer sequentially generates all control signals for driving the charging electrodes and/or deflection electrodes of the CIJ printer in at least one run, in order to generate dots or groups of points of the bitmap by applying ink drops to a substrate to be printed, and that the print image applied to the substrate in response to the control signal is recorded with the optical monitoring means and stored as the print image assigned to the control signal.
  • a more complex bitmap is formed from the possible or selected "elementary strokes" and the image of this bitmap recorded by the optical monitoring means is evaluated, while in the second case each stroke is executed and analyzed individually.
  • the advantage of the first approach is that interactions between consecutive strokes can already be taken into account, but the evaluation in the second case may be easier.
  • storage can take place not only as an image file but also in the form of coordinates of camera pixels at which the signal from ink drops is to be expected.
  • a library of in each case at least one image that is assigned to a stroke is created automatically, or a library of ink drop positions to be expected for specific strokes is created.
  • Another advantage is that it is often easier to identify systematic deviations in the individual stroke and correct them if necessary. For example, if the medium to be printed is fed at too high a speed, the stroke and the bitmaps composed of it can tilt. What is characteristic of this is that the individual ink drops are offset systematically, independently of the specific print image of the stroke, and this becomes larger the closer the drop in question was produced to the end of a stroke.
  • the printer In order to obtain a fluctuation range for the droplet positions obtained, it is advantageous if the printer generates sequences of—preferably, but not necessarily all—control signals for driving charging electrodes and/or deflection electrodes of the CIJ printer in several runs, in order to generate points or groups of points of the bitmap by applying ink drops to a substrate to be printed, and when the print image applied to the substrate in response to the control signal is recorded with the optical monitoring means and stored as the print image assigned to the control signal.
  • the print image and in particular the size of the individual drops or that of a single droplet generated dots also depends on the ink used and the substrate.
  • the printer is allowed to generate sequences of—preferably, but not necessarily all—control signals for driving charge electrodes and/or deflection electrodes of the CIJ printer in the multiple passes, with the order of the control signals for driving charge electrodes and/or deflection electrodes of the CIJ -Printer, are generated, is varied from sequence to sequence. In principle, it is also possible to do this for all possible combinations of strokes.
  • the analysis options that can be created with the data obtained in the training routine can be increased even further if the printer varies print parameters in the multiple runs, which can fluctuate during the printing operation of the CIJ printer and lead to a change in the print image.
  • the viscosity of the ink can fluctuate during operation, which can lead to a change in the printed image.
  • Figure 1a the letter "E" on a 7x5 matrix 1 is shown as a simple example of such a bitmap 90 .
  • a CIJ printer today can usually display more dots in one line, e.g. 32 dots, which allows the user to print complex content, as exemplified in Figure 1d are shown to be assembled as the desired print image, which is then converted into the corresponding bitmap and processed.
  • the role of the rows and columns can, of course, be reversed, particularly in the case of a different orientation.
  • Figure 1c shows schematically how the generation and deflection of the ink drops is realized by the CIJ printer.
  • the ink is with defined properties, in particular defined pressure and viscosity defined by one in the Figure 1c Hydraulic module 5 shown only schematically provided and in the Figure 1c not recognizable ink channel of the nozzle 10 supplied.
  • the column of ink in the ink channel of the nozzle 10 is modulated by an oscillator 20, which can be embodied as a piezo actuator, for example. After exiting the nozzle 10, with suitably selected jet conditions, the theoretical by C.
  • ink drops 12 of a jet that meets these conditions propagate at a speed of 20 m/s to 30 m/s, and high five-digit and even six-digit numbers of ink drops 12 can already be produced per second today.
  • the charging electrode 25 is controlled by a controller, which converts a print image generated directly or indirectly by a user in a memory 60 into a bitmap 90 in a raster image processor 65, and the information about the rows or columns to be printed on the one hand to a charging voltage calculator 70 forwards, which is preferably implemented as a separate processor.
  • the charging voltage calculator 70 generates a corresponding charging signal according to the calculated charge to be applied and passes it on to the charging electrode 25 as a control signal.
  • the CIJ printer prints them as a common "Stroke" 40,41, as in Figure 1b is illustrated, processed.
  • the processing takes place as in figure 3 is shown in the form of a schematic flowchart, in the CIJ printer in that from a print image specified by the user in step 110, which, for example, if counter information is contained, can change between print processes to be carried out directly one after the other and is stored or temporarily stored in memory 60 the bitmap 90 to be printed is obtained on a processor or processor core, the raster image processor (RIP) 65, in a process referred to as ripping 120, and in particular the sequence of points to be printed next by the CIJ printer, the current stroke 40, 41, is determined, which indicates at which locations of the substrate 100 ink drops 12 are to be applied in order to generate dots.
  • RIP raster image processor
  • step 125 This information is then forwarded on the one hand in step 125 as input to the data processing system 75, which is implemented here with a separate processor, which compares the signal to be printed and an image of the print that has taken place, which is carried out by the optical Monitoring means 80 is forwarded to the data processing system 75 performs.
  • the charging voltage calculator 70 uses it to calculate the charging voltage in step 130, preferably taking into account the information about which stroke or strokes were printed shortly beforehand and possibly also which stroke or strokes are printed immediately afterwards Drops must be applied so that they land at the desired location on the substrate so that they can be applied to the charging electrode 25 when flying past.
  • the process step 130 is also preferably carried out on a separate processor or processor core.
  • the charging electrode 25 is then driven in step 140 when the actual printing process is being carried out and charges droplets 12 of the continuous stream of ink droplets, so that they can be separated from the stream of uncharged ink droplets 12a flying toward the catcher tube 35 are deflected and applied to the substrate 100.
  • a "Print-GO" signal is generated, e.g. when an object to be printed, which passes the CIJ printer and is to be printed, reaches a defined position achieved relative to the CIJ printer. This then triggers the print, if necessary after an adjusted waiting time, starting with the first stroke 40,41; it can make sense to wait for a predefinable waiting time between successive strokes 40,41.
  • a camera image is recorded as step 150, preferably with an optical monitoring means 80 designed here as a CCD camera. This can be triggered, for example using the Print-Go signal as a time frame of reference.
  • the image data of the camera image are then forwarded to a data processing system 75 and evaluated in step 160.
  • step 160 If the evaluation in step 160 indicates a malfunction or a printing error, an error warning or a printing stop can be triggered in step 170. Otherwise, processing can be continued by jumping back to step 120, particularly if the next stroke 40, 41 has not yet been calculated. However, when jumping back to step 120, another stroke that has already been calculated can also be read from a local memory, which is preferably managed according to the FIFO principle.
  • the Figure 2a an example of a bitmap to be printed 190 and the in Figure 2b
  • Bitmap 190 shown which can also be used in particular for a teaching process according to the invention, is formed by a sequence of all dot or ink drop combinations that can be written with a five-dot stroke 40,41, ie all possible strokes 40,41 that are actually executed by a printer that writes five drops wide.
  • the print images of the individual strokes 40, 41 recorded by the optical monitoring means 80 can, however, be used as the target image that should arise in response to the print command for this stroke 40, 41 when using the teaching according to the invention, which results in a very rapid evaluation leads.
  • the stroke-based approach enables an extremely simple learning process, which can ultimately even make it possible to operate an optical monitoring device 80 on a CIJ printer as a real plug-and-play module and the in figure 4 is shown schematically.
  • This print image is then recorded in step 230 with the optical monitoring means 80 designed as a camera, and at least one corresponding camera image is evaluated in step 240, preferably in order to obtain expected values for ink drop positions of the individual strokes 40,41.
  • each stroke 40,41 or a control signal corresponding to this stroke 40,41 is the position of the ink droplets 12 on the CCD chip of the optical monitoring means (80) designed as a camera in a y-direction, which corresponds to the deflection direction of the Ink drop 12 corresponds, logically associated as expected ink drop positions.
  • the distance between the images of the individual strokes 40, 41 on the CCD chip of the optical monitoring means 80 designed as a camera information is obtained at which x-positions on the CCD chip of the optical monitoring means 80 designed as a camera ink drops an nth stroke 40,41 of a predetermined sequence of strokes 40,41 is to be expected.
  • the output of the ripper 65 representing a specific stroke 40,41 can directly as input for the data processing device 75, which analyzes the camera image.
  • This input can then be converted directly into a set of expected pixel positions for the ink droplets 12 belonging to this stroke 40, 41 and it can be checked whether the corresponding pixels are set in the camera image. Even if the Should the drop position have wandered slightly, this ensures that the newly added drop 12 can be found quickly, and by analyzing deviations, it is possible on the one hand to determine whether the imprint is still acceptable or not by comparing it with acceptance ranges to be defined, while on the other hand there may already be indications of the present problems causing a deviation from the target position can be recovered.

