EP3697733A1 - Gravity-bending glass between a frame and a counter-frame - Google Patents

Gravity-bending glass between a frame and a counter-frame

Info

Publication number
EP3697733A1
EP3697733A1 EP18812230.3A EP18812230A EP3697733A1 EP 3697733 A1 EP3697733 A1 EP 3697733A1 EP 18812230 A EP18812230 A EP 18812230A EP 3697733 A1 EP3697733 A1 EP 3697733A1
Authority
EP
European Patent Office
Prior art keywords
skeleton
glass
counter
sides
sectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18812230.3A
Other languages
German (de)
French (fr)
Inventor
Christophe Machura
Thierry Olivier
Philippe Frebourg
Jérôme PELLETIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1759859A external-priority patent/FR3072668B1/en
Priority claimed from FR1759862A external-priority patent/FR3072669B1/en
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP3697733A1 publication Critical patent/EP3697733A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/025Re-forming glass sheets by bending by gravity
    • C03B23/0256Gravity bending accelerated by applying mechanical forces, e.g. inertia, weights or local forces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/03Re-forming glass sheets by bending by press-bending between shaping moulds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B40/00Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it
    • C03B40/005Fabrics, felts or loose covers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2225/00Transporting hot glass sheets during their manufacture
    • C03B2225/02Means for positioning, aligning or orientating the sheets during their travel, e.g. stops

Definitions

  • the invention relates to gravity bending of glass on a skeleton.
  • a counter-skeleton is placed above the glass to prevent the formation of corrugations at its edges.
  • Gravity bending of glass sheets greater than 2.1 mm thick can be performed by methods described in the prior art. The tendency is to reduce more and more the thickness of the glass sheets intended to be assembled within a laminated glazing. It tends to associate a thin sheet with a sheet of greater thickness. It was found that the gravity bending of a glass sheet less than or equal to 2.1 mm thick produced, on a conventional skeleton, ripple defects on the edges of the glass, more particularly in the area of the glass. middle of the different sides of the glass.
  • the phenomenon responsible for the creation of folds at the periphery of the glazing during its support at the periphery is a phenomenon of instability similar to buckling (or buckling) of elastic plates. In the same way as in the case of thin elastic plates, the phenomenon of peripheral instability observed in the forming of glass sheets is all the more important that the thickness of the glass is low and the temperature at the periphery of the glass is high.
  • the "marks” correspond to slight mechanical indentations created by the tools on the glass during its bending. They are particularly troublesome when they are on the lower surface of the glass during bending because they are then visible from outside the vehicle. The glazing is then put to rebus.
  • the "marks” that are on the upper side of the glass during bending are generally more easily accepted because they are inside the vehicle once mounted on it and these imperfections are hidden from the view of an observer outside the vehicle.
  • the bending of glass in particular of thin glass, is correctly achieved by means of a gravity bending device of a glass sheet or a stack of glass sheets comprising a plurality of sides, said glass , comprising a skeleton for supporting the glass in its peripheral zone by a contact track, said contact track comprising concave curvatures at each of the sides of said skeleton, and a counter-skeleton able to come into contact with the glass in the area of the at least one side of the peripheral zone of the upper main face of the glass.
  • the backbone contacts the middle region of all sides, generally four sides, of the peripheral zone of the upper main face of the glass.
  • the peripheral zone is the area between the edge of the glass and a distance from the edge of the glass of 50 mm, whether it is the upper face or the lower face of the glass.
  • the back-skeleton is removable (synonym: retractable).
  • the invention also relates to a method of gravity bending a glass sheet or a stack of glass sheets, said glass (which has a thickness e), comprising the bending of the glass by gravity on a skeleton comprising a contact track supporting the glass in the peripheral zone of its lower main face, a counter-skeleton comprising a metal bar being in contact with the glass during the bending in the peripheral zone of its upper face, at the places where undulations appear in the Absence of the back-skeleton.
  • the method comprises bending the glass by gravity on a skeleton supporting the glass in its peripheral zone by a contact track, said contact track comprising concave curvatures in each of the sides of said skeleton, a counter-skeleton coming into contact with the glass in the middle zone of at least one side of the glass in the peripheral zone of its upper main face.
  • the glass placed on the skeleton may be an individual sheet of thickness less than or equal to 2.1 mm, or even less than or equal to 1.2 mm thick. Generally, the thickness of an individual sheet is greater than or equal to 0.4 mm.
  • the glass placed on the skeleton can also be a stack of glass sheets, especially sheets whose thickness has just been given. The stack may also include sheets of different thickness. This stack may comprise 2, 3 or 4 sheets.
  • the device according to the invention can be bombarded with the following two sheets in the superimposed state: a sheet whose thickness is in the range from 1.4 to 2.7 mm, generally in the range from 1 , 4 to 2.5 mm, with a sheet whose thickness is in the range of 0.4 to 1.6 mm, especially in the range of 0.4 to 1.2 mm, the most thick, preferably lying under the thinnest sheet during bending on the skeleton.
  • the curved sheets together by the device according to the invention are not necessarily intended to be associated together in the same laminated glazing.
  • the term "glass” is used to denote an individual sheet or a stack of sheets.
  • the skeleton supports the lower main face of the glass in its peripheral zone.
  • the skeleton comprises a metal strip (which may also be called “vertical plate", even if its large faces may optionally be inclined) having one of its slices upwards to support the periphery of the glass.
  • the skeleton also comprises coated on the upper edge of its metal strip, a refractory fibrous material well known to those skilled in the art, forming the contact track for the glass.
  • the metal band is rigid while the fibrous material has some elasticity and compressibility. This material is generally of the felt or knit type or fabric of metal and / or ceramic refractory fibers, as is well known to those skilled in the art. These materials reduce the risk of glass marking by the skeleton.
  • the metal strip in the backbone generally has a width in the range of 1 to 10 mm.
  • the fibrous material generally has a thickness in the range of 0.3 to 1 mm.
  • the skeleton provides the glass, via its refractory fibrous material, with a contact track of width generally in the range from 1.6 to 12 mm (which includes the thickness due to the refractory fibrous material), more generally in the range from 3 mm to 10 mm.
  • the skeleton has concave curvatures in its contact face for the glass, for each of its sides and generally at least in the middle of each of its sides, generally four sides.
  • the contact track of the skeleton has concave curvatures for at least 80% and generally at least 90% of its length, said concavity being considered parallel to its contours (inside or outside).
  • the contact track of the skeleton has concave curvatures for at least 80% and generally at least 90% of the length of its longitudinal sides, said concavity being considered parallel to its contours (inside or outside).
  • the contact track of the skeleton has concave curvatures for the middle zone of its longitudinal sides, in particular for at least up to 20 cm on each side of this medium.
  • the contact track of the skeleton has concave curvatures for at least 80% and generally at least 90% of the length of its transverse sides, said concavity being considered parallel to its contours (inside or outside).
  • the contact track of the skeleton has concave curvatures for the middle zone of its transverse sides, in particular for at least up to 20 cm on each side of this medium.
  • the glass collapses under the effect of gravity on the skeleton during the bending and takes a concave shape seen from above (the concave face is the face superior) in its central zone and in each of its sides, in particular in the middle of its sides.
  • the skeleton has a shape conferring this concavity, since at the end of bending, the glass touches the entire periphery of the contact track of the skeleton. At the end of bending, the glass being placed on the skeleton, the central zone of the upper face of the glass is concave in all directions. Seen from above, the skeleton has roughly the same outline as the glass it must receive while being smaller since the glass overflows all the outer circumference of the skeleton.
  • the contact track of the skeleton therefore generally has a concave shape in each of its sides, especially in the middle of its sides.
  • the skeleton has as many sides as the glass and therefore generally has four sides (also called "strips").
  • the glass Before bending, the glass usually overflows all around the skeleton by a distance in the range of 2 to 45 mm. This overflow decreases during the bending. This decrease depends on the importance of the curvatures given to the principal faces of the glass during the bending. At the end of bending, this overflow is generally in the range of 1 to 25 mm. From the beginning to the end of the bending, the skeleton generally supports the glass entirely in its peripheral zone and without overflowing out of this zone, neither outwards nor inwards. Viewed from above, the skeleton has a continuous annular shape and without interruption.
  • the invention relates more particularly to the bending of glass for the production of glazing intended to equip vehicles (automobile, bus, truck, agricultural vehicle, etc.). It can be windshield, rear window, roof, side window sliding or fixed.
  • the glass considered here comprises a plurality of sides, generally four sides (also called “strips"), one side joining another in a corner of the glass, this corner comprising a segment of curve comprising radii of curvature much smaller than those of curvatures of the sides.
  • radii of curvature of the perimeter of the main faces in vision perpendicular to the main faces and the edge of the glass.
  • the middle of one side is approximately equal distance from two corners of this side.
  • These glasses have a PS vertical plane of symmetry when they are mounted on the vehicle, the direction of movement of the vehicle (non-turned wheel) being included in this plane of symmetry.
  • the intersecting sides of this plane of symmetry are said transverse sides, the other two sides being said longitudinal sides.
  • the middle of the sides can be found in the following way: the curved glass (preferably in the form of low-deformable assembled glazing) is placed on a horizontal plane, concave side downwards. The glass touches the horizontal plane by 4 points of contact at its corners. The points of contact between them are connected by segments of the line. The intersection with the edge of the glass plane perpendicular to the segment and passing through the middle of this segment, is the middle side of the glass.
  • the middle of the transverse sides is also at their intersection with the vertical plane of symmetry PS.
  • the counter-skeleton comes into contact with the glass in the middle zone of at least one of its sides and generally in the middle zone on all sides.
  • the back-skeleton may also come into contact with the glass in the peripheral zone out of the middle zone on one side and even above the corners of the glass, but this is not usually necessary.
  • the counter-skeleton may therefore possibly be absent above corners of the glass, the glass being better formed in these places. This is particularly possible when the complexity of the glazing is not too high, typically when its main arrow is less than 100 mm.
  • the middle area of one side is the area surrounding this medium in the peripheral area of the glass.
  • the middle zone of one side is the peripheral zone in the vicinity and on either side of the middle, at least up to 5 cm on each side of the medium, and even at least up to 10 cm from each side of the middle, and even at least up to 20 cm on each side of the middle, parallel to the edge of the glass and in the peripheral area.
  • This middle area of one side is fully concave at least up to 20 cm on each side of the middle.
  • the counter-skeleton presses the glass in this area, but not necessarily throughout this area.
  • the backbone supports enough to prevent the formation of undulations, but insufficiently to mark the glass.
  • the counter-skeleton optionally supports continuously throughout the length of this zone parallel to the edge of the glass, but generally not throughout the width of this zone.
  • the contact with the glass may therefore be only partial, that is to say that along the periphery of the glass, the back-skeleton may touch the glass only in certain areas and not in others.
  • the counter-skeleton is preferably vis-à-vis the skeleton on the other side of the glass during bending. However, it may be slightly offset inwards or outwards relative to the skeleton, but its contact with the glass is preferably only in the peripheral zone of the upper face.
  • the glazings referred to herein generally have four sides and are symmetrical with respect to their plane of symmetry passing through the middle of their transverse sides.
  • the two transverse sides generally have a length in the range of 80 cm to 250 cm (length of segments between contact points, when the glazing is placed on a horizontal plane concave face facing downwards).
  • Both longitudinal sides have typically a length in the range of 60 cm to 180 cm (length of segments between contact points, when the glazing is placed on a horizontal plane).
  • the two longitudinal sides generally have the same length.
  • the counter-skeleton comprises a metal bar at least partially covering, viewed from above, the peripheral zone of the upper face of the glass.
  • the counter-skeleton has a shape complementary to that to be given to the glass (final shape after bending at the periphery), where it touches the glass. Its shape can deviate from that of glass (and therefore the skeleton) where it does not touch the glass.
  • the counter-skeleton has convex curvatures to face the concave curvatures of the upper face of the glass. Since the skeleton has the shape of glass, the backbone has curvatures parallel to those of the skeleton, at least where the skeleton touches the glass.
  • the counter-skeleton comes into contact with the glass with a refractory fibrous material.
  • it preferably has a structure similar or identical to that of the skeleton, that is to say that its metal bar comprises a metal strip (or flat vertical) having one of its slices downwards, said lower portion possibly being covered with a refractory fibrous material already described for the backbone. All the materials and thicknesses given for the skeleton (metal band and refractory fibrous material) are then valid for the back-skeleton.
  • the refractory fibrous material is capable of compressing and compressing during bending under the effect of the gravitational force acting on the backbone. This property of the fibrous material can be used to distribute the pressure exerted by the back-skeleton on the glass.
  • the beneficial effect on the reduction of undesired peripheral ripples is also associated with the mechanical effect of the two tools (skeleton and counter-skeleton) which physically prohibit any possibility of the glass being deformed in a vertical direction to the tooling right.
  • the beneficial effect is related to the use of the refractory fibrous material coupled with the control of the gap between the skeleton and the back-skeleton; a slight local modulation of the distance between these two tools results in a slight compression of the fibrous material, which is insufficient to induce a mark on the glass. If necessary, a counterweight system connected to the backbone reduces the backstage pressure on the glass.
  • V1 the counter-skeleton touches the glass and the fibrous material compresses under the effect of the gravitational force exerted on the back-skeleton, but its compression is limited because of the presence of a means of imposing a minimum distance given Dm between the metal strip in the skeleton and a metal bar in the back-skeleton.
  • V2 the counter-skeleton touches the glass and the fibrous material is compressed under the effect of the pressure exerted by the back-skeleton, but its compression is not blocked by means of imposing a given minimum spacing between the band metal in the skeleton and a metal bar in the counter-skeleton.
  • Variant V1 involves a means of imposing a given minimum distance Dm between the metal strip of the skeleton and the metal bar of the backskeleton.
  • the skeleton and counter-skeleton can not move closer together so that the distance between the metal skeleton band and the metal bar of the back-skeleton falls below Dm.
  • This means serves to prevent the back-skeleton exerting too much pressure on the glass.
  • it also allows the glass to slide on the skeleton during bending, without being held back because of a too strong pinch between skeleton and back-skeleton. This is favorable for obtaining a shorter bending cycle time.
  • the curvatures of glazing are characterized by the notions of arrow and double-bending. For the definitions of these characteristics, reference may be made to FIGS. 1a and 1b and to the description corresponding to them of WO2010 / 136702.
  • the invention is suitable for bending glass whose complexity of shape is moderate (arrow less than 100 mm and / or double bending less than 20 mm) or stronger (arrow greater than 100 mm and / or double bending greater than 20 mm ).
  • Variant V1 is preferably used when the geometrical instability (ripples) takes place well localized on the glazing such as for example in the middle of the high band of a windshield (upper horizontal edge when mounted on the vehicle). We then focus on fine-tuning the distance between the skeleton and the back-skeleton in this particular region. It is naturally possible to use this variant V1 over the entire periphery of the glass, especially when the propensity for geometric instabilities is distributed over the entire periphery of the glass.
  • Variant V2 is preferably used when the adjustment of the distance between the skeleton and the backskeleton is particularly difficult.
  • This variant V2 works not by adjusting geometric dimensions, but in pressure thanks to the force of gravity exerted on the back-skeleton pressing on the glass. This type of tooling leads to a particularly reproducible bending process, less sensitive to small geometric variations of the tools, especially following the successive cycles of heating and cooling.
  • the function of the counter-skeleton is not to bend the glass (this is the role of gravity), but just to prevent the formation of edge ripples.
  • a bending without the counter-skeleton would result in an identical bending in the central zone of the glass compared to a bending with counter-skeleton, all other conditions of realization being identical.
  • the back-skeleton should not press too hard on the glass as this could result in a pinching of the glass hindering its sliding on the skeleton during bending and slowing or even preventing its bending. This is why the pressure exerted by the back-skeleton must be finely dosed.
  • the back-skeleton during bending a weight on the glass per linear meter of back-skeleton (parallel to the skeleton) less than 2 kg / m and preferably less than 1 kg / m.
  • the counter-skeleton exerts a weight on the glass per linear meter of back-skeleton (parallel to the skeleton) greater than 0.1 kg / m.
  • the counter-skeleton acts positively (by reducing the undulations) on the glass by thermal effect, at the places it touches as in the places it does not touch but that it approaches, especially at less than 50 mm.
  • This thermal effect depends essentially on three criteria: 1) the relatively moderate temperature of the counter-skeleton at the furnace inlet, preferably less than 250 ° C., 2) the propensity of the back-skeleton to remain colder than the periphery of the glass whereas the glass is between 300 and 650 ° C, and especially during bending, 3) the area of glass exposed to the backbone.
  • Criterion 1 is provided by sufficient cooling of the backbone after bending. Part of this cooling takes place in the bending furnace itself but also on the tool return chain when they go up empty from the furnace outlet to the furnace inlet. Additional cooling systems specifically dedicated to cooling the backbone can be installed, such as additional fans or air jets directed to this tool. It is also possible to provide a dedicated cooling circuit, directly attached to the backbone, and activated on its return path out of the oven. It may in particular be a tube capable of receiving a current of a cooling fluid, especially fresh air (that is to say generally at room temperature, generally between 0 and 50 ° C). Such a metal tube can be attached to the metal bar of the back-skeleton.
  • Criterion 2 is ensured, either by increasing the mass of metal embedded in the backbone, which has the consequence of increasing its thermal inertia and therefore the amount of heat required to heat it, or by limiting the heat input to back-skeleton by covering the latter with thermal insulation.
  • the heating elements arranged in the vault of the oven can heat the glass without losing unnecessarily energy to directly heat the backbone.
  • the periphery of the glass is then all the colder that it is on the one hand masked from the direct heating by the heating elements of the oven (generally vault) and on the other hand that it faces the counter-skeleton which is kept at reduced temperature.
  • Criterion 3 depends on the geometry of the backbone and the distance between the backbone and the glass.
  • the counter-skeleton can be segmented. It then includes as many bands (or "segments") that the glass has sides, usually four. At one side of the glass is associated a band of the back-skeleton. Each backbone band may cover the middle area on one side, and if necessary, not go to the corners of the glass.
  • the skeleton may comprise a metal strip whose slice is directed upwards, said slice being covered with a refractory fibrous material forming the contact track for the glass
  • the back-skeleton may comprise a metal bar
  • the device comprising means for imposing a given minimum distance Dm between the metal strip of the skeleton and the metal bar of the backbone.
  • the means for imposing Dm may include a stop member, said abutment, secured to the skeleton and on which a counterbiased element, said abutment, integral with the backbone is able to rest.
  • the stop is fixed directly or indirectly to the rigid metal band of the skeleton. It may be the upper surface of a plurality of candles or jack screws.
  • the abutment is fixed directly or indirectly to the rigid metal bar of the back-skeleton.
  • the device generally comprises a frame on which the skeleton is fixed. Any stop element can be fixed on the frame or on the skeleton, it always amounts to the fact that the abutment is integral directly or indirectly with the skeleton.
  • the means of imposing Dm is adjustable so as to adjust the value of Dm. This allows in particular to adjust the degree of compression of the refractory fibrous material equipping the backbone and the skeleton and pressing the glass, and therefore the pressure on the upper face of the glass and the pressure on the underside of the glass.
  • the adjustment means can be located at the abutment and / or abutment.
  • the distance between the two tools can be adjusted and controlled by toolmakers using shims.
  • the toolmaker can proceed by introducing a shim between the upper face of a previously convex glass and the refractory fibrous material of the back-skeleton by exerting a certain lateral force. During this adjustment, the fibrous material contracts slightly and decreases a little thick.
  • the actual measurement made by the toolmaker is therefore the result of the distance between the glass and the back-skeleton, the thickness of the fibrous material that covers it, the compressibility of the fibrous material, the thickness of the wedge the thickness itself, and the lateral force exerted by the toolmaker during the control or when adjusting the distance between the two tools.
  • the operator realizes whether a shim thickness passes easily or not between the glass and the back-skeleton and routine tests, he learns to finely adjust the device.
  • the device according to the invention may comprise a system able to modify during bending the distance between the skeleton and the counter-skeleton.
  • the counter-skeleton has a shape closer to that of the upper face of the glass at the end of the bending, rather than at the beginning of the bending.
  • the glass is flat or only slightly curved because of its natural flexibility.
  • the counter-skeleton therefore has a shape more curved than the glass at the beginning of the bending and could touch it and, by elastic deformation, force it to adopt the peripheral shape of the skeleton.
  • Such a situation may cause a breakage of the glass at the entrance of the oven.
  • the backbone is at first rather far from the skeleton and then bring it closer during the bending. This reduces the gap between the skeleton and the glass (and therefore between the skeleton and the skeleton) as the glass softens and follows the contours of the skeleton.
  • the duration of the approach phase between the glass and the backbone can be adjusted between five tenths of a second to 30 seconds, or even up to one minute depending on the previous heat history and the complexity of the glazing itself.
  • the back-skeleton is in partial contact with the glass, particularly at mid or close to the middle of the top and bottom sides of the glass (in position mounted on a motor vehicle) as soon as it is placed in the oven and on the other hand, it is possible to force the glass to bulge by the action of the counter-skeleton pressing on the glass.
  • the counter-skeleton presses on the glass during its descent, which forces the peripheral bending.
  • Such kinematics is advantageous because it facilitates the main bending of the glass and thus reduces the forming cycle time.
  • the glass is at low temperature and less sensitive to the marking and that is why, except for the case of breakage, the contact supported enough of the back-skeleton at this stage is not necessarily embarrassing, and may even be advantageous.
  • the initiation of the approximation between glass and back-skeleton can be relatively powerful (simple trigger that is to say, passing from a single stroke of a remote configuration to a close configuration) or progressive.
  • a trip system can be operated through the side walls of the oven or through the oven floor.
  • a triggering system may in particular be similar to that described in US8156764.
  • the distance between the glass and the backbone in the middle zone of one side can be in the range from 0 to 10 mm at the beginning of the bending, and finally at 0 mm at the end of bending while concomitantly, the distance between the glass and the skeleton in the middle zone of one side can be in the range from 0 to 300 mm at the beginning of bending to finish at 0 mm at the end of bending.
  • the skeleton and the back-skeleton may eventually move closer during bending.
  • the back-skeleton touches the glass and no stop / abutment system stops the progression of the back-skeleton towards the glass (and therefore also to the skeleton) under the effect of gravity. It is the glass itself that plays the role of a stop. In this case, the back-skeleton rests on the glass, which causes a more or less significant compression of the fibrous material equipping it. If the counter-skeleton is relatively light, you can let it rest on the glass. If the back-skeleton is too heavy and exerts too much pressure on the glass despite the presence of the fibrous material equipping it, one can compensate part of the weight of the back-skeleton by a counterweight system.
  • the weight of the back-skeleton is lightened by a counterweight acting at the end of a lever.
  • This lever is connected to the frame supporting the skeleton by a pivot connection to the substantially horizontal axis, one end of the lever carrying the counterweight, the other end of the lever being connected to the back-skeleton and pulling it upwards under the effect of the counterweight at the other end of the lever.
