EP3700543A1 - Verfahren zur behandlung einer ischämischen erkrankung - Google Patents

Verfahren zur behandlung einer ischämischen erkrankung

Info

Publication number
EP3700543A1
EP3700543A1 EP18871526.2A EP18871526A EP3700543A1 EP 3700543 A1 EP3700543 A1 EP 3700543A1 EP 18871526 A EP18871526 A EP 18871526A EP 3700543 A1 EP3700543 A1 EP 3700543A1
Authority
EP
European Patent Office
Prior art keywords
cells
expression
tnfrl
subject
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18871526.2A
Other languages
English (en)
French (fr)
Other versions
EP3700543A4 (de
Inventor
Dalia ELANI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP3700543A1 publication Critical patent/EP3700543A1/de
Publication of EP3700543A4 publication Critical patent/EP3700543A4/de
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0278Physical preservation processes
    • A01N1/0284Temperature processes, i.e. using a designated change in temperature over time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/715Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
    • C07K14/7151Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons for tumor necrosis factor [TNF], for lymphotoxin [LT]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0663Bone marrow mesenchymal stem cells (BM-MSC)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0669Bone marrow stromal cells; Whole bone marrow
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/31Indexing codes associated with cellular immunotherapy of group A61K39/46 characterized by the route of administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/38Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the dose, timing or administration schedule
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/80Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites