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Ink Jet (AREA)

Description

  • Tintenstrahldrucker sind eine weitverbreitete Klasse von Druckern. Eine Familie dieser Klasse, die sich für industrielle Anwendungen in besonderer Weise eignet und daher einen hohen Durchsetzungsgrad in diesem Feld erreicht hat sind die sogenannten Continous Inkjet Drucker (CIJ-Drucker).
  • Bei einem Continuous Inkjet Drucker wird mit einer Tinte gedruckt, die einen variablen Bestandteil an Lösungsmittel enthält. Dementsprechend gibt es einen Mischtank, in dem Lösungsmittel aus einem Lösungsmitteltank und die konzentrierte Tinte aus einem Tintentank miteinander gemischt werden, um die Tinte, die zum Druck verwendet wird, zu erhalten. Wenn nachfolgend der Begriff "Tinte" verwendet wird, ist damit die Flüssigkeit, die zum Drucken verwendet wird gemeint; für die im Tintentank bereitgestellte Flüssigkeit wird der Begriff "konzentrierte Tinte" verwendet.
  • Aus dem Mischtank wird die Tinte unter Druck einer Düse am Druckkopf zugeführt, an der die für den eigentlichen Druckprozess benötigten Tropfen aus dem Tintenstrahl nach dem Grundprinzip eines Rayleigh'schen Zerfalls laminarer Flüssigkeitsstrahlen entstehen. Die Tropfenbildung und insbesondere die Tropfengröße wird dabei durch eine Modulation, die beispielsweise durch in geeigneter Weise angeregte Piezoelemente dem Tintenstrahl aufgeprägt wird, gesteuert.
  • Die so erzeugten Tropfen werden in geeigneter Weise elektrisch geladen und durch Ablenkelektroden auf eine gewünschte Flugbahn gelenkt, die sie entweder an eine gewünschte Position eines zu bedruckenden Substrats führt oder, wenn gerade kein Druckprozess erfolgen soll, ein Abfangen am Druckkopf, beispielsweise an einem Fängerrohr, und Recyceln des Tintentropfens, d.h. seine Rückführung in den Mischtank, erlaubt.
  • Das jeweils zu druckende Element, z.B. ein Buchstabe oder eine Zahl, wird auf diese Weise durch eine Matrix oder Bitmap aus Tintentropfen realisiert, z.B. in vielen Fällen durch eine 7x5 Matrix, wobei in der Regel durch die Ablenkung der Tintentropfen eine Dimension, also Zeilen oder Spalten der Matrix oder Bitmap realisiert werden und die andere Dimension durch einen Materialvorschub des zu bedruckenden Materials realisiert wird. Der CIJ-Drucker druckt daher im Regelfall eine Sequenz von so genannten "Strokes", d.h. von Reihen nebeneinander angeordneter Tintentröpfchen; in seiner Steuerung wird dazu das darzustellende Zeichen in eine der Auflösung entsprechende Matrix oder Bitmap umgewandelt, die dann zeilen- oder spaltenweise abgearbeitet wird.
  • Offensichtlich ist dabei ein wesentliches Ziel, sicherzustellen, dass die Tintentropfen durch Ansteuerung der Ablenkelektroden möglichst reproduzierbar an der richtigen Stelle des zu bedruckenden Substrats landen, so dass weder das Druckbild auf einem gegebenen Substrat verzerrt wird noch die Position des Druckbilds auf nacheinander bedruckten Substraten signifikant verändert wird. Solche signifikanten Änderungen können dabei gegebenenfalls durch Schwankungen von Betriebsparametern auftreten, und es ist wünschenswert, sie so schnell wie möglich festzustellen, um einerseits durch entsprechende Anpassung der Einstellungen wieder das gewünschte Druckbild zu erzeugen und andererseits Produkte, die Fehldrucke tragen, rechtzeitig aus der Produktionslinie herausziehen zu können.
  • Eine bekannte Möglichkeit, sich diesem Ziel anzunähern besteht darin, eine Kameraüberwachung des Druckbilds vorzunehmen, wobei die Kamera vorzugsweise in Signalkommunikation mit dem CIJ-Drucker steht, so dass von der Kamera ermittelte Daten und aufgenommene Bilder auf einem Display des CIJ-Druckers dargestellt werden können.
  • Gerade bei auf Druckgeschwindigkeit hin optimierten Systemen ist der zeitliche Abstand zwischen zwei aufeinander folgenden Druckprozessen, bei denen unterschiedliche Exemplare des zu bedruckenden Produkts bedruckt werden, oft sehr kurz, so dass das Ziel besteht, Fehldrucke möglichst schnell zu identifizieren, um so die Zahl von fehlerhaft bedruckten Produkten möglichst gering zu halten.
  • Eine weitere bedeutende Schwierigkeit bei einer Kameraüberwachung des Druckbilds besteht darin, dass jedenfalls dann, wenn diese (auch) automatisiert erfolgen soll, ein Einlernprozess vorgenommen werden muss.
  • Verkompliziert wird dieser Einlernprozess insbesondere dadurch, dass bei CIJ-Druckern zumindest dann, wenn sie auf Druckgeschwindigkeit hin optimiert betrieben werden, auch im störungsfreien, regulären Betrieb Schwankungen in der Position einzelner Tropfen (d.h. Dots des aufgedruckten Bildes) auftreten, beispielsweise in Abhängigkeit davon, ob und/oder wohin der zuvor erzeugte Tropfen gedruckt/abgelenkt worden ist. Dies führt dazu, dass CIJ-Drucker mit Kameraanbindung bzw. Kameraeinbindung keine echten plug- and-play-Systeme darstellen, sondern zunächst eine aufwändige Inbetriebnahmeprozedur vorgenommen werden muss, die gegebenenfalls bei einem Wechsel der Druckbdedingungen, z.B. des zu bedruckenden Materials, jeweils neu vorgenommen werden muss.
  • Aus der US2001/0040599 A1 sind ein CIJ-Drucker mit Kameraüberwachung und ein Betriebsverfahren bekannt, bei dem Fehler beim Druck, insbesondere Justagefehler, kompensiert werden.
  • Die Aufgabe der Erfindung besteht also darin, CIJ-Drucker mit optischer Überwachung zu verbessern, insbesondere im Hinblick auf die Reaktionszeit bei der Überwachung und/oder im Hinblick auf den Zeitbedarf für das Einlernen des optischen Überwachungssystems.
  • Diese Aufgabe wird gelöst durch ein Verfahren zum Betrieb eines CIJ-Druckers mit einem optischen Überwachungsmittel mit den Merkmalen des Anspruchs 1, durch einen CIJ-Drucker mit einem optischen Überwachungsmittel zur Durchführung eines solchen Verfahrens mit den Merkmalen des Anspruchs 6 und durch ein Verfahren zum Einlernen eines optischen Überwachungssystems eines solchen CIJ-Druckers mit den Merkmalen des Anspruchs 9. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der jeweiligen abhängigen Ansprüche.
  • Das erfindungsgemäße Verfahren zum Betrieb eines CIJ-Druckers mit einem optischen Überwachungsmittel weist zumindest die in dieser Reihenfolge, aber nicht zwingend unmittelbar nacheinander auszuführenden Schritte
    • Erzeugen einer Bitmap des gewünschten Druckbildes,
    • sequentielles Ansteuern von Ladeelektroden und/oder Ablenkelektroden bzw. Ablenkplatten des CIJ-Druckers, um jeweils Punkte oder Gruppen von Punkten der Bitmap durch das Aufbringen von Tintentropfen auf ein zu bedruckendes Substrat zu realisieren und somit sequentiell ein reales Druckbild auf das Substrat aufzubringen,
    • Erfassen des auf dem Substrat aufgebrachten realen Druckbilds mit dem optischen Überwachungsmittel, und
    • automatisiertes Vergleichen der Bitmap des gewünschten Druckbilds und des mit dem optischen Überwachungsmittel erfassten, auf dem Substrat aufgebrachten realen Druckbilds
    auf. Erfindungswesentlich ist, dass das automatisierte Vergleichen der Bitmap des gewünschten Druckbilds und des auf dem Substrat aufgebrachten realen Druckbilds auf der Basis von Zeilen oder Spalten des Druckbilds, die in der Regel durch Strokes gebildet werden, oder auf der Basis von Bestandteilen von Zeilen oder Spalten des Druckbilds, also der Position von Tintentropfen, erfolgt.
  • Es wird also nicht mehr nach der Realisierung der gesamten Bitmap, z.B. eines gerade zu druckenden Buchstabens oder einer gerade zu druckenden Zahl, als reales Druckbild auf dem zu bedruckenden Material überprüft, ob diese mit dem gewünschten Druckbild oder der gesamten Bitmap übereinstimmt, sondern Stroke für Stroke, inbesondere nach jedem Stroke oder gegebenenfalls sogar noch während der Ausführung des Strokes überprüft, ob dieser Stroke bzw. die einzelnen Tintentropfen, aus denen er besteht, richtig platziert wurde.