  • the invention also relates to a method of gravity bending of the glass, by the device according to the invention.
  • the bending of the glass is carried out by gravity on a skeleton supporting the glass in its peripheral zone, a counter-skeleton coming into contact with the glass in the middle zone of at least one of the sides of the glass in the peripheral zone of its main face. higher.
  • the glass is bulging by gravity at a temperature in the range of 570 to 650 ° C, more generally in the range of 610 to 650 ° C.
  • This oven can be traversed by such sets each loaded with glass and circulating behind each other in the oven, the skeleton and counter-skeleton forming an embedded assembly capable of being conveyed together horizontally but without relative horizontal displacement of one relative to the other.
  • the oven can include different temperature zones to gradually heat up and gradually cool the glass.
  • the glass is in contact with the skeleton for more than 10 minutes and generally more than 15 minutes and more generally between 15 and 30 minutes in the oven while being conveyed into the oven.
  • the glass undergoes a rise in temperature, bending and after bending a controlled drop in temperature.
  • the back-skeleton usually also affects the glass for more than 10 minutes and generally the same time that the glass touches the skeleton.
  • the bending is done by gravity. In the absence of counter-skeleton, during the bending, the glass will touch the entire skeleton, then some areas (especially in the middle area of at least one side of the peripheral area) would recover to leave the contact with the skeleton.
  • the counter-skeleton serves to prevent this raising of the glass and to guarantee a total contact of the glass with all the circumference of the skeleton at the end of the bending.
  • the skeleton and the counter-skeleton form an embedded assembly capable of being conveyed into the furnace by a conveying means.
  • the device according to the invention does not allow a relative horizontal movement of the skeleton and the back-skeleton relative to each other, even though the skeleton / counter-skeleton assembly is conveyed into the furnace.
  • the device may include means for the skeleton and backbone to move toward or away from each other by relative vertical movement without relative horizontal displacement relative to each other, even though skeleton / counter-skeleton is conveyed into the oven.
  • the device generally comprises an oven and a conveying means able to move horizontally together the skeleton and the back-skeleton in the oven while they are facing each other, and means of vertical translation allowing the skeleton and the back-skeleton to move towards or away by a relative vertical movement during their horizontal movement and without relative horizontal displacement relative to one another. If necessary, the device may be such that it is possible to place a counter-skeleton on a glass before the entrance of the oven and to remove it after leaving the oven.
  • the glass After bending, the glass is cooled. For this cooling and in order not to generate in the glass too large edge extension constraints, we move away advantageously the counter-skeleton of the glass.
  • the removal of the back-skeleton is advantageously carried out during cooling of the glass and when the latter is at a temperature of between 620 and 500 ° C.
  • This distance can be achieved by different systems. It can be a re-engagement system that performs the inverse function of the "trigger" described above.
  • the backbone may be composed of retractable strips laterally, generally four in number. The strips of the back-skeleton deviate vertically and laterally at the time of retraction so as not to be above the upper face of the glass.
  • the system controlling the retraction of the strips may be similar to one of those described in US 8156764, that is to say for example through the side walls of the furnace.
  • the backbone and the backbone are advantageously independent of each other, that is to say that the backbone can then be separated entirely without having any link with the backbone.
  • the glass can then be loaded on the skeleton and then the back-skeleton is put in place.
  • the loading of the glass on the device according to the invention can be carried out manually.
  • the back-skeleton being removed, operators put the glass on the skeleton. Then they place the counter-skeleton according to its intended position.
  • the position of the backbone is advantageously given by positioning means fixed to the skeleton or to the frame. These positioning means guide the back-skeleton during its installation. This guidance is made possible for example by holes in guide tabs connected to the backbone and through which pass positioning columns.
  • the loading and unloading of the glass can also be automated, in particular using robots, one for loading, the other for unloading.
  • robots makes it possible to have precise and reproducible movements as well as a reliable and tolerant coupling system between the skeleton and its associated counter-skeleton.
  • This system in which the back-skeleton is completely separable from the skeleton allows 1) to have a minimum of embedded functions in the tool and thus to minimize the weight of the latter, which is an important factor of energy consumption , 2) to minimize the risk of mechanical seizure and 3) to minimize maintenance operations, usually expensive on forming tools.
  • the back-skeleton can be part of a system directly embedded on the skeleton itself and able to retract the back-skeleton.
  • the back-skeleton may be composed of four separate bands integral with the skeleton and which can move away or join each other by displacements having both a horizontal component and a component vertical allowing to move away from the glass, without sliding on it, while moving away laterally from the skeleton.
  • Such a movement can be performed by a simple rotation whose axis is judiciously chosen, especially outside the skeleton. As these bands move away, the skeleton becomes accessible for unloading or loading glass.
  • the back-skeleton is of too light constitution, it may be of low rigidity and its shape may change slightly during its use, due to thermal stresses during the heating and cooling cycles. In this case, it can be found that the gap between skeleton and back-skeleton (and therefore between the metal band of the skeleton and the metal band of the back-skeleton) is no longer uniform and as it had been initially adjusted . The glass may eventually get to some places too wedged between skeleton and back-skeleton, reducing the bending in these places by preventing the glass from slipping on the skeleton. Thus, depending on the bending case, a simple adjustment of deviation only at the corners of the device, in particular by four jack screws, may prove to be insufficient.
  • the back-skeleton comprises a structural element disposed above its metal bar, the structural element and the metal bar being interconnected by a plurality of adjustable spacers for locally adjusting the distance between the structural element and the metal bar.
  • the structural element is rigid and indeformable despite the multiple heating and cooling thermal cycles experienced for bombarding glass sheets industrially. It can be used as a reference to adjust the shape of the metal bar.
  • the structural element advantageously comprises a metal tube, in particular of the frame type. This tube may in particular have a square or rectangular section. It may include lateral extensions to come over the adjustment areas, the upper end of the struts being connected to the extensions. The upper end of the spacers can also be connected directly to the structural element.
  • the back-skeleton may comprise a structural element arranged at a dimension higher than that of its metal bar, the structural element and the metal bar being connected by a plurality of adjustable spacers for locally adjusting the distance between the element structural and metallic bar, and locally distance back-skeleton / skeleton.
  • the plurality of spacers is evenly distributed all around the counter-skeleton.
  • a sector is a piece of metal strip presenting one of its slices downwards, said slice being covered or not, as the case may be, with a refractory fibrous material.
  • a sector comprises a length and a height, its thickness being that of the metal strip. Its length is substantially parallel to the edge of the glass and the skeleton. The downward slice of the sector is substantially parallel to the slice of the skeleton at the same location.
  • the sectors are interconnected as a chain so that their downwardly directed slices are aligned and substantially parallel to the edge of the glass and the skeleton.
  • a sector is connected to two other sectors by joints comprising a pivot connection to the substantially horizontal axis located at both ends of its length, except in the case of a sector at the end of the chain, in which case it is is connected to only one other sector by an articulation at one of its ends.
  • a sector counter-skeleton may be composed of four strips (corresponding to the four sides of the glass and the skeleton) each, in use, with respect to one side of the skeleton and thus also to one side of the glass. Each of these strips has a plurality of sectors, for example from 2 to 10 sectors.
  • the back-skeleton may comprise a metal bar of the vertical metal strip type, a slice of which is turned downwards, comprising a plurality of sectors connected to each other by hinges, each hinge comprising a pivot connection to the hinge. substantially horizontal axis connecting two sectors between them.
  • the counter-skeleton with sectors follows very well the deformations of the glass. Similarly, his own tendency to distort is thwarted by the play of the joints.
  • the sector counter-skeleton takes off much less from the glass than if it were in one piece and without articulation.
  • the marks on the glass depend essentially on the effective pressure exerted by the back-skeleton on the glass, and therefore on the following parameters: the weight of the different sectors of the back-skeleton, the contact surface of the fibrous material covering the back-skeleton and and finally, the texture of the fibrous material itself, which preferably has a smooth and flexible surface.
  • the end of the lever connected to the sector backbone is preferably connected to a joint joining two sectors.
  • Two sectors interconnected by a joint can be juxtaposed locally at the joint.
  • the juxtaposition zones of the two sectors are then juxtaposed in a direction perpendicular to the axis of the joint, said axis passing through the zones of juxtaposition of the two sectors.
  • the zone of juxtaposition of at least one of the two sectors may be, in top view, offset with respect to its slice facing downwards, so as to provide a space capable of being occupied by the juxtaposition zone of the other associated sector in the articulation.
  • This local offset can be achieved by local embossing.
  • This local offset can also be achieved by cutting the juxtaposition zone so as to form a tongue that is can shift by deformation of the metal relative to the plane of the sector in plan view.
  • the set of two articulated sectors is twice as thick as a single sector
  • the slices facing downwards of two sectors connected to each other by an articulation can be aligned in top view.
  • the slices facing downwards from two sectors interconnected by a hinge can be aligned in plan view, the juxtaposition zone of at least one of the two sectors being, in top view, offset with respect to its slice turned down, so as to spare a space occupied by the juxtaposition zone of the other sector.
  • a sector backbone can operate according to the modes V1 or V2 mentioned above and the advantage resulting from the existence of the joints is exerted in both cases.
  • the sector counter-skeleton does not deform as much as if it were in one piece. Its lower edge follows better the surface of the glass during the bending despite the thermal stresses. In this way, the pressure exerted by the back-skeleton on the glass is more uniform and better distributed over its entire contact zone.
  • a sector backbone can touch the glass via a fibrous material whose compression is limited due to the presence of a means of imposing a given minimum spacing Dm between the metal strip in the skeleton and the metal band in the back-skeleton.
  • the skeleton may comprise a metal strip having a slice directed upwards and a plurality of stops connected to the metal strip. These stops are advantageously placed vis-à-vis joints of the back-skeleton.
  • Counterbutts are then connected to the counter-skeleton and placed opposite the abutments, in particular to the stems forming axes of the articulations, so that they can come to bear on the abutments, so that a minimum distance Dm between the metal band the skeleton and the metal bar of the back-skeleton can be imposed at each sector when the abutments rest on the stops, and therefore when the back-skeleton is placed above glass.
  • the joints ensure that despite the thermal stresses, each sector is based on its associated stop. According to this construction, the sectors at the ends of each segment are slightly shorter so as not to hinder their movement around their horizontal axis.
  • a specific cut at the joint of the sectors located at the ends of each strip limits their downward vertical movement and thus does not interfere with the movement of the back-skeleton during the loading and unloading of the glass.
  • the sectors can be grouped into as many bands that the glass has sides, each band corresponding to one side of the glass and being substantially parallel, the ends of the strips not being connected to their neighboring strips.
  • Figure 1 shows in section a device according to the invention comprising a skeleton 320 and a backbone 321.
  • a stop 327 is fixed to the metal strip 322 of the skeleton.
  • the edge of this upwardly-turned metal strip is covered with a refractory fibrous material 323.
  • the counter-skeleton comprises as a metal bar a metal strip 324 whose downward-facing slice is covered with a refractory fabric 325 for contact with the glass 328.
  • a counterbutter 326 is connected to the metal bar 324 and can rest on the stop 327, blocking the descent of the back-skeleton to the skeleton. With a vacuum (in a)), the gap E between skeleton and back-skeleton is less than the thickness e of the glass 328.
  • the fibrous refractory materials 325 and 323 compress under the weight of the back-skeleton until abutment 326 rests on abutment 327.
  • the gap between backbone bar 324 and backbone metal band 322 is the minimum distance Dm. Stop 327 and abutment 326 are a means of imposing a minimum distance between 324 and 322. In this way the pressure force on the glass exerted by the skeleton and the back-skeleton is limited.
  • Figure 2 shows a windshield-type automotive glazing seen from above, and placed on a horizontal plane, concave face facing downwards. It comprises four sides, two transverse sides 350 and 351 and two longitudinal sides 352 and 353. One side joins another side by a corner having radii of curvature R (in vision perpendicular to the surface of the glass and in each corner) on the surface weak relative to the radii of curvature at the surface towards the middle of the sides.
  • This glazing is symmetrical with respect to the vertical plane of symmetry PS.
  • This PS plane passes through the mediums 354 and 355 of the transverse sides.
  • This glazing rests on four points 356, 357, 358, 359 located in the corners. Dotted lines 360, 361, 362 and 363 connecting these four points.
  • each of these segments has a medium 364, 365, 366, 367.
  • For each segment there is a plane perpendicular (368, 369, 370, 371) to the segment and passing through its middle. Each of these planes intersects the edge of the nearest lens at a point 372, 355, 373, 354 which is their center.
  • the glazing is concave (in this figure, the concave face is facing downwards) at least at the midpoints 372, 355, 373, 354 and in all the hatched areas on either side of these midpoints, said concavity being considered parallel to the outer edge of the glazing.
  • the dotted line 376 is 50 mm from the edge of the glass and forms the boundary of the peripheral zone, which is between the edge of the glass and this line.
  • the middle zone of the side 353 of the peripheral zone of the upper main face of the glass is the hatched area on the left. This zone surrounds the middle point 373.
  • the hatched area is included in the peripheral zone between points 374 and 375 on the edge.
  • points 374 and 375 are each at a distance from point 373 of at least 5 cm, or even at least 10 cm or even at least 20 cm.
  • the counter-skeleton presses the glass at least in this zone and, where appropriate, continuously throughout the entire length of this zone parallel to the edge of the glass, that is to say without discontinuity between the points 374 and 375, but not necessarily in the full width of this area.
  • FIG. 3 represents a device according to the invention at the moment when a backbone 8 (grayed in the figure) is being placed in position above the glass, the latter not being represented in the figure by concern for clarity.
  • a frame 1 on which is fixed the skeleton 2 via lugs 3 and 4.
  • the glass (not shown) is placed on the skeleton 2.
  • Operators hold the back-skeleton 8 by handles 6.
  • These handles are fixed on a frame 7 on which is also fixed the backbone 8 by means of lugs 9 and 10.
  • the exact positioning of the back-skeleton is ensured by guidance with four positioning columns (1 1 and 12 in the first plan), one at each corner. These columns are integral with the frame 1.
  • Tabs 13 and 14 fixed to the frame 7 of the backbone each comprising an orifice are threaded onto the columns 1 1 and 12 through their orifices.
  • Candles 15 and 16 are part of the means of imposing a given minimum distance Dm between the skeleton and the backskeleton. They are each provided with bearing surfaces 17 and 18 adjustable in height by means of screws 19 and 20.
  • the frame 7 of the back-skeleton comprises tabs 21 and 22 which rest on the support surfaces 17 and 18. when the operators have finished depositing the counter-skeleton. The weight of the backbone therefore rests on the support surfaces 17 and 18, the height thereof being adjusted so that the spacing between the backbone and the skeleton is the chosen one.
  • the bearing surfaces 17 and 18 form abutments integral with the skeleton and the pastes 21 and 22 are abutments integral with the back-skeleton.
  • the skeleton and the counter-skeleton form here an embedded assembly able to be moved horizontally in an oven.
  • the four positioning columns (1 1 and 12 in the foreground) are part of vertical translation means allowing the skeleton and the back-skeleton to move towards or away by a relative vertical movement without relative horizontal displacement of the one compared to each other. In this way, the skeleton and the back-skeleton remain opposite each other. on the other side (on both sides of the glass) during the horizontal movement of the skeleton / counter-skeleton assembly in the oven.
  • FIG. 4 shows a sectional part of the device according to the invention in which there is a stack 30 of two glass sheets comprising a thin sheet (for example of thickness 1.1 mm thick) in the upper position and a sheet thicker (for example 2.1 mm thick) in the lower position.
  • the gap between the glass and the back-skeleton (and therefore also between the skeleton and the back-skeleton) is being adjusted thanks to the wedge 40.
  • This operation is done on a previously already curved glass.
  • the glass rests with its lower main face 31 on the skeleton 32, which consists of a metal strip 33 and a fibrous refractory material 34 covering the contact surface for the glass.
  • the counter-skeleton 35 has the same structure.
  • Skeleton and counter-skeleton are exactly opposite each other on both sides of the glass. There is a gap 36 between the back-skeleton 35 and the upper face of the glass 37, filled by the adjustment wedge 40. Skeleton and counter-skeleton act entirely inside the peripheral zone 38 of the glass between the edge of the glass. glass and 50 mm from the edge of the glass.
  • FIG. 5 is a top view of a back-skeleton comprising a rigid structural element 50 above a part 51 of the back-skeleton comprising a vertical plate (non-visible) coming on the glass.
  • the visible part 51 is a horizontal plate 57 coming above the vertical plate and to which it is connected.
  • This structural element is a metal tube of square section and has the shape of a rectangular frame in plan view. It comprises a plurality of extensions 52 connected to its inner or outer vertical faces, said extensions coming, in top view, above zones 53 of local adjustment of the position of the lower portion of the back-skeleton. These adjustments are made by jack screws 54 passing through the rigid structural element 50 here.
  • Figure 6 shows the counter-skeleton of Figure 5 according to section AA 'in a) and the side view in the direction B in b).
  • the metal square of the rigid structural element 50 is found, an extension 52 being welded to an outer vertical face of said square. This extension is also in square metal.
  • the vertical plate 55 is indirectly connected to the rigid structural element 50 so that it is integral.
  • the lower edge 56 of this vertical plate 55 comes on the glass and its distance to the skeleton can be finely adjusted by the screw jack 54 by screwing or unscrewing the nuts 58 and 59.
  • the vertical plate 55 is welded by its edge greater than one. horizontal plate 57, in order to stabilize the position of the plate 55.
  • the horizontal plate 57 is connected to the lower end of the jack screw 54 by means of a pivot connection 60 whose pivoting is adjustable and biocable at a given position thanks to the nuts 61 and 62.
  • the adjustment of this pivoting makes it possible to adjust the inclination of the edge 56 so that it is well parallel to the skeleton and that the distance between the skeleton and the back-skeleton is quite constant for the entire periphery of the glass.
  • FIG. 7 represents a back-skeleton according to the invention seen entirely in a), a portion being enlarged in b).
  • This back-skeleton comprises a structural element 75 made from pieces of metal squares welded together. Viewed from above, this structural element has a shape similar to that of the skeleton and therefore the glass to be bomber.
  • Lateral extensions 76 have been welded to inner vertical faces of the structural member. Adjusting cylinder screws traverse these extensions vertically. The adjustment of a jackscrew makes it possible to locally adjust the dimension of the lower edge 77 of a vertical plate 78.
  • This vertical plate is secured to a horizontal plate 79 by a system of brackets 80 and screws and nuts.
  • a pivot connection 81 above the horizontal plate 79 makes it possible to adjust the local inclination of the horizontal plate 79 in the context of the adjustment of the height dimension of the edge 77.
  • the correct lateral positioning of the back-skeleton is ensured by a centering means of the type already described for FIG. 3 and not represented here for the sake of simplification.
  • FIG. 8 shows in side view and schematically the assembly of a skeleton 90 and its counter-skeleton 91. It can be seen that the contact track of the skeleton is concave along the entire length of the visible side in the figure, parallel to its inner and outer contours, this concavity being in the plane of the figure.
  • the backbone 91 is composed of a plurality of sectors (S1, S2, S3, S4, S5, S6) interconnected by articulations.
  • a sector has an elongated dimension parallel to the edge of the glass which is called length L (substantially horizontal in FIG. 8a), and a height (substantially vertical in FIG. 8a).
  • Two sectors connected by a joint present a juxtaposition locally in the area of the joint.
  • Figure 8b) shows a side view, a zoom of the pivot joint 92 between sectors S2 and S3 (of Figure 8a) and the abutment system and associated abutment.
  • Figure 8c) represents the identical of Figure 8b) but seen in the direction of the length of the sectors, the eye being on the sector S2 side and looking towards the sector S3.
  • the hidden edges in FIGS. 8a) to 8d) have not been shown and the fibrous material covering the tools has not been shown either.
  • the back-skeleton comprises a rigid structural member 96 whose height dimension relative to the skeleton 90 is preliminarily and approximately adjusted by jack screws 97 located at the four corners of the back-skeleton.
  • the plurality of sectors S1 to S6 connected to each other by chain-like joints (92, 93) form an articulated vertical plate.
  • a sector S3 is connected at each of its ends to two neighboring sectors S2 and S4 by pivot links 92 and 93 to the axes substantially horizontal. These articulations leave the possibility for the sectors to move relative to each other under the sole effect of their own weight.
  • Each sector is provided with a rod 94 acting as abutment and pressing against a stop 95 integral with the skeleton 90. When the height adjustable abutment 94 presses on the stop 95, the gap skeleton / against backbone desired is obtained.
  • a lock-nut 99 makes it possible to block the screw 94 and thus freeze the skeleton / back-skeleton gap.
  • the pivot connection 92 shown in Figure 8c is composed of a horizontal axis 102 connecting two sectors S2 and S3 which is connected to a bridge 103 which spans the two sectors S2 and S3.
  • the sectors S2 and S3 can therefore move in free rotation relative to the bridge 103 and around the axis 102.
  • a rod 98 is connected to each axis of articulation via a bridge identical to the bridge 103 and can have a free vertical movement relative to the rigid structural element 96.
  • a slide 104 is interposed between the rigid structure 96 and the vertical rod 98.
  • a mechanical clearance between 0.3 and 0.5 mm between the inner bore of the slider 104 and the vertical rod 98 provides a good mechanical compromise between the possible vertical translation of the rod 98 and the accuracy of its vertical guidance.
  • This rod 98 is surmounted by a head 100 so that the rod can not pass through the rigid structural element 96.
  • each head comes to rest on the rigid structural element 96, which simply keeps cohesion across sectors.
  • an abutment 101 is also disposed on the rod 98 but this time under the rigid structure 96 to limit the movement of the sectors upward, especially when handling the backbone.
  • a flyweight 105 (shown in FIG. 8c) has been disposed at each articulation but on the side opposite to the adjustable abutment 94.
  • Such a counterweight makes it possible to counterbalance the weight exerted by the abutment 94 and thus to promote the sliding of each rod.
  • the heads 100 do not rest on the rigid structural element 96, so that it is the position of the abutments and abutments which determine the position of the sectors.
  • the rigid structural element 96 then plays no role of reference.
  • the sectors can move relative to each other by the play of the joints so that the abutments always rest on the abutments, which guarantees the conservation of the gap skeleton / counter-skeleton wished during the thermal cycle .
  • FIG. 9 shows in side view and schematically the assembly of a skeleton 1 10 and its back-skeleton 1 1 1 composed of a plurality of sectors (S1, S2, S3, S4, S5, S6 ) interconnected by pivot joints to substantially horizontal axes.
  • the tooling is here used in direct pressure, without system of abutments and abutments.
  • FIG. 9 schematizes a counterweight system that can be installed at the ends of the rods 1 18 in order to lighten the effective weight of each sector, and therefore the contact pressure that the back-skeleton exerts on the current lens 1 14 bending.
  • the counter-skeleton comprises a rigid structural element 1 16 whose height dimension relative to the skeleton 1 10 is adjusted in a preliminary and approximate manner by jack screws 1 17 located at the four corners of the back-skeleton.