Definitions

  • the present invention in some embodiments thereof, relates to methods of treating an ischemic disease.
  • Ischemic heart disease such as acute myocardial infarctions, congestive heart failure, arrhythmias, and sudden cardiac death, is the leading cause of morbidity and mortality in all industrialized nations.
  • ischemic heart disease causes nearly 20 % of all deaths (-600,000 deaths each year).
  • conventional medicine and surgery have offered many breakthroughs, resulting in a dramatic decline in mortality [Mozaffarian et al. Circulation. (2015) 131(4):e29-322.)
  • the prognosis for patients who are admitted to hospital with heart failure remains poor, with a 5 year survival of about 50% and a 10 year survival of about 10 %.
  • Tumor necrosis factor alpha is a pro -inflammatory cytokine that has been implicated in mediating or exacerbating various mammalian conditions such as myocardial infarction, heart failure, septic shock, inflammatory disease, HIV infection and tissue transplant.
  • TNFa Tumor necrosis factor alpha
  • TNFa initiates its biological effects by binding to two distinct cell surface receptors expressed in most cell types: TNFR1 (TNFa receptor type 1, with approximate mass of 55 kDa) and TNFR2 (TNF-a receptor type 2, with approximate mass of 75 kDa).
  • TNFR1 TNFa receptor type 1
  • TNFR2 TNF-a receptor type 2
  • the specific roles of TNFR1 and TNFR2 signaling in ischemic damage remain unclear with several studies indicating that signaling via TNFR1 is deleterious and signaling via TNFR2 is protective against ischemic damage while others suggesting no difference in the function of the two receptors in protecting the heart from ischemia (see e.g. Kishore et al. [33], Monden et al [34], Moe et al 2004 [35] and Kurrelmeyer et al [37]). Additional background art includes:
  • a method of treating an ischemic disease in a subject in need thereof comprising administering to the subject a therapeutically effective amount of mononuclear bone marrow cells (mnBMCs) comprising mesenchymal stem cells (MSCs) and lymphocytes or progenitors thereof with reduced level of expression and/or activity of TNFRl as compared to control cells of the same origin not contacted with an agent which downregulates expression and/or activity of the TNFRl, thereby treating the ischemic disease in the subject.
  • mnBMCs mononuclear bone marrow cells
  • MSCs mesenchymal stem cells
  • a method of treating an ischemic disease in a subject in need thereof comprising administering to the subject a therapeutically effective amount of differentiated cells with reduced level of expression and/or activity of TNFRl as compared to control cells of the same origin not contacted with an agent which downregulates expression and/or activity of the TNFRl, wherein the differentiated cells are of a same type of tissue affected in the ischemic disease, thereby treating the ischemic disease in the subject.
  • the method further comprising treating the cells with reduced expression and/or activity of TNFRl with TNFa prior to the administering.
  • the method comprising cryopreserving the cells prior to the treating with the TNFa.
  • a method of treating an ischemic disease in a subject in need thereof comprising:
  • TNFa cells with reduced expression and/or activity of TNFRl as compared to control cells of the same origin not contacted with an agent which downregulates expression and/or activity of the TNFRl, wherein the cells are selected from the group consisting of mononuclear bone marrow cells (mnBMCs), stem cells and differentiated cells of a same type of tissue affected in the ischemic disease; and
  • mnBMCs mononuclear bone marrow cells
  • the cells comprise differentiated cells of a same type of tissue affected in the ischemic disease.
  • the cells with reduced level of expression and/or activity of TNFRl have the same level of expression and/or activity of TNFR2 as compared to the control stem cells.
  • the cells with reduced expression and/or activity of TNFRl are genetically modified cells.
  • the genetically modified comprises genetically modified with a CRISPR/Cas system, a Zinc finger nuclease (ZFN), transcription- activator like effector nuclease (TALEN) or meganuclease for downregulating expression of the TNFRl.
  • ZFN Zinc finger nuclease
  • TALEN transcription- activator like effector nuclease
  • meganuclease for downregulating expression of the TNFRl.
  • the genetically modified comprises genetically modified with a CRISPR/Cas system for downregulating expression of the TNFRl.
  • a method of downregulating expression and/or activity of TNFRl in differentiated cells or bone marrow stem cells comprising:
  • the (i) is effected prior to the (ii).
  • the agent does not downregulate expression and/or activity of TNFR2.
  • the agent is selected from the group consisting of CRISPR/Cas system, a Zinc finger nuclease (ZFN), transcription-activator like effector nuclease (TALEN), meganuclease, antisense and siRNA.
  • ZFN Zinc finger nuclease
  • TALEN transcription-activator like effector nuclease
  • siRNA siRNA
  • the agent comprises a CRISPR/Cas system.
  • a method of treating an ischemic disease in a subject in need thereof comprising:
  • the differentiated cells are of a same type of tissue affected in the ischemic disease.
  • the method comprising cryopreserving the cells following the (i) and prior to the (ii).
  • the cells are non- autologous to the subject.
  • a method of treating an ischemic disease in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a CRISPR/Cas system for downregulating expression of TNFR1, thereby treating the ischemic disease in the subject.
  • a pharmaceutical composition comprising as an active ingredient differentiated cells or bone marrow stem cells genetically modified with a CRISPR/Cas system for downregulating expression of TNFR1.
  • a pharmaceutical composition comprising as active ingredients cells genetically modified with a CRISPR/Cas system for downregulating expression of TNFR1 and at least 2 ng/ml TNFa.
  • the CRISPR/Cas system does not downregulate expression of TNFR2.
  • the cells comprise differentiated cells.
  • the differentiated cells are cardiomyocytes.
  • the cells comprise stem cells.
  • the stem cells are selected from the group consisting of embryonic stem cells (ESCs), induced pluripotent stem cells (iPS), hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs).
  • ESCs embryonic stem cells
  • iPS induced pluripotent stem cells
  • HSCs hematopoietic stem cells
  • MSCs mesenchymal stem cells
  • the stem cells comprise hematopoietic stem cells (HSCs).
  • the cells are comprised in mononuclear bone marrow cells (mnBMCs).
  • the mnBMCs comprise lymphocytes or progenitors thereof.
  • the cells are obtained by density gradient centrifugation of bone marrow cells.
  • the method comprising obtaining the cells by density gradient centrifugation of bone marrow cells.
  • the cells are human cells.
  • the cells are cryopreserved cells.
  • the ischemic disease is ischemic heart disease.
  • the ischemic heart disease is myocardial infarction.
  • the ischemic heart disease is ischemic cardiomyopathy.
  • the subject is not treated with TNFa.
  • Figures 1A-F show representative photomicrographs of histological sections of hearts obtained from Control mice (Group 3M, see Table 2 hereinbelow) 24 hours following left anterior descending artery (LAD) occlusion and stained with Masson Trichrome (MT, Figures 1A, 1C, IE) or Hematoxylin & Eosin (H&E, Figures IB, ID, IF).
  • Figures 1A-B demonstrate a middle sized infarct volume ( Figure 1A) and cellular infiltration surrounding injected round clear cells (arrow, Figure IB) in mouse no. 15.
  • Figures 1C-D demonstrate middle sized infarct volume (Figure 1C) and cellular infiltration surrounding injected round clear cells (arrow) and some adipocytes (Figure ID) in mouse no. 16.
  • Figures 1E-F demonstrate middle sized infarct volume ( Figure IE) and marked cellular infiltration in and few injected cells (arrow, Figure IF) in mouse no. 18.
  • Figures 2A-F show representative photomicrographs of histological sections of hearts obtained from Group 2M mice (see Table 2 hereinbelow) 24 hours following LAD occlusion and stained with MT ( Figures 2A, 2C, 2E) or H&E ( Figures 2B, 2D, 2F).
  • Figures 2A-B demonstrate a small infarct volume (Figure 2A) and mild cellular infiltration (Figure 2B) in mouse no. 7.
  • Figures 2C-D demonstrate middle sized infarct volume (Figure 2C) and focal extensive infiltration with some cellular debris of the injected cells (arrow, Figure 2D) in mouse no. 9.
  • Figures 2E-F a transmural infarct with still intact left ventricle wall ( Figure 2E) and marked cellular infiltration in the inner part of the ventricle wall ( Figure 2F) in mouse no. 10.
  • Figures 3A-F show representative photomicrographs of histological sections of hearts obtained from Group 1M mice (see Table 2 hereinbelow) 24 hours following LAD occlusion and stained with MT ( Figures 3 A, 3C, 3E) or H&E ( Figures 3B, 3D, 3F).
  • Figures 3A-B demonstrate a transmural infarct with a marked reduced myocardium tissue (Figure 3A) and minimal cellular infiltration (Figure 3B) in mouse no. 3.
  • Figures 3C-D demonstrate a relative small infarct volume in the wall of the left ventricle (Figure 3C) and loss of tissue, inflammatory reaction and some fibrin material in the epicardium (arrow, Figure 3D) in mouse no. 5.
  • Figures 3E-F demonstrate a transmural infarct with a marked reduced myocardium tissue ( Figure 3E) and mild infiltration of inflammatory cells (Figure 3F) in mouse no. 3.
  • Figures 4A-D show representative photomicrographs of histological sections of hearts obtained from Control mice (Group 3M, see Table 2 hereinbelow) 4 days following LAD occlusion and stained with MT ( Figures 4A, 4C) or H&E ( Figures 4B, 4D).
  • Figures 4A-B demonstrate a very large infarct volume (Figure 4A) and severe inflammation and necrosis (N) in the affected myocardium ( Figure 4B) in mouse no. 13.
  • Figures 4C-D demonstrate a very large infarct volume (Figure 4C) and severe inflammation and necrosis (N) in the affected myocardium ( Figure 4D) in mouse no. 14.
  • Figures 5A-D show representative photomicrographs of histological sections of hearts obtained from Group 2M mice (see Table 2 hereinbelow) 4 days following LAD occlusion and stained with MT ( Figures 5A, 5C) or H&E ( Figures 5B, 5D).
  • Figures 5A-B demonstrate a very large infarct volume (Figure 5A) and severe inflammation and necrosis in the affected myocardium ( Figure 5B) in mouse no. 11.
  • Figures 5C-D demonstrate a very large infarct volume (Figure 5C) and severe inflammation and necrosis (N) in the affected myocardium ( Figure 5D) in mouse no. 12.
  • Figures 6A-D show representative photomicrographs of histological sections of hearts obtained from Group 1M mice (see Table 2 hereinbelow) 4 days following LAD occlusion and stained with MT ( Figures 6A, 6C) or H&E ( Figures 6B, 6D).
  • Figures 6A-B demonstrate a very large infarct volume (Figure 6A) and severe inflammation and necrosis in the affected myocardium ( Figure 6B) in mouse no. 1.
  • Figures 6C-D demonstrate a very large infarct volume (Figure 6C) and severe inflammation and necrosis in the affected myocardium ( Figure 6D) in mouse no. 2.
  • Figures 7A-F show representative photomicrographs of histological sections of hearts obtained from Control mice (Group 3M), Group 2M mice, and Group 1M mice (see Table 2 hereinbelow) 24 hours following LAD occlusion and stained with TUNEL.
  • Figure 7A demonstrate a mild to moderate TUNEL reaction in the infarct lesion in mouse no. 6 (Group 1M).
  • Figures 7B-D demonstrate high TUNEL reaction in the infarct lesion in mice no. 7 ( Figure 7B), 9 ( Figure 7C) and 10 (Figure 7D) (Group 2M).
  • Figures 7E-F demonstrate moderate to high TUNEL reaction in the infarct lesion in mice no. 15 ( Figure 7E) and 16 ( Figure 7F) (Control mice, Group 3M).
  • Figures 8A-F show representative photomicrographs of histological sections of hearts obtained from Control mice (Group 3M), Group 2M mice, and Group 1M mice (see Table 2 hereinbelow) 4 days following LAD occlusion and stained with TUNEL.
  • Figures 8A-B demonstrate high TUNEL reaction in the infarct lesion in mouse no. 1 and mild to moderate TUNEL reaction in the infarct lesion in mouse no. 2 (Group 1M).
  • Figures 8C-D demonstrates mild TUNEL reaction in the infarct lesion in mice no. 11 and 12 (Group 2M).
  • Figures 8E-F demonstrate high TUNEL reaction in the infarct lesion in mouse no. 13 and moderate TUNEL reaction in the infarct lesion in mouse no. 14 (Control mice, Group 3M).
  • Figures 9A-B are bar graphs demonstrating that transplantation of mono-nuclear bone marrow cells (mnBMCs) transfected with TNFR1 CRISPR reduced infract size in the LAD occlusion mouse model compared to control mice transplanted with non-transfected mnBMCs, as determined by histological evaluation 24 hours ( Figure 9A) and 4 days ( Figure 9B) following LAD occlusion.
  • mnBMCs mono-nuclear bone marrow cells
  • Figures 10 is a bar graph demonstrating that transplantation of mnBMCs transfected with TNFRl CRISPR had no toxic effect (such as severe muscle breakdown, acute kidney injury or autoimmune myositis) in the LAD occlusion mouse model compared to control mice transplanted with non-transfected mnBMCs, as determined by CK levels 4 days following LAD occlusion.
  • the present invention in some embodiments thereof, relates to methods of treating an ischemic disease.
  • Ischemic heart disease is the leading cause of morbidity and mortality in all industrialized nations. Over the past half a century conventional medicine and surgery have offered many breakthroughs, resulting in a dramatic decline in mortality; however, despite the major advances in treatment, the prognosis for patients who are admitted to hospital with heart failure remains poor.
  • the approach of using stem or precursor cells has emerged in the last decade as a regenerative strategy to address cardiac disease, with pre-clinical and clinical trials showing beneficial effects of progenitor cell therapy in acute myocardial infarction and ischemic cardiomyopathy.
  • LAD left anterior descending artery
  • some embodiments of the present teachings suggest that therapeutic cells with reduced level of expression and/or activity of TNFRl can be used for treating an ischemic disease.
  • a method of treating an ischemic disease in a subject in need thereof comprising administering to the subject a therapeutically effective amount of mononuclear bone marrow cells (mnBMCs) comprising mesenchymal stem cells (MSCs) and lymphocytes or progenitors thereof with reduced level of expression and/or activity of TNFRl as compared to control cells of the same origin not contacted with an agent which downregulates expression and/or activity of said TNFRl, thereby treating the ischemic disease in the subject.
  • mnBMCs mononuclear bone marrow cells
  • MSCs mesenchymal stem cells
  • a method of treating an ischemic disease in a subject in need thereof comprising administering to the subject a therapeutically effective amount of differentiated cells with reduced level of expression and/or activity of TNFRl as compared to control cells of the same origin not contacted with an agent which downregulates expression and/or activity of said TNFRl, wherein said differentiated cells are of a same type of tissue affected in said ischemic disease, thereby treating the ischemic disease in the subject.
  • the method further comprising treating said cells with reduced expression and/or activity of TNFRl with TNFa prior to said administering.
  • a method of treating an ischemic disease in a subject in need thereof comprising:
  • TNFa cells with reduced expression and/or activity of TNFRl as compared to control cells of the same origin not contacted with an agent which downregulates expression and/or activity of said TNFRl, wherein said cells are selected from the group consisting of mononuclear bone marrow cells (mnBMCs), stem cells and differentiated cells of a same type of tissue affected in said ischemic disease; and
  • mnBMCs mononuclear bone marrow cells
  • treating refers to inhibiting, preventing or arresting the development of a pathology (disease, disorder or medical condition e.g. ischemic disease e.g. ischemic heart disease) and/or causing the reduction, remission, or regression of a pathology or a symptom of a pathology.
  • ischemic disease e.g. ischemic heart disease
  • a pathology disease, disorder or medical condition e.g. ischemic disease e.g. ischemic heart disease
  • ischemic disease e.g. ischemic heart disease
  • ischemic disease refers to a disease characterized by reduced blood (and hence oxygen) supply to the diseased tissue/organ.
  • the ischemic disease is an acute ischemic disease.
  • the ischemic disease is a chronic ischemic disease.
  • ischemic diseases include trauma, ischemic cerebrovascular disorder (such as apoplexy or cerebral infarction), ischemic renal disease, ischemic pulmonary disease, infection-related ischemic disease, ischemic disease of limbs, and ischemic heart disease.
  • the ischemic disease is not a rejection reaction following transplantation (e.g. GVHD).
  • the ischemic disease is ischemic heart disease.
  • ischemic heart disease refers to a disease in which heart muscle is damaged or works inefficiently because of reduced blood (and hence oxygen) supply to the heart.
  • Non-limiting Examples of ischemic heart diseases include ischemic cardiomyopathy, myocardial infarction or ischemic heart failure and chronic ischemic heart disease.
  • the ischemic disease is myocardial infarction (also known as heart attack).
  • the myocardial infarction is ST-segment elevation
  • MI myocardial infarction
  • the myocardial infarction is non-ST-segment elevation MI (NSTEMI) myocardial infarction (i.e. the artery is only partially occluded thus only a portion of the heart muscle supplied by the artery becomes infarcted), as determined by ECG.
  • NSTEMI non-ST-segment elevation MI
  • the ischemic disease is ischemic cardiomyopathy.
  • the term "subject” includes mammals, e.g., human beings at any age and of any gender who suffer from the pathology (medical condition). According to specific embodiments, this term encompasses individuals who are at risk to develop the pathology.
  • the subject is not treated with TNFa.
  • TNFa a cytokine also known as Tumor necrosis factor alpha.
  • TNFa can bind TNFR1 and TNFR2.
  • the TNFa protein refers to the human protein, such as provided in the following GenBank Number NP_000585 (SEQ ID NO: 1).
  • the term also encompasses functional homologues (naturally occurring or synthetically/recombinantly produced), orthologs (from other species) which exhibit the desired activity (i.e., binding TNFR1, binding TNFR2, activation of NFKB, activation of the MAPK pathway).