  • Diese Herangehensweise bringt eine Vielzahl von Vorteilen mit sich: Das zu erkennende bzw. zu überprüfende Muster ist viel einfacher, was die Mustererkennung einfacher und zuverlässiger werden lässt und deren Rechenzeitbedarf und Hardwareanforderungen reduziert. Darüber hinaus wird die Überprüfungsrate signifikant erhöht, so dass ein Fehler schneller festgestellt werden kann.
  • Gemäß einer vorteilhaften Ausführungsform des Verfahrens ist vorgesehen, dass mindestens ein Steuersignal zum sequentielles Ansteuern von Ladeelektroden und/oder Ablenkelektroden des CIJ-Druckers beim automatisiertes Vergleichen der Bitmap des gewünschten Druckbilds und des mit dem optischen Überwachungsmittel erfassten, auf dem Substrat aufgebrachten Druckbild verwendet wird, um das erwartete Druckbild der jeweiligen Zeile oder Spalte zu bestimmen.
  • Bei einer Weiterbildung der soeben diskutierten Ausführungsform ist vorgesehen, dass mindestens ein weiteres Steuersignal zum sequentielles Ansteuern von Ladeelektroden und/oder Ablenkelektroden des CIJ-Druckers beim automatisiertes Vergleichen der Bitmap des gewünschten Druckbilds und des mit dem optischen Überwachungsmittel erfassten, auf dem Substrat aufgebrachten Druckbild verwendet wird, um das erwartete Druckbild der jeweiligen Zeile oder Spalte zu bestimmen. Was man auf diese Weise erreichen kann ist eine Erhöhung der Präzision des Zeichenvergleichs und dadurch eine größere Sensitivität bei der Erkennung auftauchender Störeffekte, die zu leichten Veränderungen des Druckbilds eines gegebenen Strokes, die z.B. in Abhängigkeit von dem zuvor ausgeführten Stroke unterschiedlich ausfallen können.
  • Wenn das sequentielle Ansteuern von Ladeelektroden und/oder Ablenkelektroden des CIJ-Druckers ebenfalls zeilen- oder spaltenweise erfolgt, kann dieses Steuersignal unmittelbar verwendet werden, um eine Sollposition für die Überwachung zu definieren.
  • Als besonders vorteilhaft hat es sich erwiesen, wenn der CIJ-Drucker mehrere Prozessoren oder einen Prozessor mit mehreren Prozessorkernen aufweist, wobei auf dem einen Prozessor die Bitmap des gewünschten Druckbildes erzeugt wird sowie die Generierung der Steuersignale für das sequentielles Ansteuern von Ladeelektroden und/oder Ablenkelektroden des CIJ-Druckers kontrolliert wird und wobei auf dem anderen Prozessor das automatisierte Vergleichen der Bitmap des gewünschten Druckbilds und des mit dem optischen Überwachungsmittel erfassten, auf dem Substrat aufgebrachten Druckbild erfolgt. Auf diese Weise kann besonders gut gewährleistet werden, dass die Bildverarbeitung auch bei hoher benötigter CPU-Leistung den eigentlichen Druckbetrieb nicht negativ beeinflusst.
  • Der erfindungsgemäße CIJ-Drucker zur Durchführung des erfindungsgemäßen Verfahrens umfasst ein Hydraulikmodul zur Tintenversorgung, einen eine Düse und einen Oszillator zur Druckmodulation umfassenden Tropfengenerator, der von dem Hydraulikmodul mit Tinte versorgt wird und Tintentropfen erzeugt, mindestens eine Ladeelektrode zum Aufbringen einer definierten Ladung auf vom Tropfengenerator erzeugte Tintentropfen, mindestens einer Ablenkelektrode zur Beeinflussung der Flugbahn der vom Tropfengenerator erzeugten Tintentropfen, eine Steuerung, die eingerichtet ist, um eine zu druckende Bitmap zeilen- oder spaltenweise in eine Sequenz von Steuersignalen zu verwandeln, mit denen die Ladeelektrode und/oder die Ablenkelektrode so angesteuert werden, dass aus Tropfen einer Tropfensequenz ein Bild dieser Zeile oder Spalte auf einem zu bedruckenden Substrat gebildet wird, und ein optisches Überwachungsmittel, das insbesondere als eine CCD-Kamera ausgebildet sein kann, zur Überwachung des auf dem zu bedruckenden Substrat gebildeten Bilds.
  • Erfindungswesentlich ist, dass der CIJ-Drucker eine Datenverarbeitungsvorrichtung aufweist, die eingerichtet ist, um den Schritt des automatisierten Vergleichens gemäß einem der Ansprüche 1 bis 5 auszuführen.
  • Gemäß einer bevorzugten Weiterbildung der Erfindung ist vorgesehen, dass der CIJ-Drucker einen ersten Prozessor oder einen ersten Prozessorkern aufweist, der der Steuerung zugeordnet ist und einen zweiten Prozessor oder Prozessorkern aufweist, der der Datenverarbeitungsvorrichtung zugeordnet ist. Auf diese Weise kann eine unerwünschte Beeinflussung der Druckgeschwindigkeit durch die vorzunehmenden Bildanalysen vermieden werden.
  • Darüber hinaus ist es vorteilhaft, wenn die Steuerung mit der Datenverarbeitungsvorrichtung in Signalkommunikation steht, so dass die jeweiligen Sequenzen von Steuersignalen oder zu diesen Sequenzen korrespondierende Steuerbefehle von der Steuerung an die Datenverarbeitungsvorrichtung weitergeleitet werden. Ersteres korrespondiert zu einer analogen Signalübertragung, letzteres zu einer digitalen Signalübertragung. Beides
  • Beim erfindungsgemäßen Verfahren zum Einlernen eines optischen Überwachungssystems eines CIJ-Druckers mit einem solchen optischen Überwachungssystem ist vorgesehen, dass der CIJ-Drucker in mindestens einem Durchlauf eine Bitmap, die eine Sequenz von Steuersignalen zum Ansteuern von Ladeelektroden und/oder Ablenkelektroden des CIJ-Druckers bei der Ausführung eines Strokes enthält, generiert, dass ein reales Druckbild dieser Bitmap durch das Aufbringen von Tintentropfen auf ein zu bedruckendes Substrat realisiert wird, dass mit dem optischen Überwachungsmittel ein Bild des realen Druckbilds aufgenommen und derart ausgewertet wird, dass der jeweils als Reaktion auf ein Steuersignal für einen gegebenen Stroke auf das Substrat aufgebrachte Teil des realen Druckbilds identifiziert und als diesem Stroke bzw. Steuersignal zugeordnetes zu erwartendes Druckbild gespeichert wird. Besonders vorteilhaft ist es, wenn diese Sequenz sämtliche Steuersignale umfasst; es kann aber auch ausreichen, wenn sie nur bestimmte, markante Steuersignale für Strokes, deren Druckbild zu erwartende spezifische Abweichungen zeigt umfasst.
  • Dabei ist darauf hinzuweisen, dass grundsätzlich diese Bitmap auch Stroke für Stroke generiert werden kann, d.h. dass der CIJ-Drucker in mindestens einem Durchlauf sequentiell alle Steuersignale zum Ansteuern von Ladeelektroden und/oder Ablenkelektroden des CIJ-Druckers, generiert, um jeweils Punkte oder Gruppen von Punkten der Bitmap durch das Aufbringen von Tintentropfen auf ein zu bedruckendes Substrat zu realisieren, und dass das jeweils als Reaktion auf das Steuersignal auf dem Substrat aufgebrachten Druckbild mit dem optischen Überwachungsmittel aufgenommen wird und als dem Steuersignal zugeordnetes Druckbild gespeichert wird.
  • Im ersten Fall wird also eine komplexere Bitmap aus den möglichen oder den ausgewählten "Elementarstrokes" gebildet und das vom optischen Überwachungsmittel aufgenommene Bild dieser Bitmap ausgewertet, während im zweiten Fall jeder Stroke einzeln ausgeführt und analysiert wird. Der Vorteil der ersten Herangehensweise besteht darin, dass Wechselwirkungen zwischen aufeinander folgenden Strokes bereits berücksichtigt werden können, allerdings ist die Auswertung im zweiten Fall unter Umständen einfacher.
  • In beiden Fällen kann die Speicherung ausser als Bilddatei auch in Form von Koordinaten von Kamerapixeln, an denen das Signal von Tintentropfen zu erwarten ist, geschehen. Auf diese Weise wird also automatisiert eine Bibliothek von jeweils mindestens einem Bild, das jeweils einem Stroke zugeordnet ist, geschaffen bzw. eine Bibliothek von zu erwartenden Tintentropfenpositionen bei bestimmten Strokes geschaffen.