  • the plurality of sectors S1 to S6 connected to each other by chain-like joints (1 12, 1 13) form an articulated vertical plate.
  • a sector S3 is connected at each of its ends to two neighboring sectors S2 and S4 by pivot links January 12 and January 13 to the substantially horizontal axes. These articulations leave the possibility for the sectors to move relative to each other under the sole effect of their own weight.
  • the hinge January 12 is connected by a bridge January 19 which spans the ends of the two sectors S2 and S3.
  • a rod 1 18 is connected to the hinge 1 12 via a bridge 1 19 and can have a free vertical movement relative to the rigid structural element 1 16.
  • This rod 1 18 is surmounted by a hinge 120.
  • the counterweight system is composed of a vertical bar 121 provided with a hinge 124 at its upper end, a rod 122 rotating at a point between its ends, freely around the hinge 124 and a mass 123 attached to the end of the rod 122.
  • the bar 121 is integral with the rigid structure 1 16 and located near the the stem 1 18.
  • the second end of the rod 122 is connected to the hinge 120 connected to the rod 1 18.
  • FIG. 10 is a diagrammatic view from above of all the sectors that make up the counter-skeleton according to the invention and described in FIG. 8.
  • the sectors are grouped in as many bands as the glass has sides (four bands B1, B2 , B3 and B4), each band corresponding to one side of the glass, the ends of the strips not being connected to their neighboring band.
  • the different sectors S1, S2, S3, S4, S5, etc.
  • their axes of rotation A1, A2, A3, A4, etc.
  • the sectors positioned at the ends of each band are not connected to the neighboring sector belonging to an immediately adjacent band.
  • FIG. 11 shows different representations of the ends of two adjacent sectors of a sector backbone such as the sectors S3 and S4 of FIG. 8 intended to be connected by a hinge.
  • Figure 11 (a) shows the end of a sector, such as sector S3 of Figure 8a) in front view, from above and from the side.
  • Figure 11 (b) is similar to Figure 11 (a) but represents the adjacent sector, such as sector S4 of Figure 8a).
  • 11 (c) represents the set of two ends of sectors arranged as articulated, such as the sectors S3 and S4 of FIGS. 8a) and 8b) in front view, from above as well as three vertical sections, two of which are located in the vertical plane passing through the axis of articulation between sectors S3 and S4.
  • a rod (not shown) is passed through the hole 140, the axis of said rod corresponding to the axis 141.
  • each sector S3 and S4 is composed of a sheet. Their cutting is symmetrical and is shown in front view in Figures 1 1 a) and 1 1 b). A hole 140 of axis 141 is provided at their end to pass the axis of the joint. The end 142 of the sector S3 is cut into the shape of a half-ring around the hole 140.
  • an embossing in the form of a disk of diameter greater than the half-ring 142 and of axis 141 makes it possible to form a boss.
  • the deformations 143 by embossing the sheets are visible in the views from above and from the side and are shown schematically in fine lines 144 in the front views.
  • the zone of juxtaposition of a sector is, in top view, offset with respect to its slice facing downwards.
  • This boss provides a space 150 in which the area of the joint of a neighboring sector can be placed to form the joint.
  • bosses of two sectors intended to be connected together by a joint are complementary and allow the local juxtaposition of the two sectors of the joint without thickening of the slice facing down the set of two sectors.
  • the set of two assembled sectors is only thicker locally at the juxtaposition zones of the sectors to form the joint. These juxtaposition zones are juxtaposed in a direction perpendicular to the axis of the joint, which passes through the juxtaposition zones of the two sectors.
  • the slices facing downwards from the two sectors connected to each other by a hinge are aligned in plan view. Two notches 145 and 146 are cut in the sheet so as not to cause edge effects that could disturb the rotational movement of the two sectors S3 and S4 relative to each other.
  • a notch 147 is made in the lower part of each sector in order to form a housing for maintaining a fibrous material coating the lower edge of the sectors.
  • Two projections 148 and 149, one (148) in the upper part of each sector and the other (149) in the lower part of each sector are cut along a line which passes through the axis of rotation 141 and which forms a angle ⁇ with the vertical. This angle is present both to allow and limit the rotation of the two sectors relative to each other.
  • the projecting portions 149 opposite the two adjacent sectors can form abutments while meeting, which makes it possible to limit the downward movement of the sectors situated at the ends of the strips, especially when the back-skeleton is removed from the device.
  • FIG. 12 shows in front view two adjacent sectors of a sector backbone of identical shape to sectors S3 and S4 of FIG. These two sectors are centered along a common axis.
  • Figure 12a shows the two sectors S3 and S4, each moving upwards while the axis of their joint joint remained in a lower position.
  • Figure 12b shows the two sectors S3 and S4, each moving downward while the axis of their joint joint remained in a higher position.
  • the objective of FIG. 12 is to show that the appropriate cutting of the ends of sectors S3 and S4 makes it possible to limit the relative angular displacement of S3 and S4.
  • the maximum angle that can form the sectors between them is limited by the parts 188 and 189 which act as stops. This angle is twice the angle ⁇ of Figure 1 1.
  • the notches 187 allow to fix a fibrous material covering the lower edge of the sectors.
  • FIG. 12b shows the two sectors in the closed position at the bottom and it can be seen that the space 190 between the notches 187 remains sufficient to let the fibrous material pass.
  • the projecting portions 189 facing the sectors S3 and S4 may form abutments when they meet (FIG. 12b), which makes it possible to limit the downward movement of the sectors situated at the ends of the strips, especially when the backskeleton is removed from the device.
  • Fig. 13 shows a simple alternative to making sector ends of backbone sectors.
  • Figure 12a shows the end of a sector, such as sector S3 of Figure 8a, in front view, from above and from side.
  • Figure 12b shows the adjacent sector, such as sector S4 of Figure 8a, to be hingedly connected with the sector of Figure 13a.
  • the end of the sectors consists roughly of 3 tabs 171, 172 and 173.
  • the upper tab 171 consists of a projecting portion 168 which limits the closure of the two sectors S3 and S4 as already explained for the sectors of the This projecting portion 168 forms an angle ⁇ with the vertical.
  • the tabs 171 and 172 on the one hand and 172 and 173 on the other hand are respectively separated by two reentrant cuts 175 and 176 which essentially allow to perform a simple folding of the central tongue 172 rather than a circular embossing such as that presented on Figure 1 1. Such folding is easier to achieve than embossing.
  • the deformations of the central tongue 172 are visible in the views from above and are shown schematically in fine lines 164 in the front views.
  • the tongue 172 includes the juxtaposition zone of the joint.
  • the offset of the tab 172 induced by the deformations 164 provides a space 180 useful for the placement of the juxtaposition zone of the neighboring sector to form the axis articulation 161.
  • the low tab 173 consists of a projecting portion 169 which allows to limit the closure of the two sectors S3 and S4 by abutting. This projecting portion 169 forms an angle ⁇ with the vertical. Finally, a notch 167 in the lower part of each sector provides space for the passage of the fibrous material coating the lower edge of the sectors.
  • Figure 14 shows in section a schematic view of a backbone 205 comprising laterally retractable strips.
  • a backbone 205 comprising laterally retractable strips.
  • the glass rests with its lower main surface 201 on the skeleton 202, which comprises a metal strip 203, a slice of which is directed upwards.
  • the counter-skeleton comprises as a metallic bar a vertical plate 214 and a horizontal plate 215. Both skeleton and counter-skeleton are provided with a refractory fibrous material (not shown) for contacting the glass.
  • the backbone 205 is secured to a U-shaped structure returned 208.
  • the latter is connected to a foot 206 itself secured to the structure 207 of the skeleton 202 via a substantially horizontal axis pivot connection 209.
  • the pivot connection makes it possible to retract the entire 'counter-skeleton +'"U" structure once the bending of the glass is done, which allows to easily clear the curved glass.
  • the assembly 'back-skeleton + structure' U ' is shown in the retracted position in dashed line 212.
  • the retraction system is made by a trigger system not described here but may for example pass through the side walls of the oven or the oven floor. The retraction performed during cooling makes it possible to obtain good glass edge stresses. Moreover, the retraction also makes it possible to remove the skeleton glass by a conventional harrow system pushing it from below, and to easily load it in the oven inlet, using a robot for example.
  • the counter-skeleton is set up again by a reverse rotary motion once the next glass is loaded onto the skeleton.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

The invention relates to a device and a method for gravity-bending a glass sheet or stack of glass sheets having a plurality of sides, referred to as the glass, comprising a frame for bearing the glass in the peripheral zone thereof by means of a contact track, said contact track having concave curvatures at each of the sides of said frame, and a counter-frame that can make contact with the glass in the central zone of at least one side of the peripheral zone of the upper main face of the glass. The invention is particularly useful for bending thin glass and for reducing the ripples that tend to form towards the middle of the sides.

Description

BOMBAGE DE VERRE PAR GRAVITE  GLASS BOMBAGE BY GRAVITY
ENTRE SQUELETTE ET CONTRE-SQUELETTE  BETWEEN SKELETON AND COUNTER SKELET
L'invention concerne le bombage par gravité du verre sur un squelette. Un contre- squelette est disposé au-dessus du verre afin d'éviter la formation d'ondulations à ses bords. The invention relates to gravity bending of glass on a skeleton. A counter-skeleton is placed above the glass to prevent the formation of corrugations at its edges.
Le bombage par gravité du verre est bien connu et notamment documenté dans EP448447, EP0705798, EP885851 . Dans le US999558, le verre est forcé à se bomber par un appui sur la tranche.  The gravity bending of glass is well known and in particular documented in EP448447, EP0705798, EP885851. In US999558, the glass is forced to bulge by a support on the wafer.
Le bombage par gravité de feuilles de verre d'épaisseur supérieure à 2,1 mm peut être effectué par des procédés décrits dans l'art antérieur. La tendance est à réduire de plus en plus l'épaisseur des feuilles de verre destinées à être assemblées au sein d'un vitrage feuilleté. On tend à associer une feuille mince, avec une feuille de plus grande épaisseur. On s'est aperçu que le bombage par gravité d'une feuille de verre d'épaisseur inférieure ou égale à 2,1 mm produisait, sur squelette classique, des défauts d'ondulation sur les bords du verre, plus particulièrement dans la zone du milieu des différents côtés du verre. Le phénomène responsable de la création de plis en périphérie du vitrage lors de son supportage en périphérie est un phénomène d'instabilité similaire à du flambement (ou du voilement) de plaques élastiques. De la même façon que dans le cas de plaques élastiques minces, le phénomène d'instabilité périphérique observé dans le formage de feuilles de verre est d'autant plus important que l'épaisseur du verre est faible et que la température à la périphérie du verre est élevée.  Gravity bending of glass sheets greater than 2.1 mm thick can be performed by methods described in the prior art. The tendency is to reduce more and more the thickness of the glass sheets intended to be assembled within a laminated glazing. It tends to associate a thin sheet with a sheet of greater thickness. It was found that the gravity bending of a glass sheet less than or equal to 2.1 mm thick produced, on a conventional skeleton, ripple defects on the edges of the glass, more particularly in the area of the glass. middle of the different sides of the glass. The phenomenon responsible for the creation of folds at the periphery of the glazing during its support at the periphery is a phenomenon of instability similar to buckling (or buckling) of elastic plates. In the same way as in the case of thin elastic plates, the phenomenon of peripheral instability observed in the forming of glass sheets is all the more important that the thickness of the glass is low and the temperature at the periphery of the glass is high.
Si l'on cherche à contrecarrer la formation de ces ondulations en appuyant sur la face supérieure du verre en cours de bombage cela tend à produire des marques sur cette face ainsi que sur la face inférieure, et même à gêner le bombage puisque le verre se retrouve coincé entre un outil inférieur et un outil supérieur comme dans une mâchoire, ce qui freine son effondrement. Les «marques» correspondent à de légères indentations mécaniques crées par les outillages sur le verre lors de son bombage. Elles sont particulièrement gênantes lorsque qu'elles se situent sur la surface inférieure du verre lors du bombage car elles sont alors visibles depuis l'extérieur du véhicule. Le vitrage est alors mis au rébus. Les « marques » qui se situent sur la face supérieure du verre lors du bombage sont en général plus facilement acceptées car elles se trouvent à l'intérieur du véhicule une fois monté sur lui et ces imperfections sont donc cachées de la vue d'un observateur extérieur au véhicule. Par ailleurs, ces marques à l'intérieur du véhicule ne sont cachées que si elles sont sur la périphérie du vitrage et donc dans la zone de collage du verre intérieur sur la carrosserie. Selon l'invention, le bombage de verre, notamment de verre mince, est correctement réalisé grâce à un dispositif de bombage par gravité d'une feuille de verre ou d'un empilement de feuilles de verre comprenant une pluralité de côtés, dit le verre, comprenant un squelette pour supporter le verre dans sa zone périphérique par une piste de contact, ladite piste de contact comprenant des courbures concaves en chacun des côtés dudit squelette, et un contre-squelette apte à entrer en contact avec le verre dans la zone du milieu d'au moins un côté de la zone périphérique de la face principale supérieure du verre. De préférence, le contre-squelette entre en contact dans la zone du milieu de tous les côtés, généralement quatre côtés, de la zone périphérique de la face principale supérieure du verre. La zone périphérique est la zone entre le bord du verre et une distance du bord du verre de 50 mm, qu'il s'agisse de la face supérieure ou de la face inférieure du verre. De préférence, le contre-squelette est amovible (synonyme: escamotable). If one seeks to thwart the formation of these undulations by pressing the upper face of the glass during bending this tends to produce marks on this face and on the underside, and even to hinder the bending since the glass is found stuck between a lower tool and a superior tool as in a jaw, which slows down its collapse. The "marks" correspond to slight mechanical indentations created by the tools on the glass during its bending. They are particularly troublesome when they are on the lower surface of the glass during bending because they are then visible from outside the vehicle. The glazing is then put to rebus. The "marks" that are on the upper side of the glass during bending are generally more easily accepted because they are inside the vehicle once mounted on it and these imperfections are hidden from the view of an observer outside the vehicle. Moreover, these marks inside the vehicle are hidden only if they are on the periphery of the glazing and therefore in the gluing area of the inner glass on the bodywork. According to the invention, the bending of glass, in particular of thin glass, is correctly achieved by means of a gravity bending device of a glass sheet or a stack of glass sheets comprising a plurality of sides, said glass , comprising a skeleton for supporting the glass in its peripheral zone by a contact track, said contact track comprising concave curvatures at each of the sides of said skeleton, and a counter-skeleton able to come into contact with the glass in the area of the at least one side of the peripheral zone of the upper main face of the glass. Preferably, the backbone contacts the middle region of all sides, generally four sides, of the peripheral zone of the upper main face of the glass. The peripheral zone is the area between the edge of the glass and a distance from the edge of the glass of 50 mm, whether it is the upper face or the lower face of the glass. Preferably, the back-skeleton is removable (synonym: retractable).
L'invention concerne également un procédé de bombage par gravité d'une feuille de verre ou d'un empilement de feuilles de verre, dit le verre (lequel a une épaisseur e), comprenant le bombage du verre par gravité sur un squelette comprenant une piste de contact supportant le verre dans la zone périphérique de sa face principale inférieure, un contre-squelette comprenant une barre métallique étant au contact du verre pendant le bombage dans la zone périphérique de sa face supérieure, aux endroits où des ondulations apparaissent en l'absence du contre-squelette. Le procédé comprend le bombage du verre par gravité sur un squelette supportant le verre dans sa zone périphérique par une piste de contact, ladite piste de contact comprenant des courbures concaves en chacun des côtés dudit squelette, un contre-squelette venant au contact du verre dans la zone du milieu d'au moins un des côtés du verre dans la zone périphérique de sa face principale supérieure.  The invention also relates to a method of gravity bending a glass sheet or a stack of glass sheets, said glass (which has a thickness e), comprising the bending of the glass by gravity on a skeleton comprising a contact track supporting the glass in the peripheral zone of its lower main face, a counter-skeleton comprising a metal bar being in contact with the glass during the bending in the peripheral zone of its upper face, at the places where undulations appear in the Absence of the back-skeleton. The method comprises bending the glass by gravity on a skeleton supporting the glass in its peripheral zone by a contact track, said contact track comprising concave curvatures in each of the sides of said skeleton, a counter-skeleton coming into contact with the glass in the middle zone of at least one side of the glass in the peripheral zone of its upper main face.
Le verre posé sur le squelette peut être une feuille individuelle d'épaisseur inférieure ou égale à 2,1 mm, voire d'épaisseur inférieure ou égale à 1 ,2 mm. Généralement, l'épaisseur d'une feuille individuelle est supérieure ou égale à 0,4 mm. Le verre posé sur le squelette peut également être un empilement de feuilles de verre, notamment de feuilles dont les épaisseurs viennent d'être données. L'empilement peut également comprendre des feuilles d'épaisseur différentes. Cet empilement peut comprendre 2, 3 ou 4 feuilles. On peut notamment bomber par le dispositif selon l'invention les deux feuilles suivantes à l'état superposé : une feuille dont l'épaisseur est comprise dans le domaine allant de 1 ,4 à 2,7 mm, généralement dans le domaine allant de 1 ,4 à 2,5 mm, avec une feuille dont l'épaisseur est comprise dans le domaine allant de 0,4 à 1 ,6 mm, notamment dans le domaine allant de 0,4 à 1 ,2 mm, la feuille la plus épaisse se trouvant de préférence sous la feuille la plus mince pendant le bombage sur le squelette. Les feuilles bombées ensemble par le dispositif selon l'invention ne sont pas nécessairement destinées à être associées ensemble dans un même vitrage feuilleté. Par simplification, on emploie les termes « le verre » pour désigner une feuille individuelle ou un empilement de feuilles. The glass placed on the skeleton may be an individual sheet of thickness less than or equal to 2.1 mm, or even less than or equal to 1.2 mm thick. Generally, the thickness of an individual sheet is greater than or equal to 0.4 mm. The glass placed on the skeleton can also be a stack of glass sheets, especially sheets whose thickness has just been given. The stack may also include sheets of different thickness. This stack may comprise 2, 3 or 4 sheets. In particular, the device according to the invention can be bombarded with the following two sheets in the superimposed state: a sheet whose thickness is in the range from 1.4 to 2.7 mm, generally in the range from 1 , 4 to 2.5 mm, with a sheet whose thickness is in the range of 0.4 to 1.6 mm, especially in the range of 0.4 to 1.2 mm, the most thick, preferably lying under the thinnest sheet during bending on the skeleton. The curved sheets together by the device according to the invention are not necessarily intended to be associated together in the same laminated glazing. For simplicity, the term "glass" is used to denote an individual sheet or a stack of sheets.
Le squelette supporte la face principale inférieure du verre dans sa zone périphérique. Le squelette comprend une bande métallique (que l'on peut également appeler « plat vertical », même si ses grandes faces peuvent éventuellement être inclinées) présentant une de ses tranches vers le haut pour supporter la périphérie du verre. Le squelette comprend également en revêtement sur la tranche supérieure de sa bande métallique, un matériau fibreux réfractaire bien connu de l'homme du métier, formant la piste de contact pour le verre. La bande métallique est rigide alors que le matériau fibreux a une certaine élasticité et compressibilité. Ce matériau est généralement du type feutre ou tricot ou tissu de fibres réfractaires métalliques et/ou céramique, comme cela est bien connu de l'homme du métier. Ces matériaux réduisent le risque de marquage du verre par le squelette. La bande métallique dans le squelette a généralement une largeur comprise dans le domaine allant de 1 à 10 mm. Le matériau fibreux présente généralement une épaisseur comprise dans le domaine allant de 0,3 à 1 mm. Le squelette offre au verre via son matériau fibreux réfractaire une piste de contact de largeur comprise généralement dans le domaine allant de 1 ,6 à 12 mm (ce qui inclut l'épaisseur due au matériau fibreux réfractaire), plus généralement dans le domaine allant de 3 mm à 10 mm. Le squelette présente en sa face de contact pour le verre des courbures concaves, et ce, pour chacun de ses côtés et généralement au moins au milieu de chacun de ses côtés, généralement quatre côtés. La piste de contact du squelette présente des courbures concaves pour au moins 80% et généralement au moins 90% de sa longueur, ladite concavité étant considérée parallèlement à ses contours (intérieur ou extérieur). La piste de contact du squelette présente des courbures concaves pour au moins 80% et généralement au moins 90% de la longueur de ses côtés longitudinaux, ladite concavité étant considérée parallèlement à ses contours (intérieur ou extérieur). En particulier, la piste de contact du squelette présente des courbures concaves pour la zone du milieu de ses côtés longitudinaux, notamment pour au moins jusqu'à 20 cm de chaque côté de ce milieu. La piste de contact du squelette présente des courbures concaves pour au moins 80% et généralement au moins 90% de la longueur de ses côtés transversaux, ladite concavité étant considérée parallèlement à ses contours (intérieur ou extérieur). En particulier, la piste de contact du squelette présente des courbures concaves pour la zone du milieu de ses côtés transversaux, notamment pour au moins jusqu'à 20 cm de chaque côté de ce milieu. Le verre s'effondre sous l'effet de la gravité sur le squelette pendant le bombage et prend une forme concave vue de dessus (la face concave est la face supérieure) en sa zone centrale et en chacun de ses côtés, notamment au milieu de ses côtés. Le squelette à une forme conférant cette concavité, puisqu'en fin de bombage, le verre touche tout le pourtour de la piste de contact du squelette. En fin de bombage, le verre étant posé sur le squelette, la zone centrale de la face supérieure du verre est concave dans toutes les directions. Vu de dessus, le squelette a sensiblement le même contour que le verre qu'il doit recevoir tout en étant plus petit puisque le verre déborde de tout le pourtour extérieur du squelette. La piste de contact du squelette présente donc généralement une forme concave en chacun de ses côtés, notamment au milieu de ses côtés. Le squelette présente autant de côtés que le verre et a donc généralement quatre côtés (également appelées « bandes »). Avant bombage, le verre déborde généralement de tout le pourtour du squelette d'une distance comprise dans le domaine allant de 2 à 45 mm. Ce débordement diminue au cours du bombage. Cette diminution dépend de l'importance des courbures données aux faces principales du verre pendant le bombage. En fin de bombage, ce débordement est généralement compris dans le domaine allant de 1 à 25 mm. Du début à la fin du bombage, le squelette supporte généralement le verre entièrement dans sa zone périphérique et sans déborder hors de cette zone, ni vers l'extérieur, ni vers l'intérieur. Vue de dessus, le squelette présente une forme annulaire continue et sans interruption. En effet, si le squelette était segmenté, cette segmentation pourrait produire une marque sur la face inférieure du verre compte tenu du fait que dans le procédé selon l'invention le verre s'effondre essentiellement sous le seul effet de son poids et il suit donc assez facilement la forme de son support et reste assez sensible aux dénivelés du squelette. The skeleton supports the lower main face of the glass in its peripheral zone. The skeleton comprises a metal strip (which may also be called "vertical plate", even if its large faces may optionally be inclined) having one of its slices upwards to support the periphery of the glass. The skeleton also comprises coated on the upper edge of its metal strip, a refractory fibrous material well known to those skilled in the art, forming the contact track for the glass. The metal band is rigid while the fibrous material has some elasticity and compressibility. This material is generally of the felt or knit type or fabric of metal and / or ceramic refractory fibers, as is well known to those skilled in the art. These materials reduce the risk of glass marking by the skeleton. The metal strip in the backbone generally has a width in the range of 1 to 10 mm. The fibrous material generally has a thickness in the range of 0.3 to 1 mm. The skeleton provides the glass, via its refractory fibrous material, with a contact track of width generally in the range from 1.6 to 12 mm (which includes the thickness due to the refractory fibrous material), more generally in the range from 3 mm to 10 mm. The skeleton has concave curvatures in its contact face for the glass, for each of its sides and generally at least in the middle of each of its sides, generally four sides. The contact track of the skeleton has concave curvatures for at least 80% and generally at least 90% of its length, said concavity being considered parallel to its contours (inside or outside). The contact track of the skeleton has concave curvatures for at least 80% and generally at least 90% of the length of its longitudinal sides, said concavity being considered parallel to its contours (inside or outside). In particular, the contact track of the skeleton has concave curvatures for the middle zone of its longitudinal sides, in particular for at least up to 20 cm on each side of this medium. The contact track of the skeleton has concave curvatures for at least 80% and generally at least 90% of the length of its transverse sides, said concavity being considered parallel to its contours (inside or outside). In particular, the contact track of the skeleton has concave curvatures for the middle zone of its transverse sides, in particular for at least up to 20 cm on each side of this medium. The glass collapses under the effect of gravity on the skeleton during the bending and takes a concave shape seen from above (the concave face is the face superior) in its central zone and in each of its sides, in particular in the middle of its sides. The skeleton has a shape conferring this concavity, since at the end of bending, the glass touches the entire periphery of the contact track of the skeleton. At the end of bending, the glass being placed on the skeleton, the central zone of the upper face of the glass is concave in all directions. Seen from above, the skeleton has roughly the same outline as the glass it must receive while being smaller since the glass overflows all the outer circumference of the skeleton. The contact track of the skeleton therefore generally has a concave shape in each of its sides, especially in the middle of its sides. The skeleton has as many sides as the glass and therefore generally has four sides (also called "strips"). Before bending, the glass usually overflows all around the skeleton by a distance in the range of 2 to 45 mm. This overflow decreases during the bending. This decrease depends on the importance of the curvatures given to the principal faces of the glass during the bending. At the end of bending, this overflow is generally in the range of 1 to 25 mm. From the beginning to the end of the bending, the skeleton generally supports the glass entirely in its peripheral zone and without overflowing out of this zone, neither outwards nor inwards. Viewed from above, the skeleton has a continuous annular shape and without interruption. Indeed, if the skeleton was segmented, this segmentation could produce a mark on the underside of the glass, given that in the process according to the invention the glass collapses essentially under the sole effect of its weight and therefore follows quite easily the shape of its support and remains quite sensitive to the unevenness of the skeleton.
