EP3698919B1 - Procédé de dressage d'une meule - Google Patents

Procédé de dressage d'une meule Download PDF

Info

Publication number
EP3698919B1
EP3698919B1 EP19158274.1A EP19158274A EP3698919B1 EP 3698919 B1 EP3698919 B1 EP 3698919B1 EP 19158274 A EP19158274 A EP 19158274A EP 3698919 B1 EP3698919 B1 EP 3698919B1
Authority
EP
European Patent Office
Prior art keywords
axes
grinding tool
dressing
rotating
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19158274.1A
Other languages
German (de)
English (en)
Other versions
EP3698919A1 (fr
Inventor
Martin Schweizer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Klingelnberg AG
Original Assignee
Klingelnberg AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Klingelnberg AG filed Critical Klingelnberg AG
Priority to EP19158274.1A priority Critical patent/EP3698919B1/fr
Priority to CH00161/20A priority patent/CH715886A2/de
Priority to US16/795,917 priority patent/US20200262028A1/en
Publication of EP3698919A1 publication Critical patent/EP3698919A1/fr
Application granted granted Critical
Publication of EP3698919B1 publication Critical patent/EP3698919B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/06Devices or means for dressing or conditioning abrasive surfaces of profiled abrasive wheels
    • B24B53/08Devices or means for dressing or conditioning abrasive surfaces of profiled abrasive wheels controlled by information means, e.g. patterns, templets, punched tapes or the like
    • B24B53/085Devices or means for dressing or conditioning abrasive surfaces of profiled abrasive wheels controlled by information means, e.g. patterns, templets, punched tapes or the like for workpieces having a grooved profile, e.g. gears, splined shafts, threads, worms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/06Devices or means for dressing or conditioning abrasive surfaces of profiled abrasive wheels
    • B24B53/075Devices or means for dressing or conditioning abrasive surfaces of profiled abrasive wheels for workpieces having a grooved profile, e.g. gears, splined shafts, threads, worms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/06Devices or means for dressing or conditioning abrasive surfaces of profiled abrasive wheels
    • B24B53/062Devices or means for dressing or conditioning abrasive surfaces of profiled abrasive wheels using rotary dressing tools