  • Der große Vorteil dieses Verfahrens beim Einlernen besteht darin, dass eine unmittelbare und automatische Zuordnung zwischen dem Ergebnis des Druckbefehls und dem Druckbefehl ermöglicht wird, während bislang beim Einlernen von einem Benutzer eine komplexere Bitmap nachdem sie mit mehreren Strokes aufgebaut wurde klassifiziert werden musste.
  • Ein weiterer Vorteil besteht darin, dass am einzelnen Stroke oft leichter systematische Abweichungen identifiziert und gegebenenfalls korrigiert werden können. Beispielsweise kann es dann, wenn das zu bedruckende Medium mit zu hoher Geschwindigkeit nachgeführt wird, zu einem Verkippen des Strokes und der aus diesen zusammengesetzten Bitmaps kommen. Charakteristisch dafür ist, dass systematisch unabhängig vom konkreten Druckbild des Strokes ein Versatz der einzelnen Tintentropfen auftritt, der umso größer wird, je näher am Ende eines Strokes der fragliche Tropfen produziert wurde.
  • Um eine Schwankungsbreite für die erhaltenen Tropfenpositionen zu erhalten ist es vorteilhaft, wenn der Drucker in mehreren Durchläufen Sequenzen von -bevorzugt, aber nicht notwendigerweise allen- Steuersignalen zum Ansteuern von Ladeelektroden und/oder Ablenkelektroden des CIJ-Druckers, generiert, um jeweils Punkte oder Gruppen von Punkten der Bitmap durch das Aufbringen von Tintentropfen auf ein zu bedruckendes Substrat zu realisieren, und wenn das jeweils als Reaktion auf das Steuersignal auf dem Substrat aufgebrachten Druckbild mit dem optischen Überwachungsmittel aufgenommen wird und als dem Steuersignal zugeordnetes Druckbild gespeichert wird.
  • Anzumerken ist dabei noch, dass das Druckbild und insbesondere die Größe der einzelnen Tropfen bzw. der von einem einzelnen Tropfen erzeugten Punkte auch von der verwendeten Tinte und dem Substrat abhängt.
  • Insbesondere können bei einem solchen Vorgehen die Unterschiede der Druckposition, die durch unterschiedliche vorangehende Strokes bei einem gegebenen Stroke hervorgerufen werden, erfasst und bei der Überwachung des Druckergebnisses verwendet werden. Dazu lässt man den Drucker in den mehreren Durchläufen Sequenzen von -bevorzugt, aber nicht notwendigerweise allen-Steuersignalen zum Ansteuern von Ladeelektroden und/oder Ablenkelektroden des CIJ-Druckers generieren, wobei die Reihenfolge, der Steuersignale zum Ansteuern von Ladeelektroden und/oder Ablenkelektroden des CIJ-Druckers, generiert werden, von Sequenz zu Sequenz variiert wird. Grundsätzlich ist es auch möglich, dies für alle möglichen Kombinationen von Strokes durchzuführen. Neben einer vollständigen Erfassung der Schwankungsbreiten der einzelnen Tropfenpositionen, die dann bei der Kontrolle des Druckerfolgs benutz werden kann, besteht in diesem Fall auch die Möglichkeit, bei der Druckbildüberwachung z.B. den vor dem gerade zu druckenden Stroke gedruckten Stroke zu berücksichtigen und dadurch die Präzision der Positionsinformationen zu erhöhen.
  • Die Analysemöglichkeiten, die sich mit den in der Einlernroutine gewonnenen Daten schaffen lassen können noch weiter gesteigert werden, wenn der Drucker in den mehreren Durchläufen Druckparameter variiert, die im Druckbetrieb des CIJ-Druckers schwanken können und zu einer Veränderung des Druckbilds führen. Beispielsweise kann im Betrieb die Viskosität der Tinte schwanken, was zu einer Veränderung des Druckbildes führen kann. Durch gezielte Veränderung dieses Parameters in einer Einlernphase können dessen Auswirkungen erfasst und einerseits zur Verbesserung der Druckerfolgskontrolle, andererseits aber auch zur Früherkennung einer drohenden Fehlfunktion genutzt werden.
  • Die Erfindung wird nachfolgend anhand von Figuren, die Ausführungsbeispiele darstellen, näher erläutert. Es zeigt:
  • Fig. 1a:
    eine schematische Darstellung eines zu druckenden Zeichens,
    Fig. 1b:
    eine schematische Darstellung der Zerlegung des Druckprozesses in einzelne Strokes,
    Fig. 1c:
    eine schematische Darstellung des Schreibens eines Strokes auf das Substrat durch den CIJ-Drucker,
    Fig. 1d:
    ein Beispiel für eine komplexe, vom Benutzer erstellbare Bitmap,
    Fig. 2a:
    ein Beispiel für eine zu druckende Bitmap, die auch zum Einlernen der Kamera verwendbar ist,
    Fig. 2b:
    das mit der Kamera aufgenommene Druckergebnis, das beim Druck der Bitmap aus Fig. 2a erhalten wurde,
    Fig. 3:
    ein schematisches Ablaufdiagramm eines beispielhaften Verfahrens, und
    Fig. 4:
    ein schematisches Ablaufdiagramm eines exemplarischen Einlernprozesses
  • Anhand der Figuren 1a bis 1d soll zunächst schematisch die Funktionsweise eines CIJ-Druckers erläutert werden. Die zu druckenden Zeichen werden jeweils als eine Gruppe von Punkten auf einer Matrix definiert, wobei die Punkte dann durch Tintentropfen erzeugt werden. Dies kann zur maschinellen Verarbeitung als Bitmap 90 dargestellt werden.
  • In Figur 1a ist als einfaches Beispiel für eine solche Bitmap 90 der Buchstabe "E" auf einer 7x5-Matrix 1 dargestellt. In der Realität kann ein CIJ-Drucker heutzutage üblicherweise aber mehr Punkte in einer Zeile, z.B. 32 Punkte, darstellen, was es dem Benutzer erlaubt, komplexen Inhalte, wie sie exemplarisch in Figur 1d gezeigt sind, als gewünschtes Druckbild zusammenzustellen, das dann in die korrespondierende Bitmap umgewandelt und abgearbeitet wird.
  • Beim Druck einer solchen Bitmap 90 wird eine Dimension der ihr zu Grunde liegenden Matrix, in der Orientierung der Figur 1a die Richtung z der Zeilen, durch eine unterschiedlich starke Ablenkung der Tintentropfen realisiert, während die andere Dimension, in der Orientierung der Figur 1a die Richtung s Spalten, durch eine Bewegung des zu bedruckenden Materials realisiert wird. Insbesondere bei einer anderen Orientierung kann natürlich die Rolle der Zeilen und Spalten vertauscht werden.
  • Figur 1c zeigt schematisch wie die Erzeugung und Ablenkung der Tintentropfen durch den CIJ-Drucker realisiert wird. Die Tinte wird mit definierten Eigenschaften, insbesondere definiertem Druck und definierter Viskosität von einem in der Figur 1c nur schematisch dargestellten Hydraulikmodul 5 bereitgestellt und dem in der Figur 1c nicht erkennbaren Tintenkanal der Düse 10 zugeführt. Die im Tintenkanal der Düse 10 stehende Tintensäule wird durch einen Oszillator 20, der z.B. als Piezoaktuator ausgeführt sein kann, moduliert. Nach dem Austritt aus der Düse 10 kommt es bei geeignet gewählten Strahlbedingungen, die theoretisch von C. Weber in der Zeitschrift für angewandte Mathematik und Mechanik, Band 11, 1931 abgeleitet wurden, zur Ausbildung von Einschnürungen, bis es am Abrisspunkt 11 zur sattelitenfreien Ablösung von Tintentropfen 12 kommt, die einen Tintentropfenstrahl bilden. Typischerweise propagieren die Tintentropfen 12 eines Strahls, der diese Bedingungen erfüllt, mit einer Geschwindigkeit von 20m/s bis 30m/s, und es können pro Sekunde schon heute hohe fünfstellige und sogar sechsstellige Zahlen von Tintentropfen 12 erzeugt werden.
  • Nach der Ablösung eines Tintentropfens 12 wird er an der Ladeelektrode 25 mit einer Soll-Ladung versehen, wobei der Erfolg des Ladeprozesses mit einer Detektorelektrode, die in Figur 1c nicht erkennbar ist, überprüft werden kann und an einer unter Spannung gesetzten Ablenkplatte oder Ablenkelektrode 30 je nach Ladung unterschiedlich stark abgelenkt, so dass, wie in Figur 1c exemplarisch gezeigt ist, die geladenen Tintentropfen 12 bei ihrem Auftreffen auf das zu bedruckende Substrat 100 an einer mehr oder weniger gut definierten Position, bei der vorliegenden Orientierung Zeilenposition, der das Zeichen definierenden Matrix landet, während ungenutzte Tintentropfen 12a, nicht geladen werden, in das Fängerrohr 35 weiterfliegen und in den nicht dargestellten Tintenmischtank im Hydraulikmodul 5 zurückgeführt werden.