L'invention concerne plus particulièrement le bombage de verre pour la réalisation de vitrages destinés à équiper des véhicules (automobile, bus, camion, véhicule agricole, etc). Il peut s'agir de pare-brise, lunette arrière, toit, vitre latérale coulissante ou fixe. Le verre ici considéré comprend une pluralité de côtés, généralement quatre côtés (également appelées « bandes »), un côté rejoignant un autre en un coin du verre, ce coin comprenant un segment de courbe comprenant des rayons de courbure bien plus petits que ceux des courbures des côtés. On prend ici en considération les rayons de courbure du pourtour des faces principales en vision perpendiculaire aux faces principales et au bord du verre. Le milieu d'un côté se trouve à sensiblement égale distance de deux coins de ce côté. Ces verres ont un plan de symétrie vertical PS lorsqu'ils sont montés sur le véhicule, la direction de déplacement du véhicule (volant non-tourné) étant comprise dans ce plan de symétrie. Les côtés venant en intersection de ce plan de symétrie sont dits côtés transversaux, les deux autres côtés étant dits côtés longitudinaux. On trouve le milieu des côtés de la façon suivante : on pose le verre bombé (de préférence à l'état de vitrage assemblé peu déformable) sur un plan horizontal, côté concave vers le bas. Le verre touche le plan horizontal par 4 points de contact en ses coins. On relie les points de contact entre eux par des segments de droite. L'intersection avec le bord du verre du plan perpendiculaire au segment et passant par le milieu de ce segment, est le milieu du côté du verre. Le milieu des côtés transversaux se trouve aussi à leur intersection avec le plan de symétrie vertical PS. The invention relates more particularly to the bending of glass for the production of glazing intended to equip vehicles (automobile, bus, truck, agricultural vehicle, etc.). It can be windshield, rear window, roof, side window sliding or fixed. The glass considered here comprises a plurality of sides, generally four sides (also called "strips"), one side joining another in a corner of the glass, this corner comprising a segment of curve comprising radii of curvature much smaller than those of curvatures of the sides. Consideration here is given to the radii of curvature of the perimeter of the main faces in vision perpendicular to the main faces and the edge of the glass. The middle of one side is approximately equal distance from two corners of this side. These glasses have a PS vertical plane of symmetry when they are mounted on the vehicle, the direction of movement of the vehicle (non-turned wheel) being included in this plane of symmetry. The intersecting sides of this plane of symmetry are said transverse sides, the other two sides being said longitudinal sides. The middle of the sides can be found in the following way: the curved glass (preferably in the form of low-deformable assembled glazing) is placed on a horizontal plane, concave side downwards. The glass touches the horizontal plane by 4 points of contact at its corners. The points of contact between them are connected by segments of the line. The intersection with the edge of the glass plane perpendicular to the segment and passing through the middle of this segment, is the middle side of the glass. The middle of the transverse sides is also at their intersection with the vertical plane of symmetry PS.
On a observé que les problèmes d'ondulation du verre ont principalement lieu au milieu des côtés et, pour remédier à ce problème, le contre-squelette vient au contact du verre dans la zone du milieu d'au moins un de ses côtés et généralement dans la zone du milieu de tous ses côtés. Le contre-squelette peut également entrer en contact avec le verre dans la zone périphérique hors de la zone du milieu d'un côté et même au-dessus des coins du verre, mais cela n'est généralement pas nécessaire. Le contre-squelette peut donc éventuellement être absent au-dessus de coins du verre, le verre étant mieux formé en ces endroits. Ceci est notamment possible lorsque la complexité du vitrage n'est pas trop élevée, typiquement lorsque sa flèche principale est inférieure à 100 mm. La zone du milieu d'un côté est la zone entourant ce milieu dans la zone périphérique du verre. Notamment, la zone du milieu d'un côté est la zone périphérique au voisinage et de part et d'autre du milieu, au moins jusqu'à 5 cm de chaque côté du milieu, et même au moins jusqu'à 10 cm de chaque côté du milieu, et même au moins jusqu'à 20 cm de chaque côté du milieu, parallèlement au bord du verre et dans la zone périphérique. Cette zone du milieu d'un côté est entièrement concave au moins jusqu'à 20 cm de chaque côté du milieu. Le contre-squelette appuie sur le verre dans cette zone, mais pas nécessairement dans toute cette zone. Le contre-squelette appuie suffisamment pour empêcher la formation des ondulations, mais insuffisamment pour marquer le verre. Le contre-squelette appuie le cas échéant de façon continue dans toute la longueur de cette zone parallèlement au bord du verre, mais généralement pas dans toute la largeur de cette zone. Le cas échéant, le contact avec le verre peut donc n'être que partiel, c'est-à- dire que le long de la périphérie du verre, le contre-squelette peut ne toucher le verre qu'en certaines zones et pas d'en d'autres. Le contre-squelette est de préférence vis-à- vis du squelette de l'autre côté du verre pendant le bombage. Cependant, il peut se trouver un peu décalé vers l'intérieur ou vers l'extérieur par rapport au squelette, mais son contact avec le verre ne se fait de préférence que dans la zone périphérique de la face supérieure.  It has been observed that problems of glass rippling occur mainly in the middle of the sides and, to remedy this problem, the counter-skeleton comes into contact with the glass in the middle zone of at least one of its sides and generally in the middle zone on all sides. The back-skeleton may also come into contact with the glass in the peripheral zone out of the middle zone on one side and even above the corners of the glass, but this is not usually necessary. The counter-skeleton may therefore possibly be absent above corners of the glass, the glass being better formed in these places. This is particularly possible when the complexity of the glazing is not too high, typically when its main arrow is less than 100 mm. The middle area of one side is the area surrounding this medium in the peripheral area of the glass. In particular, the middle zone of one side is the peripheral zone in the vicinity and on either side of the middle, at least up to 5 cm on each side of the medium, and even at least up to 10 cm from each side of the middle, and even at least up to 20 cm on each side of the middle, parallel to the edge of the glass and in the peripheral area. This middle area of one side is fully concave at least up to 20 cm on each side of the middle. The counter-skeleton presses the glass in this area, but not necessarily throughout this area. The backbone supports enough to prevent the formation of undulations, but insufficiently to mark the glass. The counter-skeleton optionally supports continuously throughout the length of this zone parallel to the edge of the glass, but generally not throughout the width of this zone. If necessary, the contact with the glass may therefore be only partial, that is to say that along the periphery of the glass, the back-skeleton may touch the glass only in certain areas and not in others. The counter-skeleton is preferably vis-à-vis the skeleton on the other side of the glass during bending. However, it may be slightly offset inwards or outwards relative to the skeleton, but its contact with the glass is preferably only in the peripheral zone of the upper face.
Les vitrages ici visés ont généralement quatre côtés et sont symétriques par rapport à leur plan de symétrie passant par le milieu de leurs côtés transversaux. Les deux côtés transversaux ont généralement une longueur comprise dans le domaine allant de 80 cm à 250 cm (longueur de segments entre points de contact, quand le vitrage est posé sur un plan horizontal face concave tournée vers le bas). Les deux côtés longitudinaux ont généralement une longueur comprise dans le domaine allant de 60 cm à 180 cm (longueur de segments entre points de contact, quand le vitrage est posé sur un plan horizontal). Les deux côtés longitudinaux ont généralement la même longueur. The glazings referred to herein generally have four sides and are symmetrical with respect to their plane of symmetry passing through the middle of their transverse sides. The two transverse sides generally have a length in the range of 80 cm to 250 cm (length of segments between contact points, when the glazing is placed on a horizontal plane concave face facing downwards). Both longitudinal sides have typically a length in the range of 60 cm to 180 cm (length of segments between contact points, when the glazing is placed on a horizontal plane). The two longitudinal sides generally have the same length.
Le contre-squelette comprend une barre métallique recouvrant au moins partiellement, vue de dessus, la zone périphérique de la face supérieure du verre. Le contre-squelette a une forme complémentaire à celle devant être donnée au verre (forme finale après bombage en périphérie), là où il touche le verre. Sa forme peut s'écarter de celle du verre (et donc du squelette) là où il ne touche pas le verre. Le contre-squelette présente des courbures convexes pour faire face aux courbures concaves de la face supérieure du verre. Le squelette ayant la forme du verre, le contre-squelette présente des courbures parallèles à celles du squelette, au moins là où le contre-squelette touche le verre.  The counter-skeleton comprises a metal bar at least partially covering, viewed from above, the peripheral zone of the upper face of the glass. The counter-skeleton has a shape complementary to that to be given to the glass (final shape after bending at the periphery), where it touches the glass. Its shape can deviate from that of glass (and therefore the skeleton) where it does not touch the glass. The counter-skeleton has convex curvatures to face the concave curvatures of the upper face of the glass. Since the skeleton has the shape of glass, the backbone has curvatures parallel to those of the skeleton, at least where the skeleton touches the glass.
Le contre-squelette entre en contact avec le verre par un matériau fibreux réfractaire. Aux endroits où le contre-squelette touche le verre, il a de préférence une structure similaire ou identique à celle du squelette, c'est-à-dire que sa barre métallique comprend une bande métallique (ou plat vertical) présentant une de ses tranches vers le bas, ladite tranche inférieure étant éventuellement recouverte d'un matériau fibreux réfractaire déjà décrit pour le squelette. Tous les matériaux et épaisseurs donnés pour le squelette (bande métallique et matériau fibreux réfractaire) sont alors valables pour le contre-squelette.  The counter-skeleton comes into contact with the glass with a refractory fibrous material. At the places where the counter-skeleton touches the glass, it preferably has a structure similar or identical to that of the skeleton, that is to say that its metal bar comprises a metal strip (or flat vertical) having one of its slices downwards, said lower portion possibly being covered with a refractory fibrous material already described for the backbone. All the materials and thicknesses given for the skeleton (metal band and refractory fibrous material) are then valid for the back-skeleton.
Le matériau fibreux réfractaire est apte à se compresser et se compresse pendant le bombage sous l'effet de la force de pesanteur agissant sur le contre-squelette. On peut jouer sur cette propriété du matériau fibreux pour répartir la pression exercée par le contre-squelette sur le verre. L'effet bénéfique sur la réduction des ondulations périphériques non-désirées est aussi associé à l'effet mécanique des deux outillages (squelette et contre-squelette) qui interdisent physiquement toute possibilité au verre de se déformer dans une direction verticale au droit des outillages. L'effet bénéfique est lié à l'utilisation du matériau fibreux réfractaire couplée à la maîtrise de l'écart entre le squelette et le contre-squelette; une légère modulation locale de la distance entre ces deux outillages se traduit par une légère compression du matériau fibreux, laquelle est insuffisante pour induire une marque sur le verre. Le cas échéant, un système de contrepoids relié au contre-squelette réduit la force de pression du contre-squelette sur le verre.  The refractory fibrous material is capable of compressing and compressing during bending under the effect of the gravitational force acting on the backbone. This property of the fibrous material can be used to distribute the pressure exerted by the back-skeleton on the glass. The beneficial effect on the reduction of undesired peripheral ripples is also associated with the mechanical effect of the two tools (skeleton and counter-skeleton) which physically prohibit any possibility of the glass being deformed in a vertical direction to the tooling right. The beneficial effect is related to the use of the refractory fibrous material coupled with the control of the gap between the skeleton and the back-skeleton; a slight local modulation of the distance between these two tools results in a slight compression of the fibrous material, which is insufficient to induce a mark on the glass. If necessary, a counterweight system connected to the backbone reduces the backstage pressure on the glass.
On peut distinguer deux variantes:  We can distinguish two variants:
V1 : le contre-squelette touche le verre et le matériau fibreux se comprime sous l'effet de la force de pesanteur s'exerçant sur le contre-squelette, mais sa compression est limitée en raison de la présence d'un moyen d'imposer un écartement minimal donnée Dm entre la bande métallique dans le squelette et une barre métallique dans le contre-squelette. V1: the counter-skeleton touches the glass and the fibrous material compresses under the effect of the gravitational force exerted on the back-skeleton, but its compression is limited because of the presence of a means of imposing a minimum distance given Dm between the metal strip in the skeleton and a metal bar in the back-skeleton.
V2 : le contre-squelette touche le verre et le matériau fibreux se comprime sous l'effet de la pression exercée par le contre-squelette, mais sa compression n'est pas bloquée par un moyen d'imposer un écartement minimal donné entre la bande métallique dans le squelette et une barre métallique dans le contre-squelette. V2: the counter-skeleton touches the glass and the fibrous material is compressed under the effect of the pressure exerted by the back-skeleton, but its compression is not blocked by means of imposing a given minimum spacing between the band metal in the skeleton and a metal bar in the counter-skeleton.
La variante V1 fait intervenir un moyen d'imposer une distance minimale donnée Dm entre la bande métallique du squelette et la barre métallique du contre-squelette. Le squelette et le contre-squelette ne peuvent pas se rapprocher pour que la distance entre la bande métallique du squelette et la barre métallique du contre-squelette descende en- dessous de Dm. Ce moyen sert à empêcher que le contre-squelette n'exerce une pression trop forte sur le verre. Outre la réduction du risque de marquage du verre, cela permet aussi au verre de glisser sur le squelette pendant le bombage, sans être retenu à cause d'un pincement trop fort entre squelette et contre-squelette. Ceci est favorable à l'obtention d'un plus faible temps de cycle de bombage. Variant V1 involves a means of imposing a given minimum distance Dm between the metal strip of the skeleton and the metal bar of the backskeleton. The skeleton and counter-skeleton can not move closer together so that the distance between the metal skeleton band and the metal bar of the back-skeleton falls below Dm. This means serves to prevent the back-skeleton exerting too much pressure on the glass. In addition to reducing the risk of marking the glass, it also allows the glass to slide on the skeleton during bending, without being held back because of a too strong pinch between skeleton and back-skeleton. This is favorable for obtaining a shorter bending cycle time.
On caractérise les courbures des vitrages par les notions de flèche et de double- bombage. Pour les définitions de ces caractéristiques, on peut se rapporter aux figures 1 a et 1 b et à la description leur correspondant du WO2010/136702.  The curvatures of glazing are characterized by the notions of arrow and double-bending. For the definitions of these characteristics, reference may be made to FIGS. 1a and 1b and to the description corresponding to them of WO2010 / 136702.
L'invention convient bien au bombage de verre dont la complexité de forme est modérée (flèche inférieure à 100 mm et/ou double bombage inférieur à 20 mm) ou plus forte (flèche supérieure à 100 mm et/ou double bombage supérieur à 20 mm).  The invention is suitable for bending glass whose complexity of shape is moderate (arrow less than 100 mm and / or double bending less than 20 mm) or stronger (arrow greater than 100 mm and / or double bending greater than 20 mm ).
On utilise de préférence la variante V1 lorsque l'instabilité géométrique (ondulations) a lieu de façon bien localisée sur le vitrage comme par exemple au milieu de la bande haute d'un pare-brise (bord supérieur horizontal lorsque monté sur le véhicule). On s'attache alors à régler finement la distance entre le squelette et le contre-squelette dans cette région particulière. Il est naturellement possible d'utiliser cette variante V1 sur toute la périphérie du verre, notamment lorsque la propension aux instabilités géométriques est répartie sur toute la périphérie du verre.  Variant V1 is preferably used when the geometrical instability (ripples) takes place well localized on the glazing such as for example in the middle of the high band of a windshield (upper horizontal edge when mounted on the vehicle). We then focus on fine-tuning the distance between the skeleton and the back-skeleton in this particular region. It is naturally possible to use this variant V1 over the entire periphery of the glass, especially when the propensity for geometric instabilities is distributed over the entire periphery of the glass.
On utilise de préférence la variante V2 lorsque l'ajustement de la distance entre le squelette et le contre-squelette est particulièrement difficile. Cette variante V2 fonctionne non pas en ajustant des cotes géométriques, mais en pression grâce à la force de gravité exercée sur le contre-squelette appuyant sur le verre. Ce type d'outillages mène à un procédé de bombage particulièrement reproductible, moins sensible aux petites variations géométriques des outillages, notamment suite aux différents cycles de chauffe et de refroidissement successifs.  Variant V2 is preferably used when the adjustment of the distance between the skeleton and the backskeleton is particularly difficult. This variant V2 works not by adjusting geometric dimensions, but in pressure thanks to the force of gravity exerted on the back-skeleton pressing on the glass. This type of tooling leads to a particularly reproducible bending process, less sensitive to small geometric variations of the tools, especially following the successive cycles of heating and cooling.
La fonction du contre-squelette n'est pas de bomber le verre (c'est le rôle de la gravité), mais juste d'empêcher la formation d'ondulations de bord. Un bombage sans le contre-squelette aboutirait à un bombage identique en zone centrale du verre comparé à un bombage avec contre-squelette, toutes autres conditions de réalisation étant identique. Notamment, le contre-squelette ne doit pas appuyer trop fort sur le verre car cela pourrait se traduire par un pincement du verre gênant son glissement sur le squelette pendant le bombage et ralentissant voire empêchant son bombage. C'est pourquoi la pression exercée par le contre-squelette doit être finement dosée. Dans le dispositif selon l'invention, de préférence, le contre-squelette exerce pendant le bombage un poids sur le verre par mètre linéaire de contre-squelette (parallèlement au squelette) inférieure à 2 kg/m et de préférence inférieure à 1 kg/m. De préférence, le contre-squelette exerce un poids sur le verre par mètre linéaire de contre-squelette (parallèlement au squelette) supérieur à 0,1 kg/m. The function of the counter-skeleton is not to bend the glass (this is the role of gravity), but just to prevent the formation of edge ripples. A bending without the counter-skeleton would result in an identical bending in the central zone of the glass compared to a bending with counter-skeleton, all other conditions of realization being identical. In particular, the back-skeleton should not press too hard on the glass as this could result in a pinching of the glass hindering its sliding on the skeleton during bending and slowing or even preventing its bending. This is why the pressure exerted by the back-skeleton must be finely dosed. In the device according to the invention, preferably, the back-skeleton during bending a weight on the glass per linear meter of back-skeleton (parallel to the skeleton) less than 2 kg / m and preferably less than 1 kg / m. Preferably, the counter-skeleton exerts a weight on the glass per linear meter of back-skeleton (parallel to the skeleton) greater than 0.1 kg / m.
Le contre-squelette agit positivement (en réduisant les ondulations) sur le verre par effet thermique, aux endroits qu'il touche comme aux endroits qu'il ne touche pas mais qu'il approche, notamment à moins de 50 mm. Cet effet thermique dépend essentiellement de trois critères : 1 ) la température relativement modérée du contre- squelette en entrée four, de préférence inférieure à 250°C, 2) la propension du contre- squelette à rester plus froid que la périphérie du verre alors que le verre est entre 300 et 650°C, et notamment pendant le bombage , 3) l'aire de verre exposée au contre- squelette.  The counter-skeleton acts positively (by reducing the undulations) on the glass by thermal effect, at the places it touches as in the places it does not touch but that it approaches, especially at less than 50 mm. This thermal effect depends essentially on three criteria: 1) the relatively moderate temperature of the counter-skeleton at the furnace inlet, preferably less than 250 ° C., 2) the propensity of the back-skeleton to remain colder than the periphery of the glass whereas the glass is between 300 and 650 ° C, and especially during bending, 3) the area of glass exposed to the backbone.