  • Such homologues can be, for example, at least 80 %, at least 81 %, at least 82 %, at least 83 %, at least 84 %, at least 85 %, at least 86 %, at least 87 %, at least 88 %, at least 89 %, at least 90 %, at least 91 %, at least 92 %, at least 93 %, at least 94 %, at least 95 %, at least 96 %, at least 97 %, at least 98 %, at least 99 % or 100 % identical or homologous to the polypeptide SEQ ID NO: 1 or 80 %, at least 81 %, at least 82 %, at least 83 %, at least 84 %, at least 85 %, at least 86 %, at least 87 %, at least 88 %, at least 89 %, at least 90 %, at least 91 %, at least 92 %, at least
  • Sequence identity or homology can be determined using any protein or nucleic acid sequence alignment algorithm such as Blast, ClustalW, and MUSCLE.
  • the functional homologs also refer to functional portions of TNFa which maintain the activity of the full length protein (i.e. binding TNFR1, binding TNFR2, activation of NFKB, activation of the MAPK pathway).
  • the TNFa is a recombinant TNFa, which can be prepared by standard recombinant expression methods or purchased commercially.
  • TNFa can be commercially obtained from e.g. R&D Systems.
  • the cells are treated (or contacted) with TNFa.
  • the effect of treatment with TNFa is additive.
  • the effect of treatment with TNFa is synergistic.
  • treatment (or contacting) with TNFa is effected at a concentration of at least 2 ng/ml, at least 5 ng/ml, at least 10 ng/ml, at least 20 ng/ml, at least 30 ng/ml, at least 40 ng/ml, at least 50 ng/ml or at least 60 ng/ml, each possibility represents a separate embodiment of the present invention.
  • treatment (or contacting) with TNFa is effected at a concentration of 2 - 200 ng/ml or 20 - 200 ng/ml.
  • treatment (or contacting) with TNFa is effected 1-72 hours, 1-48, 1-24, 1-10 or 1-5 hours prior to the administering, each possibility represents a separate embodiment of the present invention.
  • treatment (or contacting) with TNFa comprises a single TNFa treatment.
  • treatment (or contacting) with TNFa comprises a plurality of TNFa treatments.
  • the cells comprise differentiated cells.
  • differentiated cells that can be used with some embodiments of the present invention include differentiated cells derived from heart, kidney, liver, lung and brain.
  • the differentiated cells comprise differentiated cells of a same type of tissue affected in the ischemic disease.
  • a cell suspension may be obtained by any mechanical or chemical (e.g. enzymatic) means.
  • Several methods exist for dissociating cell clusters to form cell suspensions e.g. single cell suspension
  • cell suspensions e.g. single cell suspension
  • aggregates e.g., physical forces (mechanical dissociation such as cell scraper, trituration through a narrow bore pipette, fine needle aspiration, vortex disaggregation and forced filtration through a fine nylon or stainless steel mesh), enzymes (enzymatic dissociation such as trypsin, coUagenase, Acutase and the like ) or a combination of both.
  • enzymatic digestion of tissue/organ into isolate cells can be performed by subjecting the tissue to an enzyme such as type IV CoUagenase (Worthington biochemical corporation, Lakewood, NJ, USA) and/or Dispase (Invitrogen Corporation products, Grand Island NY, USA).
  • the tissue may be enzyme digested by finely mincing tissue with a razor blade in the presence of e.g. coUagenase, dispase and CaC12 at 37 °C for about 1 hour.
  • the method may further comprise removal of nonspecific debris from the resultant cell suspension by, for example, sequential filtration through filters (e.g. 70- and 40- ⁇ filters), essentially as described under "General Materials and Experimental Methods" of the Examples section which follows.
  • mechanical dissociation of tissue into isolated cells can be performed using a device designed to break the tissue to a predetermined size.
  • a device designed to break the tissue to a predetermined size.
  • mechanical dissociation can be manually performed using a needle such as a 27g needle (BD Microlance, Drogheda, Ireland) while viewing the tissue/cells under an inverted microscope.
  • the dissociated cells are further broken to small clumps using 200 ⁇ Gilson pipette tips (e.g., by pipetting up and down the cells).
  • differentiated cells can be obtained by differentiation of stem cell.
  • the differentiated cells have been ex-vivo differentiated.
  • Methods of inducing differentiation of stem cells are well known to the skilled in the art.
  • approaches to differentiate pluripotent cells into cardiomyocytes are disclosed in e.g. Burridge et al. (2012) Cell Stem Cell 10: 16-28; Mummery et al. Circ Res. 2012 Jul 20;l l l(3):344-58; WO2014200339, WO2011056416, WO2015004539, WO201202649 land WO2014078414 and US7534607, the contents of which are fully incorporated herein by reference.
  • the differentiated cells comprise cardiomyocytes.
  • the differentiated cells comprise lymphocytes.
  • the cells comprise bone marrow cells.
  • bone marrow can be obtained from iliac crest, femora, tibiae, spine, rib or other medullar spaces.
  • the desired cellular fraction can be purified from the bone marrow aspirates.
  • the cells comprise mononuclear bone marrow cells (mnBMCs).
  • the cells are comprised in mononuclear bone marrow cells (mnBMCs).
  • mnBMCs mononuclear bone marrow cells
  • the cells comprise at least 50 % at least 60 %, at least 70 %, at least 80 %, at least 90 % or at least 95 % mnBMCs.
  • the mononuclear fraction can be purified from the bone marrow aspirates.
  • methods and reagents known to those skilled in the art for purifying mnBMCs from bone marrow such as, density gradient centrifugation (e.g. ficoll), sedimentation (e.g. Hespan), centrifugal elutriation, fractionation, automated processes (e.g. Sepax® from Biosafe SA, Eysins, Switzerland and the AutoXpress Platform® (AXP) from Thermogenesis, Collinso Cordova, CA chemical lysis of e.g. red blood cells (e.g. by ACK), selection of specific cell types using cell surface markers (using e.g.
  • FACS sorter or magnetic cell separation techniques such as are commercially available e.g. from Invitrogen, Stemcell Technologies, Cellpro, Advanced Magnetics, or Miltenyi Biotec), and depletion of specific cell types by methods such as eradication (e.g. killing) with specific antibodies or by affinity based purification based on negative selection (using e.g. magnetic cell separation techniques, FACS sorter and/or capture ELISA labeling).
  • eradication e.g. killing
  • affinity based purification based on negative selection using e.g. magnetic cell separation techniques, FACS sorter and/or capture ELISA labeling.
  • the bone marrow cells are obtained by density gradient centrifugation (e.g. ficoll) of bone marrow cells.
  • the bone marrow cells comprise stem cells (e.g. hematopoietic stem cells, mesenchymal stem cells). Methods of obtaining bone marrow stem cells are well known in the art and are further described hereinbelow.
  • the bone marrow cells comprise mesenchymal stem cells (MSCs) and lymphocytes or progenitors thereof.
  • the bone marrow cells comprise lymphocytes or progenitors thereof.
  • lymphocytes progenitors refers to hematopoietic progenitor cells that can differentiate to lymphocytes.
  • lymphocytes progenitor cells are mobilized to the peripheral blood by agents such as G-CSF with or without chemotherapy.
  • the cells comprise stem cells.
  • stem cells refers to cells which are capable of remaining in an undifferentiated state (e.g., totipotent, pluripotent or multipotent stem cells) for extended periods of time in culture until induced to differentiate into other cell types having a particular, specialized function (e.g., fully differentiated cells).
  • Totipotent cells such as embryonic cells within the first couple of cell divisions after fertilization are the only cells that can differentiate into embryonic and extra-embryonic cells and are able to develop into a viable human being.
  • pluripotent stem cells refers to cells which can differentiate into all three embryonic germ layers, i.e., ectoderm, endoderm and mesoderm or remaining in an undifferentiated state.
  • the pluripotent stem cells include embryonic stem cells (ESCs) and induced pluripotent stem cells (iPS).
  • the multipotent stem cells include e.g. adult stem cells, hematopoietic stem cells and mesenchymal stem cells.
  • undifferentiated stem cells are of a distinct morphology, which is clearly distinguishable from differentiated cells of embryo or adult origin by the skilled in the art. Typically, undifferentiated stem cells have high nuclear/cytoplasmic ratios, prominent nucleoli and compact colony formation with poorly discernable cell junctions. Additional features of undifferentiated stem cells are further described hereinunder.
  • the stem cells are selected from the group consisting of embryonic stem cells (ESCs), induced pluripotent stem cells (iPS), hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs).
  • ESCs embryonic stem cells
  • iPS induced pluripotent stem cells
  • HSCs hematopoietic stem cells
  • MSCs mesenchymal stem cells
  • the cells are embryonic stem cells (ESCs).
  • ESCs embryonic stem cells
  • embryonic stem cells refers to ESCs which are capable of differentiating into cells of all three embryonic germ layers (i.e., endoderm, ectoderm and mesoderm), or remaining in an undifferentiated state.
  • embryonic stem cells may comprise cells which are obtained from the embryonic tissue formed after gestation (e.g., blastocyst) before implantation of the embryo (i.e., a pre-implantation blastocyst), extended blastocyst cells (EBCs) which are obtained from a post-implantation/pre-gastrulation stage blastocyst (see WO2006/040763), embryonic germ (EG) cells which are obtained from the genital tissue of a fetus any time during gestation, preferably before 10 weeks of gestation, and cells originating from an unfertilized ova which are stimulated by parthenogenesis (parthenotes).
  • gestation e.g., blastocyst
  • EBCs extended blastocyst cells
  • EG embryonic germ
  • the ESCs of some embodiments of the invention can be obtained using well-known cell- culture methods.
  • human embryonic stem cells can be isolated from human blastocysts.
  • Human blastocysts are typically obtained from human in vivo preimplantation embryos or from in vitro fertilized (IVF) embryos.
  • IVF in vitro fertilized
  • a single cell human embryo can be expanded to the blastocyst stage.
  • the zona pellucida is removed from the blastocyst and the inner cell mass (ICM) is isolated by immunosurgery, in which the trophectoderm cells are lysed and removed from the intact ICM by gentle pipetting.
  • ICM inner cell mass
  • the ICM is then plated in a tissue culture flask containing the appropriate medium which enables its outgrowth. Following 9 to 15 days, the ICM derived outgrowth is dissociated into clumps either by a mechanical dissociation or by an enzymatic degradation and the cells are then re-plated on a fresh tissue culture medium. Colonies demonstrating undifferentiated morphology are individually selected by micropipette, mechanically dissociated into clumps, and re-plated. Resulting ES cells are then routinely split every 4-7 days. For further details on methods of preparation human ES cells see Thomson et al., [U.S. Pat. No. 5,843,780; Science 282: 1145, 1998; Curr. Top. Dev. Biol.
  • Human ESCs can be purchased from the NIH human embryonic stem cells registry [Hypertext Transfer Protocol://grants (dot) nih (dot) gov/stem_cells/registry/current (dot) htm].
  • Non-limiting examples of commercially available embryonic stem cell lines are BG01, BG02, BG03, BG04, CY12, CY30, CY92, CY10, TE03, TE32, CHB-4, CHB-5, CHB-6, CHB-8, CHB-9, CHB-10, CHB-11, CHB-12, HUES 1, HUES 2, HUES 3, HUES 4, HUES 5, HUES 6, HUES 7, HUES 8, HUES 9, HUES 10, HUES 11, HUES 12, HUES 13, HUES 14, HUES 15, HUES 16, HUES 17, HUES 18, HUES 19, HUES 20, HUES 21, HUES 22, HUES 23, HUES 24, HUES 25, HUES 26, HUES 27, HUES 28, CyT49, RUES 3, WA01, UCSF4, NYUES 1, NYUES2, NYUES3, NYUES4, NYUES5, NYUES6, NYUES7, UCLA 1, UCLA 2, UCLA 3, WA077 (H7)
  • ESCs can be obtained from other species as well, including mouse (Mills and Bradley, 2001), golden hamster [Doetschman et al., 1988, Dev Biol. 127: 224-7], rat [Iannaccone et al., 1994, Dev Biol. 163: 288-92] rabbit [Giles et al. 1993, Mol Reprod Dev. 36: 130-8; Graves & Moreadith, 1993, Mol Reprod Dev. 1993, 36: 424-33], several domestic animal species [Notarianni et al., 1991, J Reprod Fertil Suppl. 43: 255-60; Wheeler 1994, Reprod Fertil Dev.
  • EBCs Extended blastocyst cells
  • EBCs can be obtained from a blastocyst of at least nine days post fertilization at a stage prior to gastrulation.
  • the zona pellucida Prior to culturing the blastocyst, the zona pellucida is digested [for example by Tyrode's acidic solution (Sigma Aldrich, St Louis, MO, USA)] so as to expose the inner cell mass.
  • the blastocysts are then cultured as whole embryos for at least nine and no more than fourteen days post fertilization (i.e., prior to the gastrulation event) in vitro using standard embryonic stem cell culturing methods.
  • EG cells are prepared from the primordial germ cells obtained from fetuses of about 8-11 weeks of gestation (in the case of a human fetus) using laboratory techniques known to anyone skilled in the arts.
  • the genital ridges are dissociated and cut into small chunks which are thereafter disaggregated into cells by mechanical dissociation.
  • the EG cells are then grown in tissue culture flasks with the appropriate medium.
  • the cells are cultured with daily replacement of medium until a cell morphology consistent with EG cells is observed, typically after 7-30 days or 1-4 passages.
  • Shamblott et al. [Proc. Natl. Acad. Sci. USA 95: 13726, 1998] and U.S. Pat. No. 6,090,622.
  • ESCs e.g., human ESCs
  • parthenogenesis e.g., Zhenyu Lu et al., 2010. J. Assist Reprod. Genet. 27:285-291; "Derivation and long-term culture of human parthenogenetic embryonic stem cells using human foreskin feeders", which is fully incorporated herein by reference).
  • Parthenogenesis refers to the initiation of cell division by activation of ova in the absence of sperm cells, for example using electrical or chemical stimulation.
  • the activated ovum (parthenote) is capable of developing into a primitive embryonic structure (called a blastocyst) but cannot develop to term as the cells are pluripotent, meaning that they cannot develop the necessary extra-embryonic tissues (such as amniotic fluid) needed for a viable human fetus.
  • the cells are embryonic stem cells Induced pluripotent stem cells (iPS).
  • iPS embryonic stem cells Induced pluripotent stem cells
  • Induced pluripotent stem cells are cells obtained by de- differentiation of adult somatic cells which are endowed with pluripotency (i.e., being capable of differentiating into the three embryonic germ cell layers, i.e., endoderm, ectoderm and mesoderm).
  • pluripotency i.e., being capable of differentiating into the three embryonic germ cell layers, i.e., endoderm, ectoderm and mesoderm.
  • such cells are obtained from a differentiated tissue (e.g., a somatic tissue such as skin) and undergo de-differentiation by genetic manipulation which re-program the cell to acquire embryonic stem cells characteristics.
  • the induced pluripotent stem cells are formed by inducing the expression of Oct-4, Sox2, Kfl4 and c-Myc in a somatic stem cell.
  • iPS Induced pluripotent stem cells
  • somatic cells can be generated from somatic cells by genetic manipulation of somatic cells, e.g., by retroviral transduction of somatic cells such as fibroblasts, hepatocytes, gastric epithelial cells with transcription factors such as Oct-3/4, Sox2, c-Myc, and KLF4 [Yamanaka S, Cell Stem Cell. 2007, l(l):39-49; Aoi T, et al., Generation of Pluripotent Stem Cells from Adult Mouse Liver and Stomach Cells. Science. 2008 Feb 14. (Epub ahead of print); IH Park, Zhao R, West JA, et al.
  • adult stem cells also called “tissue stem cells” or a stem cell from a somatic tissue refers to any stem cell derived from a somatic tissue [of either a postnatal or prenatal animal (especially the human)].
  • the adult stem cell is generally thought to be a multipotent stem cell, capable of differentiation into multiple cell types.
  • Adult stem cells can be derived from any adult, neonatal or fetal tissue such as adipose tissue, skin, kidney, liver, prostate, pancreas, intestine, bone marrow and placenta.
  • HSCs Hematopoietic stem cells
  • adult tissue stem cells include stem cells obtained from blood or bone marrow tissue of an individual at any age or from cord blood of a newborn individual.
  • the cells comprise HSCs.
  • hematopoietic stem cell is a CD34+ cell.
  • CD34+ cell refers to a hematopoietic stem cell positive for the CD34 marker that can differentiate to each of the cell types in the blood, i.e.; the myeloid (monocyte, macrophage, neutrophil, basophil, eosinophil, erythrocyte, megakaryocyte, dendritic cell) or lymphoid (T cell, B cell, NK cell) lineages.
  • myeloid monocyte, macrophage, neutrophil, basophil, eosinophil, erythrocyte, megakaryocyte, dendritic cell
  • T cell B cell, NK cell
  • the HSCs may be a specific cell line, alternatively may be generated from iPS or embryonic stem cells [see for example Pick M et al. (2007) Stem Cells, 25(9): 2206-14; and Pick M et al. (2013) PLoS One, 8(2): e55530] or alternatively may be isolated using various methods known in the arts such as those disclosed by "Handbook of Stem Cells" edit by Robert Lanze, Elsevier Academic Press, 2004, Chapter 54, pp609-614, isolation and characterization of hematopoietic stem cells, by Gerald J Spangrude and William B Stayton.
  • HSCs can be isolated from cord blood, peripheral blood or BM samples by means of density gradient centrifugation using for example Ficoll-Paque (can be obtained from GE Healthcare Bio-Science AB) followed by immunomagnetic or immunofluorescent methods (such as Diamond or Microbeads CD34+ isolation kit obtained from Miltenyi Biotech). Purity of the purified fraction can be assessed by flow cytometry for the specified markers (for example CD34).
  • Ficoll-Paque can be obtained from GE Healthcare Bio-Science AB
  • immunomagnetic or immunofluorescent methods such as Diamond or Microbeads CD34+ isolation kit obtained from Miltenyi Biotech.
  • Purity of the purified fraction can be assessed by flow cytometry for the specified markers (for example CD34).
  • the HSCs are mobilized to the peripheral blood by agents such as G-CSF with or without chemotherapy.
  • Placental and cord blood stem cells may also be referred to as "young stem cells”.
  • Fetal stem cells can be isolated using various methods known in the art such as those disclosed by Eventov -Friedman S, et al., PLoS Med. 2006, 3: e215; Eventov-Friedman S, et al., Proc Natl Acad Sci U S A. 2005, 102: 2928-33; Dekel B, et al., 2003, Nat Med. 9: 53-60; and Dekel B, et al., 2002, J. Am. Soc. Nephrol. 13: 977-90.
  • the cells comprise mesenchymal stem cells (MSCs).