  • Die Ladeelektrode 25 wird dabei von einer Steuerung gesteuert, welche ein von einem Benutzer in einem Speicher 60 unmittelbar oder mittelbar erzeugtes Druckbild in einem Raster Image Prozessor 65 in eine Bitmap 90 umwandelt, und die Informationen über die zu druckenden Zeilen oder Spalten einerseits an einen Ladespannungsrechner 70 weiterleitet, der vorzugsweise als separater Prozessor ausgeführt ist. Der Ladespannungsrechner 70 erzeugt ein entsprechendes Ladesignal gemäß der berechneten aufzubringenden Ladung und gibt es als Steuersignal an die Ladeelektrode 25 weiter.
  • Aus der Tatsache, dass das zu bedruckende Substrat 100 bewegt wird heraus ergibt sich insbesondere dann, wenn die Druckgeschwindigkeit maximiert werden soll, die Notwendigkeit, die durch unterschiedliche Ablenkung der Tropfen 12 erzeugten Zeilen (oder Spalten) möglichst schnell zu drucken, da diese sonst nicht mehr auf einer Linie liegen. Daher werden diese vom CIJ-Drucker jeweils als ein gemeinsamer "Stroke" 40,41, wie in Figur 1b illustriert ist, abgearbeitet.
  • Konkret erfolgt die Bearbeitung, wie in Figur 3 in Form eines schematischen Ablaufdiagramms dargestellt ist, im CIJ-Drucker dadurch, dass aus einem vom Benutzer im Schritt 110 vorgegebenen Druckbild, das sich, z.B. wenn eine Zählerinformation enthalten ist, zwischen direkt nacheinander auszuführenden Druckprozessen ändern kann und in dem Speicher 60 hinterlegt oder zwischengespeichert wird, die zu druckende Bitmap 90 auf einem Prozessor oder Prozessorkern, dem Raster Image Processor (RIP) 65, in einem als Ripping 120 bezeichneten Prozess gewonnen wird und insbesondere die jeweils als nächstes durch den CIJ-Drucker abzubildende Punktfolge, der aktuelle Stroke 40,41, bestimmt wird, welcher angibt, an welchen Stellen des Substrats 100 Tintentropfen 12 aufgebracht werden sollen, um Punkte zu erzeugen.
  • Wichtig für die Erfindung ist, dass an dieser Stelle bereits eine zumindest implizite Information über das zu erwartende Druckbild vorhanden ist, die erfindungsgemäß als Zielvorgabe für eine Erfolgskontrolle eingerichtet ist.
  • Diese Information wird dann einerseits im Schritt 125 als Input an die Datenverarbeitungsanlage 75, die hier mit einem separaten Prozessor realisiert ist, weitergeleitet, die den Vergleich zwischen zu druckendem Signal und einem Bild des erfolgten Drucks, das von dem Hier als CCD-Kamera ausgeführten optischen Überwachungsmittel 80 an die Datenverarbeitungsanlage 75 weitergeleitet wird, durchführt.
  • Andererseits wird die Information von dem Ladespannungsrechner 70 weiterverarbeitet. Der Ladespannungsrechner 70 berechnet aus ihr -vorzugsweise unter Berücksichtigung der Information, welcher Stroke oder welche Strokes kurze Zeit davor gedruckt wurden und ggf. auch schon welcher Stroke oder welche Strokes unmittelbar danach gedruckt werden- im Schritt 130 die Ladespannung, die auf die zum Stroke gehörenden Tropfen aufgebracht werden muss, damit diese an der gewünschten Stelle des Substrats landen, damit diese beim Vorbeiflug an der Ladeelektrode 25 aufgebracht werden kann.
  • Diese Berechnungen sind insbesondere deshalb aufwändig, weil einerseits Raumladungen, andererseits aber auch aerodynamische Effekte wie der Windschatten anderer Tropfen die Flugbahn der Tintentropfen und ihren Auftreffpunkt auf dem Substrat signifikant beeinflussen können. Daher erfolgt auch der Prozessschritt 130 vorzugsweise auf einem separaten Prozessor- oder Prozessorkern.
  • Mit der so erhaltenen Ladespannung wird dann bei der Ausführung des eigentlichen Druckvorgangs die Ladeelektrode 25 im Schritt 140 angesteuert und lädt Tropfen 12 des kontinuierlichen Tintentropfenstroms auf, so dass diese durch die an der Ablenkplatte 30 anliegende Ablenkspannung aus dem Strom der zum Fängerrohr 35 fliegenden ungeladenen Tintentropfen 12a abgelenkt werden und auf das Substrat 100 aufgebracht werden.
  • Um den Startzeitpunkt des Druckvorgangs für ein aufzubringendes Druckbild zu definieren und sein Timing zu ermöglichen, wird ein "Print-GO"-Signal erzeugt, z.B. wenn ein zu bedruckendes Objekt, das den CIJ-Drucker passiert und dabei bedruckt werden soll, eine definierte Position relativ zum CIJ-Drucker erreicht. Dieses löst dann -gegebenenfalls nach einer angepassten Wartezeit- den Druck, beginnend mit dem ersten Stroke 40,41 aus; es kann sinnvoll sein, zwischen aufeinander folgenden Strokes 40,41 eine vorgebbare Wartezeit abzuwarten.
  • Zur Überprüfung und Überwachung des Druckprozesses wird, vorzugsweise mit einem Hier als CCD-Kamera ausgeführten optischen Überwachungsmittel 80, als Schritt 150 ein Kamerabild aufgenommen. Dies kann getriggert werden, beispielsweise unter Verwendung des Print-Go-Signals als zeitlicher Referenzrahmen. Die Bilddaten des Kamerabildes werden dann an eine Datenverarbeitungsanlage 75 weitergeleitet und im Schritt 160 ausgewertet.
  • Während diese Auswertung im Stand der Technik üblicherweise auf einer Auswertung des gesamten Aufdrucks auf das Objekt im Vergleich zur zu druckenden Bitmap 90 erfolgt, geschieht dies erfindungsgemäß durch eine Auswertung der einzelnen, jeweils durch einen Stroke 40,41 gebildeten Zeilen oder Spalten des Druckbildes. Dabei soll explizit darauf hingewiesen werden, dass dies nicht schon automatisch der Fall ist, wenn die einzelnen Zellen des CCD-Chips des Hier als CCD-Kamera ausgeführten optischen Überwachungsmittels 80 bei einer Bildauswertung zeilen- oder spaltenweise ausgelesen und die entsprechenden Daten dann weiterverarbeitet werden, was keine Auswertung von Zeilen oder Spalten des Druckbilds sondern eine Auswertung von Zeilen oder Spalten des Kamerabilds ist. Diese kann aber schon deshalb nicht dieselben Ergebnisse liefern, weil es für die erreichbare Genauigkeit der Auflösung unbefriedigend wäre, wenn ein Tintentropfen auf dem Substrat lediglich zu einem gesetzten Pixel im Kamerabild korrespondieren würde.
  • Ergibt die Auswertung im Schritt 160 Hinweise auf eine Störung oder einen Druckfehler, kann im Schritt 170 eine Fehlerwarnung oder ein Druckstopp ausgelöst werden. Andernfalls kann die Bearbeitung durch Rücksprung zum Schritt 120 fortgesetzt werden, insbesondere wenn der nächste Stroke 40,41 noch nicht berechnet ist. Es kann aber beim Rücksprung zu Schritt 120 auch ein schon berechneter weiterer Stroke aus einem lokalen Speicher, der vorzugsweise nach FIFO-Prinzip verwaltet wird, ausgelesen werden.
  • Um die Vorteile des Vorgehens, die sich auf einer solchen zeilen- oder spaltenbasierten Auswertung ergeben noch genauer zu verstehen, wird nun anhand der Figur 2a ein Beispiel für eine zu druckende Bitmap 190 und das in Figur 2b gezeigte korrespondierende Druckbild 195, wie es von dem Hier als CCD-Kamera ausgeführten optischen Überwachungsmittel 80 aufgenommen wird, diskutiert. Dabei umfasst die Abbildung eines Tintentropfens 12 im von dem Hier als CCD-Kamera ausgeführten optischen Überwachungsmittel 80 aufgenommenen Druckbild 195 typischerweise zwischen 10 und 20 Pixel, der genaue Wert ist natürlich von der Auflösung des jeweils verwendeten optischen Überwachungsmittels 80 und ihrer geometrischen Anordnung relativ vom zu bedruckenden Substrat 100 abhängig.
  • Die in Figur 2a gezeigte Bitmap 190, die insbesondere auch für einen erfindungsgemäßen Einlernprozess eingesetzt werden kann, ist gebildet durch eine Abfolge sämtlicher Punkt- bzw. Tintentropfenkombinationen, die mit einem fünf Punkte umfassenden Stroke 40,41 geschrieben werden können, also aller möglicher Strokes 40,41, die von einem Drucker, der fünf Tropfen breit schreibt, überhaupt ausgeführt werden.
  • Beim Vergleich der beiden Figuren 2a und 2b miteinander erkennt man deutlich eine Reihe von systematischen Abweichungen des realen Druckbilds 195 gemäß Figur 2b von der Bitmap 190 gemäß Figur 2a.