Le critère 1 est assuré par un refroidissement suffisant du contre-squelette une fois un bombage effectué. Une partie de ce refroidissement a lieu dans le four de bombage lui-même mais aussi sur la chaîne de retour des outillages lors de leur remontée à vide de la sortie du four vers l'entrée du four. Des systèmes de refroidissement complémentaires spécifiquement dédiés au refroidissement du contre-squelette peuvent être installés, tels des ventilateurs additionnels ou des jets d'air dirigés vers cet outillage. Il est aussi possible de prévoir un circuit de refroidissement dédié, directement fixé au contre-squelette, et activé sur son trajet de retour hors du four. Il peut notamment s'agir d'un tube apte à recevoir un courant d'un fluide de refroidissement, notamment de l'air frais (c'est-à-dire généralement à température ambiante, généralement entre 0 et 50°C). Un tel tube métallique peut être accolé à la barre métallique du contre-squelette. Il peut également s'agir d'un contre-squelette dont la barre métallique comprend un tube métallique à section carrée ou rectangulaire dans lequel on fait circuler de l'air frais. Le critère 2 est assuré, soit en augmentant la masse de métal embarqué dans le contre- squelette, ce qui a pour conséquence d'augmenter son inertie thermique et donc la quantité de chaleur nécessaire pour le réchauffer, soit en limitant l'apport calorifique au contre-squelette en recouvrant ce dernier par un isolant thermique. Ainsi, les éléments chauffants disposés en voûte du four peuvent chauffer le verre sans pour autant perdre inutilement de l'énergie à réchauffer directement le contre-squelette. La périphérie du verre est alors d'autant plus froide qu'elle est d'une part masquée de la chauffe directe par les éléments chauffant du four (généralement en voûte) et d'autre part qu'elle fait face au contre-squelette qui est maintenu à température réduite. Il est à noter que le refroidissement d'un contre-squelette revêtu d'un matériau isolant est plus lent car la surface directement exposée à l'air libre sur la chaîne de retour des outillages est réduite. Le critère 3 est fonction de la géométrie du contre-squelette et de la distance entre le contre-squelette et le verre. Criterion 1 is provided by sufficient cooling of the backbone after bending. Part of this cooling takes place in the bending furnace itself but also on the tool return chain when they go up empty from the furnace outlet to the furnace inlet. Additional cooling systems specifically dedicated to cooling the backbone can be installed, such as additional fans or air jets directed to this tool. It is also possible to provide a dedicated cooling circuit, directly attached to the backbone, and activated on its return path out of the oven. It may in particular be a tube capable of receiving a current of a cooling fluid, especially fresh air (that is to say generally at room temperature, generally between 0 and 50 ° C). Such a metal tube can be attached to the metal bar of the back-skeleton. It may also be a counter-skeleton whose metal bar comprises a metal tube with square or rectangular section in which fresh air is circulated. Criterion 2 is ensured, either by increasing the mass of metal embedded in the backbone, which has the consequence of increasing its thermal inertia and therefore the amount of heat required to heat it, or by limiting the heat input to back-skeleton by covering the latter with thermal insulation. Thus, the heating elements arranged in the vault of the oven can heat the glass without losing unnecessarily energy to directly heat the backbone. The periphery of the glass is then all the colder that it is on the one hand masked from the direct heating by the heating elements of the oven (generally vault) and on the other hand that it faces the counter-skeleton which is kept at reduced temperature. It should be noted that the cooling of a backbone coated with an insulating material is slower because the surface directly exposed to the open air on the tool return chain is reduced. Criterion 3 depends on the geometry of the backbone and the distance between the backbone and the glass.
Le contre-squelette peut être segmenté. Il comprend alors autant de bandes (ou « segments ») que le verre a de côtés, généralement quatre. A un côté du verre est associé une bande du contre-squelette. Chaque bande du contre-squelette peut couvrir la zone du milieu d'un côté, et le cas échéant, ne pas aller jusqu'aux coins du verre.  The counter-skeleton can be segmented. It then includes as many bands (or "segments") that the glass has sides, usually four. At one side of the glass is associated a band of the back-skeleton. Each backbone band may cover the middle area on one side, and if necessary, not go to the corners of the glass.
Selon l'invention, le squelette peut comprendre une bande métallique dont une tranche est dirigée vers le haut, ladite tranche étant recouverte d'un matériau fibreux réfractaire formant la piste de contact pour le verre, le contre-squelette peut comprendre une barre métallique, le dispositif comprenant un moyen d'imposer une distance minimale donnée Dm entre la bande métallique du squelette et la barre métallique du contre- squelette. Le moyen d'imposer Dm peut notamment comprendre un élément formant butée, dit butée, solidaire du squelette et sur laquelle un élément formant contrebutée, dit contrebutée, solidaire du contre-squelette est apte à reposer. La butée est fixée directement ou indirectement à la bande métallique rigide du squelette. Elle peut être la surface supérieure d'une pluralité de chandelles ou de vis vérin. La contrebutée est fixée directement ou indirectement à la barre métallique rigide du contre-squelette. Le dispositif comprend généralement un châssis sur lequel le squelette est fixé. Tout élément butée peut être fixé sur le châssis ou sur le squelette, cela revient toujours au fait que la butée est solidaire directement ou indirectement du squelette. Avantageusement, le moyen d'imposer Dm est réglable de sorte à régler la valeur de Dm. Cela permet notamment d'ajuster le degré de compression du matériau fibreux réfractaire équipant le contre- squelette et le squelette et appuyant sur le verre, et donc la pression en face supérieure du verre et la pression en face inférieur du verre. Le moyen de réglage peut se situer au niveau de la butée et/ou de la contrebutée.  According to the invention, the skeleton may comprise a metal strip whose slice is directed upwards, said slice being covered with a refractory fibrous material forming the contact track for the glass, the back-skeleton may comprise a metal bar, the device comprising means for imposing a given minimum distance Dm between the metal strip of the skeleton and the metal bar of the backbone. The means for imposing Dm may include a stop member, said abutment, secured to the skeleton and on which a counterbiased element, said abutment, integral with the backbone is able to rest. The stop is fixed directly or indirectly to the rigid metal band of the skeleton. It may be the upper surface of a plurality of candles or jack screws. The abutment is fixed directly or indirectly to the rigid metal bar of the back-skeleton. The device generally comprises a frame on which the skeleton is fixed. Any stop element can be fixed on the frame or on the skeleton, it always amounts to the fact that the abutment is integral directly or indirectly with the skeleton. Advantageously, the means of imposing Dm is adjustable so as to adjust the value of Dm. This allows in particular to adjust the degree of compression of the refractory fibrous material equipping the backbone and the skeleton and pressing the glass, and therefore the pressure on the upper face of the glass and the pressure on the underside of the glass. The adjustment means can be located at the abutment and / or abutment.
En pratique, la distance entre les deux outillages (squelette et contre-squelette) peut être ajustée et contrôlée par des outilleurs à l'aide de cales d'épaisseur. Pour l'ajustement de la cote en hauteur du contre-squelette, l'outilleur peut procéder en introduisant une cale entre la face supérieure d'un verre préalablement bombé et le matériau fibreux réfractaire du contre-squelette en exerçant un certain effort latéral. Lors de cet ajustement, le matériau fibreux se contracte légèrement et diminue un peu d'épaisseur. La mesure réelle réalisée par l'outilleur est donc la résultante de la distance entre le verre et le contre-squelette, de l'épaisseur du matériau fibreux qui le recouvre, de la compressibilité du matériau fibreux, de l'épaisseur de la cale d'épaisseur elle-même, et de la force latérale exercée par l'outilleur lors du contrôle ou lors du réglage de la distance entre les deux outillages. Par cette façon de faire, l'opérateur se rend compte si une cale d'épaisseur donnée passe facilement ou non entre le verre et le contre-squelette et par des tests de routine, il apprend à régler finement le dispositif. In practice, the distance between the two tools (skeleton and counter-skeleton) can be adjusted and controlled by toolmakers using shims. For the adjustment of the height dimension of the back-skeleton, the toolmaker can proceed by introducing a shim between the upper face of a previously convex glass and the refractory fibrous material of the back-skeleton by exerting a certain lateral force. During this adjustment, the fibrous material contracts slightly and decreases a little thick. The actual measurement made by the toolmaker is therefore the result of the distance between the glass and the back-skeleton, the thickness of the fibrous material that covers it, the compressibility of the fibrous material, the thickness of the wedge the thickness itself, and the lateral force exerted by the toolmaker during the control or when adjusting the distance between the two tools. By this way, the operator realizes whether a shim thickness passes easily or not between the glass and the back-skeleton and routine tests, he learns to finely adjust the device.
Pour le cas de courbures prononcées ou de formes complexes, notamment comprenant des courbures prononcées dans des directions orthogonales entre elles, il peut être avantageux que le dispositif selon l'invention comprenne un système apte à modifier au cours du bombage la distance entre le squelette et le contre-squelette. En effet, le contre-squelette a une forme plus proche de celle de la face supérieure du verre à la fin du bombage, plutôt qu'au début du bombage. Or à la pose du verre sur le squelette, le verre est plan ou seulement légèrement courbé en raison de sa flexibilité naturelle. Le contre-squelette a donc une forme plus courbée que le verre au début du bombage et pourrait le toucher et, par déformation élastique le contraindre à adopter la forme périphérique du squelette. Une telle situation risque d'entraîner une casse du verre à l'entrée du four. C'est pourquoi, sans exclure que le contre-squelette ne puisse toucher le verre dès le début du bombage (dès l'entrée four), il peut être préférable que le contre- squelette soit d'abord assez éloigné du squelette puis s'en rapproche au cours du bombage. On abaisse ainsi l'écart entre le contre-squelette et le verre (et donc entre le contre-squelette et le squelette) au fur et à mesure que le verre se ramolli et épouse les contours du squelette. La durée de la phase de rapprochement entre le verre et le contre- squelette peut être ajustée entre cinq dixièmes de seconde à 30 secondes, voire jusqu'à une minute en fonction de l'histoire thermique précédente et la complexité du vitrage lui- même.  For the case of pronounced curvatures or complex shapes, in particular comprising pronounced curvatures in directions orthogonal to each other, it may be advantageous for the device according to the invention to comprise a system able to modify during bending the distance between the skeleton and the counter-skeleton. Indeed, the counter-skeleton has a shape closer to that of the upper face of the glass at the end of the bending, rather than at the beginning of the bending. When the glass is placed on the skeleton, the glass is flat or only slightly curved because of its natural flexibility. The counter-skeleton therefore has a shape more curved than the glass at the beginning of the bending and could touch it and, by elastic deformation, force it to adopt the peripheral shape of the skeleton. Such a situation may cause a breakage of the glass at the entrance of the oven. This is why, without excluding the fact that the back-skeleton can not touch the glass from the beginning of the bending (from the oven entrance), it may be preferable that the backbone is at first rather far from the skeleton and then bring it closer during the bending. This reduces the gap between the skeleton and the glass (and therefore between the skeleton and the skeleton) as the glass softens and follows the contours of the skeleton. The duration of the approach phase between the glass and the backbone can be adjusted between five tenths of a second to 30 seconds, or even up to one minute depending on the previous heat history and the complexity of the glazing itself.
Si les efforts appliqués sur le verre en entrée four et au cours du bombage sont suffisamment modérés pour éviter une casse du verre, il est d'une part tout à fait possible que le contre-squelette soit en contact partiel avec le verre, notamment au milieu ou à proximité du milieu des côtés haut et bas du verre (en position monté sur un véhicule automobile) dès l'enfournement et d'autre part, il est possible de forcer le verre à se bomber par l'action du contre-squelette appuyant sur le verre. Le contre-squelette appuie sur le verre lors de sa descente, ce qui force le bombage périphérique. Une telle cinématique est avantageuse car elle permet de faciliter le bombage principal du verre et ainsi de réduire le temps de cycle de formage. Notons qu'au début du procédé vers l'entrée du four, le verre est à basse température et moins sensible au marquage et c'est pourquoi, hormis le cas de casse, le contact assez appuyé du contre-squelette à ce stade n'est pas forcément gênant, et peut même être avantageux. Le déclenchement du rapprochement entre verre et contre-squelette peut être relativement brutal (déclenchement simple c'est-à-dire passant d'un seul coup d'une configuration éloignée à une configuration rapprochée) ou bien progressif. Un système de déclenchement peut être actionné au travers des parois latérales du four ou bien à travers la sole du four. Un système de déclenchement peut notamment être analogue à celui décrit dans le US8156764. A titre d'exemple, la distance entre le verre et le contre-squelette dans la zone du milieu d'un côté peut être comprise dans le domaine allant de 0 à 10 mm au début du bombage, pour finir à 0 mm en fin de bombage alors que concomitamment, la distance entre le verre et le squelette dans la zone du milieu d'un côté peut être comprise dans le domaine allant de 0 à 300 mm en début de bombage pour finir à 0 mm en fin de bombage. Ainsi le squelette et le contre-squelette peuvent éventuellement se rapprocher progressivement au cours du bombage. If the forces applied to the glass in the oven inlet and during the bending are sufficiently moderate to avoid breakage of the glass, it is firstly possible that the back-skeleton is in partial contact with the glass, particularly at mid or close to the middle of the top and bottom sides of the glass (in position mounted on a motor vehicle) as soon as it is placed in the oven and on the other hand, it is possible to force the glass to bulge by the action of the counter-skeleton pressing on the glass. The counter-skeleton presses on the glass during its descent, which forces the peripheral bending. Such kinematics is advantageous because it facilitates the main bending of the glass and thus reduces the forming cycle time. Note that at the beginning of the process towards the entrance of the furnace, the glass is at low temperature and less sensitive to the marking and that is why, except for the case of breakage, the contact supported enough of the back-skeleton at this stage is not necessarily embarrassing, and may even be advantageous. The initiation of the approximation between glass and back-skeleton can be relatively brutal (simple trigger that is to say, passing from a single stroke of a remote configuration to a close configuration) or progressive. A trip system can be operated through the side walls of the oven or through the oven floor. A triggering system may in particular be similar to that described in US8156764. By way of example, the distance between the glass and the backbone in the middle zone of one side can be in the range from 0 to 10 mm at the beginning of the bending, and finally at 0 mm at the end of bending while concomitantly, the distance between the glass and the skeleton in the middle zone of one side can be in the range from 0 to 300 mm at the beginning of bending to finish at 0 mm at the end of bending. Thus the skeleton and the back-skeleton may eventually move closer during bending.
Selon le mode de réalisation V2, le contre-squelette touche le verre et aucun système de butée/contrebutée ne vient stopper la progression du contre-squelette vers le verre (et donc également vers le squelette) sous l'effet de la pesanteur. C'est le verre lui- même qui joue le rôle d'une butée. Dans ce cas, le contre-squelette repose sur le verre, ce qui entraîne une compression plus ou moins importante du matériau fibreux l'équipant. Si le contre-squelette est relativement léger, on peut le laisser reposer de tout son poids sur le verre. Si le contre-squelette est trop lourd et exerce une pression trop forte sur le verre malgré la présence du matériau fibreux l'équipant, on peut compenser une partie du poids du contre-squelette par un système de contrepoids. Dans ce cas, le poids du contre-squelette est allégé par un contrepoids agissant à l'extrémité d'un levier. Ce levier est relié au châssis supportant le squelette par une liaison pivot à l'axe sensiblement horizontal, une extrémité du levier portant le contrepoids, l'autre extrémité du levier étant reliée au contre-squelette et tirant celui-ci vers le haut sous l'effet du contrepoids à l'autre bout du levier.  According to the embodiment V2, the back-skeleton touches the glass and no stop / abutment system stops the progression of the back-skeleton towards the glass (and therefore also to the skeleton) under the effect of gravity. It is the glass itself that plays the role of a stop. In this case, the back-skeleton rests on the glass, which causes a more or less significant compression of the fibrous material equipping it. If the counter-skeleton is relatively light, you can let it rest on the glass. If the back-skeleton is too heavy and exerts too much pressure on the glass despite the presence of the fibrous material equipping it, one can compensate part of the weight of the back-skeleton by a counterweight system. In this case, the weight of the back-skeleton is lightened by a counterweight acting at the end of a lever. This lever is connected to the frame supporting the skeleton by a pivot connection to the substantially horizontal axis, one end of the lever carrying the counterweight, the other end of the lever being connected to the back-skeleton and pulling it upwards under the effect of the counterweight at the other end of the lever.
L'invention concerne également un procédé de bombage par gravité du verre, par le dispositif selon l'invention. Le bombage du verre est réalisé par gravité sur un squelette supportant le verre dans sa zone périphérique, un contre-squelette venant au contact du verre dans la zone du milieu d'au moins un des côtés du verre dans la zone périphérique de sa face principale supérieure. Notamment, le verre est bombé par gravité à une température comprise dans le domaine allant de 570 à 650°C, plus généralement dans le domaine allant de 610 à 650°C. Pour réaliser ce bombage, on peut convoyer l'ensemble squelette/contre-squelette chargé de verre au travers d'un four tunnel porté à la température de déformation plastique du verre. Ce four peut être traversé par de tels ensembles chargés chacun de verre et circulant les uns derrière les autres dans le four, le squelette et le contre-squelette formant un ensemble embarqué apte à être convoyé ensemble horizontalement mais sans déplacement horizontal relatif de l'un par rapport à l'autre. Le four peut comprendre différentes zones de température pour chauffer progressivement puis refroidir progressivement le verre. The invention also relates to a method of gravity bending of the glass, by the device according to the invention. The bending of the glass is carried out by gravity on a skeleton supporting the glass in its peripheral zone, a counter-skeleton coming into contact with the glass in the middle zone of at least one of the sides of the glass in the peripheral zone of its main face. higher. In particular, the glass is bulging by gravity at a temperature in the range of 570 to 650 ° C, more generally in the range of 610 to 650 ° C. To achieve this bending, we can convey the skeleton / counter-skeleton charged with glass through a tunnel kiln heated to the plastic deformation temperature of the glass. This oven can be traversed by such sets each loaded with glass and circulating behind each other in the oven, the skeleton and counter-skeleton forming an embedded assembly capable of being conveyed together horizontally but without relative horizontal displacement of one relative to the other. The oven can include different temperature zones to gradually heat up and gradually cool the glass.
Le verre est au contact du squelette pendant plus de 10 minutes et généralement plus de 15 minutes et plus généralement entre 15 et 30 minutes dans le four tout en étant convoyé dans le four. Dans le four, le verre subit une montée en température, le bombage et après bombage une baisse contrôlée de la température. De même, dans le four, le contre-squelette touche généralement également le verre pendant plus de 10 minutes et généralement le même temps que le verre touche le squelette. Le bombage est réalisé par gravité. En l'absence de contre-squelette, au cours du bombage, le verre toucherai l'intégralité du squelette, puis, certaines zones (notamment dans la zone du milieu d'au moins un côté de la zone périphérique) se relèveraient pour quitter le contact avec le squelette. Le contre-squelette sert à empêcher ce relèvement du verre et garantir un contact total du verre avec tout le pourtour du squelette en fin de bombage. Le squelette et le contre-squelette forment un ensemble embarqué apte à être convoyé dans le four par un moyen de convoyage. Le dispositif selon l'invention n'autorise pas un déplacement horizontal relatif du squelette et du contre-squelette l'un par rapport à l'autre, et ce alors même que l'ensemble squelette/contre-squelette est convoyé dans le four. Le dispositif peut comprendre des moyens permettant au squelette et au contre-squelette de se rapprocher ou de s'éloigner par un mouvement vertical relatif sans déplacement horizontal relatif de l'un par rapport à l'autre, et ce alors même que l'ensemble squelette/contre-squelette est convoyé dans le four. Le terme « relatif » qualifiant un mouvement signifie que celui-ci peut être le fait du contre-squelette seul ou du squelette seul ou de ces deux éléments. L'absence de déplacement horizontal relatif du squelette et du contre-squelette l'un par rapport à l'autre signifie que ces deux éléments restent vis-à- vis l'un de l'autre en vue-de-dessus pendant le déplacement horizontal de l'ensemble squelette/contre-squelette au cours du bombage dans le four. Ainsi, le dispositif selon l'invention comprend généralement un four et un moyen de convoyage apte à déplacer horizontalement ensemble le squelette et le contre-squelette dans le four alors qu'ils sont vis-à-vis l'un de l'autre, et des moyens de translation verticale permettant au squelette et au contre-squelette de se rapprocher ou de s'éloigner par un mouvement vertical relatif au cours de leur déplacement horizontal et sans déplacement horizontal relatif de l'un par rapport à l'autre. Le cas échéant, le dispositif peut être tel que l'on puisse poser un contre- squelette sur un verre avant l'entrée du four et de l'enlever après sortie du four.  The glass is in contact with the skeleton for more than 10 minutes and generally more than 15 minutes and more generally between 15 and 30 minutes in the oven while being conveyed into the oven. In the oven, the glass undergoes a rise in temperature, bending and after bending a controlled drop in temperature. Similarly, in the oven, the back-skeleton usually also affects the glass for more than 10 minutes and generally the same time that the glass touches the skeleton. The bending is done by gravity. In the absence of counter-skeleton, during the bending, the glass will touch the entire skeleton, then some areas (especially in the middle area of at least one side of the peripheral area) would recover to leave the contact with the skeleton. The counter-skeleton serves to prevent this raising of the glass and to guarantee a total contact of the glass with all the circumference of the skeleton at the end of the bending. The skeleton and the counter-skeleton form an embedded assembly capable of being conveyed into the furnace by a conveying means. The device according to the invention does not allow a relative horizontal movement of the skeleton and the back-skeleton relative to each other, even though the skeleton / counter-skeleton assembly is conveyed into the furnace. The device may include means for the skeleton and backbone to move toward or away from each other by relative vertical movement without relative horizontal displacement relative to each other, even though skeleton / counter-skeleton is conveyed into the oven. The term "relative" qualifying a movement means that it may be the effect of the single backbone or the skeleton alone or both. The absence of relative horizontal movement of the skeleton and the back-skeleton relative to each other means that these two elements remain vis-à-vis one another in view-over while moving horizontal skeleton / counter-skeleton assembly during bending in the oven. Thus, the device according to the invention generally comprises an oven and a conveying means able to move horizontally together the skeleton and the back-skeleton in the oven while they are facing each other, and means of vertical translation allowing the skeleton and the back-skeleton to move towards or away by a relative vertical movement during their horizontal movement and without relative horizontal displacement relative to one another. If necessary, the device may be such that it is possible to place a counter-skeleton on a glass before the entrance of the oven and to remove it after leaving the oven.
Après bombage, le verre est refroidit. Pour ce refroidissement et afin de ne pas engendrer dans le verre de contraintes d'extension de bord trop importantes, on éloigne avantageusement le contre-squelette du verre. L'éloignement du contre-squelette est avantageusement effectué en cours de refroidissement du verre et lorsque celui-ci est à une température comprise entre 620 et 500° C. Cet éloignement peut être réalisé par différents systèmes. Il peut s'agir d'un système de ré-enclenchement qui réalise la fonction inverse du « déclenchement » décrit plus haut. Alternativement, le contre- squelette peut être composé de bandes escamotables latéralement, généralement au nombre de quatre. Les bandes du contre-squelette s'écartent verticalement et latéralement au moment de l'escamotage de sorte à ne plus être au-dessus de la face supérieure du verre. Le système commandant l'escamotage des bandes peut être analogue à l'un de ceux décrits dans le US8156764, c'est-à-dire par exemple au travers des parois latérales du four. After bending, the glass is cooled. For this cooling and in order not to generate in the glass too large edge extension constraints, we move away advantageously the counter-skeleton of the glass. The removal of the back-skeleton is advantageously carried out during cooling of the glass and when the latter is at a temperature of between 620 and 500 ° C. This distance can be achieved by different systems. It can be a re-engagement system that performs the inverse function of the "trigger" described above. Alternatively, the backbone may be composed of retractable strips laterally, generally four in number. The strips of the back-skeleton deviate vertically and laterally at the time of retraction so as not to be above the upper face of the glass. The system controlling the retraction of the strips may be similar to one of those described in US 8156764, that is to say for example through the side walls of the furnace.