  • Mesenchymal stem cells give rise to one or more mesenchymal tissues (e.g., adipose, osseous, cartilaginous, elastic and fibrous connective tissues, myoblasts) as well as to tissues other than those originating in the embryonic mesoderm (e.g., neural cells) depending upon various influences from bioactive factors such as cytokines.
  • mesenchymal tissues e.g., adipose, osseous, cartilaginous, elastic and fibrous connective tissues, myoblasts
  • tissues other than those originating in the embryonic mesoderm e.g., neural cells
  • bioactive factors such as cytokines.
  • Methods of isolating, purifying and expanding MSCs are known in the art and include, for example, those disclosed by Caplan and Haynesworth in U.S. Pat. No. 5,486,359 and Jones E.A. et al., 2002, Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells, Arthritis Rheum. 46(12): 3349-60.
  • MSC cultures are generated by diluting bone marrow aspirates (usually 20 ml) with equal volumes of Hank's balanced salt solution (HBSS; GIBCO Laboratories, Grand Island, NY, USA) and layering the diluted cells over about 10 ml of a Ficoll column (Ficoll-Paque; Pharmacia, Piscataway, NJ, USA). Following 30 minutes of centrifugation at 2,500 x g, the mononuclear cell layer is removed from the interface and suspended in HBSS.
  • HBSS Hank's balanced salt solution
  • MSC complete medium
  • FCS fetal calf serum
  • Resuspended cells are plated in about 25 ml of medium in a 10 cm culture dish (Corning Glass Works, Corning, NY) and incubated at 37 °C with 5 % humidified C0 2 . Following 24 hours in culture, nonadherent cells are discarded, and the adherent cells are thoroughly washed twice with phosphate buffered saline (PBS). The medium is replaced with a fresh complete medium every 3 or 4 days for about 14 days. Adherent cells are then harvested with 0.25 % trypsin and 1 mM EDTA (Trypsin/EDTA, GIBCO) for 5 min at 37 °C, replated in a 6-cm plate and cultured for another 14 days.
  • Trypsin/EDTA GIBCO
  • Cells are then trypsinized and counted using a cell counting device such as for example, a hemocytometer (Hausser Scientific, Horsham, PA). Cultured cells are recovered by centrifugation and resuspended with 5 % DMSO and 30 % FCS at a concentration of 1 to 2 X 10 6 cells per ml. Aliquots of about 1 ml each are slowly frozen and stored in liquid nitrogen.
  • a cell counting device such as for example, a hemocytometer (Hausser Scientific, Horsham, PA).
  • MSC multi-senor cells
  • a complete medium containing at least one cell or a cell or a cell or a cell or a cell or a cell or a cell or a cell or a cell or a cell or a cell or a cell or a cell or a cell or a cell or a cell or a cell or a cell or a cell or a cell or a cell or a cell or a cell or a cell culture.
  • Trypsin/EDTA dissociated by passage through a narrowed Pasteur pipette, and preferably replated at a density of about 1.5 to about 3.0 cells/cm 2 .
  • MSC cultures can grow for about 50 population doublings and be expanded for about 2000 fold [Colter DC, et al. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci USA. 97: 3213-3218, 2000].
  • MSC cultures utilized by some embodiments of the invention include three groups of cells which are defined by their morphological features: small and agranular cells (referred to as PvS-1, hereinbelow), small and granular cells (referred to as RS-2, hereinbelow) and large and moderately granular cells (referred to as mature MSCs, hereinbelow).
  • PvS-1 small and agranular cells
  • RS-2 small and granular cells
  • mature MSCs large and moderately granular cells
  • MSCs When MSCs are cultured under the culturing conditions of some embodiments of the invention they exhibit negative staining for the HSC markers CD34, CD11B, CD43 and CD45. A small fraction of cells (less than 10 %) are dimly positive for CD31 and/or CD38 markers. In addition, mature MSCs are dimly positive for the HSC marker, CD 117 (c-Kit), moderately positive for the osteogenic MSCs marker, Stro-1 [Simmons, P. J. & Torok-Storb, B. (1991). Blood 78, 5562] and positive for the thymocytes and peripheral T lymphocytes marker, CD90 (Thy-1). On the other hand, the RS-1 cells are negative for the CD117 and Strol markers and are dimly positive for the CD90 marker, and the RS-2 cells are negative for all of these markers.
  • the cells of some embodiments of the present invention can be a primary cell (non- cultured and alternatively or additionally non-immortalized cell) or a cell-line.
  • the cells used and/or obtained according to the present invention can be freshly isolated, stored e.g., cryopreserved (i.e. frozen) at e.g. liquid nitrogen temperature at any stage (e.g. following their retrieval, following contacting with the agent, following treatment with TNFa) for long periods of time (e.g., months, years) for future use; and cell lines.
  • cryopreserved i.e. frozen
  • any stage e.g. following their retrieval, following contacting with the agent, following treatment with TNFa
  • long periods of time e.g., months, years
  • the cells are cryopreserved cells.
  • the cells are cryopreserved prior to contacting with the agent which downregulates expression and/or activity of TNFR1.
  • the cells are cryopreserved following contacting with the agent which downregulates expression and/or activity of TNFR1. According to specific embodiments, the cells are cryopreserved prior to treatment with
  • the cells are cryopreserved following treatment with
  • the cells are cryopreserved prior to administering to the subject.
  • the cells obtained according to the present invention can be stored in a cell bank or a depository or storage facility.
  • the cells are freshly isolated (i.e., not subjected to preservation processes).
  • the cells used according to specific embodiments of the present invention may be autologous or non-auto logous; they can be syngeneic or non-synegeneic: allogeneic or xenogeneic to the subject; each possibility represents a separate embodiment of the present invention.
  • the cells are autologous to said subject.
  • autologous means that the donor subject is the recipient subject.
  • the cells have been removed and re-introduced e.g., re-infused to the subject.
  • the cells are non-autologous to said subject.
  • non-autologous means that the donor subject is not the recipient subject.
  • syngeneic means that the donor subject is essentially genetically identical with the recipient subject.
  • Examples of syngeneic transplantation include transplantation of cells derived from the subject (also referred to in the art as “autologous”), a clone of the subject, or a homozygotic twin of the subject
  • allogeneic means that the donor is of the same species as the recipient, but which is substantially non-clonal with the recipient. Typically, outbred, non-zygotic twin mammals of the same species are allogeneic with each other. It will be appreciated that an allogeneic donor may be HLA identical or HLA non-identical with respect to the subject
  • the term "xenogeneic" means that the donor subject is from a different species relative to the recipient subject.
  • the cells are mammalian cells.
  • the cells are primate cells.
  • the cells are human cells.
  • the cells are rodent cells (e.g. mouse, rat).
  • the cells of some embodiments of the present invention are characterized by reduced level of expression and/or activity of TNFRl.
  • TNFRl Tumor necrosis factor receptor 1
  • TNFRSF1A tumor necrosis factor receptor superfamily member 1A
  • CD 120a and p55 refers to the TNFRl gene and to its polynucleotide or polypeptide expression product.
  • the TNFRl refers to the human TNFRl, such as provided in Gene ID: 7132 (SEQ ID NO: 2) and the following Accession Numbers: NM_001065 (SEQ ID NO: 3), NM_001346091 (SEQ ID NO: 4), NM_001346092 (SEQ ID NO: 5), NP_001056 (SEQ ID NO: 6), NP_001333020 (SEQ ID NO: 7) and NP_001333021 (SEQ ID NO: 8).
  • the TNFRl refers to the mouse TNFRl, such as provided in Gene ID: 21937 (SEQ ID NO: 9) and in the following Accession Numbers: NM_011609 (SEQ ID NO: 10) and NP_035739 (SEQ ID NO: 11).
  • TNFRl activity is at least one of (or two of or all of): binding TNFa, forming a trimer, activating the transcription factor NFKB and/or mediating apoptosis.
  • reduced level of expression and/or activity refers to a decrease of at least 10 % in TNFRl expression or activity in comparison to a control cell of the same origin which was not contacted with an agent which downregulates expression and/or activity of TNFRl, as may be determined by e.g. PCR, ELISA, Western blot analysis, immunoprecipitation, flow cytometry, immuno-staining, TNFa signaling assays.
  • the decrease is in at least 20 %, 30 %, 40 % or even higher say, 50 %, 60 %, 70 %, 80 %, 90 % or even 100 %.
  • the cell does not express TNFRl.
  • the cells with reduced expression and/or activity of TNFRl are genetically modified cells.
  • Methods and agents for genetically modifying cells are well known in the art and are further described in details hereinbelow.
  • the cells are genetically modified with a CRISPR/Cas system, a Zinc finger nuclease (ZFN), transcription-activator like effector nuclease (TALEN) or meganuclease for downregulating expression of said TNFRl.
  • the cells are genetically modified with a CRISPR/Cas system for downregulating expression of said TNFRl.
  • the cells with reduced level of expression and/or activity of TNFRl express similar levels and/or activity of TNFR2 in comparison to a control cell of the same origin which was not contacted with an agent which downregulates expression and/or activity of TNFRl, as may be determined by e.g. PCR, ELISA, Western blot analysis, immunoprecipitation, flow cytometry, immuno- staining, TNFa signaling assays.
  • TNFR2 Tumor necrosis factor receptor 2
  • TNFRSF1B tumor necrosis factor receptor superfamily member IB
  • CD120b and p75 refers to the TNFR2 gene and to its polynucleotide or polypeptide expression product.
  • the TNFR2 refers to the human TNFR2, such as provided in Gene ID: 7133 (SEQ ID NO: 12) and the following Accession Numbers: NM_001066 (SEQ ID NO: 13) and NP_001057 (SEQ ID NO: 14).
  • the TNFRl refers to the mouse TNFR2, such as provided in Gene ID: 21938 (SEQ ID NO: 15) and in the following Accession Numbers: NM_011610 (SEQ ID NO: 16) and NP_035740 (SEQ ID NO: 17).
  • TNFR2 activity is at least one of (or two of or all of): binding TNFa and/or mediating the recruitment of two anti-apoptotic proteins, c-IAPl and c- IAP2.
  • the present invention also contemplates methods of obtaining such cells.
  • a method of downregulating expression and/or activity of TNFRl in differentiated cells or bone marrow stem cells comprising:
  • a method of downregulating expression and/or activity of TNFRl in differentiated cells comprising:
  • inducing differentiation of the stem cells is effected prior to contacting with the agent.
  • Methods of inducing differentiation of stem cells are known in the art and are further described hereinabove.
  • a method of downregulating expression and/or activity of TNFRl in differentiated cells or bone marrow stem cells comprising genetically modifying ex- vivo or in- vitro differentiated cells or bone marrow stem cells with an agent which downregulates expression and/or activity of TNFRl.
  • the method further comprising contacting the cells ex-vivo or in-vitro with TNFa.
  • contacting the cells with the agent is effected prior to contacting the cells with the TNFa.
  • contacting the cells with the agent is effected following contacting the cells with the TNFa.
  • Specific embodiments of the present invention contemplates a method of treating an ischemic disease in a subject in need thereof, the method comprising:
  • downregulating expression and/or activity and “downregulates expression and/or activity” refer to a decrease of at least 5 % in expression and/or biological function in the presence of the agent in comparison to same in the absence of the agent, as determined by e.g. PCR, ELISA, Western blot analysis, immunoprecipitation, flow cytometry, immuno-staining, TNFa signaling assays.
  • the decrease is in at least 10 %, 30 %, 40 % or even higher say, 50 %, 60 %, 70 %, 80 %, 90 % or even 100 %.
  • the decrease is at least 1.5 fold, at least 2 fold, at least 3 fold, at least 5 fold, at least 10 fold, or at least 20 fold as compared to same in the absence of the agent.
  • downregulating expression refers to the absence of mRNA and/or protein, as detected by RT-PCR or Western blot, respectively.
  • downregulating expression and/or activity of TNFRl and “downregulates expression and/or activity of TNFRl” “refer to the ability to specifically downregulate the expression and/or activity of TNFRl and not to downregulate the expression and/or activity of TNFR2, as determined by e.g. PCR, ELISA, Western blot analysis, immunoprecipitation, flow cytometry, immuno-staining, TNFa signaling assays.
  • This selective inhibition can be manifested as higher affinity (e.g., Kd) of the agent to TNFR1 than to TNFR2.
  • Increased affinity can be of at least 5, 10, 100, 1000 or 10000 fold.
  • the agent does not downregulate expression and/or activity of TNFR2.
  • Downregulating expression and/or activity can be effected at the genomic (e.g. homologous recombination and site specific endonucleases) and/or the transcript level using a variety of molecules which interfere with transcription and/or translation (e.g., RNA silencing agents) of a target expression product described herein, but may also be effected at the protein level (e.g., antibodies, small molecules, inhibitory peptides, enzymes that cleave the polypeptide, aptamers and the like).
  • the agent directly binds TNFR1.
  • the agent indirectly binds TNFR1 by acting through an intermediary molecule, for example the agent binds to or modulates a molecule that in turn binds to or modulates the target.
  • the agent does not bind TNFR2.
  • Down-regulation at the nucleic acid level is typically effected using a nucleic acid agent, having a nucleic acid backbone, DNA, RNA, mimetics thereof or a combination of same.
  • the nucleic acid agent may be encoded from a DNA molecule or provided to the cell per se.
  • Downregulation can be achieved by inactivating the gene (i.e. the TNFR1 gene) via introducing targeted mutations involving loss-of function alterations (e.g. point mutations, deletions and insertions) in the gene structure.
  • the gene i.e. the TNFR1 gene
  • targeted mutations involving loss-of function alterations e.g. point mutations, deletions and insertions
  • Non-limiting examples of such loss-of-function alterations include a missense mutation, i.e., a mutation which changes an amino acid residue in the protein with another amino acid residue and thereby abolishes the enzymatic activity of the protein; a nonsense mutation, i.e., a mutation which introduces a stop codon in a protein, e.g., an early stop codon which results in a shorter protein devoid of the enzymatic activity; a frame-shift mutation, i.e., a mutation, usually, deletion or insertion of nucleic acid(s) which changes the reading frame of the protein, and may result in an early termination by introducing a stop codon into a reading frame (e.g., a truncated protein, devoid of the enzymatic activity), or in a longer amino acid sequence (e.g.
  • loss-of-function alteration of a gene may comprise at least one allele of the gene.
  • allele refers to any of one or more alternative forms of a gene locus, all of which alleles relate to a trait or characteristic. In a diploid cell or organism, the two alleles of a given gene occupy corresponding loci on a pair of homologous chromosomes.
  • loss-of-function alteration of a gene comprises both alleles of the gene.
  • the TNFR1 may be in a homozygous form or in a heterozygous form.
  • Genome Editing using engineered endonucleases - this approach refers to a reverse genetics method using artificially engineered nucleases to cut and create specific double- stranded breaks at a desired location(s) in the genome, which are then repaired by cellular endogenous processes such as, homology directed repair (HDR) and non-homologous end- joining (NHEJ).
  • HDR homology directed repair
  • NHEJ directly joins the DNA ends in a double- stranded break
  • HDR utilizes a homologous sequence as a template for regenerating the missing DNA sequence at the break point.
  • a DNA repair template containing the desired sequence must be present during HDR.
  • Genome editing cannot be performed using traditional restriction endonucleases since most restriction enzymes recognize a few base pairs on the DNA as their target and the probability is very high that the recognized base pair combination will be found in many locations across the genome resulting in multiple cuts not limited to a desired location.
  • restriction enzymes recognize a few base pairs on the DNA as their target and the probability is very high that the recognized base pair combination will be found in many locations across the genome resulting in multiple cuts not limited to a desired location.
  • ZFNs Zinc finger nucleases
  • TALENs transcription-activator like effector nucleases
  • CRISPR/Cas system CRISPR/Cas system.
  • Meganucleases are commonly grouped into four families: the LAGLIDADG family, the GIY-YIG family, the His-Cys box family and the HNH family. These families are characterized by structural motifs, which affect catalytic activity and recognition sequence. For instance, members of the LAGLIDADG family are characterized by having either one or two copies of the conserved LAGLIDADG motif. The four families of meganucleases are widely separated from one another with respect to conserved structural elements and, consequently, DNA recognition sequence specificity and catalytic activity. Meganucleases are found commonly in microbial species and have the unique property of having very long recognition sequences (>14bp) thus making them naturally very specific for cutting at a desired location.
  • meganucleases can be designed using the methods described in e.g., Certo, MT et al.
  • ZFNs and TALENs Two distinct classes of engineered nucleases, zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), have both proven to be effective at producing targeted double-stranded breaks (Christian et al, 2010; Kim et al., 1996; Li et al, 2011; Mahfouz et al, 2011; Miller et al, 2010).
  • ZFNs and TALENs restriction endonuclease technology utilizes a non-specific DNA cutting enzyme which is linked to a specific DNA binding domain (either a series of zinc finger domains or TALE repeats, respectively).
  • a restriction enzyme whose DNA recognition site and cleaving site are separate from each other is selected. The cleaving portion is separated and then linked to a DNA binding domain, thereby yielding an endonuclease with very high specificity for a desired sequence.
  • An exemplary restriction enzyme with such properties is Fokl. Additionally Fokl has the advantage of requiring dimerization to have nuclease activity and this means the specificity increases dramatically as each nuclease partner recognizes a unique DNA sequence.