  • Beispielsweise erkennt man unmittelbar eine leichte Verkippung der einzelnen Strokes 40,41 nach links, so dass der jeweils oberste Tropfen eines Strokes 40,41 der am weitesten links auf dem Substrat angeordnete Tropfen des Strokes 40,41 ist. Dieser Effekt hängt mit der Geschwindigkeit, mit der das Substrat 100 bewegt wird, zusammen.
  • Darüber hinaus erkennt man aber auch, dass sich die Lage der einzelnen Zeilen verändert, und zwar insbesondere in Abhängigkeit davon, ob ein benachbarter Tropfen vorhanden ist oder nicht. Besonders deutlich ist dieser Effekt in der obersten Zeile bei einem Vergleich der zu dieser gehörenden Gruppe von Tropfen der letzten acht Strokes 40,41 mit der zu dieser gehörenden Gruppe von Tropfen des neuntletzten bis sechzehntletzten Strokes 40,41, welche im Vergleich zur erstgenannten Gruppe nach oben versetzt sind, zu erkennen. Er ergibt sich aber auch deutlich aus dem Höhenversatz der Tropfen, die zu der letzten Zeile gehören.
  • Eine weitere Abweichung vom Idealbild, das durch die Bitmap 190 der Figur 2a vorgegeben ist, in dem erzeugten Druckbild 195 wie es von dem Optischen Überwachungsmittel 80 aufgenommen wurde gemäß Figur 2b besteht darin, dass benachbarte Tintentropfen zusammenlaufen können. Beispielsweise ist dies bei einigen der Tropfenpaare zu erkennen, die in der zweituntersten Zeile der Figur 2b zu sehen sind, z.B. im fünften und achten Tropfenpaar dieser Zeile.
  • Diese Abweichungen sind jeweils kein Anzeichen für einen Störeffekt sondern treten auch bei einem störungsfrei erfolgenden Druck auf. Bei dem bisher üblichen Vergleich des gesamten Druckbildes 195 mit der zu druckenden Bitmap 190 werden dementsprechend Abweichungen berücksichtigt, die eigentlich gar nicht durch neu auftretende Druckfehler bedingt sind.
  • Die von dem Optischen Überwachungsmittel 80 aufgenommenen Druckbilder der einzelnen Strokes 40,41 können bei der Verwendung der erfindungsgemäßen Lehre hingegen als das Sollbild, das als Antwort auf den Druckbefehl für diesen Stroke 40,41 entstehen sollte, verwendet werden, was zu einer sehr schnellen Auswertung führt. Erstens muss nicht abgewartet werden, bis die gesamte Bitmap 190 gedruckt ist um sie dann mit dem Druckergebnis zu vergleichen, sondern der Vergleich ist unmittelbar nach der Ausführung eines Strokes 40,41 möglich.
  • Bei der Bildauswertung zahlt sich zudem nicht nur aus, dass die entsprechenden miteinander zu vergleichenden Objekte sehr viel kleiner sind, sondern auch, dass man vorab weiß, wo ungefähr auf dem CCD-Chip des Optischen Überwachungsmittels 80 nach Punkten des gerade gedruckten Strokes 40,41 gesucht werden muss, denn aus einem Kamerabild wie dem in Figur 2b gezeigten, kann man einerseits die für einen Stroke 40,41 charakteristischen Tintentropfenpositionen in Y-Richtung ableiten und andererseits den Versatz in X-Richtung zwischen benachbarten Strokes 40,41.
  • Dies ermöglicht einen sehr gezielten Vergleichsalgorithmus, bei dem unmittelbar im richtigen Bereich des CCD-Chips die Suche nach dem gedruckten Tintentropfen beginnen kann und mit relativ hoher Sicherheit eine erwartete Position des Tintentropfenbildes angegeben werden kann.
  • Wenn man Abweichungen zwischen solchen erwarteten Positionen und den Positionen, an denen der entsprechende Tintentropfen des jeweiligen Strokes 40,41 dann im Kamerabild aufgefunden wird systematisch protokolliert können unter Umständen Änderungen, die sich schleichend anbahnen und auf längere Sicht Korrekturen an Druckparametern erforderlich machen, beispielsweise Änderungen der Tintenviskosität oder der Anteile von konzentrierter Tinte und Lösungsmittel, frühzeitig aus den entsprechenden Veränderungen im Druckbild abgeleitet werden und dann durch Einleitung entsprechender Gegenmaßnahmen korrigiert werden, ehe es überhaupt zu Fehlfunktionen oder Fehldrucken kommt.
  • Zudem ermöglicht der Stroke-basierte Ansatz einen extrem einfachen Einlernprozess, der es letztlich sogar ermöglichen kann, ein Optisches Überwachungsmittel 80 an einem CIJ-Drucker als echtes Plug-and-Play-Modul zu betreiben und der in Figur 4 schematisch dargestellt ist. Um ein Optisches Überwachungsmittel 80 nach der Installation einzulernen muss man lediglich unter den späteren Betriebsbedingungen im Schritt 210 mindestens eine definierte Abfolge aller Strokes 40,41, also aller möglicher Kombinationen von geschriebenen Tintentropfenpositionen in einem Stroke 40,41, als Bitmap erzeugen und diese Abfolge im Schritt 220 auf das Substrat 100 drucken.
  • Dieses Druckbild wird dann im Schritt 230 mit dem als Kamera ausgeführten optischen Überwachungsmittel 80 aufgenommen und mindestens ein entsprechende Kamerabild wird im Schritt 240 ausgewertet, vorzugsweise um Erwartungswerte für Tintentropfenpositionen der einzelnen Strokes 40,41 zu erhalten.
  • Konkret wird dabei beispielsweise jedem Stroke 40,41 bzw. einem mit diesem Stroke 40,41 korrespondierenden Steuersignal die Position der Tintentropfen 12 auf dem CCD-Chip des als Kamera ausgeführten optischen Überwachungsmittels (80) in einer y-Richtung, die zu der Ablenkrichtung der Tintentropfen 12 korrespondiert, als erwartete Tintentropfenpositionen logisch verbunden bzw. zugeordnet. Andererseits wird durch Analyse des Abstands zwischen den Bildern der einzelnen Strokes 40,41 auf dem CCD-Chip des als Kamera ausgeführten optischen Überwachungsmittels 80 eine Information zu gewonnen, an welchen x-Positionen auf dem CCD-Chip des als Kamera ausgeführten optischen Überwachungsmittels 80 Tintentropfen eines n-ten Strokes 40,41 einer vorgegebenen Sequenz von Strokes 40,41 zu erwarten ist.
  • Wird dann im Anschluss an den Einlernprozess im Realbetrieb eine Bitmap 90,190 gedruckt, kann der einen bestimmten Stroke 40,41 repräsentierende Output des Rippers 65, gegebenenfalls zusammen mit einer Information, um den wievielten Stroke 40,41 zum Schreiben dieser Bitmap 90,190 es sich handelt, direkt als Input für die Datenverarbeitungseinrichtung 75, die das Kamerabild analysiert, weitergeleitet werden.
  • Dieser Input kann dann direkt in einen Satz von erwarteten Pixelposition für die zu diesem Stroke 40,41 gehörenden Tintentropfen 12 umgewandelt und überprüft werden, ob die entsprechenden Pixel im Kamerabild gesetzt sind. Selbst wenn die Tropfenposition leicht gewandert sein sollte, wird auf dieses Weise ein schnelles Auffinden der neu hinzugefügten Tropfen 12 gewährleistet, und durch Analyse von Abweichungen kann man einerseits durch Vergleich mit festzulegenden Akzeptanzbereichen ermitteln, ob der Aufdruck noch akzeptabel ist oder nicht, während andererseits möglicherweise bereits Hinweise auf die vorliegenden Probleme, die eine Abweichung von der Sollposition hervorrufen, gewonnen werden können.
  • Bezugszeichenliste
  • 5
    Hydraulikmodul
    10
    Düse
    11
    Abrisspunkt
    12
    Tintentropfen
    12a
    ungeladener Tintentropfen
    20
    Oszillator
    25
    Ladeelektrode
    30
    Ablenkplatte
    35
    Fängerrohr
    40,41
    Stroke
    65
    Raster Image Prozessor (Ripper)
    70
    Ladespannungsrechner
    75
    Datenverarbeitungsanlage
    80
    optisches Übewachungsmittel
    90
    Bitmap
    100
    Substrat
    110
    Vorgabe eines Druckbilds
    120
    Ripping
    125
    Weiterleitung Input an Datenverarbeitungsanlage
    130
    Berechnung der Ladespannung
    140
    Ansteuerung der Ladeelektrode
    150
    Aufnahme eines Kamerabilds
    160
    Auswertung des Kamerabilds
    170
    Fehlerwarnung
    190
    Bitmap
    195
    Druckbild
    210
    Erzeugen einer Sequenz aller möglicher Strokes als Bitmap
    220
    Drucken der Bitmap
    230
    Aufnahme eines Kamerabilds
    240
    Auswertung des Kamerabilds
    s
    Richtung der Spalten
    z
    Richtung der Zeilen