Definitions

  • the present invention relates to a method for dressing a grinding tool by means of a machine tool, comprising the method steps: providing a dressable grinding tool; dressing the grinding tool by means of a form dressing roller, wherein the tool profile to be produced on the grinding tool is formed by contact between the rotating grinding tool and the rotating form dressing roller along a dressing path, wherein the dressing path is followed automatically using two or more NC axes of the machine tool, which generate a relative movement between the grinding tool and the form dressing roller.
  • a method is described, for example, in JP5608623 B2 described.
  • Dressing processes of the type mentioned above are used to sharpen and shape grinding tools for fine machining or hard finishing of workpieces such as gears or the like.
  • the dressing of the grinding tool prior to the grinding process must also be carried out with high precision. It is therefore clear that insufficient dimensional accuracy of the grinding tool geometry created in the dressing process can have a direct impact on production deviations of the workpiece to be ground with the grinding tool.
  • a frequently occurring deviation of the actual position from the target position in the axis movements of the NC axes occurs when one or more of the NC axes involved have to be moved from a standstill or with a reversal of direction during the shaping contact between the form dressing roller and the grinding wheel.
  • the NC axis in question has to be accelerated from a state of static friction to a state of sliding friction, so that a discontinuity in the temporal progression of the acting forces or a jerk occurs (stick-slip effect).
  • FIG.1 An example of such a path error of a machine tool during the dressing process, which results from a reversal of the direction of an NC axis, is shown in Fig.1
  • the NC axis in a Y-direction (Y-position) is realized by a linear axis.
  • the Fig.1 The Y position shown therefore represents the travel path of this linear axis in mm.
  • An NC axis in a Z direction (Z position) is realized by another linear axis.
  • the Fig.1 The Z position shown therefore represents the travel of this additional linear axis in mm.
  • the curve with the reference number 1 represents the specified target path that is to be realized for traversing a dressing path as a relative movement between a dressing roller and a grinding tool to be dressed using the linear axes in the Y direction and Z direction.
  • the curve with the reference number 2 describes the actual path that is actually realized by the NC axes in the Y direction and Z direction.
  • the target path 1 has a local minimum 3, so that the linear axis of the Y direction must change direction in order to travel the target path 1.
  • the linear axis of the Y direction to a brief standstill and enters a state of static friction, so that starting from the local minimum 3, a growing deviation of the actual path 2 from the target path 1 can be seen, with the linear axis of the Y direction remaining at a value of approx. 287.962 mm, while the linear axis of the Z direction continues to move continuously.
  • the present invention is based on the technical problem of specifying a method for dressing a grinding tool of the type mentioned at the outset, which does not have the disadvantages described above or at least has them to a lesser extent and in particular enables increased accuracy when dressing a grinding tool.
  • NC axes used to travel along the dressing path come to a standstill or reverse direction, a state of static friction for the respective NC axes and the associated deviations can be avoided.
  • the NC axes are moved exclusively in a state of sliding friction while traveling along the dressing path.
  • NC axes mentioned can be linear axes arranged according to Cartesian coordinates.
  • NC axes can alternatively or additionally have linear axes that are inclined and/or skewed to each other.
  • the NC axes can have rotary and/or swivel axes.
  • form dressing roll means in this case that the profile of the grinding tool to be dressed is generated kinematically, i.e. by a relative movement of the form dressing roll with respect to the grinding wheel, whereby in particular there is no line contact but a point contact between the form dressing roll and the grinding tool.
  • the form dressing roll mentioned here does not have the profile of the grinding wheel as a negative form inherent in the dressing tool.
  • one of the NC axes generating the relative movement between the rotating grinding tool and the rotating form dressing roll is a linear axis.
  • one of the NC axes generating the relative movement between the rotating grinding tool and the rotating form dressing roll is a swivel axis or rotary axis.
  • NC Numeric Control
  • an NC axis When we talk about an NC axis here, we are talking about a device for adjusting a relative position of the tool, in this case the dressing roller, relative to the workpiece, in this case the grinding tool, or vice versa.
  • Such an NC axis usually has a drive that can move a movable element over a predetermined angular and/or length range.
  • the movable element is mounted so that it can move and/or rotate along a guide.
  • the bearing or guide of the movable element in question can be hydrodynamic, hydrostatic, aerostatic or rolling.
  • An example of a linear guide is a sliding carriage that can be moved translationally along a slide rail.
  • NC axis that is a linear axis
  • a spindle that carries the rotating dressing roller can be displaceable and/or pivotable in a working space of the machine tool by means of two or more linear axes and/or pivot axes in order to carry out a relative movement in relation to the grinding tool to be dressed.