  • Fokl nucleases have been engineered that can only function as heterodimers and have increased catalytic activity.
  • the heterodimer functioning nucleases avoid the possibility of unwanted homodimer activity and thus increase specificity of the double-stranded break.
  • ZFNs and TALENs are constructed as nuclease pairs, with each member of the pair designed to bind adjacent sequences at the targeted site.
  • the nucleases bind to their target sites and the Fokl domains heterodimerize to create a double-stranded break. Repair of these double-stranded breaks through the non-homologous end-joining (NHEJ) pathway most often results in small deletions or small sequence insertions. Since each repair made by NHEJ is unique, the use of a single nuclease pair can produce an allelic series with a range of different deletions at the target site.
  • NHEJ non-homologous end-joining
  • deletions typically range anywhere from a few base pairs to a few hundred base pairs in length, but larger deletions have successfully been generated in cell culture by using two pairs of nucleases simultaneously (Carlson et al, 2012; Lee et al, 2010).
  • the double- stranded break can be repaired via homology directed repair to generate specific modifications (Li et al., 2011; Miller et al., 2010; Urnov et al., 2005).
  • ZFNs rely on Cys2- His2 zinc fingers and TALENs on TALEs. Both of these DNA recognizing peptide domains have the characteristic that they are naturally found in combinations in their proteins. Cys2-His2 Zinc fingers typically found in repeats that are 3 bp apart and are found in diverse combinations in a variety of nucleic acid interacting proteins. TALEs on the other hand are found in repeats with a one-to-one recognition ratio between the amino acids and the recognized nucleotide pairs.
  • Zinc fingers correlated with a triplet sequence are attached in a row to cover the required sequence
  • OPEN low-stringency selection of peptide domains vs. triplet nucleotides followed by high- stringency selections of peptide combination vs. the final target in bacterial systems
  • ZFNs can also be designed and obtained commercially from e.g., Sangamo BiosciencesTM (Richmond, CA).
  • TALEN Method for designing and obtaining TALENs are described in e.g. Reyon et al. Nature Biotechnology 2012 May;30(5):460-5; Miller et al. Nat Biotechnol. (2011) 29: 143-148; Cermak et al. Nucleic Acids Research (2011) 39 (12): e82 and Zhang et al. Nature Biotechnology (2011) 29 (2): 149-53.
  • a recently developed web-based program named Mojo Hand was introduced by Mayo Clinic for designing TAL and TALEN constructs for genome editing applications (can be accessed through www(dot)talendesign(dot)org).
  • TALEN can also be designed and obtained commercially from e.g., Sangamo BiosciencesTM (Richmond, CA).
  • CRISPR-Cas system Many bacteria and archaea contain endogenous RNA-based adaptive immune systems that can degrade nucleic acids of invading phages and plasmids. These systems consist of clustered regularly interspaced short palindromic repeat (CRISPR) genes that produce RNA components and CRISPR associated (Cas) genes that encode protein components.
  • CRISPR RNAs crRNAs
  • crRNAs contain short stretches of homology to specific viruses and plasmids and act as guides to direct Cas nucleases to degrade the complementary nucleic acids of the corresponding pathogen.
  • RNA/protein complex RNA/protein complex and together are sufficient for sequence- specific nuclease activity: the Cas9 nuclease, a crRNA containing 20 base pairs of homology to the target sequence, and a trans-activating crRNA (tracrRNA) (Jinek et al. Science (2012) 337: 816-821.). It was further demonstrated that a synthetic chimeric guide RNA (gRNA) composed of a fusion between crRNA and tracrRNA could direct Cas9 to cleave DNA targets that are complementary to the crRNA in vitro.
  • gRNA synthetic chimeric guide RNA
  • transient expression of Cas9 in conjunction with synthetic gRNAs can be used to produce targeted double- stranded brakes in a variety of different species (Cho et al, 2013; Cong et al, 2013; DiCarlo et al, 2013; Hwang et al, 2013a,b; Jinek et al, 2013; Mali et
  • the CRIPSR/Cas system for genome editing contains two distinct components: a gRNA and an endonuclease e.g. Cas9.
  • the gRNA is typically a 20 nucleotide sequence encoding a combination of the target homologous sequence (crRNA) and the endogenous bacterial RNA that links the crRNA to the Cas9 nuclease (tracrRNA) in a single chimeric transcript.
  • the gRNA/Cas9 complex is recruited to the target sequence by the base-pairing between the gRNA sequence and the complement genomic DNA.
  • the genomic target sequence must also contain the correct Protospacer Adjacent Motif (PAM) sequence immediately following the target sequence.
  • PAM Protospacer Adjacent Motif
  • the binding of the gRNA/Cas9 complex localizes the Cas9 to the genomic target sequence so that the Cas9 can cut both strands of the DNA causing a double-strand break.
  • the double- stranded brakes produced by CRISPR/Cas can undergo homologous recombination or NHEJ.
  • the Cas9 nuclease has two functional domains: RuvC and HNH, each cutting a different DNA strand. When both of these domains are active, the Cas9 causes double strand breaks in the genomic DNA.
  • CRISPR/Cas A significant advantage of CRISPR/Cas is that the high efficiency of this system coupled with the ability to easily create synthetic gRNAs enables multiple genes to be targeted simultaneously. In addition, the majority of cells carrying the mutation present biallelic mutations in the targeted genes.
  • 'nickases Modified versions of the Cas9 enzyme containing a single inactive catalytic domain, either RuvC- or HNH-, are called 'nickases'. With only one active nuclease domain, the Cas9 nickase cuts only one strand of the target DNA, creating a single-strand break or 'nick'. A single- strand break, or nick, is normally quickly repaired through the HDR pathway, using the intact complementary DNA strand as the template. However, two proximal, opposite strand nicks introduced by a Cas9 nickase are treated as a double-strand break, in what is often referred to as a 'double nick' CRISPR system.
  • a double-nick can be repaired by either NHEJ or HDR depending on the desired effect on the gene target.
  • using the Cas9 nickase to create a double-nick by designing two gRNAs with target sequences in close proximity and on opposite strands of the genomic DNA would decrease off-target effect as either gRNA alone will result in nicks that will not change the genomic DNA.
  • dCas9 Modified versions of the Cas9 enzyme containing two inactive catalytic domains
  • dCas9 can be utilized as a platform for DNA transcriptional regulators to activate or repress gene expression by fusing the inactive enzyme to known regulatory domains.
  • the binding of dCas9 alone to a target sequence in genomic DNA can interfere with gene transcription.
  • Non-limiting examples of gRNA sequences that can be used with some embodiments of the present invention are described in Tables 1A and IB hereinbelow.
  • the gRNA sequence does not have a significant off target effect.
  • Methods of determining off target effect are well known in the art, such as BGI Human Whole Genome Sequencing (described in Nature;491:65-56.2012), next generation sequencing (NGS) using e.g. commercially available kits such as Alt-R-Genom Editing (IDT detection kit) or Sure select target enrich ⁇ 1% variant allele frequency (Agilent).
  • both gRNA and Cas9 should be expressed in a target cell.
  • the insertion vector can contain both cassettes on a single plasmid or the cassettes are expressed from two separate plasmids.
  • CRISPR plasmids are commercially available such as the px330 plasmid from Addgene.
  • the target cell can be transfected with both gRNA and Cas9 without plasmid using e.g. a transfection reagent such as CRISPRMAX [see e.g. Yu et al. (2016) JDlBiotechnol Lett. 38(6):919-29].
  • Table lb TNFR1 guide RNA sequences designed according to the human TNFR1
  • “Hit and run” or “in-out” - involves a two-step recombination procedure.
  • an insertion-type vector containing a dual positive/negative selectable marker cassette is used to introduce the desired sequence alteration.
  • the insertion vector contains a single continuous region of homology to the targeted locus and is modified to carry the mutation of interest.
  • This targeting construct is linearized with a restriction enzyme at a one site within the region of homology, electroporated into the cells, and positive selection is performed to isolate homologous recombinants. These homologous recombinants contain a local duplication that is separated by intervening vector sequence, including the selection cassette.
  • targeted clones are subjected to negative selection to identify cells that have lost the selection cassette via intrachromosomal recombination between the duplicated sequences.
  • the local recombination event removes the duplication and, depending on the site of recombination, the allele either retains the introduced mutation or reverts to wild type. The end result is the introduction of the desired modification without the retention of any exogenous sequences.
  • the "double-replacement" or “tag and exchange” strategy - involves a two-step selection procedure similar to the hit and run approach, but requires the use of two different targeting constructs.
  • a standard targeting vector with 3' and 5' homology arms is used to insert a dual positive/negative selectable cassette near the location where the mutation is to be introduced.
  • homologously targeted clones are identified.
  • a second targeting vector that contains a region of homology with the desired mutation is electroporated into targeted clones, and negative selection is applied to remove the selection cassette and introduce the mutation.
  • the final allele contains the desired mutation while eliminating unwanted exogenous sequences.
  • Site-Specific Recombinases The Cre recombinase derived from the PI bacteriophage and Flp recombinase derived from the yeast Saccharomyces cerevisiae are site- specific DNA recombinases each recognizing a unique 34 base pair DNA sequence (termed “Lox” and "FRT", respectively) and sequences that are flanked with either Lox sites or FRT sites can be readily removed via site- specific recombination upon expression of Cre or Flp recombinase, respectively.
  • the Lox sequence is composed of an asymmetric eight base pair spacer region flanked by 13 base pair inverted repeats.
  • Cre recombines the 34 base pair lox DNA sequence by binding to the 13 base pair inverted repeats and catalyzing strand cleavage and religation within the spacer region.
  • the staggered DNA cuts made by Cre in the spacer region are separated by 6 base pairs to give an overlap region that acts as a homology sensor to ensure that only recombination sites having the same overlap region recombine.
  • the site specific recombinase system offers means for the removal of selection cassettes after homologous recombination. This system also allows for the generation of conditional altered alleles that can be inactivated or activated in a temporal or tissue-specific manner.
  • the Cre and Flp recombinases leave behind a Lox or FRT "scar" of 34 base pairs. The Lox or FRT sites that remain are typically left behind in an intron or 3' UTR of the modified locus, and current evidence suggests that these sites usually do not interfere significantly with gene function.
  • Cre/Lox and Flp/FRT recombination involves introduction of a targeting vector with 3' and 5' homology arms containing the mutation of interest, two Lox or FRT sequences and typically a selectable cassette placed between the two Lox or FRT sequences. Positive selection is applied and homologous recombinants that contain targeted mutation are identified. Transient expression of Cre or Flp in conjunction with negative selection results in the excision of the selection cassette and selects for cells where the cassette has been lost. The final targeted allele contains the Lox or FRT scar of exogenous sequences.
  • Transposases refers to an enzyme that binds to the ends of a transposon and catalyzes the movement of the transposon to another part of the genome.
  • transposon refers to a mobile genetic element comprising a nucleotide sequence which can move around to different positions within the genome of a single cell. In the process the transposon can cause mutations and/or change the amount of a DNA in the genome of the cell.
  • transposon systems that are able to also transpose in cells e.g. vertebrates have been isolated or designed, such as Sleeping Beauty [Izsvak and Ivies Molecular Therapy (2004) 9, 147-156], piggyBac [Wilson et al. Molecular Therapy (2007) 15, 139-145], Tol2 [Kawakami et al. PNAS (2000) 97 (21): 11403-11408] or Frog Prince [Miskey et al. Nucleic Acids Res. Dec 1, (2003) 31(23): 6873-6881].
  • DNA transposons translocate from one DNA site to another in a simple, cut-and-paste manner.
  • PB is a 2.5 kb insect transposon originally isolated from the cabbage looper moth
  • the PB transposon consists of asymmetric terminal repeat sequences that flank a transposase, PBase.
  • PBase recognizes the terminal repeats and induces transposition via a "cut-and-paste" based mechanism, and preferentially transposes into the host genome at the tetranucleotide sequence TTAA.
  • the TTAA target site is duplicated such that the PB transposon is flanked by this tetranucleotide sequence.
  • PB When mobilized, PB typically excises itself precisely to reestablish a single TTAA site, thereby restoring the host sequence to its pretransposon state.
  • the transposase system offers an alternative means for the removal of selection cassettes after homologous recombination quit similar to the use Cre/Lox or Flp/FRT.
  • the PB transposase system involves introduction of a targeting vector with 3' and 5' homology arms containing the mutation of interest, two PB terminal repeat sequences at the site of an endogenous TTAA sequence and a selection cassette placed between PB terminal repeat sequences. Positive selection is applied and homologous recombinants that contain targeted mutation are identified.
  • Transient expression of PBase removes in conjunction with negative selection results in the excision of the selection cassette and selects for cells where the cassette has been lost.
  • the final targeted allele contains the introduced mutation with no exogenous sequences.
  • Genome editing using recombinant adeno-associated virus (rAAV) platform is based on rAAV vectors which enable insertion, deletion or substitution of DNA sequences in the genomes of live mammalian cells.
  • the rAAV genome is a single- stranded deoxyribonucleic acid (ssDNA) molecule, either positive- or negative- sensed, which is about 4.7 kb long.
  • ssDNA deoxyribonucleic acid
  • These single- stranded DNA viral vectors have high transduction rates and have a unique property of stimulating endogenous homologous recombination in the absence of double-strand DNA breaks in the genome.
  • rAAV genome editing has the advantage in that it targets a single allele and does not result in any off-target genomic alterations.
  • rAAV genome editing technology is commercially available, for example, the rAAV GENESISTM system from HorizonTM (Cambridge, UK).
  • the agent can be a mutagen that causes random mutations and the cells exhibiting downregulation of the expression level and/or activity of the target may be selected.
  • the mutagens may be, but are not limited to, genetic, chemical or radiation agents.
  • the mutagen may be ionizing radiation, such as, but not limited to, ultraviolet light, gamma rays or alpha particles.
  • Other mutagens may include, but not be limited to, base analogs, which can cause copying errors; deaminating agents, such as nitrous acid; intercalating agents, such as ethidium bromide; alkylating agents, such as bromouracil; transposons; natural and synthetic alkaloids; bromine and derivatives thereof; sodium azide; psoralen (for example, combined with ultraviolet radiation).
  • the mutagen may be a chemical mutagen such as, but not limited to, ICR191, 1,2,7,8-diepoxy-octane (DEO), 5-azaC, N-methyl-N-nitrosoguanidine (MNNG) or ethyl methane sulfonate (EMS).
  • DEO 1,2,7,8-diepoxy-octane
  • MNNG N-methyl-N-nitrosoguanidine
  • EMS ethyl methane sulfonate
  • Methods for qualifying efficacy and detecting sequence alteration include, but not limited to, DNA sequencing, electrophoresis, an enzyme-based mismatch detection assay and a hybridization assay such as PCR, RT-PCR, RNase protection, in-situ hybridization, primer extension, Southern blot, Northern Blot and dot blot analysis.
  • Sequence alterations in a specific gene can also be determined at the protein level using e.g. chromatography, electrophoretic methods, immunodetection assays such as ELISA and western blot analysis and immunohistochemistry.
  • knock-in/knock-out construct including positive and/or negative selection markers for efficiently selecting transformed cells that underwent a homologous recombination event with the construct.
  • Positive selection provides a means to enrich the population of clones that have taken up foreign DNA.
  • positive markers include glutamine synthetase, dihydrofolate reductase (DHFR), markers that confer antibiotic resistance, such as neomycin, hygromycin, puromycin, and blasticidin S resistance cassettes.
  • Negative selection markers are necessary to select against random integrations and/or elimination of a marker sequence (e.g. positive marker).
  • Non-limiting examples of such negative markers include the herpes simplex-thymidine kinase (HSV-TK) which converts ganciclovir (GCV) into a cytotoxic nucleoside analog, hypoxanthine phosphoribosyltransferase (HPRT) and adenine phosphoribosytransferase (ARPT).
  • HSV-TK herpes simplex-thymidine kinase
  • GCV ganciclovir
  • HPRT hypoxanthine phosphoribosyltransferase
  • ARPT adenine phosphoribosytransferase
  • RNA silencing refers to a group of regulatory mechanisms [e.g. RNA interference (RNAi), transcriptional gene silencing (TGS), post-transcriptional gene silencing (PTGS), quelling, co- suppression, and translational repression] mediated by RNA molecules which result in the inhibition or "silencing" of the expression of a corresponding protein-coding gene.
  • RNA silencing has been observed in many types of organisms, including plants, animals, and fungi.
  • RNA silencing agent refers to an RNA which is capable of specifically inhibiting or “silencing" the expression of a target gene.
  • the RNA silencing agent is capable of preventing complete processing (e.g., the full translation and/or expression) of an mRNA molecule through a post-transcriptional silencing mechanism.
  • RNA silencing agents include non-coding RNA molecules, for example RNA duplexes comprising paired strands, as well as precursor RNAs from which such small non-coding RNAs can be generated.
  • Exemplary RNA silencing agents include dsRNAs such as siRNAs, miRNAs and shRNAs.