Le squelette et le contre-squelette sont avantageusement indépendants l'un de l'autre, c'est-à-dire que le contre-squelette peut alors être séparé entièrement sans plus avoir de lien avec le squelette. Le verre peut alors être chargé sur le squelette puis le contre-squelette est mis en place.  The backbone and the backbone are advantageously independent of each other, that is to say that the backbone can then be separated entirely without having any link with the backbone. The glass can then be loaded on the skeleton and then the back-skeleton is put in place.
Le chargement du verre sur le dispositif selon l'invention peut être réalisé manuellement. Le contre-squelette étant écarté, des opérateurs posent le verre sur le squelette. Ensuite, ils placent le contre-squelette selon sa position prévue. La position du contre-squelette est avantageusement donnée par des moyens de positionnement fixés au squelette ou au châssis. Ces moyens de positionnement guident le contre-squelette lors de sa pose. Ce guidage est rendu possible par exemple par des orifices dans des pattes de guidage liée au contre-squelette et au travers desquelles passent des colonnes de positionnement.  The loading of the glass on the device according to the invention can be carried out manually. The back-skeleton being removed, operators put the glass on the skeleton. Then they place the counter-skeleton according to its intended position. The position of the backbone is advantageously given by positioning means fixed to the skeleton or to the frame. These positioning means guide the back-skeleton during its installation. This guidance is made possible for example by holes in guide tabs connected to the backbone and through which pass positioning columns.
Le chargement et déchargement du verre peut également être automatisé, notamment à l'aide de robots, l'un pour le chargement, l'autre pour le déchargement. L'utilisation de robots permet d'avoir des mouvements précis et reproductibles ainsi qu'un système d'accouplement fiable et tolérant entre le squelette et son contre-squelette associé. Ce système selon lequel le contre-squelette est entièrement séparable du squelette, permet 1 ) d'avoir un minimum de fonctions embarquées dans l'outillage et ainsi de minimiser le poids de ce dernier, ce qui est un facteur important de consommation d'énergie, 2) de minimiser le risque de grippage mécanique et 3) de minimiser les opérations d'entretien, habituellement coûteuses sur les outillages de formage.  The loading and unloading of the glass can also be automated, in particular using robots, one for loading, the other for unloading. The use of robots makes it possible to have precise and reproducible movements as well as a reliable and tolerant coupling system between the skeleton and its associated counter-skeleton. This system in which the back-skeleton is completely separable from the skeleton, allows 1) to have a minimum of embedded functions in the tool and thus to minimize the weight of the latter, which is an important factor of energy consumption , 2) to minimize the risk of mechanical seizure and 3) to minimize maintenance operations, usually expensive on forming tools.
Alternativement, le contre-squelette peut faire partie d'un système directement embarqué sur le squelette lui-même et apte à escamoter le contre-squelette. Pour ce faire, à titre d'exemple, le contre-squelette peut être composé de quatre bandes séparées solidaires du squelette et qui peuvent s'éloigner ou se rejoindre les unes des autres par des déplacements ayant à la fois une composante horizontale et une composante verticale permettant de s'éloigner du verre, sans glissement sur celui-ci, tout en s'éloignant latéralement du squelette. Un tel mouvement peut être effectué par une simple rotation dont l'axe est judicieusement choisi, notamment en dehors du squelette. Lorsque ces bandes s'éloignent, le squelette devient accessible pour un déchargement ou un chargement de verre. Alternatively, the back-skeleton can be part of a system directly embedded on the skeleton itself and able to retract the back-skeleton. To do this, for example, the back-skeleton may be composed of four separate bands integral with the skeleton and which can move away or join each other by displacements having both a horizontal component and a component vertical allowing to move away from the glass, without sliding on it, while moving away laterally from the skeleton. Such a movement can be performed by a simple rotation whose axis is judiciously chosen, especially outside the skeleton. As these bands move away, the skeleton becomes accessible for unloading or loading glass.
Si le contre-squelette est de constitution trop légère, il peut être de trop faible rigidité et sa forme peut évoluer légèrement au cours de son utilisation, suite aux contraintes thermiques subies lors des cycles de chauffe et de refroidissement. Dans ce cas, on peut éventuellement constater que l'écart entre squelette et contre-squelette (et donc entre la bande métallique du squelette et la bande métallique du contre-squelette) n'est plus uniforme et tel qu'il avait été réglé initialement. Le verre peut éventuellement se retrouver à certains endroits trop coincé entre squelette et contre-squelette, réduisant le bombage en ces endroits en empêchant le verre de glisser sur le squelette. Ainsi, selon les cas de bombage, un réglage simple d'écart seulement aux coins du dispositif, notamment par quatre vis vérins, peut s'avérer insuffisant. C'est pourquoi, avantageusement, le contre-squelette comprend un élément structurel disposé au-dessus de sa barre métallique, l'élément structurel et la barre métallique étant reliés entre eux par une pluralité d'entretoises réglables permettant de régler localement la distance entre l'élément structurel et la barre métallique. L'élément structurel est rigide et indéformable malgré les multiples cycles thermiques de chauffage et de refroidissement subis pour bomber des feuilles de verre industriellement. On peut se servir de lui comme référence pour ajuster la forme de la barre métallique. L'élément structurel comprend avantageusement un tube métallique, notamment du type cadre. Ce tube peut notamment avoir une section carrée ou rectangulaire. Il peut comprendre des extensions latérales pour venir au-dessus des zones de réglage, l'extrémité supérieure des entretoises étant reliées aux extensions. L'extrémité supérieure des entretoises peut également être reliée directement à l'élément structurel. Ainsi, le contre-squelette peut comprendre un élément structurel disposé à une cote supérieure à celle de sa barre métallique, l'élément structurel et la barre métallique étant reliés par une pluralité d'entretoises réglables permettant de régler localement la distance entre l'élément structurel et la barre métallique, et localement la distance contre-squelette/squelette. La pluralité d'entretoises est répartie régulièrement sur tout le pourtour du contre-squelette.  If the back-skeleton is of too light constitution, it may be of low rigidity and its shape may change slightly during its use, due to thermal stresses during the heating and cooling cycles. In this case, it can be found that the gap between skeleton and back-skeleton (and therefore between the metal band of the skeleton and the metal band of the back-skeleton) is no longer uniform and as it had been initially adjusted . The glass may eventually get to some places too wedged between skeleton and back-skeleton, reducing the bending in these places by preventing the glass from slipping on the skeleton. Thus, depending on the bending case, a simple adjustment of deviation only at the corners of the device, in particular by four jack screws, may prove to be insufficient. That is why, advantageously, the back-skeleton comprises a structural element disposed above its metal bar, the structural element and the metal bar being interconnected by a plurality of adjustable spacers for locally adjusting the distance between the structural element and the metal bar. The structural element is rigid and indeformable despite the multiple heating and cooling thermal cycles experienced for bombarding glass sheets industrially. It can be used as a reference to adjust the shape of the metal bar. The structural element advantageously comprises a metal tube, in particular of the frame type. This tube may in particular have a square or rectangular section. It may include lateral extensions to come over the adjustment areas, the upper end of the struts being connected to the extensions. The upper end of the spacers can also be connected directly to the structural element. Thus, the back-skeleton may comprise a structural element arranged at a dimension higher than that of its metal bar, the structural element and the metal bar being connected by a plurality of adjustable spacers for locally adjusting the distance between the element structural and metallic bar, and locally distance back-skeleton / skeleton. The plurality of spacers is evenly distributed all around the counter-skeleton.
Afin de réduire au minimum les risques de déformation du contre-squelette en raison de contraintes thermiques, on peut donner à sa bande métallique la structure d'une chaîne, en décomposant le contre-squelette en une pluralité de secteurs reliés entre eux par des articulations. Un secteur est un morceau de bande métallique présentant une de ses tranches vers le bas, ladite tranche étant recouverte ou non, selon le cas, d'un matériau fibreux réfractaire. Un secteur comprend une longueur et une hauteur, son épaisseur étant celle de la bande métallique. Sa longueur est sensiblement parallèle au bord du verre et au squelette. La tranche du secteur tournée vers le bas est sensiblement parallèle à la tranche du squelette au même endroit. Les secteurs sont reliés entre eux comme une chaîne de sorte que leurs tranches dirigée vers le bas sont alignées et sensiblement parallèles au bord du verre et au squelette. Un secteur est relié à deux autres secteurs par des articulations comprenant une liaison pivot à l'axe sensiblement horizontal situées à ses deux extrémités de sa longueur, sauf s'il s'agit d'un secteur en bout de chaîne, auquel cas il n'est relié qu'à un seul autre secteur par une articulation à l'une de ses extrémités. Un contre-squelette à secteurs peut être composé de quatre bandes (correspondant aux quatre côtés du verre et du squelette) venant chacun, en utilisation, vis-à-vis d'un côté du squelette et donc également d'un côté du verre. Chacune de ces bandes possède une pluralité de secteurs, par exemple de 2 à 10 secteurs. Ainsi, selon l'invention, le contre-squelette peut comprendre une barre métallique du type bande métallique verticale dont une tranche est tournée vers le bas, comprenant une pluralité de secteurs reliés entre eux par des articulations, chaque articulation comprenant une liaison pivot à l'axe sensiblement horizontal reliant deux secteurs entre eux. In order to minimize the risks of deformation of the back-skeleton due to thermal stresses, it is possible to give its metal band the structure of a chain, by decomposing the back-skeleton into a plurality of sectors interconnected by joints. . A sector is a piece of metal strip presenting one of its slices downwards, said slice being covered or not, as the case may be, with a refractory fibrous material. A sector comprises a length and a height, its thickness being that of the metal strip. Its length is substantially parallel to the edge of the glass and the skeleton. The downward slice of the sector is substantially parallel to the slice of the skeleton at the same location. The sectors are interconnected as a chain so that their downwardly directed slices are aligned and substantially parallel to the edge of the glass and the skeleton. A sector is connected to two other sectors by joints comprising a pivot connection to the substantially horizontal axis located at both ends of its length, except in the case of a sector at the end of the chain, in which case it is is connected to only one other sector by an articulation at one of its ends. A sector counter-skeleton may be composed of four strips (corresponding to the four sides of the glass and the skeleton) each, in use, with respect to one side of the skeleton and thus also to one side of the glass. Each of these strips has a plurality of sectors, for example from 2 to 10 sectors. Thus, according to the invention, the back-skeleton may comprise a metal bar of the vertical metal strip type, a slice of which is turned downwards, comprising a plurality of sectors connected to each other by hinges, each hinge comprising a pivot connection to the hinge. substantially horizontal axis connecting two sectors between them.
Grâce aux articulations le contre-squelette à secteurs suit très bien les déformations du verre. De même, sa propre tendance à se déformer est contrecarrée par le jeu des articulations. Ainsi, le contre-squelette à secteur décolle beaucoup moins du verre que s'il était en un seul tenant et sans articulation. Les marques sur le verre dépendent essentiellement de la pression effective exercée par le contre-squelette sur le verre, et donc des paramètres suivants : le poids des différents secteurs du contre- squelette, la surface de contact du matériau fibreux recouvrant le contre-squelette et enfin, de la texture du matériau fibreux lui-même qui a de préférence une surface lisse et souple. On peut utiliser un système de contrepoids, déjà évoqué ci-dessus, pour diminuer la pression des secteurs sur le verre. Dans ce cas, l'extrémité du levier reliée au contre- squelette à secteur est reliée de préférence à une articulation joignant deux secteurs.  Thanks to the joints the counter-skeleton with sectors follows very well the deformations of the glass. Similarly, his own tendency to distort is thwarted by the play of the joints. Thus, the sector counter-skeleton takes off much less from the glass than if it were in one piece and without articulation. The marks on the glass depend essentially on the effective pressure exerted by the back-skeleton on the glass, and therefore on the following parameters: the weight of the different sectors of the back-skeleton, the contact surface of the fibrous material covering the back-skeleton and and finally, the texture of the fibrous material itself, which preferably has a smooth and flexible surface. We can use a counterweight system, already mentioned above, to reduce the pressure of the sectors on the glass. In this case, the end of the lever connected to the sector backbone is preferably connected to a joint joining two sectors.
Deux secteurs reliés entre eux par une articulation peuvent être juxtaposés localement au niveau de l'articulation. Les zones de juxtaposition des deux secteurs sont alors juxtaposées selon une direction perpendiculaire à l'axe de l'articulation, ledit axe traversant les zones de juxtaposition des deux secteurs. La zone de juxtaposition d'au moins un des deux secteurs peut être, en vue de dessus, décalée par rapport à sa tranche tournée vers le bas, de sorte à ménager un espace apte à être occupé par la zone de juxtaposition de l'autre secteur associé dans l'articulation. Ce décalage local peut notamment être réalisé par embossage local. Ce décalage local peut également être réalisé par découpe de la zone de juxtaposition de sorte à former une languette que l'on peut décaler par déformation du métal par rapport au plan du secteur en vue de dessus. De la sorte, même si localement au niveau des zones juxtaposées de l'articulation, l'ensemble de deux secteurs articulés est deux fois plus épais qu'un seul secteur, les tranches tournées vers le bas de deux secteurs reliés entre eux par une articulation peuvent être alignées en vue de dessus. Ainsi, les tranches tournées vers le bas de deux secteurs reliés entre eux par une articulation, peuvent être alignées en vue de dessus, la zone de juxtaposition d'au moins un des deux secteurs étant, en vue de dessus, décalée par rapport à sa tranche tournée vers le bas, de sorte à ménager un espace occupé par la zone de juxtaposition de l'autre secteur. Un contre-squelette à secteur peut fonctionner selon les modes V1 ou V2 ci-dessus mentionnés et l'avantage résultant de l'existence des articulations s'exerce dans les deux cas. En effet, le contre-squelette à secteurs ne se déforme pas autant que s'il était d'un seul tenant. Sa tranche inférieure suit bien mieux la surface du verre pendant le bombage malgré les contraintes thermiques. De la sorte, la pression exercée par le contre-squelette sur le verre est plus uniforme et mieux répartie sur toute sa zone de contact. Two sectors interconnected by a joint can be juxtaposed locally at the joint. The juxtaposition zones of the two sectors are then juxtaposed in a direction perpendicular to the axis of the joint, said axis passing through the zones of juxtaposition of the two sectors. The zone of juxtaposition of at least one of the two sectors may be, in top view, offset with respect to its slice facing downwards, so as to provide a space capable of being occupied by the juxtaposition zone of the other associated sector in the articulation. This local offset can be achieved by local embossing. This local offset can also be achieved by cutting the juxtaposition zone so as to form a tongue that is can shift by deformation of the metal relative to the plane of the sector in plan view. In this way, even if locally at the level of the juxtaposed zones of the joint, the set of two articulated sectors is twice as thick as a single sector, the slices facing downwards of two sectors connected to each other by an articulation can be aligned in top view. Thus, the slices facing downwards from two sectors interconnected by a hinge, can be aligned in plan view, the juxtaposition zone of at least one of the two sectors being, in top view, offset with respect to its slice turned down, so as to spare a space occupied by the juxtaposition zone of the other sector. A sector backbone can operate according to the modes V1 or V2 mentioned above and the advantage resulting from the existence of the joints is exerted in both cases. Indeed, the sector counter-skeleton does not deform as much as if it were in one piece. Its lower edge follows better the surface of the glass during the bending despite the thermal stresses. In this way, the pressure exerted by the back-skeleton on the glass is more uniform and better distributed over its entire contact zone.
Selon le mode V1 , un contre-squelette à secteur peut toucher le verre via un matériau fibreux dont la compression est limitée en raison de la présence d'un moyen d'imposer un écartement minimal donnée Dm entre la bande métallique dans le squelette et la bande métallique dans le contre-squelette. Pour ce faire, le squelette peut comprendre une bande métallique dont une tranche est dirigée vers le haut et une pluralité de butées reliées à la bande métallique. Ces butées sont avantageusement placées vis-à-vis d'articulations du contre-squelette. Des contrebutées sont alors reliées au contre-squelette et placées vis-à-vis des butées, notamment aux tiges formant axes des articulations, pour qu'elles puissent venir appuyer sur les butées, de sorte qu'une distance minimale Dm entre la bande métallique du squelette et la barre métallique du contre-squelette puisse être imposée au niveau de chaque secteur lorsque les contrebutées reposent sur les butées, et donc lorsque le contre-squelette est disposé au- dessus de verre. Les articulations assurent que malgré les contraintes thermiques, chaque secteur repose sur sa butée associée. Selon cette construction, les secteurs situés aux extrémités de chaque segment sont légèrement plus courts afin de ne pas gêner leur mouvement autour de leur axe horizontal.  According to the V1 mode, a sector backbone can touch the glass via a fibrous material whose compression is limited due to the presence of a means of imposing a given minimum spacing Dm between the metal strip in the skeleton and the metal band in the back-skeleton. To do this, the skeleton may comprise a metal strip having a slice directed upwards and a plurality of stops connected to the metal strip. These stops are advantageously placed vis-à-vis joints of the back-skeleton. Counterbutts are then connected to the counter-skeleton and placed opposite the abutments, in particular to the stems forming axes of the articulations, so that they can come to bear on the abutments, so that a minimum distance Dm between the metal band the skeleton and the metal bar of the back-skeleton can be imposed at each sector when the abutments rest on the stops, and therefore when the back-skeleton is placed above glass. The joints ensure that despite the thermal stresses, each sector is based on its associated stop. According to this construction, the sectors at the ends of each segment are slightly shorter so as not to hinder their movement around their horizontal axis.
Une découpe spécifique au niveau de l'articulation des secteurs situés aux extrémités de chaque bande permet de limiter leur mouvement vertical vers le bas et ainsi de ne pas interférer avec le mouvement du contre-squelette lors du chargement et du déchargement du verre. En effet, les secteurs peuvent être groupés en autant de bandes que le verre a de côtés, chaque bande correspondant à un côté du verre et lui étant sensiblement parallèle, les extrémités des bandes n'étant pas reliés à leurs bandes voisines. A specific cut at the joint of the sectors located at the ends of each strip limits their downward vertical movement and thus does not interfere with the movement of the back-skeleton during the loading and unloading of the glass. Indeed, the sectors can be grouped into as many bands that the glass has sides, each band corresponding to one side of the glass and being substantially parallel, the ends of the strips not being connected to their neighboring strips.
Les figures ci-après décrites ne sont pas à l'échelle.  The figures below are not to scale.
La figure 1 représente en coupe un dispositif selon l'invention comprenant un squelette 320 et un contre-squelette 321 . Une butée 327 est fixée à la bande métallique 322 du squelette. La tranche de cette bande métallique tournée vers le haut est recouverte d'un matériau fibreux réfractaire 323. Le contre-squelette comprend en tant que barre métallique une bande métallique 324 dont la tranche tournée vers le bas est recouverte d'un tissu réfractaire 325 pour entrer en contact avec le verre 328. Une contrebutée 326 est reliée à la barre métallique 324 et peut reposer sur la butée 327, bloquant la descente du contre-squelette vers le squelette. A vide (en a)), l'écart E entre squelette et contre-squelette est inférieur à l'épaisseur e du verre 328. Lorsque le verre 328 est placé entre ces deux outils (en b)), les matériaux fibreux réfractaires 325 et 323 se compressent sous le poids du contre-squelette jusqu'à ce que la contrebutée 326 repose sur la butée 327. L'écart entre la barre 324 du contre-squelette et la bande métallique 322 du squelette est la distance minimale Dm. Butée 327 et contrebutée 326 sont un moyen d'imposer une distance minimale entre 324 et 322. De la sorte la force de pression sur le verre exercée par le squelette et le contre-squelette est limitée.  Figure 1 shows in section a device according to the invention comprising a skeleton 320 and a backbone 321. A stop 327 is fixed to the metal strip 322 of the skeleton. The edge of this upwardly-turned metal strip is covered with a refractory fibrous material 323. The counter-skeleton comprises as a metal bar a metal strip 324 whose downward-facing slice is covered with a refractory fabric 325 for contact with the glass 328. A counterbutter 326 is connected to the metal bar 324 and can rest on the stop 327, blocking the descent of the back-skeleton to the skeleton. With a vacuum (in a)), the gap E between skeleton and back-skeleton is less than the thickness e of the glass 328. When the glass 328 is placed between these two tools (in b)), the fibrous refractory materials 325 and 323 compress under the weight of the back-skeleton until abutment 326 rests on abutment 327. The gap between backbone bar 324 and backbone metal band 322 is the minimum distance Dm. Stop 327 and abutment 326 are a means of imposing a minimum distance between 324 and 322. In this way the pressure force on the glass exerted by the skeleton and the back-skeleton is limited.