Claims (12)

  1. Verfahren zum Betrieb eines CIJ-Druckers mit einem optischen Überwachungsmittel (80) mit dem Schritten
    - Erzeugen einer Bitmap (90,180) des zu druckenden Druckbildes,
    - sequentielles Ansteuern von Ladeelektroden (25) und/oder Ablenkelektroden (30) des CIJ-Druckers, um jeweils Zeilen oder Spalten der Bitmap (90,190) durch das Aufbringen von Reihen nebeneinander angeordneter Tintentropfen (12), die jeweils einen Stroke (40,41) bilden, auf ein zu bedruckendes Substrat (100) zu realisieren und somit sequentiell ein reales Druckbild (195) auf das Substrat (100) aufzubringen,
    - Erfassen des auf dem Substrat (100) aufgebrachten realen Druckbilds (195) mit dem optischen Überwachungsmittel (80), und
    - automatisiertes Vergleichen der Bitmap (90,190) des gewünschten Druckbilds und des mit dem optischen Überwachungsmittel (80) erfassten, auf dem Substrat (100) aufgebrachten realen Druckbilds (195),
    dadurch gekennzeichnet, dass das automatisierte Vergleichen der Bitmap (90,190) des gewünschten Druckbilds und des auf dem Substrat (100) aufgebrachten realen Druckbilds (195) entweder auf der Basis von Zeilen oder Spalten der Bitmap (90,190) oder auf der Basis von Bestandteilen von Zeilen oder Spalten der Bitmap (90,190) erfolgt, so dass nach jedem Stroke (40,41) oder noch während der Ausführung des Strokes (40,41) überprüft wird, ob die Tintentropfen (12), aus denen der Stroke besteht, richtig platziert wurden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass mindestens ein Steuersignal zum sequentielles Ansteuern von Ladeelektroden (25) und/oder Ablenkelektroden (30) des CIJ-Druckers beim automatisiertes Vergleichen der Bitmap (90,190) des gewünschten Druckbilds und des mit dem optischen Überwachungsmittel (80) erfassten, auf dem Substrat (100) aufgebrachten realen Druckbild (195) verwendet wird, um das erwartete Druckbild der jeweiligen Zeile oder Spalte zu bestimmen.
  3. Verfahren nach Anspruch 2,
    dadurch gekennzeichnet, dass mindestens ein weiteres Steuersignal zum sequentielles Ansteuern von Ladeelektroden (25) und/oder Ablenkelektroden (30) des CIJ-Druckers beim automatisiertes Vergleichen der Bitmap (90,190) des gewünschten Druckbilds und des mit dem optischen Überwachungsmittel (80) erfassten, auf dem Substrat (100) aufgebrachten realen Druckbild (195) verwendet wird, um das erwartete Druckbild der jeweiligen Zeile oder Spalte der Bitmap (90,190) zu bestimmen.
  4. Verfahren nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass das sequentielle Ansteuern von Ladeelektroden (25) und/oder Ablenkelektroden (30) des CIJ-Druckers ebenfalls zeilen- oder spaltenweise erfolgt.
  5. Verfahren nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass der CIJ-Drucker mehrere Prozessoren oder einen Prozessor mit mehreren Prozessorkernen aufweist, wobei auf dem einen Prozessor die Bitmap (90,190) des gewünschten Druckbildes erzeugt wird sowie die Generierung der Steuersignale für das sequentielle Ansteuern von Ladeelektroden (25) und/oder Ablenkelektroden (30) des CIJ-Druckers kontrolliert wird und wobei auf dem anderen Prozessor das automatisierte Vergleichen der Bitmap (90,190) des gewünschten Druckbilds und des mit dem optischen Überwachungsmittel (80) erfassten, auf dem Substrat (100) aufgebrachten realen Druckbilds (195) erfolgt.
  6. CIJ-Drucker zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 5 mit
    - einem Hydraulikmodul (5) zur Tintenversorgung,
    - einem eine Düse (10) und einen Oszillator (20) aufweisenden Tropfengenerator der von dem Hydraulikmodul (5) mit Tinte versorgt wird und Tintentropfen (12) erzeugt,
    - mindestens einer Ladeelektrode (25) zum Aufbringen einer definierten Ladung auf vom Tropfengenerator erzeugte Tintentropfen (12),
    - mindestens einer Ablenkelektrode (30) zur Beeinflussung der Flugbahn der vom Tropfengenerator erzeugten und von der Ladeelektrode (25) geladenen Tintentropfen (12),
    - einer Steuerung, die eingerichtet ist, um eine zu druckende Bitmap (90,190) zeilen- oder spaltenweise in eine Sequenz von Steuersignalen zu verwandeln, mit denen die Ladeelektrode (25) und/oder die Ablenkelektrode (30) so angesteuert werden, dass aus Tropfen (12) einer Tropfensequenz ein Bild dieser Zeile oder Spalte auf einem zu bedruckenden Substrat (100) gebildet wird, und
    - einem optischen Überwachungsmittel (80) zur Überwachung des auf dem zu bedruckenden Substrat (100) gebildeten realen Druckbilds (195),
    dadurch gekennzeichnet, dass der CIJ-Drucker eine Datenverarbeitungsvorrichtung aufweist, die eingerichtet ist, um den Schritt des automatisierten Vergleichens gemäß einem der Ansprüche 1 bis 5 auszuführen.
  7. CIJ-Drucker nach Anspruch 6,
    dadurch gekennzeichnet, dass der CIJ-Drucker einen ersten Prozessor oder einen ersten Prozessorkern aufweist, der der Steuerung zugeordnet ist und einen zweiten Prozessor oder Prozessorkern aufweist, der der Datenverarbeitungsvorrichtung zugeordnet ist.
  8. CIJ-Drucker nach Anspruch 6 oder 7,
    dadurch gekennzeichnet, dass die Steuerung mit der Datenverarbeitungsvorrichtung in Signalkommunikation steht, so dass die jeweiligen Sequenzen von Steuersignalen oder zu diesen Sequenzen korrespondierende Steuerbefehle von der Steuerung an die Datenverarbeitungsvorrichtung weitergeleitet werden.
  9. Verfahren zum Einlernen eines optischen Überwachungsmittels (80) eines CIJ-Druckers nach einem der Ansprüche 6 bis 8,
    dadurch gekennzeichnet, dass der CIJ-Drucker in mindestens einem Durchlauf eine Bitmap (90,190), die eine Sequenz von Steuersignalen zum Ansteuern von Ladeelektroden (25) und/oder Ablenkelektroden (30) des CIJ-Druckers bei der Ausführung eines Strokes (40,41) enthält, generiert,
    dass ein reales Druckbild (195) dieser Bitmap (90,190) durch das Aufbringen von Tintentropfen auf ein zu bedruckendes Substrat (100) realisiert wird,
    dass mit dem optischen Überwachungsmittel (80) ein Bild des realen Druckbilds (195) aufgenommen und derart ausgewertet wird, dass der jeweils als Reaktion auf ein Steuersignal für einen gegebenen Stroke (40,41) auf das Substrat (100) aufgebrachte Teil des realen Druckbilds (195) indentifiziert und als diesem Stroke (40,41) bzw. Steuersignal zugeordnetes zu erwartendes Druckbild gespeichert wird.
  10. Verfahren nach Anspruch 9,
    dadurch gekennzeichnet, dass der Drucker in mehreren Durchläufen eine Bitmap (90,190), die eine Sequenz von Steuersignalen zum Ansteuern von Ladeelektroden (25) und/oder Ablenkelektroden (30) des CIJ-Druckers generiert, enthält druckt, um jeweils Punkte oder Gruppen von Punkten der Bitmap (90,190) durch das Aufbringen von Tintentropfen (12) auf ein zu bedruckendes Substrat (100) zu einem realen Druckbild zum machen, und dass das jeweils als Reaktion auf das Steuersignal auf dem Substrat aufgebrachte Druckbild mit dem optischen Überwachungsmittel aufgenommen und indentifiziert wird und als dem Steuersignal zugeordnetes Druckbild gespeichert wird.
  11. Verfahren nach Anspruch 10,
    dadurch gekennzeichnet, dass der Drucker in den mehreren Durchläufen jeweils eine Sequenz von Steuersignalen zum Ansteuern von Ladeelektroden (25) und/oder Ablenkelektroden (30) des CIJ-Druckers generiert, wobei die Reihenfolge, in der die Steuersignale zum Ansteuern von Ladeelektroden (25) und/oder Ablenkelektroden des CIJ-Druckers (30) generiert werden, von Sequenz zu Sequnez variiert.
  12. Verfahren nach einem Anspruch 10, oder 11,
    dadurch gekennzeichnet, dass der Drucker in mehreren Durchläufen jeweils eine Sequenz von Steuersignalen zum Ansteuern von Ladeelektroden (25) und/oder Ablenkelektroden (30) des CIJ-Druckers, generiert, wobei in den unterschiedlichen Durchläufen Druckparameter variiert werden, die im Druckbetrieb des CIJ-Druckers schwanken können und zu einer Veränderung des Druckbilds (195) führen.
EP19161144.1A 2019-03-06 2019-03-06 Verfahren zum betrieb eines cij-druckers mit optischer überwachung der druckqualität, cij-drucker mit optischer überwachung der druckqualität und verfahren zum einlernen eines cij-druckers mit optischer überwachung der druckqualität Active EP3705295B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19161144.1A EP3705295B1 (de) 2019-03-06 2019-03-06 Verfahren zum betrieb eines cij-druckers mit optischer überwachung der druckqualität, cij-drucker mit optischer überwachung der druckqualität und verfahren zum einlernen eines cij-druckers mit optischer überwachung der druckqualität
US17/436,437 US11858267B2 (en) 2019-03-06 2019-12-10 Method for operating a CIJ printer with optical monitoring of printing quality, CIJ printer with optical monitoring of printing quality, and method for teaching-in a CIJ printer with optical monitoring of printing quality
JP2021552743A JP7332707B2 (ja) 2019-03-06 2019-12-10 プリント品質の光学モニタリングを用いるcijプリンタを動作させる方法、プリント品質の光学モニタリングを用いるcijプリンタ及びプリント品質の光学モニタリングを用いるcijプリンタをティーチングする方法
CN201980093684.5A CN113543977B (zh) 2019-03-06 2019-12-10 操作具有打印质量光学监视的cij打印机的方法、这种cij打印机及其示教方法
PCT/EP2019/084488 WO2020177912A1 (de) 2019-03-06 2019-12-10 Verfahren zum betrieb eines cij-druckers mit optischer überwachung der druckqualität, cij-drucker mit optischer überwachung der druckqualität und verfahren zum einlernen eines cij-druckers mit optischer überwachung der druckqualität