  • the RNA silencing agent is capable of inducing RNA interference. In another embodiment, the RNA silencing agent is capable of mediating translational repression.
  • the RNA silencing agent is specific to the target RNA (i.e. TNFRl) and does not cross inhibit or silence other targets or a splice variant which exhibits 99% or less global homology to the target gene, e.g., less than 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, 90%, 89%, 88%, 87%, 86%, 85%, 84%, 83%, 82%, 81% global homology to the target gene; as determined by PCR, Western blot, Immunohistochemistry and/or flow cytometry.
  • RNA interference refers to the process of sequence- specific post-transcriptional gene silencing in animals mediated by short interfering RNAs (siRNAs).
  • RNA silencing agents that can be used according to specific embodiments of the present invention.
  • DsRNA, siRNA and shRNA - The presence of long dsRNAs in cells stimulates the activity of a ribonuclease III enzyme referred to as dicer.
  • Dicer is involved in the processing of the dsRNA into short pieces of dsRNA known as short interfering RNAs (siRNAs).
  • Short interfering RNAs derived from dicer activity are typically about 21 to about 23 nucleotides in length and comprise about 19 base pair duplexes.
  • the RNAi response also features an endonuclease complex, commonly referred to as an RNA-induced silencing complex (RISC), which mediates cleavage of single-stranded RNA having sequence complementary to the antisense strand of the siRNA duplex. Cleavage of the target RNA takes place in the middle of the region complementary to the antisense strand of the siRNA duplex.
  • RISC RNA-induced silencing complex
  • some embodiments of the invention contemplate use of dsRNA to downregulate protein expression from mRNA.
  • dsRNA longer than 30 bp are used.
  • dsRNA is provided in cells where the interferon pathway is not activated, see for example Billy et al., PNAS 2001, Vol 98, pages 14428-14433; and Diallo et al, Oligonucleotides, October 1, 2003, 13(5): 381-392. doi: 10.1089/154545703322617069.
  • the long dsRNA are specifically designed not to induce the interferon and PKR pathways for down-regulating gene expression.
  • Shinagwa and Ishii [Genes & Dev. 17 (11): 1340-1345, 2003] have developed a vector, named pDECAP, to express long double-strand RNA from an RNA polymerase II (Pol II) promoter. Because the transcripts from pDECAP lack both the 5'-cap structure and the 3'- poly(A) tail that facilitate ds-RNA export to the cytoplasm, long ds-RNA from pDECAP does not induce the interferon response.
  • siRNAs small inhibitory RNAs
  • siRNA refers to small inhibitory RNA duplexes (generally between 18-30 base pairs) that induce the RNA interference (RNAi) pathway.
  • RNAi RNA interference
  • siRNAs are chemically synthesized as 21mers with a central 19 bp duplex region and symmetric 2-base 3'- overhangs on the termini, although it has been recently described that chemically synthesized RNA duplexes of 25-30 base length can have as much as a 100-fold increase in potency compared with 21mers at the same location.
  • RNA silencing agent of some embodiments of the invention may also be a short hairpin RNA (shRNA).
  • RNA agent refers to an RNA agent having a stem-loop structure, comprising a first and second region of complementary sequence, the degree of complementarity and orientation of the regions being sufficient such that base pairing occurs between the regions, the first and second regions being joined by a loop region, the loop resulting from a lack of base pairing between nucleotides (or nucleotide analogs) within the loop region.
  • the number of nucleotides in the loop is a number between and including 3 to 23, or 5 to 15, or 7 to 13, or 4 to 9, or 9 to 11. Some of the nucleotides in the loop can be involved in base-pair interactions with other nucleotides in the loop.
  • RNA silencing agents suitable for use with some embodiments of the invention can be effected as follows. First, the mRNA sequence is scanned downstream of the AUG start codon for AA dinucleotide sequences. Occurrence of each AA and the 3' adjacent 19 nucleotides is recorded as potential siRNA target sites. Preferably, siRNA target sites are selected from the open reading frame, as untranslated regions (UTRs) are richer in regulatory protein binding sites. UTR-binding proteins and/or translation initiation complexes may interfere with binding of the siRNA endonuclease complex [Tuschl ChemBiochem. 2:239-245].
  • UTRs untranslated regions
  • siRNAs directed at untranslated regions may also be effective, as demonstrated for GAPDH wherein siRNA directed at the 5' UTR mediated about 90 % decrease in cellular GAPDH mRNA and completely abolished protein level (www(dot)ambion(dot)com/techlib/tn/91/912(dot)html).
  • potential target sites are compared to an appropriate genomic database (e.g., human, mouse, rat etc.) using any sequence alignment software, such as the BLAST software available from the NCBI server (www(dot)ncbi(dot)nlm(dot)nih(dot)gov/BLAST/). Putative target sites which exhibit significant homology to other coding sequences are filtered out.
  • sequence alignment software such as the BLAST software available from the NCBI server (www(dot)ncbi(dot)nlm(dot)nih(dot)gov/BLAST/).
  • Qualifying target sequences are selected as template for siRNA synthesis.
  • Preferred sequences are those including low G/C content as these have proven to be more effective in mediating gene silencing as compared to those with G/C content higher than 55 %.
  • Several target sites are preferably selected along the length of the target gene for evaluation.
  • a negative control is preferably used in conjunction.
  • Negative control siRNA preferably include the same nucleotide composition as the siRNAs but lack significant homology to the genome.
  • a scrambled nucleotide sequence of the siRNA is preferably used, provided it does not display any significant homology to any other gene.
  • RNA silencing agent of some embodiments of the invention need not be limited to those molecules containing only RNA, but further encompasses chemically-modified nucleotides and non-nucleotides. miRNA and miRNA mimics - According to another embodiment the RNA silencing agent may be a miRNA.
  • miRNA refers to a collection of non-coding single-stranded RNA molecules of about 19-28 nucleotides in length, which regulate gene expression. miRNAs are found in a wide range of organisms (viruses. fwdarw. humans) and have been shown to play a role in development, homeostasis, and disease etiology.
  • the pri-miRNA is typically part of a polycistronic RNA comprising multiple pri-miRNAs.
  • the pri-miRNA may form a hairpin with a stem and loop.
  • the stem may comprise mismatched bases.
  • the hairpin structure of the pri-miRNA is recognized by Drosha, which is an RNase III endonuclease. Drosha typically recognizes terminal loops in the pri-miRNA and cleaves approximately two helical turns into the stem to produce a 60-70 nucleotide precursor known as the pre-miRNA. Drosha cleaves the pri-miRNA with a staggered cut typical of RNase III endonucleases yielding a pre-miRNA stem loop with a 5' phosphate and ⁇ 2 nucleotide 3' overhang. It is estimated that approximately one helical turn of stem (-10 nucleotides) extending beyond the Drosha cleavage site is essential for efficient processing. The pre-miRNA is then actively transported from the nucleus to the cytoplasm by Ran-GTP and the export receptor Ex-portin-5.
  • the double- stranded stem of the pre-miRNA is then recognized by Dicer, which is also an RNase III endonuclease. Dicer may also recognize the 5' phosphate and 3' overhang at the base of the stem loop. Dicer then cleaves off the terminal loop two helical turns away from the base of the stem loop leaving an additional 5' phosphate and ⁇ 2 nucleotide 3' overhang.
  • the resulting siRNA-like duplex which may comprise mismatches, comprises the mature miRNA and a similar-sized fragment known as the miRNA*.
  • the miRNA and miRNA* may be derived from opposing arms of the pri-miRNA and pre-miRNA. miRNA* sequences may be found in libraries of cloned miRNAs but typically at lower frequency than the miRNAs.
  • RISC RNA-induced silencing complex
  • the miRNA strand of the miRNA:miRNA* duplex When the miRNA strand of the miRNA:miRNA* duplex is loaded into the RISC, the miRNA* is removed and degraded.
  • the strand of the miRNA:miRNA* duplex that is loaded into the RISC is the strand whose 5' end is less tightly paired. In cases where both ends of the miRNA:miRNA* have roughly equivalent 5' pairing, both miRNA and miRNA* may have gene silencing activity.
  • the RISC identifies target nucleic acids based on high levels of complementarity between the miRNA and the mRNA, especially by nucleotides 2-7 of the miRNA.
  • the target sites in the mRNA may be in the 5' UTR, the 3' UTR or in the coding region.
  • multiple miRNAs may regulate the same mRNA target by recognizing the same or multiple sites.
  • the presence of multiple miRNA binding sites in most genetically identified targets may indicate that the cooperative action of multiple RISCs provides the most efficient translational inhibition.
  • miRNAs may direct the RISC to downregulate gene expression by either of two mechanisms: mRNA cleavage or translational repression.
  • the miRNA may specify cleavage of the mRNA if the mRNA has a certain degree of complementarity to the miRNA. When a miRNA guides cleavage, the cut is typically between the nucleotides pairing to residues 10 and 11 of the miRNA.
  • the miRNA may repress translation if the miRNA does not have the requisite degree of complementarity to the miRNA. Translational repression may be more prevalent in animals since animals may have a lower degree of complementarity between the miRNA and binding site.
  • any pair of miRNA and miRNA* there may be variability in the 5' and 3' ends of any pair of miRNA and miRNA*. This variability may be due to variability in the enzymatic processing of Drosha and Dicer with respect to the site of cleavage. Variability at the 5' and 3' ends of miRNA and miRNA* may also be due to mismatches in the stem structures of the pri-miRNA and pre-miRNA. The mismatches of the stem strands may lead to a population of different hairpin structures. Variability in the stem structures may also lead to variability in the products of cleavage by Drosha and Dicer.
  • miRNA mimic refers to synthetic non-coding RNAs that are capable of entering the RNAi pathway and regulating gene expression. miRNA mimics imitate the function of endogenous miRNAs and can be designed as mature, double stranded molecules or mimic precursors (e.g., or pre-miRNAs). miRNA mimics can be comprised of modified or unmodified RNA, DNA, RNA-DNA hybrids, or alternative nucleic acid chemistries (e.g., LNAs or 2'-0,4'-C-ethylene-bridged nucleic acids (ENA)).
  • nucleic acid chemistries e.g., LNAs or 2'-0,4'-C-ethylene-bridged nucleic acids (ENA)
  • the length of the duplex region can vary between 13-33, 18-24 or 21-23 nucleotides.
  • the miRNA may also comprise a total of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 or 40 nucleotides.
  • the sequence of the miRNA may be the first 13-33 nucleotides of the pre-miRNA.
  • the sequence of the miRNA may also be the last 13-33 nucleotides of the pre-miRNA.
  • Preparation of miRNAs mimics can be effected by any method known in the art such as chemical synthesis or recombinant methods.
  • contacting cells with a miRNA may be effected by transfecting the cells with e.g. the mature double stranded miRNA, the pre-miRNA or the pri-miRNA.
  • the pre-miRNA sequence may comprise from 45-90, 60-80 or 60-70 nucleotides.
  • the pri-miRNA sequence may comprise from 45-30,000, 50-25,000, 100-20,000, 1,000- 1,500 or 80-100 nucleotides.
  • Antisense - Antisense is a single stranded RNA designed to prevent or inhibit expression of a gene by specifically hybridizing to its mRNA. Downregulation can be effected using an antisense polynucleotide capable of specifically hybridizing with an mRNA transcript encoding the target (i.e. TNFR1).
  • the first aspect is delivery of the oligonucleotide into the cytoplasm of the appropriate cells
  • the second aspect is design of an oligonucleotide which specifically binds the designated mRNA within cells in a way which inhibits translation thereof.
  • the prior art teaches of a number of delivery strategies which can be used to efficiently deliver oligonucleotides into a wide variety of cell types [see, for example, Jaaskelainen et al. Cell Mol Biol Lett. (2002) 7(2):236-7; Gait, Cell Mol Life Sci. (2003) 60(5):844-53; Martino et al.
  • the agent is selected from the group consisting of
  • ZFN Zinc finger nuclease
  • TALEN transcription-activator like effector nuclease
  • meganuclease antisense and siRNA.
  • down-regulating expression and/or activity is effected at the genomic level.
  • the agent comprises a CRISPR/Cas system.
  • Embodiments of the invention further contemplate the use of the CRISPR/Cas system per se (as the therapeutic agent and not as a cell therapy) for downregulating expression of TNFR1 for treating an ischemic disease.
  • a method of treating an ischemic disease in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a CRISPR/Cas system for downregulating expression of TNFR1, thereby treating the ischemic disease in the subject.
  • the CRISPR/Cas system does not downregulate expression of TNFR2.
  • the cells or the agents e.g. a CRISPR/Cas system for downregulating expression of TNFR1
  • a "pharmaceutical composition” refers to a preparation of one or more of the active ingredients described herein with other chemical components such as physiologically suitable carriers and excipients.
  • the purpose of a pharmaceutical composition is to facilitate administration of a compound to an organism.
  • active ingredient refers to the cell or the agent (e.g. a CRISPR/Cas system for downregulating expression of TNFR1) accountable for the biological effect.
  • physiologically acceptable carrier and “pharmaceutically acceptable carrier” which may be interchangeably used refer to a carrier or a diluent that does not cause significant irritation to an organism and does not abrogate the biological activity and properties of the administered compound.
  • An adjuvant is included under these phrases.
  • excipient refers to an inert substance added to a pharmaceutical composition to further facilitate administration of an active ingredient.
  • excipients include calcium carbonate, calcium phosphate, various sugars and types of starch, cellulose derivatives, gelatin, vegetable oils and polyethylene glycols.
  • Suitable routes of administration may, for example, include oral, rectal, transmucosal, especially transnasal, intestinal or parenteral delivery, including intramuscular, subcutaneous and intramedullary injections as well as intrathecal, direct intraventricular, intracardiac, e.g., into the right or left ventricular cavity, into the common coronary artery, intravenous, intraperitoneal, intranasal, or intraocular injections.
  • the cells or the agent e.g. a CRISPR/Cas system for downregulating expression of TNFR1
  • the pharmaceutical composition comprising same is administered intravenously.
  • neurosurgical strategies e.g., intracerebral injection or intracerebroventricular infusion
  • molecular manipulation of the agent e.g., production of a chimeric fusion protein that comprises a transport peptide that has an affinity for an endothelial cell surface molecule in combination with an agent that is itself incapable of crossing the BBB
  • pharmacological strategies designed to increase the lipid solubility of an agent (e.g., conjugation of water-soluble agents to lipid or cholesterol carriers)
  • the transitory disruption of the integrity of the BBB by hyperosmotic disruption resulting from the infusion of a mannitol solution into the carotid artery or the use of a biologically active agent such as an angiotensin peptide).
  • each of these strategies has limitations, such as the inherent risks associated with an invasive surgical procedure, a size limitation imposed by a limitation inherent in the endogenous transport systems, potentially undesirable biological side effects associated with the systemic administration of a chimeric molecule comprised of a carrier motif that could be active outside of the CNS, and the possible risk of brain damage within regions of the brain where the BBB is disrupted, which renders it a suboptimal delivery method.
  • the agent e.g. a CRISPR/Cas system for downregulating expression of TNFR1
  • the pharmaceutical composition comprising same in a local rather than systemic manner, for example, via injection of the pharmaceutical composition directly into a tissue region of a patient.
  • the cells or the agent e.g. a CRISPR/Cas system for downregulating expression of TNFR1
  • the pharmaceutical composition comprising same is administered into the ischemic tissue.
  • the cells or the agent e.g. a CRISPR/Cas system for downregulating expression of TNFR1
  • the pharmaceutical composition comprising same is administered by transendocardial injection.
  • the cells or the agent e.g. a CRISPR/Cas system for downregulating expression of TNFR1
  • the pharmaceutical composition comprising same is administered intracoronary or intramyocardialy.
  • the cells or the agent e.g. a CRISPR/Cas system for downregulating expression of TNFR1
  • an implantable device such as a stent, a valve, an intravascular device and a pacemaker.
  • the cells of the present invention are administered in a hydrated gel (hydrogel) such as a hyaluronic acid-based hydrogels (see the Examples section which follows).
  • a hydrated gel such as a hyaluronic acid-based hydrogels (see the Examples section which follows).
  • Such hydrogels are known in the art and disclosed e.g. in Xu et al. (2012) Soft Matter. 8(12):3280-3294; Kim et al. (2012) Knee Surg Relat Res. Sep; 24(3): 164-172, the contents of which are fully incorporated herein by reference.
  • the hyaluronic acid is provided at a concentration range of about 0.1-10 %, e.g., about 0.5-10 %, e.g., about 0.5-5, e.g., about 1-5 %, e.g., about 2-5 %, e.g., about 3-5 %, e.g., about 3-4 % in the composition e.g. hydrogel.
  • the hyaluronic acid is provided at a concentration range of about 3-4 % in the composition e.g. hydrogel.
  • the cells of the present invention are administered in a biodegradable co-polymer or scaffold.
  • a biodegradable co-polymer or scaffold Such scaffolds are known in the art and disclosed e.g. in Florian Weinbergeret al. (2017) Circulation Research. 120: 1487-1500; Rochkind S et al (2004) Neurol Res. 26(2): 161-6; Rochkind S. et al. (2006) Eur Spine J. 15(2):234-45; and FSY Wong, ACY Lo (2015) J Stem Cell Res Ther 5:267, the contents of which are fully incorporated herein by reference.
  • compositions of some embodiments of the invention may be manufactured by processes well known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes.