La figure 2 représente un vitrage automobile du type pare-brise vu de dessus, et posé sur un plan horizontal, face concave tournée vers le bas. Il comprend quatre côtés, deux côtés transversaux 350 et 351 et deux côtés longitudinaux 352 et 353. Un côté rejoint un autre côté par un coin présentant des rayons de courbure R (en vision perpendiculaire à la surface du verre et dans chaque coin) en surface faibles par rapport au rayons de courbure en surface vers les milieux des côtés. Ce vitrage est symétrique par rapport au plan de symétrie vertical PS. Ce plan PS passe par les milieux 354 et 355 des côtés transversaux. Ce vitrage repose sur quatre points 356, 357, 358, 359 se trouvant dans les coins. On a tracé en pointillé les segments 360, 361 , 362 et 363 reliant ces quatre points. Ce sont les segments les plus proches des bords. A un bord est associé un segment. Chacun de ces segments a un milieu 364, 365, 366, 367. Pour chaque segment, il existe un plan perpendiculaire (368, 369, 370, 371 ) au segment et passant par son milieu. Chacun de ces plans vient en intersection avec le bord du verre le plus proche en un point 372, 355, 373, 354 qui est leur milieu. Le vitrage est concave (sur cette figure, la face concave est tournée vers le bas) au moins aux points milieux 372, 355, 373, 354 et dans toutes les zones hachurées de part et d'autre de ces points milieux, ladite concavité étant considérée parallèlement au bord extérieur du vitrage. Il en est de même pour le squelette ayant supporté ce verre et pour les zones du squelette correspondant aux zones des milieux des côtés du verre, ladite concavité étant considérée parallèlement aux contours (intérieur ou extérieur) du squelette et vue de dessus en situation de bombage. La ligne en pointillé 376 est à 50 mm du bord du verre et forme la limite de la zone périphérique, laquelle est comprise entre le bord du verre et cette ligne. La zone du milieu du côté 353 de la zone périphérique de la face principale supérieure du verre est la zone hachurée sur la gauche. Cette zone entoure le point milieu 373. La zone hachurée est comprise dans la zone périphérique entre les points 374 et 375 sur le bord. Ces points 374 et 375 sont chacun à une distance du point 373 d'au moins 5 cm, voire d'au moins 10 cm, voire d'au moins 20 cm. Le contre-squelette appuie sur le verre au moins dans cette zone et le cas échéant de façon continue dans toute la longueur de cette zone parallèlement au bord du verre, c'est-à-dire sans discontinuité entre les points 374 et 375, mais pas nécessairement dans toute la largeur de cette zone. Figure 2 shows a windshield-type automotive glazing seen from above, and placed on a horizontal plane, concave face facing downwards. It comprises four sides, two transverse sides 350 and 351 and two longitudinal sides 352 and 353. One side joins another side by a corner having radii of curvature R (in vision perpendicular to the surface of the glass and in each corner) on the surface weak relative to the radii of curvature at the surface towards the middle of the sides. This glazing is symmetrical with respect to the vertical plane of symmetry PS. This PS plane passes through the mediums 354 and 355 of the transverse sides. This glazing rests on four points 356, 357, 358, 359 located in the corners. Dotted lines 360, 361, 362 and 363 connecting these four points. These are the segments closest to the edges. At an edge is associated a segment. Each of these segments has a medium 364, 365, 366, 367. For each segment, there is a plane perpendicular (368, 369, 370, 371) to the segment and passing through its middle. Each of these planes intersects the edge of the nearest lens at a point 372, 355, 373, 354 which is their center. The glazing is concave (in this figure, the concave face is facing downwards) at least at the midpoints 372, 355, 373, 354 and in all the hatched areas on either side of these midpoints, said concavity being considered parallel to the outer edge of the glazing. It is the same for the skeleton having supported this glass and for the zones of the skeleton corresponding to the zones of the middle of the sides of the glass, said concavity being considered parallel to the contours (inside or outside) of the skeleton and top view in a bending situation. The dotted line 376 is 50 mm from the edge of the glass and forms the boundary of the peripheral zone, which is between the edge of the glass and this line. The middle zone of the side 353 of the peripheral zone of the upper main face of the glass is the hatched area on the left. This zone surrounds the middle point 373. The hatched area is included in the peripheral zone between points 374 and 375 on the edge. These points 374 and 375 are each at a distance from point 373 of at least 5 cm, or even at least 10 cm or even at least 20 cm. The counter-skeleton presses the glass at least in this zone and, where appropriate, continuously throughout the entire length of this zone parallel to the edge of the glass, that is to say without discontinuity between the points 374 and 375, but not necessarily in the full width of this area.
La figure 3 représente un dispositif selon l'invention au moment où un contre- squelette 8 (grisé sur la figure) est en train d'être mis en position au-dessus du verre, ce dernier n'étant pas représenté sur la figure par soucis de clarté. On distingue un châssis 1 sur lequel est fixé le squelette 2 par l'intermédiaire de pattes 3 et 4. Le verre (non représenté) est posé sur le squelette 2. Des opérateurs tiennent le contre-squelette 8 par des poignées 6. Ces poignées sont fixées sur un châssis 7 sur lequel est également fixé le contre-squelette 8 par l'intermédiaire de pattes 9 et 10. Le positionnement exact du contre-squelette est assuré par guidage grâce à quatre colonnes de positionnement (1 1 et 12 au premier plan), une à chaque coin. Ces colonnes sont solidaires du châssis 1. Des pattes 13 et 14 fixées au châssis 7 du contre-squelette comprenant chacune un orifice sont enfilées sur les colonnes 1 1 et 12 par leurs orifices. Les chandelles 15 et 16 font partie du moyen d'imposer une distance minimale donnée Dm entre le squelette et le contre-squelette. Elles sont chacune munies de surfaces d'appui 17 et 18 réglables en hauteur par l'intermédiaire de vis 19 et 20. Le châssis 7 du contre-squelette comprend des pattes 21 et 22 qui vont reposer sur les surfaces d'appuis 17 et 18 lorsque les opérateurs auront terminé de déposer le contre-squelette. Le poids du contre-squelette repose donc sur les surfaces d'appuis 17 et 18, la hauteur de celles-ci étant réglées pour que l'écartement entre le contre-squelette et le squelette soit celui choisi. Les surfaces d'appui 17 et 18 forment des butées solidaires du squelette et les pâtes 21 et 22 sont des contrebutées solidaires du contre-squelette. Le squelette et le contre-squelette forment ici un ensemble embarqué apte à être déplacé horizontalement dans un four. Les quatre colonnes de positionnement (1 1 et 12 au premier plan) font partie de moyens de translation verticale permettant au squelette et au contre-squelette de se rapprocher ou de s'éloigner par un mouvement vertical relatif sans déplacement horizontal relatif de l'un par rapport à l'autre. De la sorte, le squelette et le contre-squelette restent en vis-à-vis l'un de l'autre (de part et d'autre du verre) pendant le déplacement horizontal de l'ensemble squelette/contre-squelette dans le four. FIG. 3 represents a device according to the invention at the moment when a backbone 8 (grayed in the figure) is being placed in position above the glass, the latter not being represented in the figure by concern for clarity. There is a frame 1 on which is fixed the skeleton 2 via lugs 3 and 4. The glass (not shown) is placed on the skeleton 2. Operators hold the back-skeleton 8 by handles 6. These handles are fixed on a frame 7 on which is also fixed the backbone 8 by means of lugs 9 and 10. The exact positioning of the back-skeleton is ensured by guidance with four positioning columns (1 1 and 12 in the first plan), one at each corner. These columns are integral with the frame 1. Tabs 13 and 14 fixed to the frame 7 of the backbone each comprising an orifice are threaded onto the columns 1 1 and 12 through their orifices. Candles 15 and 16 are part of the means of imposing a given minimum distance Dm between the skeleton and the backskeleton. They are each provided with bearing surfaces 17 and 18 adjustable in height by means of screws 19 and 20. The frame 7 of the back-skeleton comprises tabs 21 and 22 which rest on the support surfaces 17 and 18. when the operators have finished depositing the counter-skeleton. The weight of the backbone therefore rests on the support surfaces 17 and 18, the height thereof being adjusted so that the spacing between the backbone and the skeleton is the chosen one. The bearing surfaces 17 and 18 form abutments integral with the skeleton and the pastes 21 and 22 are abutments integral with the back-skeleton. The skeleton and the counter-skeleton form here an embedded assembly able to be moved horizontally in an oven. The four positioning columns (1 1 and 12 in the foreground) are part of vertical translation means allowing the skeleton and the back-skeleton to move towards or away by a relative vertical movement without relative horizontal displacement of the one compared to each other. In this way, the skeleton and the back-skeleton remain opposite each other. on the other side (on both sides of the glass) during the horizontal movement of the skeleton / counter-skeleton assembly in the oven.
La figure 4 représente une partie en coupe du dispositif selon l'invention dans lequel se trouve un empilement 30 de deux feuilles de verre comprenant une feuille mince (par exemple d'épaisseur 1 ,1 mm d'épaisseur) en position supérieure et une feuille plus épaisse (par exemple 2,1 mm d'épaisseur) en position inférieure. L'écart entre le verre et le contre-squelette (et donc également entre le squelette et le contre-squelette) est en cours de réglage grâce à la cale 40. Cette opération se fait sur un verre préalablement déjà bombé. Le verre repose par sa face principale inférieure 31 sur le squelette 32, lequel est constitué d'une bande métallique 33 et d'un matériau réfractaire fibreux 34 recouvrant la surface de contact pour le verre. Le contre-squelette 35 a la même structure. Squelette et contre-squelette sont exactement vis-à-vis l'un de l'autre de part et d'autre du verre. Il existe un écartement 36 entre le contre-squelette 35 et la face supérieure du verre 37, comblé par la cale de réglage 40. Squelette et contre-squelette agissent entièrement à l'intérieur de la zone périphérique 38 du verre comprise entre le bord du verre et 50 mm du bord du verre.  FIG. 4 shows a sectional part of the device according to the invention in which there is a stack 30 of two glass sheets comprising a thin sheet (for example of thickness 1.1 mm thick) in the upper position and a sheet thicker (for example 2.1 mm thick) in the lower position. The gap between the glass and the back-skeleton (and therefore also between the skeleton and the back-skeleton) is being adjusted thanks to the wedge 40. This operation is done on a previously already curved glass. The glass rests with its lower main face 31 on the skeleton 32, which consists of a metal strip 33 and a fibrous refractory material 34 covering the contact surface for the glass. The counter-skeleton 35 has the same structure. Skeleton and counter-skeleton are exactly opposite each other on both sides of the glass. There is a gap 36 between the back-skeleton 35 and the upper face of the glass 37, filled by the adjustment wedge 40. Skeleton and counter-skeleton act entirely inside the peripheral zone 38 of the glass between the edge of the glass. glass and 50 mm from the edge of the glass.
La figure 5 représente en vue de dessus un contre-squelette comprenant un élément structurel rigide 50 au-dessus d'une partie 51 du contre-squelette comprenant un plat vertical (non-visible) venant sur le verre. La partie 51 visible est un plat horizontal 57 venant au-dessus du plat vertical et auquel il est relié. Cet élément structurel est un tube métallique de section carrée et a la forme d'un cadre rectangulaire en vue de dessus. Il comprend une pluralité d'extensions 52 reliées à ses faces verticales intérieures ou extérieures, lesdites extensions venant, en vue de dessus, au-dessus de zones 53 de réglage local de la position de la tranche inférieure du contre-squelette. Ces réglages sont réalisés par des vis vérin 54 traversant ici l'élément structurel rigide 50.  FIG. 5 is a top view of a back-skeleton comprising a rigid structural element 50 above a part 51 of the back-skeleton comprising a vertical plate (non-visible) coming on the glass. The visible part 51 is a horizontal plate 57 coming above the vertical plate and to which it is connected. This structural element is a metal tube of square section and has the shape of a rectangular frame in plan view. It comprises a plurality of extensions 52 connected to its inner or outer vertical faces, said extensions coming, in top view, above zones 53 of local adjustment of the position of the lower portion of the back-skeleton. These adjustments are made by jack screws 54 passing through the rigid structural element 50 here.
La figure 6 montre le contre-squelette de la figure 5 selon la section AA' en a) et la vue de côté selon la direction B en b). On retrouve le carré métallique de l'élément structurel rigide 50, une extension 52 étant soudée à une face verticale extérieure dudit carré. Cette extension est également en carré métallique. Le plat vertical 55 est relié indirectement à l'élément structurel rigide 50 de sorte qu'il en est solidaire. Le chant inférieur 56 de ce plat vertical 55 vient sur le verre et sa distance au squelette peut être réglée finement par le vérin à vis 54 par vissage ou dévissage des écrous 58 et 59. Le plat vertical 55 est soudé par son chant supérieur à un plat horizontal 57, afin de stabiliser la position du plat 55. Le plat horizontal 57 est relié à l'extrémité inférieure de la vis vérin 54 par l'intermédiaire d'une liaison pivot 60 dont le pivotement est réglable et biocable en une position donnée grâce aux écrous 61 et 62. Le réglage de ce pivotement permet de régler l'inclinaison du chant 56 afin que celui-ci soit bien parallèle au squelette et que la distance entre le squelette et le contre-squelette soit bien constant pour toute la périphérie du verre. Figure 6 shows the counter-skeleton of Figure 5 according to section AA 'in a) and the side view in the direction B in b). The metal square of the rigid structural element 50 is found, an extension 52 being welded to an outer vertical face of said square. This extension is also in square metal. The vertical plate 55 is indirectly connected to the rigid structural element 50 so that it is integral. The lower edge 56 of this vertical plate 55 comes on the glass and its distance to the skeleton can be finely adjusted by the screw jack 54 by screwing or unscrewing the nuts 58 and 59. The vertical plate 55 is welded by its edge greater than one. horizontal plate 57, in order to stabilize the position of the plate 55. The horizontal plate 57 is connected to the lower end of the jack screw 54 by means of a pivot connection 60 whose pivoting is adjustable and biocable at a given position thanks to the nuts 61 and 62. The adjustment of this pivoting makes it possible to adjust the inclination of the edge 56 so that it is well parallel to the skeleton and that the distance between the skeleton and the back-skeleton is quite constant for the entire periphery of the glass.
La figure 7 représente un contre-squelette selon l'invention vue entièrement en a), une partie en étant agrandie en b). Ce contre-squelette comprend un élément structurel 75 réalisé à partir de morceaux de carrés métalliques soudés entre eux. Vue de dessus, cet élément structurel a une forme voisine de celle du squelette et donc du verre à bomber. Des extensions latérales 76 ont été soudées sur des faces verticales intérieures de l'élément structurel. Des vis vérin de réglage traversent verticalement ces extensions. Le réglage d'une vis vérin permet de régler localement la cote du chant inférieur 77 d'un plat vertical 78. Ce plat vertical est rendu solidaire d'un plat horizontal 79 par un système d'équerres 80 et de vis et écrous. Une liaison pivot 81 au-dessus du plat horizontal 79 permet de régler l'inclinaison locale du plat horizontal 79 dans le cadre du réglage de la cote en hauteur du chant 77. On distingue également des poignées 82 permettant à des opérateurs de manipuler ce contre-squelette et de le poser au-dessus du verre. Le bon positionnement latéral du contre-squelette est assuré grâce à un moyen de centrage du type de celui déjà décrit pour la figure 3 et non représenté ici par soucis de simplification.  FIG. 7 represents a back-skeleton according to the invention seen entirely in a), a portion being enlarged in b). This back-skeleton comprises a structural element 75 made from pieces of metal squares welded together. Viewed from above, this structural element has a shape similar to that of the skeleton and therefore the glass to be bomber. Lateral extensions 76 have been welded to inner vertical faces of the structural member. Adjusting cylinder screws traverse these extensions vertically. The adjustment of a jackscrew makes it possible to locally adjust the dimension of the lower edge 77 of a vertical plate 78. This vertical plate is secured to a horizontal plate 79 by a system of brackets 80 and screws and nuts. A pivot connection 81 above the horizontal plate 79 makes it possible to adjust the local inclination of the horizontal plate 79 in the context of the adjustment of the height dimension of the edge 77. There are also some handles 82 enabling operators to manipulate this against skeleton and lay it over the glass. The correct lateral positioning of the back-skeleton is ensured by a centering means of the type already described for FIG. 3 and not represented here for the sake of simplification.
La figure 8 montre en vue de côté et de façon schématique l'ensemble d'un squelette 90 et de son contre-squelette 91. On voit que la piste de contact du squelette est concave sur toute la longueur du côté visible sur la figure, parallèlement à ses contours intérieur et extérieur, cette concavité étant dans le plan de la figure. Le contre- squelette 91 est composé d'une pluralité de secteurs (S1 , S2, S3, S4, S5, S6) reliés entre eux par des articulations. Un secteur présente une dimension allongée parallèlement au bord du verre que l'on appelle longueur L (sensiblement horizontale sur la figure 8a), et une hauteur (sensiblement verticale sur la figure 8a). Deux secteurs reliés par une articulation présentent une juxtaposition localement dans la zone de l'articulation. La figure 8b) représente vue de côté, un zoom de l'articulation pivot 92 entre les secteurs S2 et S3 (de la figure 8a) et du système de butée et contrebutée associé. La figure 8c) représente l'identique de la figure 8b) mais vu dans le sens de la longueur des secteurs, l'œil étant du côté du secteur S2 et regardant en direction du secteur S3. Dans le but de simplifier les figures, les arrêtes cachées dans les figures 8a) à 8d) n'ont pas été représentées et le matériau fibreux recouvrant les outillages n'a pas non plus été représenté. Le contre-squelette comprend un élément structurel rigide 96 dont la cote en hauteur par rapport au squelette 90 est réglée de façon préliminaire et approximative par des vis vérin 97 situées aux quatre coins du contre-squelette. La pluralité de secteurs S1 à S6 reliés les uns aux autres par des articulations (92, 93) à la manière d'une chaîne forment un plat vertical articulé. Un secteur S3 est relié par chacune de ses extrémités à deux secteurs voisins S2 et S4 par des liaisons pivot 92 et 93 aux axes sensiblement horizontaux. Ces articulations laissent la possibilité aux secteurs de bouger l'un par rapport à l'autre sous le seul effet de leur propre poids. Chaque secteur est muni d'une tige 94 faisant office de contrebutée et venant appuyer sur une butée 95 solidaire du squelette 90. Lorsque la contrebutée réglable en hauteur 94 appuie sur la butée 95, l'écart squelette/contre-squelette voulu est obtenu. Un contre-écrou 99 permet de bloquer la vis 94 et ainsi de figer l'écart squelette/contre-squelette. La liaison pivot 92 représentée sur la figure 8c est composée d'un axe horizontal 102 reliant deux secteurs S2 et S3 qui est relié à un pont 103 qui enjambe les deux secteurs S2 et S3. Les secteurs S2 et S3 peuvent donc se mouvoir en rotation libre par rapport au pont 103 et autour de l'axe 102. Une tige 98 est reliée à chaque axe d'articulation via un pont identique au pont 103 et peut avoir un mouvement vertical libre par rapport à l'élément structurel rigide 96. Comme montré en détail figure 8d), un coulisseau 104 est intercalée entre la structure rigide 96 et la tige verticale 98. Un jeu mécanique compris entre 0,3 et 0,5 mm entre l'alésage intérieur du coulisseau 104 et la tige verticale 98 permet d'obtenir un bon compromis mécanique entre la possible translation verticale de la tige 98 et la précision de son guidage vertical. Cette tige 98 est surmontée d'une tête 100 afin que la tige ne puisse pas passer au travers de l'élément structurel rigide 96. Quand on retire le contre-squelette, chaque tête vient reposer sur l'élément structurel rigide 96, ce qui permet simplement de garder une cohésion à l'ensemble des secteurs. De même, une butée 101 est aussi disposée sur la tige 98 mais cette fois sous la structure rigide 96 afin de limiter les mouvements des secteurs vers le haut, en cas de manipulation du contre-squelette notamment. On a disposé une masselotte 105 (montrée en figure 8c) au niveau de chaque articulation mais sur le côté opposé à la contrebutée réglable 94. Une telle masselotte permet de contrebalancer le poids exercé par la contrebutée 94 et ainsi de favoriser le glissement de chaque tige 98 dans son coulisseau 104. Lorsque le contre- squelette est en position comme sur la figure 8a), alors les têtes 100 ne reposent pas sur l'élément structurel rigide 96, de sorte que c'est la position des butées et contrebutées qui déterminent la position des secteurs. L'élément structurel rigide 96 ne joue alors pas de rôle de référence. Pendant un cycle thermique, les secteurs peuvent bouger les uns par rapport aux autres par le jeu des articulations de sorte que les contrebutées reposent toujours sur les butées, ce qui garantit la conservation de l'écart squelette/contre- squelette souhaité pendant le cycle thermique. FIG. 8 shows in side view and schematically the assembly of a skeleton 90 and its counter-skeleton 91. It can be seen that the contact track of the skeleton is concave along the entire length of the visible side in the figure, parallel to its inner and outer contours, this concavity being in the plane of the figure. The backbone 91 is composed of a plurality of sectors (S1, S2, S3, S4, S5, S6) interconnected by articulations. A sector has an elongated dimension parallel to the edge of the glass which is called length L (substantially horizontal in FIG. 8a), and a height (substantially vertical in FIG. 8a). Two sectors connected by a joint present a juxtaposition locally in the area of the joint. Figure 8b) shows a side view, a zoom of the pivot joint 92 between sectors S2 and S3 (of Figure 8a) and the abutment system and associated abutment. Figure 8c) represents the identical of Figure 8b) but seen in the direction of the length of the sectors, the eye being on the sector S2 side and looking towards the sector S3. In order to simplify the figures, the hidden edges in FIGS. 8a) to 8d) have not been shown and the fibrous material covering the tools has not been shown either. The back-skeleton comprises a rigid structural member 96 whose height dimension relative to the skeleton 90 is preliminarily and approximately adjusted by jack screws 97 located at the four corners of the back-skeleton. The plurality of sectors S1 to S6 connected to each other by chain-like joints (92, 93) form an articulated vertical plate. A sector S3 is connected at each of its ends to two neighboring sectors S2 and S4 by pivot links 92 and 93 to the axes substantially horizontal. These articulations leave the possibility for the sectors to move relative to each other under the sole effect of their own weight. Each sector is provided with a rod 94 acting as abutment and pressing against a stop 95 integral with the skeleton 90. When the height adjustable abutment 94 presses on the stop 95, the gap skeleton / against backbone desired is obtained. A lock-nut 99 makes it possible to block the screw 94 and thus freeze the skeleton / back-skeleton gap. The pivot connection 92 shown in Figure 8c is composed of a horizontal axis 102 connecting two sectors S2 and S3 which is connected to a bridge 103 which spans the two sectors S2 and S3. The sectors S2 and S3 can therefore move in free rotation relative to the bridge 103 and around the axis 102. A rod 98 is connected to each axis of articulation via a bridge identical to the bridge 103 and can have a free vertical movement relative to the rigid structural element 96. As shown in detail in Figure 8d), a slide 104 is interposed between the rigid structure 96 and the vertical rod 98. A mechanical clearance between 0.3 and 0.5 mm between the inner bore of the slider 104 and the vertical rod 98 provides a good mechanical compromise between the possible vertical translation of the rod 98 and the accuracy of its vertical guidance. This rod 98 is surmounted by a head 100 so that the rod can not pass through the rigid structural element 96. When the back-skeleton is removed, each head comes to rest on the rigid structural element 96, which simply keeps cohesion across sectors. Similarly, an abutment 101 is also disposed on the rod 98 but this time under the rigid structure 96 to limit the movement of the sectors upward, especially when handling the backbone. A flyweight 105 (shown in FIG. 8c) has been disposed at each articulation but on the side opposite to the adjustable abutment 94. Such a counterweight makes it possible to counterbalance the weight exerted by the abutment 94 and thus to promote the sliding of each rod. 98 when its backbone is in position as in FIG. 8a), then the heads 100 do not rest on the rigid structural element 96, so that it is the position of the abutments and abutments which determine the position of the sectors. The rigid structural element 96 then plays no role of reference. During a thermal cycle, the sectors can move relative to each other by the play of the joints so that the abutments always rest on the abutments, which guarantees the conservation of the gap skeleton / counter-skeleton wished during the thermal cycle .