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19161144.1A EP3705295B1 (de) 2019-03-06 2019-03-06 Verfahren zum betrieb eines cij-druckers mit optischer überwachung der druckqualität, cij-drucker mit optischer überwachung der druckqualität und verfahren zum einlernen eines cij-druckers mit optischer überwachung der druckqualität

Publications (2)

Publication Number Publication Date
EP3705295A1 EP3705295A1 (de) 2020-09-09
EP3705295B1 true EP3705295B1 (de) 2023-04-19

Family

ID=65724208

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19161144.1A Active EP3705295B1 (de) 2019-03-06 2019-03-06 Verfahren zum betrieb eines cij-druckers mit optischer überwachung der druckqualität, cij-drucker mit optischer überwachung der druckqualität und verfahren zum einlernen eines cij-druckers mit optischer überwachung der druckqualität

Country Status (5)

Country Link
US (1) US11858267B2 (de)
EP (1) EP3705295B1 (de)
JP (1) JP7332707B2 (de)
CN (1) CN113543977B (de)
WO (1) WO2020177912A1 (de)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07144461A (ja) * 1993-11-24 1995-06-06 Hitachi Eng Co Ltd 印字装置
US6280023B1 (en) * 1995-08-04 2001-08-28 Domino Printing Sciences Plc Continuous ink-jet printer and method of operation
US6003980A (en) * 1997-03-28 1999-12-21 Jemtex Ink Jet Printing Ltd. Continuous ink jet printing apparatus and method including self-testing for printing errors
JPH11198360A (ja) * 1998-01-20 1999-07-27 Hitachi Ltd インクジェット記録装置
FR2801836B1 (fr) * 1999-12-03 2002-02-01 Imaje Sa Imprimante a fabrication simplifiee et procede de realisation
AU2002258130A1 (en) * 2001-05-03 2002-11-18 Jemtex Ink Jet Printing Ltd. Ink jet printers and methods
US20100073411A1 (en) * 2007-02-23 2010-03-25 Hitachi Industrial Equipment Systems Co., Ltd. Ink Jet Recording Device
FR2948602B1 (fr) * 2009-07-30 2011-08-26 Markem Imaje Dispositif de detection de directivite de trajectoires de gouttes issues de jet de liquide, capteur electrostatique, tete d'impression et imprimante a jet d'encre continu devie associes
US8714675B2 (en) * 2012-01-26 2014-05-06 Eastman Kodak Company Control element for printed drop density reconfiguration
FR2989625B1 (fr) 2012-04-24 2015-12-25 Markem Imaje Impression d'un motif d'authentification avec une imprimante a jet d'encre continu devie
GB2562714B (en) 2017-05-03 2021-11-24 Domino Uk Ltd Improvements in or relating to printers
ES2932084T3 (es) 2017-06-23 2023-01-11 Nanotemper Tech Gmbh Métodos para medir interacciones inter- y/o intramoleculares

Also Published As

Publication number Publication date
US11858267B2 (en) 2024-01-02
EP3705295A1 (de) 2020-09-09
CN113543977A (zh) 2021-10-22
JP7332707B2 (ja) 2023-08-23
US20220169022A1 (en) 2022-06-02
CN113543977B (zh) 2023-09-29
JP2022525508A (ja) 2022-05-17
WO2020177912A1 (de) 2020-09-10

Similar Documents

Publication Publication Date Title
DE60025582T2 (de) Drucker mit vereinfachtem Herstellungsverfahren und Herstellungsverfahren
EP3263348B1 (de) Druckdüsenkompensation durch abweichende druckdüsen
DE10202464A1 (de) Tintenstrahldrucker mit einer Kompensationsfunktion für fehlerhafte Düsen
EP2774764B1 (de) Verfahren zum Erzeugen eines aus Abschnitten zusammengesetzten Druckbildes auf einem Bedruckstoff mit zwei Tintenstrahl-Druckköpfen
DE60029291T2 (de) Druckvorrichtung mit einer Funktion zur Korrektur der Fehlausrichtung von Punktpositionen
DE102019200354A1 (de) Verfahren zur Kompensation defekter Druckdüsen in einer Inkjet-Druckmaschine
EP2644392A2 (de) System zum Bedrucken eines Objekts
EP3216611A1 (de) Verfahren zur kompensation ausgefallener druckdüsen in einer inkjet- druckmaschine
DE102015223797A1 (de) System und Verfahren zur Korrektur von fehlenden Düsen beim dreidimensionalen Objekt-Druck durch Wellenformanpassung
EP0216176A1 (de) Anordnung für die Austrittsöffnungen im Druckkopf einer Mehrfarben-Tintenschreibeinrichtung
DE3343357A1 (de) Elektronisches geraet mit einem drucker
EP0257570A2 (de) Verfahren zum Abgleich der Schreibdüsen eines Tintendruckkopfes in Tintenschreibeinrichtungen und Schaltungsanordnung zur Durchührung des Verfahrens
EP3538373B1 (de) Verfahren zum bedrucken eines substrats mit variierendem muster von landezonen mittels ink-jet-druck
EP3705295B1 (de) Verfahren zum betrieb eines cij-druckers mit optischer überwachung der druckqualität, cij-drucker mit optischer überwachung der druckqualität und verfahren zum einlernen eines cij-druckers mit optischer überwachung der druckqualität
DE60302297T2 (de) Druckverfahren, Druckvorrichtung, computerlesbares Medium, und Korrekturmuster
DE3132842C2 (de) Verfahren zur Reduzierung der Redundanz von binären Zeichenfolgen für Matrixdruckverfahren
EP3628496A1 (de) Verfahren zum drucken eines bildes mit flüssiger tinte
EP1870246A2 (de) Verfahren zum Bedrucken eines Bedruckstoffs
DE69906776T2 (de) Tintenstrahldrucksystem
DE102015104575A1 (de) Verfahren zur Optimierung der Rasterpunktpositionierung im Digitaldruck
DE102005060785A1 (de) Verfahren zum Betreiben einer Inkjet-Druckeinrichtung
DE2626529C3 (de) Vorrichtung zum Einfügen von elektrisch nicht aufgeladenen Schutztropfen zwischen Tropfen, die entweder auf das zu bedruckende Papier oder in eine Tintenauffangblende abgelenkt werden
DE102019134721A1 (de) Verfahren zum Ermitteln von fehlerhaften Druckdüsen einer Druckvorrichtung
WO2015180818A1 (de) Zweidimensionales verfahren mit scannendem druckmodul und medienvorschub
DE102022121535B4 (de) Vorrichtung und Verfahren zum Bewirken von Prefire-Pulsen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210309

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221102

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019007470

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1560901

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230515

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230418

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230821

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230819

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230720

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019007470

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240122

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240322

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240329

Year of fee payment: 6

Ref country code: FR

Payment date: 20240320

Year of fee payment: 6