  • compositions for use in accordance with some embodiments of the invention thus may be formulated in conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries, which facilitate processing of the active ingredients into preparations which, can be used pharmaceutically. Proper formulation is dependent upon the route of administration chosen.
  • the active ingredients of the pharmaceutical composition may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hank's solution, Ringer's solution, or physiological salt buffer.
  • physiologically compatible buffers such as Hank's solution, Ringer's solution, or physiological salt buffer.
  • penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.
  • the pharmaceutical composition can be formulated readily by combining the active compounds with pharmaceutically acceptable carriers well known in the art.
  • Such carriers enable the pharmaceutical composition to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for oral ingestion by a patient.
  • Pharmacological preparations for oral use can be made using a solid excipient, optionally grinding the resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries if desired, to obtain tablets or dragee cores.
  • Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carbomethylcellulose; and/or physiologically acceptable polymers such as polyvinylpyrrolidone (PVP).
  • disintegrating agents may be added, such as cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate.
  • Dragee cores are provided with suitable coatings.
  • suitable coatings For this purpose, concentrated sugar solutions may be used which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, titanium dioxide, lacquer solutions and suitable organic solvents or solvent mixtures.
  • Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.
  • compositions which can be used orally include push-fit capsules made of gelatin as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol.
  • the push-fit capsules may contain the active ingredients in admixture with filler such as lactose, binders such as starches, lubricants such as talc or magnesium stearate and, optionally, stabilizers.
  • the active ingredients may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols.
  • stabilizers may be added. All formulations for oral administration should be in dosages suitable for the chosen route of administration.
  • compositions may take the form of tablets or lozenges formulated in conventional manner.
  • the active ingredients for use according to some embodiments of the invention are conveniently delivered in the form of an aerosol spray presentation from a pressurized pack or a nebulizer with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichloro-tetrafluoroethane or carbon dioxide.
  • a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichloro-tetrafluoroethane or carbon dioxide.
  • the dosage unit may be determined by providing a valve to deliver a metered amount.
  • Capsules and cartridges of, e.g., gelatin for use in a dispenser may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.
  • compositions described herein may be formulated for parenteral administration, e.g., by bolus injection or continuous infusion.
  • Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multidose containers with optionally, an added preservative.
  • the compositions may be suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.
  • Pharmaceutical compositions for parenteral administration include aqueous solutions of the active preparation in water-soluble form. Additionally, suspensions of the active ingredients may be prepared as appropriate oily or water based injection suspensions.
  • Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acids esters such as ethyl oleate, triglycerides or liposomes.
  • Aqueous injection suspensions may contain substances, which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol or dextran.
  • the suspension may also contain suitable stabilizers or agents which increase the solubility of the active ingredients to allow for the preparation of highly concentrated solutions.
  • the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile, pyrogen-free water based solution, before use.
  • a suitable vehicle e.g., sterile, pyrogen-free water based solution
  • compositions of some embodiments of the invention may also be formulated in rectal compositions such as suppositories or retention enemas, using, e.g., conventional suppository bases such as cocoa butter or other glycerides.
  • Alternative embodiments include depots providing sustained release or prolonged duration of activity of the active ingredient in the subject, as are well known in the art.
  • compositions suitable for use in context of some embodiments of the invention include compositions wherein the active ingredients are contained in an amount effective to achieve the intended purpose. More specifically, a therapeutically effective amount means an amount of active ingredients (the cells, the agent (e.g. a CRISPR/Cas system for downregulating expression of TNFRl) effective to prevent, alleviate or ameliorate symptoms of a disorder (e.g., ischemic disease, e.g., ischemic heart disease) or prolong the survival of the subject being treated.
  • a therapeutically effective amount means an amount of active ingredients (the cells, the agent (e.g. a CRISPR/Cas system for downregulating expression of TNFRl) effective to prevent, alleviate or ameliorate symptoms of a disorder (e.g., ischemic disease, e.g., ischemic heart disease) or prolong the survival of the subject being treated.
  • a disorder e.g., ischemic disease, e.g., ischemic heart disease
  • the therapeutically effective amount or dose can be estimated initially from in vitro and cell culture assays.
  • a dose can be formulated in animal models to achieve a desired concentration or titer. Such information can be used to more accurately determine useful doses in humans.
  • Toxicity and therapeutic efficacy of the active ingredients described herein can be determined by standard pharmaceutical procedures in vitro, in cell cultures or experimental animals.
  • the data obtained from these in vitro and cell culture assays and animal studies can be used in formulating a range of dosage for use in human.
  • the dosage may vary depending upon the dosage form employed and the route of administration utilized.
  • the exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. (See e.g., Fingl, et al., 1975, in "The Pharmacological Basis of Therapeutics", Ch. 1 p.l).
  • Dosage amount and interval may be adjusted individually to provide the active ingredient in levels sufficient to induce or suppress the biological effect (minimal effective concentration, MEC).
  • MEC minimum effective concentration
  • the MEC will vary for each preparation, but can be estimated from in vitro data. Dosages necessary to achieve the MEC will depend on individual characteristics and route of administration. Detection assays can be used to determine plasma concentrations.
  • dosing can be of a single or a plurality of administrations, with course of treatment lasting from several days to several weeks or until cure is effected or diminution of the disease state is achieved.
  • the cells, the agent e.g. a CRISPR/Cas system for downregulating expression of TNFRl
  • the pharmaceutical composition comprising same are administered within 1.5-24 hours following diagnosis of said ischemic disease.
  • compositions to be administered will, of course, be dependent on the subject being treated, the severity of the affliction, the manner of administration, the judgment of the prescribing physician, etc.
  • compositions of some embodiments of the invention may, if desired, be presented in a pack or dispenser device, such as an FDA approved kit, which may contain one or more unit dosage forms containing the active ingredient.
  • the pack may, for example, comprise metal or plastic foil, such as a blister pack.
  • the pack or dispenser device may be accompanied by instructions for administration.
  • the pack or dispenser may also be accommodated by a notice associated with the container in a form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals, which notice is reflective of approval by the agency of the form of the compositions or human or veterinary administration. Such notice, for example, may be of labeling approved by the U.S. Food and Drug Administration for prescription drugs or of an approved product insert.
  • Compositions comprising a preparation of the invention formulated in a compatible pharmaceutical carrier may also be prepared, placed in an appropriate container, and labeled for treatment of an indicated condition, as is further detailed above.
  • a pharmaceutical composition comprising as an active ingredient differentiated cells or bone marrow stem cells genetically modified with a CRISPR/Cas system for downregulating expression of TNFRl.
  • a pharmaceutical composition comprising as active ingredients cells genetically modified with a CRISPR/Cas system for downregulating expression of TNFRl and at least 2 ng/ml TNFa.
  • an article of manufacture comprising TNFa and the cells disclosed herein with reduced expression and/or activity of TNFRl as compared to control cells of the same origin not contacted with an agent which downregulates expression and/or activity of said TNFRl.
  • the TNFa and the cells are in a co-formulation.
  • the TNFa and the cells are in separate containers.
  • an article of manufacture comprising TNFa and a CRISPR/Cas system for downregulating expression of TNFRl.
  • the TNFa and a CRISPR/Cas system are in a co- formulation.
  • the TNFa and a CRISPR/Cas system are in separate containers.
  • TNFa is provided at a concentration above its physiological concentration in the cells.
  • TNFa is provided at a concentration of at least 2 ng/ml, at least 5 ng/ml, at least 10 ng/ml, at least 20 ng/ml, at least 30 ng/ml, at least 40 ng/ml or at least 50 ng/ml, each possibility represents a separate embodiment of the present invention.
  • TNFa is provided at a concentration of 2 - 200 ng/ml or 20 - 200 ng/ml.
  • compositions, method or structure may include additional ingredients, steps and/or parts, but only if the additional ingredients, steps and/or parts do not materially alter the basic and novel characteristics of the claimed composition, method or structure.
  • a compound or “at least one compound” may include a plurality of compounds, including mixtures thereof.
  • various embodiments of this invention may be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range.
  • method refers to manners, means, techniques and procedures for accomplishing a given task including, but not limited to, those manners, means, techniques and procedures either known to, or readily developed from known manners, means, techniques and procedures by practitioners of the chemical, pharmacological, biological, biochemical and medical arts.
  • sequences that substantially correspond to its complementary sequence as including minor sequence variations, resulting from, e.g., sequencing errors, cloning errors, or other alterations resulting in base substitution, base deletion or base addition, provided that the frequency of such variations is less than 1 in 50 nucleotides, alternatively, less than 1 in 100 nucleotides, alternatively, less than 1 in 200 nucleotides, alternatively, less than 1 in 500 nucleotides, alternatively, less than 1 in 1000 nucleotides, alternatively, less than 1 in 5,000 nucleotides, alternatively, less than 1 in 10,000 nucleotides.
  • red blood cell (RBC) lysis buffer (Roche) was added and the sample was incubated for 3 minutes at room temperature.
  • Mononuclear bone marrow cells (mnBMCs) were separated from the BM sample by Ficoll-Paque (HistopaquelOW, Sigma), with 3 technical replicates.
  • BM cells were resuspended in 2 mL PBS supplemented with 2 % murine serum were layered on 1.5 ml Ficoll-Paque. The Ficoll-Paque gradients were centrifuged for 40 minutes at 400 g without brake. The mnBM layer was then collected, washed in PBS supplemented with 2 % FBS. Viability and cell count was determined by trypan blue exclusion method using hemocytometer. A total of lOOxlO 6 mnBMCs was counted. 60 xlO 6 mnBMCs were frozen at -80 °C.
  • 40 xlO 6 cells were seeded in 24 wells plates (120,000 mnBMCs per well) in 1 mL / well DMEM medium containing- glutamine, sodium pyruvate, pen/strep and 3 % mouse serum and cultured under standard culture conditions. Following 24 hours of incubation, the medium was replaced with optimem medium (Invitrogen) and cells were transfected with TNFR1 CRISPR for 2 days. Control cells, which were not transfected with TNFR1 CRISPR were cultured under the same culturing conditions: 120,000 mnBMCs per well in 24 wells plates in DMEM medium containing 2 % FBS.
  • TNFR1 CRISPR transfection For CRISPR transfection three different mouse TNFR1 guide RNA were designed and synthesized (Table 1A hereinabove) and mnBMCs were transfected with case 9 protein with the lipophilic transfection reagent CRISPRMAX as described before (Yu et al 2016).
  • miiBM Transplantation - 750,000 cultured mnBMCs were treated with 30 ng / ml mouse TNFa (PeproTech) for 20 minutes and added to 50 ⁇ ⁇ gel containing 3.75 % hyaluronic acid (HA), 20 % non-activated murine serum (serum obtained from C57BL/6 mice and inactivated in 56 °C) in DMEM.
  • 50 ⁇ ⁇ gel containing mnBMCs were injected to the heart as described in Toma et al 2002 and Kawada et al 2016.
  • mice Animal model - Animal experiments were conducted according to the guidelines of the Animal Care and Use Committee of Israel, and the Guide for the Care and Use of Laboratory Animals published by the US National Institute of Health. 18 C57BL/6 mice were purchased at 8 weeks (20-23 gr) from Ex-Vivo Israel. Following 1 week of acclimation the mice were intubated and anesthetized with 0.5 % isoflurane gas. Permanent ligation of the left anterior descending artery (LAD) was performed as described in Kolk et al. (2009) JoVE. 32 (ref 41). The mice were randomly assigned into three groups, see table 2 hereinbelow:
  • Injected mnBMCs in all groups (1M, 2M, 3M) were treated for 20 minutes prior to injection with 30 ng/mL mouse TNFa (PeproTech) containing 1 mg / ml murine serum.
  • Histology - Hearts were harvested and fixed in 10 % formaldehyde at Pharmaseed and transferred to Patho-Logica. All tissues were trimmed in the same manner into block cassettes. Transverse cross sections were performed in each heart producing four equal cross sections per organ. The tissues were embedded in paraffin, sectioned at no more than 5 micron thickness, and stained with Hematoxylin & Eosin (H&E) and Masson Trichrome (MT), to trace the injected cells, pathological changes and to evaluate the volume of the induced infarcts. Furthermore, to evaluated viability an apoptosis TUNEL kit stain was performed. The slides were photographed using a microscope (Olympus BX60), at magnifications of X10, X20 and X40, equipped with an Olympus DP-73 camera.
  • H&E Hematoxylin & Eosin
  • MT Masson Trichrome
  • mnBMCs transfected with TNFRl CRISPR and treated with TNFa were injected to the LAD area and their effect on infract volume and cellular response was compared to the effect of injection of control mnBMCs (non-transfected and treated with TNFa).
  • Ischemic preconditioning has been recognized as one of the most potent mechanisms to protect against myocardial ischemic injury.
  • ischemia In experimental animals and humans, a brief period of ischemia has been shown to protect the heart from more prolonged episodes of ischemia, reducing infarct size, attenuating the incidence, and severity of reperfusion-induced arrhythmias, and preventing endothelial cell dysfunction (e.g. 6). It has been shown that classical preconditioning can be mimicked by administration of TNFa [9- 13] .
  • CK were determined in the serum of the transplanted mice.
  • CK made up of three enzyme forms, including CK-MB
  • levels can rise following heart attack, skeletal muscle injury and strenuous exercise.
  • detection of CK levels in the serum indicated that injection of the mnBMCs (either transfected or not transfected with TNFRl CRISPR) did not have an effect of CK levels 4 days following LAD occlusion ( Figure 10).
  • neutrophils Fibrin on top of the infarct.
  • BM Bone marrow
  • the Ficoll-Paque gradients are centrifuged for 40 minutes at 400 g without brake. Following, the mnBM layer is collected, washed in PBS supplemented with 2 % human serum. Viability and cell count is determined by trypan blue exclusion method using hemocytometer. A fraction of the mnBMCs are frozen at -80 °C. Another fraction is seeded in 24 wells plates (120,000 mnBMCs per well) in 1 mL / well DMEM medium containing- glutamine, sodium pyruvate, pen/strep and 3 % human serum and cultured under standard culture conditions.
  • TNFR1 CRISPR transfection For CRISPR transfection seven different human TNFR1 guide RNA were designed and synthesized (Table IB hereinabove). mnBMCs are transfected with case 9 protein with the lipophilic transfection reagent CRISPRMAX as described before (Yu et al 2016) or transfected immediately by electroporation.
  • Tumor necrosis factor-alpha receptor 1 is a major predictor of mortality and new-onset heart failure in patients with acute myocardial infarction - The cytokine-activation and long-term prognosis in myocardial infarction (C-ALPHA) study. Circulation. Ill, 863-870
  • Oxidative stress- mediated up-regulation of myocardial ischemic preconditioning up-regulated protein 1 gene expression in H9c2 cardiomyocytes is regulated by cyclic AMP-response element binding protein. Free Radic. Biol. Med. 49, 580-586.
  • Tumor necrosis factor-alpha is toxic via receptor 1 and protective via receptor 2 in a murine model of myocardial infarction.
  • Rapamycin (sirolimus) protects against hypoxic damage in primary heart cultures via Na(+)/Ca(2+) exchanger activation. Life Sci. 89.
  • TNF alpha protects heart rat cultures against hypoxic damage via activation of PKA and phospholamban to prevent calcium overload.2014. Can J Physiol Pharmacol 92(11):917-25.2014.
  • LAD-Ligation A Murine Model of Myocardial Infarction. JoVE. 32.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Microbiology (AREA)
  • Developmental Biology & Embryology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Hematology (AREA)
  • Mycology (AREA)
  • Biophysics (AREA)
  • Urology & Nephrology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plant Pathology (AREA)
  • Rheumatology (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Virology (AREA)
  • Gastroenterology & Hepatology (AREA)
EP18871526.2A 2017-10-24 2018-10-24 Verfahren zur behandlung einer ischämischen erkrankung Pending EP3700543A4 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762576094P 2017-10-24 2017-10-24
PCT/IL2018/051139 WO2019082184A1 (en) 2017-10-24 2018-10-24 METHODS OF TREATING ISCHEMIC DISEASE