  • a spindle that carries the rotating grinding tool can be displaceable and/or pivotable in a working space of the machine tool by means of two or more linear axes and/or pivot axes in order to carry out a relative movement in relation to the dressing tool.
  • the dressable grinding tool is a dressable grinding wheel.
  • the method according to the invention can therefore be used to improve the accuracy of dressing the grinding wheel.
  • the grinding wheel has a wheel profile whose wheel profile cross-section has at least one local minimum and/or at least one local maximum, wherein the local minimum and/or local maximum are dressed in a continuous overflow.
  • the wheel profile cross-section is therefore not segmented, e.g. into a rising area up to a maximum and a falling area that is dressed starting from the maximum in a second overrun or a second infeed. Rather, the relevant local minimum and/or local maximum of the wheel profile cross-section of the grinding tool to be dressed is passed over or dressed in continuous contact between the dressing roller and the grinding tool.
  • the Fig.1 The problem outlined is that one of the NC axes involved maps the local minimum and/or local maximum of the profile cross-section by reversing the direction. According to the invention, such a profile cross-section is now deliberately created without stopping or reversing the direction of one of the NC axes in order to keep the deviations from the target geometry of the disk profile cross-section to be created to a minimum.
  • a reversal of the direction of one of the NC axes, which generates the relative movement between the rotating grinding tool and the rotating form dressing roll, can be avoided in particular by using additional NC axes whose movements are superimposed to generate a dressing path.
  • a wheel profile cross-section of a grinding wheel is to be dressed with a local minimum or a depression
  • the dressing path contains the local minimum of the profile cross-section. If this dressing path is now followed with, for example, two linear axes arranged perpendicular to each other, one of these axes must map the minimum of the dressing path by reversing the direction (cf. Fig.1 ).
  • the dressing path of the wheel profile cross-section which can be dressed in two dimensions, three-dimensional, so that during dressing an additional movement takes place transversely to the previously described cutting plane.
  • the dressing path therefore not only runs two-dimensionally in the radial and axial direction of the grinding wheel, but also extends circumferentially over an angular range measured around the rotation axis of the grinding wheel.
  • the wheel profile discussed here with a local minimum can be formed using three linear axes along a dressing path without a local minimum. so that none of the three linear axes reverses direction or comes to a standstill.
  • a further development of the method is therefore characterized by a profile of the grinding tool, the profile cross-section of which has one or more local minima and/or local maxima and can be dressed by a two-dimensional axis movement by means of two NC axes of a machine tool, wherein a further third axis is additionally used to carry out the dressing along a three-dimensional dressing path.
  • the grinding tool is a dressable grinding worm.
  • the method according to the invention can therefore be used to improve the accuracy of dressing the grinding worm.
  • the grinding worm has in particular a grinding worm profile whose worm profile cross-section has a plurality of local minima and/or local maxima, wherein at least one local minimum and/or one local maximum are dressed in a continuous overflow.
  • a further embodiment of the method is characterized in that one or more of the NC axes are linear axes, whereby each of the linear axes generating the relative movement between the rotating grinding tool and the rotating form dressing roller has an axis speed whose value is greater than or equal to 1 ⁇ m/s, in particular greater than or equal to 10 ⁇ m/s. This prevents the respective linear axis from entering a state of static friction while the dressing path is being traveled or while the dressing roller is in form-giving contact with the grinding tool. It goes without saying that the relevant linear axis is only moved in one direction during dressing or while the dressing path is being traveled in form-giving contact - i.e. without reversing direction.
  • a further embodiment of the method is characterized in that one or more of the NC axes are rotary axes or swivel axes, wherein each of the rotary axes or swivel axes generating the relative movement between the rotating grinding tool and the rotating form dressing roll has a rotary speed or swivel speed whose magnitude is greater than or equal to 1*10 -6 °/s, in particular greater than or equal to 10*10 -6 °/s.
  • the invention can be realized, for example, using three linear axes arranged according to a Cartesian coordinate system.
  • the invention can be implemented using linear axes that are arranged inclined and/or skewed, i.e. in particular are not arranged perpendicular to one another.
  • pivoting and/or rotating axes can be used to implement the teaching according to the invention.
  • each of the NC axes generating the relative movement between the rotating grinding tool and the rotating form dressing roller has an axis speed whose magnitude is greater than zero, whereby none of these NC axes reverses direction or comes to a standstill.
  • Fig.1 has already been discussed at the beginning in order to demonstrate the problem underlying the invention.
  • a deviation 4 of the actual path 2 from the target path 1 is to be avoided by avoiding a reversal of the direction of an NC axis - according to Fig.1 the Y-axis - can be avoided.
  • An implementation of the solution according to the invention means, based on the example according to Fig.1 This means that the grinding tool in question is dressed in such a way that the target path for none of the NC axes involved in the Y and Z directions has a local minimum, although the profile cross-section of the grinding wheel to be dressed has such a local minimum.
  • Fig. 2A - 2E and Fig.3 An example of a solution to this problem is shown.
  • Fig. 2A shows a grinding tool profile cross-section 10 of a dressable grinding tool 12.
  • the grinding tool profile cross-section 10 shown here can be a section of a part of a profile cross-section of a grinding worm, the profile cross-section of which extends over a multiple of the Fig. 2A shown section extends further in positive and negative z-direction.
  • the grinding tool profile cross-section 10 shown here can be a section of a profile cross-section of a grinding wheel, which also extends over the Fig. 2A shown section extends further in the positive and negative z-direction.
  • the grinding tool profile cross-section 10 shown here can be the profile cross-section of a grinding wheel.
  • the coordinate axis marked “Z” represents a coordinate of the Fig. 2A shown Cartesian coordinate system X,Y,Z.
  • "Z” represents an NC linear axis of a machine tool 14, which enables a linear or translational movement of the grinding tool 12 along the coordinate direction "Z".
  • the grinding tool profile cross section has a local minimum 16, which in the side view according to Fig. 2B is shown by the dashed circle line.
  • the form dressing roller 18 is usually moved two-dimensionally, ie exclusively within the YZ plane spanned by the Y-axis and Z-axis, from a first contact point 20 to a second contact point 22, which is at least 16, up to the contact point 24.
  • the dressing path thus created indicated by the hollow arrows, therefore identically represents the profile cross-section of the grinding tool 12 in the YZ plane.
  • the linear axis Y undergoes the disadvantageous reversal of direction described.
  • the dressing path represented by the hollow arrows and contact points 20, 22, 24 is therefore not in accordance with the invention.
  • the dressing path described represents a continuous overflow along the profile of the grinding tool 12 and the contact points 20, 22, 24 serve only as support points to illustrate the course of the continuous dressing path.
  • the relative movement could alternatively run from the contact point 24 via the contact point 22 to the contact point 20.
  • a three-dimensional dressing path 26 is now used to dress the grinding tool 12.
  • the dressing path 26 which is represented by the solid arrows and the contact points 28, 30, 32, does not have a local minimum.
  • the dressing path can therefore be continuously traversed without reversing the direction and without one of the linear axes X, Y, Z coming to a standstill, whereby the local minimum of the profile cross-section 10 is still dressed in a continuous overrun.
  • the form dressing roller 18 is moved along a profile of the grinding wheel R(Z) additionally in the circumferential direction of the grinding tool, as indicated by the angle ⁇ .
  • Fig. 2E illustrates three positions of the form dressing roller 18, which the dressing track 26 assumes in continuous shaping contact with the grinding tool in an overview representation.
  • Fig.3 is a comparison of the two-dimensional dressing path not according to the invention and the three-dimensional dressing path according to the invention
  • the form dressing roller is not shown in the drawing to improve clarity. Fig.3 shown.
  • the hollow circles and arrows represent the non-inventive two-dimensional dressing path along the hatched surface of the grinding tool 12 to be dressed and the solid circles and arrows represent the dressing path according to the invention for carrying out the method according to the invention.
  • R(z) is the radius of the grinding tool.
  • the dressing paths have been projected onto the Y-Z plane and the X-Z plane. It is clear that the Y axis must reverse direction for the two-dimensional dressing path in order to move from point 22 to point 24. It is also clear that no movement of the X axis is required for the two-dimensional dressing path.
  • the profile of the grinding tool 12 can therefore be dressed in a two-dimensional movement.
  • the dressing path 26 is selected according to the filled circles 28, 30, 32, whereby the dressing path 26 does not have a local minimum in its projection onto the Y-Z plane and the X-Z plane.
  • Each of the linear axes X, Y, Z involved is therefore moved exclusively in one direction, so that the dressing path 26 is traversed without stopping or changing the direction of one of the NC axes X, Y, Z that generate the relative movement between the form dressing roller and the grinding tool.
  • the invention can be implemented using linear axes that are inclined and/or skewed to each other are arranged, ie in particular are not arranged perpendicular to one another.
  • pivoting and/or rotation axes can be used to implement the teaching according to the invention.
  • each of the NC axes generating the relative movement between the rotating grinding tool and the rotating form dressing roller has an axis speed whose magnitude is greater than zero, whereby none of these NC axes reverses direction or comes to a standstill.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Claims (8)