Publications (2)

Publication Number Publication Date
EP3700543A1 true EP3700543A1 (de) 2020-09-02
EP3700543A4 EP3700543A4 (de) 2021-08-25

Family

ID=66247200

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18871526.2A Pending EP3700543A4 (de) 2017-10-24 2018-10-24 Verfahren zur behandlung einer ischämischen erkrankung

Country Status (5)

Country Link
US (2) US11701391B2 (de)
EP (1) EP3700543A4 (de)
CN (1) CN111565731B (de)
IL (1) IL274190A (de)
WO (1) WO2019082184A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111565731B (zh) 2017-10-24 2024-03-08 达莉亚·伊兰妮 治疗缺血性疾病的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007995A (en) 1998-06-26 1999-12-28 Isis Pharmaceuticals Inc. Antisense inhibition of TNFR1 expression
ES2426031T3 (es) 2005-10-24 2013-10-18 The Johns Hopkins University Métodos mejorados para BEAMing
EP1971679B1 (de) 2006-01-13 2013-04-10 Osiris Therapeutics, Inc. Mesenchymale stammzellen zur tnf-rezeptor-expression
CA2768460A1 (en) 2009-07-16 2011-01-20 Glaxo Group Limited Antagonists, uses & methods for partially inhibiting tnfr1
WO2015104322A1 (en) 2014-01-09 2015-07-16 Glaxosmithkline Intellectual Property Development Limited Treatment of inflammatory diseases with non-competitive tnfr1 antagonists
US20170112879A1 (en) 2014-06-09 2017-04-27 University Of Washington Methods of protection against ischemia reperfusion injury
WO2016081924A1 (en) 2014-11-20 2016-05-26 Duke University Compositions, systems and methods for cell therapy
US9675847B2 (en) 2014-11-21 2017-06-13 One World Play Project LLC Sports ball and method of manufacture
CN111565731B (zh) 2017-10-24 2024-03-08 达莉亚·伊兰妮 治疗缺血性疾病的方法

Also Published As

Publication number Publication date
IL274190A (en) 2020-06-30
US11701391B2 (en) 2023-07-18
WO2019082184A1 (en) 2019-05-02
US20200254025A1 (en) 2020-08-13
CN111565731A (zh) 2020-08-21
EP3700543A4 (de) 2021-08-25
CN111565731B (zh) 2024-03-08
US20230330148A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
EP4176048A1 (de) Genetisch veränderte t-zellen mit regnase-1 und/oder tgfbrii-unterbrechung mit verbesserter funktionalität und persistenz
KR20120038403A (ko) 유전자 벡터
KR20210143952A (ko) 히스톤 h3-리신 트리메틸레이션 제거에 의한 인간 체세포 핵 이식 (scnt) 효율을 증가시키는 방법 및 조성물, 및 인간 nt-esc의 유도
EP3194581A2 (de) Verfahren und zusammensetzungen zur erhöhung der somatischen zellkerntransfer(scnt)-effizienz durch entfernung der histon h3-lysin-trimethylierung
US20230346836A1 (en) Genetically engineered t cells with disrupted casitas b-lineage lymphoma proto-oncogene-b (cblb) and uses thereof
US11833225B2 (en) Methods and compositions for efficient gene deletion
EP3850094A1 (de) Verfahren zur erhöhung des fötalen hämoglobingehalts in eukaryotischen zellen und verwendungen davon zur behandlung von hämoglobinopathien
CN111182921A (zh) 用于治疗肾疾病的免疫豁免的生物活性肾细胞
WO2017153982A1 (en) Method for modulating myelination
US20230330148A1 (en) Methods of treating an ischemic disease
JP2024506751A (ja) 遺伝子サイレンシング
KR20200141470A (ko) 체세포 재프로그래밍 및 각인의 조정을 위한 조성물 및 방법
JP2001501085A (ja) 造血幹細胞およびこのような細胞を生成するための方法
EP4276174A1 (de) Gentherapie zur behandlung von aktiviertem pi3kinase-delta-syndrom typ 1 (apds1)
EP4397321A2 (de) Genetisch veränderte t-zellen mit regnase-1 und/oder tgfbrii-unterbrechung mit verbesserter funktionalität und persistenz
TW202417626A (zh) 具有共表現的tgfbr shrna之免疫細胞
WO2024059618A2 (en) Immune cells having co-expressed tgfbr shrnas
WO2024059824A2 (en) Immune cells with combination gene perturbations
WO2022243531A1 (en) Gene therapy for the treatment of severe combined immunodeficiency (scid) related to rag1
TW202409271A (zh) 用於減少細胞中之mhc 1類之組成物及方法
EP4305153A1 (de) Genetisch veränderte t-zellen mit ptpn2-knockout mit verbesserter funktionalität und antitumoraktivität
WO2023144104A1 (en) Base editing approaches for the treatment of βeta-thalassemia
AU2022276124A1 (en) GENE THERAPY FOR THE TREATMENT OF HYPER-IgE SYNDROME (HIES) BY TARGETED GENE INTEGRATION
Yang Revealing a Non-canonical Role of Anti-apoptotic MCL-1 in Early Embryonic Development

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200520

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40036009

Country of ref document: HK

A4 Supplementary search report drawn up and despatched

Effective date: 20210726

RIC1 Information provided on ipc code assigned before grant

Ipc: A61K 35/28 20150101AFI20210720BHEP

Ipc: C12N 15/63 20060101ALI20210720BHEP

Ipc: C12N 15/85 20060101ALI20210720BHEP

Ipc: A61P 9/10 20060101ALI20210720BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230510