  1. Procédé pour dresser un outil de rectification à l'aide d'une machine, comprenant les étapes consistant à :
    - fournir un outil de rectification pouvant être dressé (12) ;
    - dresser l'outil de rectification (12) à l'aide d'un rouleau de dressage (18),
    • le profil d'outil (10) à produire sur l'outil de rectification étant formé par contact entre l'outil de rectification rotatif (12) et le rouleau de dressage rotatif (18) le long d'une trajectoire de dressage (26),
    • le déroulement de la trajectoire de dressage étant automatisé à l'aide de deux ou plusieurs axes CN (X, Y, Z) de la machine (14) qui produisent un mouvement relatif entre l'outil de rectification rotatif (12) et le rouleau de dressage rotatif (18) ;
    caractérisé en ce que
    • pendant le déroulement de la trajectoire de dressage (26) et pendant que le rouleau de dressage (18) est en contact avec l'outil de rectification (12) afin de lui donner une forme, il est prévu
    • que chacun des axes CN (X, Y, Z) produisant le mouvement relatif entre l'outil de rectification rotatif (12) et le rouleau de dressage rotatif (18) présente une vitesse d'axe dont la valeur est supérieure à zéro, aucun de ces axes CN (X, Y, Z) n'effectuant d'inversion de sens ou ne s'arrêtant.
  2. Procédé selon la revendication 1, caractérisé en ce que l'outil de rectification pouvant être dressé (12) est une meule pouvant être dressée (12).
  3. Procédé selon la revendication 2, caractérisé en ce que
    - la meule (12) présente un profil de meule (10) dont la section transversale de profil de meule (12) présente au moins un minimum local et/ou au moins un maximum local,
    - le minimum local et/ou le maximum local étant dressé dans un dépassement continu.
  4. Procédé selon la revendication 1, caractérisé en ce que l'outil de rectification (12) est une meule hélicoïdale pouvant être dressée (12).
  5. Procédé selon la revendication 4, caractérisé en ce que
    - la meule hélicoïdale (12) présente un profil hélicoïdal (10) dont la section transversale présente plusieurs minimums locaux et/ou maximums locaux,
    - au moins un minimum local et/ou un maximum local étant dressé dans un dépassement continu.
  6. Procédé selon l'une des revendications précédentes, caractérisé en ce que
    - un profil (10) de l'outil de rectification (12), dont la section transversale (10) présente un ou plusieurs minimums locaux et/ou maximums locaux, peut être dressé par un mouvement d'axes sur deux dimensions à l'aide de deux axes CN (Y, Z) d'une machine,
    - un troisième axe (X) étant utilisé pour réaliser le dressage le long d'une trajectoire de dressage en trois dimensions (26).
  7. Procédé selon l'une des revendications précédentes, caractérisé en ce que
    - l'un des axes CN (X, Y, Z) produisant le mouvement relatif entre l'outil de rectification rotatif (12) et le rouleau de dressage rotatif (18) est un axe linéaire,
    et/ou en ce que
    - l'un des axes CN produisant le mouvement relatif entre l'outil de rectification rotatif (12) et le rouleau de dressage rotatif (18) est un axe de pivotement ou un axe de rotation.
  8. Procédé selon l'une des revendications précédentes, caractérisé en ce que
    - un ou plusieurs axes CN sont des axes linéaires (X, Y, Z), chacun des axes linéaires (X, Y, Z) produisant le mouvement relatif entre l'outil de rectification rotatif et le rouleau de dressage rotatif présentant une vitesse d'axe, dont la valeur est supérieure ou égale à 1 µm/s, en particulier supérieure ou égale à 10 µm/s,
    et/ou en ce que
    - un ou plusieurs axes NC sont des axes de rotation ou de pivotement, chacun des axes de rotation ou des axes de pivotement produisant le mouvement relatif entre l'outil de rectification rotatif et le rouleau de dressage rotatif présentant une vitesse de rotation ou une vitesse de pivotement dont la valeur est supérieure ou égale à 1*10-6 °/s, en particulier supérieure ou égale à 10*10-6 °/s.
EP19158274.1A 2019-02-20 2019-02-20 Procédé de dressage d'une meule Active EP3698919B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19158274.1A EP3698919B1 (fr) 2019-02-20 2019-02-20 Procédé de dressage d'une meule
CH00161/20A CH715886A2 (de) 2019-02-20 2020-02-14 Verfahren zum Abrichten eines Schleifwerkzeugs mittels einer Werkzeugmaschine.
US16/795,917 US20200262028A1 (en) 2019-02-20 2020-02-20 Method for dressing a grinding tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19158274.1A EP3698919B1 (fr) 2019-02-20 2019-02-20 Procédé de dressage d'une meule

Publications (2)

Publication Number Publication Date
EP3698919A1 EP3698919A1 (fr) 2020-08-26
EP3698919B1 true EP3698919B1 (fr) 2024-05-08

Family

ID=65529380

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19158274.1A Active EP3698919B1 (fr) 2019-02-20 2019-02-20 Procédé de dressage d'une meule

Country Status (3)

Country Link
US (1) US20200262028A1 (fr)
EP (1) EP3698919B1 (fr)
CH (1) CH715886A2 (fr)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136769A (ja) * 1984-12-05 1986-06-24 Ooiwa Giken:Kk 木工用ncル−タにおける研削砥石の成形方法およびその成形装置
US5573449A (en) * 1994-03-16 1996-11-12 The Gleason Works Threaded grinding wheel, method of dressing, and grinding a workpiece therewith
US6146253A (en) * 1996-04-23 2000-11-14 Mcdonnell Douglas Helicopter Company Apparatus and method for precision grinding face gear
DE19619401C1 (de) * 1996-05-14 1997-11-27 Reishauer Ag Verfahren, Werkzeug und Vorrichtung zum Profilieren von Schleifschnecken für das kontinuierliche Wälzschleifen
DE102007020479B4 (de) * 2007-04-27 2010-10-21 Kapp Gmbh Verfahren und Schleifmaschine zum Profilieren eines Schleifwerkzeugs
ATE553871T1 (de) * 2008-09-04 2012-05-15 Gleason Pfauter Maschf Gmbh Verzahnungsschleifmaschine und verfahren zum abrichten eines schleifwerkzeuges
JP5285526B2 (ja) * 2009-07-27 2013-09-11 三菱重工業株式会社 内歯車加工方法およびそれに使用する工具のドレス方法
JP5586409B2 (ja) * 2010-10-08 2014-09-10 Ntn株式会社 ドレッシング装置
JP5608623B2 (ja) * 2011-10-03 2014-10-15 株式会社アライドマテリアル ロータリードレッサおよびその製造方法
JP5996362B2 (ja) * 2012-10-17 2016-09-21 株式会社ジェイテクト 円筒研削盤

Also Published As

Publication number Publication date
EP3698919A1 (fr) 2020-08-26
CH715886A2 (de) 2020-08-31
US20200262028A1 (en) 2020-08-20

Similar Documents

Publication Publication Date Title
EP3191248B1 (fr) Dispositif de taillage en développante d'une pièce pour la production d'un chanfrein et procédé de fonctionnement associé
EP1590712B1 (fr) Procede pour commander des mouvements relatifs d'un outil par rapport a une piece
EP2338640B1 (fr) Machine de meulage de pièces optiques, en particuliere de verres à lunettes en plastique
EP1470458B1 (fr) Procede de commande continue
EP2221693B1 (fr) Procédé et dispositif de production de données de commande destinées à commander un outil sur une machine-outil comportant au moins 5 axes
DE102008033709A1 (de) Verfahren zur Verlagerung der Bearbeitungsstelle eines Werkstücks und Werkzeugmaschine
DE102013112232B3 (de) Verfahren zur Bearbeitung eines Rohteils mittels eines Werkzeuges
EP1319457B1 (fr) Procédé d'usinage de roues dentées essentiellement cylindriques à denture intérieure ou extérieure
EP0711618A1 (fr) Procédé d'usinage d'un essieu et équipement pour la mise en oeuvre du procédé
EP3348354A1 (fr) Procédé d'usinage de roues dentées coniques à l'aide d'une meule boisseau à mouvement excentrique pouvant être dressée
EP0212338A2 (fr) Procédé pour l'usinage de la surface d'une came
DE102014019740A1 (de) Vorrichtung zur Wälzschälbearbeitung eines Werkstücks zur Fertigung einer Fase mit rotierbarer Werkzeugspindel-Halterung und zugehöriges Betriebsverfahren
EP2148759B1 (fr) Machine-outil optimisée dynamiquement à systèmes d'entraînement superposés
EP2851150A2 (fr) Outil, procédé et machine destinés à fabriquer un profil denté sur une pièce par taillage des engrenages par développante
EP0360953B1 (fr) Machine pour la finition de flancs de dents de pièces dentées
EP3698919B1 (fr) Procédé de dressage d'une meule
DE10144508B4 (de) Verfahren zur Steuerung von Relativbewegungen eines Werkzeuges gegen ein Werkstück
DE102019005405A1 (de) Verfahren zum Hartfeinbearbeiten zweier Verzahnungen an einem Werkstück
EP1251980A1 (fr) Procede et dispositif de traitement de parois de soufflure de coquilles de coulage continu
DE8910726U1 (de) Maschine zum Feinbearbeiten der Zahnflanken von verzahnten Werkstücken
EP3808499B1 (fr) Unité d'entraînement d'outil, dispositif rotatif et procédé de rotation
DE3822487C1 (en) Method and device for producing curved paths on a workpiece
WO2021052787A1 (fr) Machine-outil pour usiner des dents, procédé d'usinage de flancs de dents d'une pièce à usiner et procédé de dressage d'un outil d'usinage de dents à l'aide d'une telle machine-outil
DE29711133U1 (de) Stein-Profiliermaschine
DE102009036600B4 (de) Bearbeitungsmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210222

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231208

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019011217

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20240508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240508

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240508