La figure 9 montre en vue de côté et de façon schématique, l'ensemble d'un squelette 1 10 et de son contre-squelette 1 1 1 composé d'une pluralité de secteurs (S1 , S2, S3, S4, S5, S6) reliés entre eux par des articulations pivot aux axes sensiblement horizontaux. Contrairement au cas de la figure 8 (où l'écart minimal squelette/contre- squelette est fixé à l'aide d'une combinaison de butées et contrebutées disposées au niveau de chaque articulation), l'outillage est ici utilisé en pression directe, sans système de butées et contrebutées. La figure 9 schématise un système de contrepoids qui peut être installé aux extrémités des tiges 1 18 dans le but d'alléger le poids effectif de chaque secteur, et donc la pression de contact que le contre-squelette exerce sur le verre 1 14 en cours de bombage. Le contre-squelette comprend un élément structurel rigide 1 16 dont la cote en hauteur par rapport au squelette 1 10 est réglée de façon préliminaire et approximative par des vis vérin 1 17 situées aux quatre coins du contre-squelette. La pluralité de secteurs S1 à S6 reliés les uns aux autres par des articulations (1 12, 1 13) à la manière d'une chaîne, forment un plat vertical articulé. Un secteur S3 est relié par chacune de ses extrémités à deux secteurs voisins S2 et S4 par des liaisons pivot 1 12 et 1 13 aux axes sensiblement horizontaux. Ces articulations laissent la possibilité aux secteurs de bouger l'un par rapport à l'autre sous le seul effet de leur propre poids. L'articulation 1 12 est reliée par un pont 1 19 qui enjambe les extrémités des deux secteurs S2 et S3. Les secteurs S2 et S3 peuvent donc se mouvoir en rotation libre par rapport au pont 1 19 et suivant l'articulation 1 12. Une tige 1 18 est reliée à l'articulation 1 12 via un pont 1 19 et peut avoir un mouvement vertical libre par rapport à l'élément structurel rigide 1 16. Cette tige 1 18 est surmontée d'une articulation 120. Le système de contrepoids est composé d'une barre verticale 121 munie d'une articulation 124 à son extrémité supérieure, d'une tige 122 tournant, en un point situé entre ses extrémités, librement autour de l'articulation 124 et d'une masse 123 attachée à l'extrémité de la tige 122. La barre 121 est solidaire de la structure rigide 1 16 et située à proximité de la tige 1 18. La seconde extrémité de la tige 122 est reliée à l'articulation 120 relié à la tige 1 18. FIG. 9 shows in side view and schematically the assembly of a skeleton 1 10 and its back-skeleton 1 1 1 composed of a plurality of sectors (S1, S2, S3, S4, S5, S6 ) interconnected by pivot joints to substantially horizontal axes. Unlike the case of Figure 8 (where the minimum gap skeleton / counter-skeleton is fixed using a combination of stops and abutments arranged at level of each articulation), the tooling is here used in direct pressure, without system of abutments and abutments. FIG. 9 schematizes a counterweight system that can be installed at the ends of the rods 1 18 in order to lighten the effective weight of each sector, and therefore the contact pressure that the back-skeleton exerts on the current lens 1 14 bending. The counter-skeleton comprises a rigid structural element 1 16 whose height dimension relative to the skeleton 1 10 is adjusted in a preliminary and approximate manner by jack screws 1 17 located at the four corners of the back-skeleton. The plurality of sectors S1 to S6 connected to each other by chain-like joints (1 12, 1 13) form an articulated vertical plate. A sector S3 is connected at each of its ends to two neighboring sectors S2 and S4 by pivot links January 12 and January 13 to the substantially horizontal axes. These articulations leave the possibility for the sectors to move relative to each other under the sole effect of their own weight. The hinge January 12 is connected by a bridge January 19 which spans the ends of the two sectors S2 and S3. The sectors S2 and S3 can therefore move in free rotation relative to the bridge 1 19 and following the articulation 1 12. A rod 1 18 is connected to the hinge 1 12 via a bridge 1 19 and can have a free vertical movement relative to the rigid structural element 1 16. This rod 1 18 is surmounted by a hinge 120. The counterweight system is composed of a vertical bar 121 provided with a hinge 124 at its upper end, a rod 122 rotating at a point between its ends, freely around the hinge 124 and a mass 123 attached to the end of the rod 122. The bar 121 is integral with the rigid structure 1 16 and located near the the stem 1 18. The second end of the rod 122 is connected to the hinge 120 connected to the rod 1 18.
La figure 10 montre schématiquement vue de dessus l'ensemble des secteurs qui composent le contre-squelette selon l'invention et décrit à la figure 8. Les secteurs sont groupés en autant de bandes que le verre a de côtés (quatre bandes B1 , B2, B3 et B4), chaque bande correspondant à un côté du verre, les extrémités des bandes n'étant pas reliés à leurs bande voisines. Pour des raisons de simplification, seuls les différents secteurs (S1 , S2, S3, S4, S5, etc .), leurs axes de rotation (A1 , A2, A3, A4, etc ..) et le pourtour extérieur du verre 130 ont été représentés. Les secteurs positionnés aux extrémités de chaque bande (comme par exemple les secteurs S1 , S4 et S5) ne sont pas reliés au secteur voisin appartenant à une bande immédiatement adjacente. Ils sont légèrement plus courts afin d'autoriser un mouvement libre autour de leur axe horizontal sans interférence avec les secteurs voisin appartenant à une bande adjacente. Un moyen décrit aux figures 1 1 à 13, mais non représenté ici, permet de limiter le déplacement vers le bas des secteurs situés aux extrémités des bandes. Ainsi, les secteurs situés aux extrémités ne viennent pas interférer avec le verre lors du chargement et du déchargement du contre-squelette. La figure 1 1 montre différentes représentations des extrémités de deux secteurs adjacents d'un contre-squelette à secteur tel que les secteurs S3 et S4 de la figure 8 destinés à être reliés par une articulation. La figure 1 1 a) représente l'extrémité d'un secteur, tel que le secteur S3 de la figure 8a) en vue de face, du dessus et de côté. La figure 1 1 b) est similaire à la figure 1 1 a) mais représente le secteur adjacent, tel que le secteur S4 de la figure 8a). La figure 1 1 c) représente l'ensemble des deux extrémités de secteurs disposés comme articulés, tels que les secteurs S3 et S4 des figures 8a) et 8b) en vue de face, de dessus ainsi que trois coupes verticales dont deux sont située dans le plan vertical passant par l'axe d'articulation entre les secteurs S3 et S4. Pour former l'articulation, une tige (non représentée) est passée dans le trou 140, l'axe de ladite tige correspondant à l'axe 141 . La figure 1 1 montre qu'une découpe appropriée combiné avec un embossage local des secteurs dans la zone de leur articulation permet d'obtenir une face tournée vers le bas de largeur constante tout le long de la bande, sans doublement de l'épaisseur au niveau des articulations, ce qui aurait lieu si les secteurs, gardés entièrement plats, étaient simplement juxtaposés. En effet, les pistes de contact avec le verre des deux secteurs sont bien alignés en vue de dessus. Chaque secteur S3 et S4 est composé d'une tôle. Leur découpe est symétrique et est montrée sur vue de face sur les figures 1 1 a) et 1 1 b). Un trou 140 d'axe 141 est prévu à leur extrémité pour faire passer l'axe de l'articulation. L'extrémité 142 du secteur S3 est découpée en forme de demi- anneau autour du trou 140. Par ailleurs, un embossage sous forme d'un disque de diamètre supérieur au demi-anneau 142 et d'axe 141 permet de former un bossage d'une demi-épaisseur de tôle composant S3 ou S4. Les déformations 143 par embossage des tôles sont visibles sur les vues de dessus et de côté et sont schématisés en traits fins 144 sur les vues de face. Par ce bossage, la zone de juxtaposition d'un secteur est, en vue de dessus, décalée par rapport à sa tranche tournée vers le bas. Ce bossage ménage un espace 150 dans lequel la zone de l'articulation d'un secteur voisin peut être placée en vue de former l'articulation. Ainsi les bossages de deux secteurs destinés à être reliés ensemble par une articulation sont complémentaires et permettent la juxtaposition locale des deux secteurs de l'articulation sans épaississement de la tranche tournée vers le bas de l'ensemble des deux secteurs. L'ensemble des deux secteurs assemblés est seulement plus épais localement au niveau des zones de juxtaposition des secteurs pour former l'articulation. Ces zones de juxtaposition sont juxtaposées selon une direction perpendiculaire à l'axe de l'articulation, lequel traverse les zones de juxtaposition des deux secteurs. Les tranches tournées vers le bas des deux secteurs reliés entre eux par une articulation sont alignées en vue de dessus. Deux encoches 145 et 146 sont découpées dans la tôle afin de ne pas provoquer d'effet de bord qui pourraient perturber le mouvement de rotation des deux secteurs S3 et S4 l'un par rapport à l'autre. Enfin, une encoche 147 est pratiquée dans la partie basse de chaque secteur dans le but de former un logement permettant le maintien d'un matériau fibreux revêtant la tranche inférieure des secteurs. Deux parties saillantes 148 et 149, l'une (148) en partie supérieure de chaque secteur et l'autre (149) en partie inférieure de chaque secteur sont découpées suivant une ligne qui passe par l'axe de rotation 141 et qui forme un angle Θ avec la verticale. Cet angle est présent à la fois pour permettre et limiter la rotation des deux secteurs l'un par rapport à l'autre. Notamment, les parties saillantes 149 en vis-à-vis des deux secteurs adjacents peuvent former butées en se rencontrant, ce qui permet de limiter le déplacement vers le bas des secteurs situés aux extrémités des bandes, notamment lorsque le contre-squelette est ôté du dispositif. FIG. 10 is a diagrammatic view from above of all the sectors that make up the counter-skeleton according to the invention and described in FIG. 8. The sectors are grouped in as many bands as the glass has sides (four bands B1, B2 , B3 and B4), each band corresponding to one side of the glass, the ends of the strips not being connected to their neighboring band. For reasons of simplification, only the different sectors (S1, S2, S3, S4, S5, etc.), their axes of rotation (A1, A2, A3, A4, etc.) and the outer periphery of the glass 130 have been represented. The sectors positioned at the ends of each band (as for example the sectors S1, S4 and S5) are not connected to the neighboring sector belonging to an immediately adjacent band. They are slightly shorter in order to allow free movement around their horizontal axis without interference with neighboring sectors belonging to an adjacent band. A means described in Figures 1 1 to 13, but not shown here, limits the downward movement of the sectors at the ends of the strips. Thus, the sectors at the ends do not interfere with the glass during the loading and unloading of the back-skeleton. FIG. 11 shows different representations of the ends of two adjacent sectors of a sector backbone such as the sectors S3 and S4 of FIG. 8 intended to be connected by a hinge. Figure 11 (a) shows the end of a sector, such as sector S3 of Figure 8a) in front view, from above and from the side. Figure 11 (b) is similar to Figure 11 (a) but represents the adjacent sector, such as sector S4 of Figure 8a). FIG. 11 (c) represents the set of two ends of sectors arranged as articulated, such as the sectors S3 and S4 of FIGS. 8a) and 8b) in front view, from above as well as three vertical sections, two of which are located in the vertical plane passing through the axis of articulation between sectors S3 and S4. To form the articulation, a rod (not shown) is passed through the hole 140, the axis of said rod corresponding to the axis 141. FIG. 11 shows that a suitable cutout combined with a local embossing of the sectors in the zone of their articulation makes it possible to obtain a face turned downwards of constant width all along the strip, without doubling the thickness at level of the joints, which would take place if the sectors, kept entirely flat, were simply juxtaposed. Indeed, the contact tracks with the glass of the two sectors are aligned in top view. Each sector S3 and S4 is composed of a sheet. Their cutting is symmetrical and is shown in front view in Figures 1 1 a) and 1 1 b). A hole 140 of axis 141 is provided at their end to pass the axis of the joint. The end 142 of the sector S3 is cut into the shape of a half-ring around the hole 140. Moreover, an embossing in the form of a disk of diameter greater than the half-ring 142 and of axis 141 makes it possible to form a boss. half a thickness of component sheet S3 or S4. The deformations 143 by embossing the sheets are visible in the views from above and from the side and are shown schematically in fine lines 144 in the front views. By this boss, the zone of juxtaposition of a sector is, in top view, offset with respect to its slice facing downwards. This boss provides a space 150 in which the area of the joint of a neighboring sector can be placed to form the joint. Thus the bosses of two sectors intended to be connected together by a joint are complementary and allow the local juxtaposition of the two sectors of the joint without thickening of the slice facing down the set of two sectors. The set of two assembled sectors is only thicker locally at the juxtaposition zones of the sectors to form the joint. These juxtaposition zones are juxtaposed in a direction perpendicular to the axis of the joint, which passes through the juxtaposition zones of the two sectors. The slices facing downwards from the two sectors connected to each other by a hinge are aligned in plan view. Two notches 145 and 146 are cut in the sheet so as not to cause edge effects that could disturb the rotational movement of the two sectors S3 and S4 relative to each other. Finally, a notch 147 is made in the lower part of each sector in order to form a housing for maintaining a fibrous material coating the lower edge of the sectors. Two projections 148 and 149, one (148) in the upper part of each sector and the other (149) in the lower part of each sector are cut along a line which passes through the axis of rotation 141 and which forms a angle Θ with the vertical. This angle is present both to allow and limit the rotation of the two sectors relative to each other. In particular, the projecting portions 149 opposite the two adjacent sectors can form abutments while meeting, which makes it possible to limit the downward movement of the sectors situated at the ends of the strips, especially when the back-skeleton is removed from the device.
La figure 12 présente en vue de face deux secteurs adjacents d'un contre- squelette à secteur de forme identique aux secteurs S3 et S4 de la figure 1 1 . Ces deux secteurs sont centrés suivant un axe commun 181 . La figure 12a représente les deux secteurs S3 et S4, chacun s'étant déplacé vers le haut alors que l'axe de leur articulation commune restait dans une position plus basse. Au contraire, la figure 12b représente les deux secteurs S3 et S4, chacun s'étant déplacé vers le bas alors que l'axe de leur articulation commune restait dans une position plus haute. L'objectif de la figure 12 est de montrer que la découpe appropriée des extrémités des secteurs S3 et S4 permet de limiter le débattement angulaire relatif de S3 et S4. L'angle maximal pouvant former les secteurs entre eux est limité par les parties 188 et 189 qui agissent comme des butées. Cet angle vaut deux fois l'angle Θ de la figure 1 1. Les encoches 187 permettent de fixer un matériau fibreux recouvrant la tranche inférieure des secteurs. En effet, la figure 12b montre les deux secteurs en position fermée en bas et l'on voit que l'espace 190 entre les encoches 187 reste suffisant pour laisser passer le matériau fibreux. Les parties saillantes 189 en vis-à-vis des secteurs S3 et S4 peuvent former butées en se rencontrant (figure 12b), ce qui permet de limiter le déplacement vers le bas des secteurs situés aux extrémités des bandes, notamment lorsque le contre-squelette est enlevé du dispositif.  FIG. 12 shows in front view two adjacent sectors of a sector backbone of identical shape to sectors S3 and S4 of FIG. These two sectors are centered along a common axis. Figure 12a shows the two sectors S3 and S4, each moving upwards while the axis of their joint joint remained in a lower position. In contrast, Figure 12b shows the two sectors S3 and S4, each moving downward while the axis of their joint joint remained in a higher position. The objective of FIG. 12 is to show that the appropriate cutting of the ends of sectors S3 and S4 makes it possible to limit the relative angular displacement of S3 and S4. The maximum angle that can form the sectors between them is limited by the parts 188 and 189 which act as stops. This angle is twice the angle Θ of Figure 1 1. The notches 187 allow to fix a fibrous material covering the lower edge of the sectors. In fact, FIG. 12b shows the two sectors in the closed position at the bottom and it can be seen that the space 190 between the notches 187 remains sufficient to let the fibrous material pass. The projecting portions 189 facing the sectors S3 and S4 may form abutments when they meet (FIG. 12b), which makes it possible to limit the downward movement of the sectors situated at the ends of the strips, especially when the backskeleton is removed from the device.
La figure 13 présente une alternative simple à fabriquer d'extrémité de secteurs de contre-squelette à secteurs. La figure 12a représente l'extrémité d'un secteur, tel que le secteur S3 de la figure 8a, en vue de face, de dessus et de côté. La figure 12b représente le secteur adjacent, tel que le secteur S4 de la figure 8a, devant être relié par une articulation avec le secteur de la figure 13a. On retrouve un demi-anneau 162 entourant un trou 160 d'axe 161 , pour ces deux secteurs, l'axe 161 étant celui de l'articulation. L'extrémité des secteurs se compose grossièrement de 3 languettes 171 , 172 et 173. La languette haute 171 se compose d'une partie en saillie 168 qui permet de limiter la fermeture des deux secteurs S3 et S4 comme déjà expliqué pour les secteurs de la figure 12. Cette partie en saillie 168 forme un angle Θ avec la verticale. Les languettes 171 et 172 d'une part et 172 et 173 d'autre part sont respectivement séparées par deux découpes rentrantes 175 et 176 qui permettent essentiellement d'effectuer un pliage simple de la languette centrale 172 plutôt qu'un embossage circulaire tel que celui présenté sur la figure 1 1 . Un tel pliage est plus facile à réaliser qu'un embossage. Les déformations de la languette centrale 172 sont visibles sur les vues de dessus et sont schématisées en traits fins 164 sur les vues de face. La languette 172 comprend la zone de juxtaposition de l'articulation. Le décalage de la languette 172 induit par les déformations 164 ménage un espace 180 utile au placement de la zone de juxtaposition du secteur voisin pour former l'articulation d'axe 161. La languette basse 173 se compose d'une partie en saillie 169 qui permet de limiter la fermeture des deux secteurs S3 et S4 en faisant butée. Cette partie en saillie 169 forme un angle Θ avec la verticale. Enfin, une encoche 167 dans la partie basse de chaque secteur ménage un espace nécessaire au passage du matériau fibreux revêtant la tranche inférieure des secteurs. Fig. 13 shows a simple alternative to making sector ends of backbone sectors. Figure 12a shows the end of a sector, such as sector S3 of Figure 8a, in front view, from above and from side. Figure 12b shows the adjacent sector, such as sector S4 of Figure 8a, to be hingedly connected with the sector of Figure 13a. There is a half-ring 162 surrounding a hole 160 of axis 161 for these two sectors, the axis 161 being that of the joint. The end of the sectors consists roughly of 3 tabs 171, 172 and 173. The upper tab 171 consists of a projecting portion 168 which limits the closure of the two sectors S3 and S4 as already explained for the sectors of the This projecting portion 168 forms an angle Θ with the vertical. The tabs 171 and 172 on the one hand and 172 and 173 on the other hand are respectively separated by two reentrant cuts 175 and 176 which essentially allow to perform a simple folding of the central tongue 172 rather than a circular embossing such as that presented on Figure 1 1. Such folding is easier to achieve than embossing. The deformations of the central tongue 172 are visible in the views from above and are shown schematically in fine lines 164 in the front views. The tongue 172 includes the juxtaposition zone of the joint. The offset of the tab 172 induced by the deformations 164 provides a space 180 useful for the placement of the juxtaposition zone of the neighboring sector to form the axis articulation 161. The low tab 173 consists of a projecting portion 169 which allows to limit the closure of the two sectors S3 and S4 by abutting. This projecting portion 169 forms an angle Θ with the vertical. Finally, a notch 167 in the lower part of each sector provides space for the passage of the fibrous material coating the lower edge of the sectors.
La figure 14 représente en coupe une vue schématique d'un contre-squelette 205 comprenant des bandes escamotables latéralement. Par simplification, un seul côté 205 du contre-squelette a été représenté, et ce vu dans le sens de sa longueur. Le verre repose par sa face principale inférieure 201 sur le squelette 202, lequel comprend une bande métallique 203 dont une tranche est dirigée vers le haut. Le contre-squelette comprend en tant que barre métallique un plat vertical 214 et un plat horizontal 215. Squelette et contre-squelette sont tous deux munis d'un matériau fibreux réfractaire (non représenté) pour venir au contact du verre. Le contre-squelette 205 est solidaire d'une structure en forme de « U » retourné 208. Cette dernière est reliée à un pied 206 lui- même solidaire de la structure 207 du squelette 202 via une liaison pivot d'axe 209 sensiblement horizontal. Lors du bombage, le contre-squelette touche la surface principale supérieure du verre 210. La liaison pivot permet d'escamoter l'ensemble 'contre-squelette + structure en « U »' une fois que le bombage du verre est réalisé, ce qui permet de dégager facilement le verre bombé. L'ensemble 'contre-squelette + structure en « U »' est représenté en position escamotée en ligne pointillée 212. La position de l'axe de rotation 209 de la structure du contre-squelette, à la fois assez haute et éloignée du bord du verre 21 1 , ce qui permet au contre-squelette de s'écarter du verre par un mouvement de rotation (flèche 213) l'entraînant à la fois vers le haut mais aussi latéralement. Le système d'escamotage est réalisé par un système de déclenchement non décrit ici mais pouvant par exemple traverser les parois latérales du four ou bien la sole du four. L'escamotage réalisé en cours de refroidissement permet l'obtention de bonnes contraintes de bord du verre. Par ailleurs, l'escamotage permet aussi de retirer le verre du squelette par un système classique de herse le poussant par en-dessous, et de le charger facilement en entrée four, à l'aide d'un robot par exemple. Le contre-squelette est de nouveau mis en place par un mouvement rotatif inverse une fois que le verre suivant est chargé sur le squelette. Figure 14 shows in section a schematic view of a backbone 205 comprising laterally retractable strips. For simplicity, only one side 205 of the back-skeleton has been shown, and this seen in the direction of its length. The glass rests with its lower main surface 201 on the skeleton 202, which comprises a metal strip 203, a slice of which is directed upwards. The counter-skeleton comprises as a metallic bar a vertical plate 214 and a horizontal plate 215. Both skeleton and counter-skeleton are provided with a refractory fibrous material (not shown) for contacting the glass. The backbone 205 is secured to a U-shaped structure returned 208. The latter is connected to a foot 206 itself secured to the structure 207 of the skeleton 202 via a substantially horizontal axis pivot connection 209. During the bending, the counter-skeleton touches the upper main surface of the glass 210. The pivot connection makes it possible to retract the entire 'counter-skeleton +'"U" structure once the bending of the glass is done, which allows to easily clear the curved glass. The assembly 'back-skeleton + structure' U 'is shown in the retracted position in dashed line 212. The position of the axis of rotation 209 of the structure of the back-skeleton, both high enough and away from the edge glass 21 1, which allows the back-skeleton to deviate from the glass by a rotational movement (arrow 213) causing it both upwards but also laterally. The retraction system is made by a trigger system not described here but may for example pass through the side walls of the oven or the oven floor. The retraction performed during cooling makes it possible to obtain good glass edge stresses. Moreover, the retraction also makes it possible to remove the skeleton glass by a conventional harrow system pushing it from below, and to easily load it in the oven inlet, using a robot for example. The counter-skeleton is set up again by a reverse rotary motion once the next glass is loaded onto the skeleton.

Claims

REVENDICATIONS
Dispositif de bombage par gravité d'une feuille de verre ou d'un empilement de feuilles de verre comprenant une pluralité de côtés dit le verre, comprenant un squelette pour supporter le verre dans sa zone périphérique par une piste de contact, ladite piste de contact comprenant des courbures concaves en chacun des côtés dudit squelette, et un contre-squelette apte à entrer en contact avec le verre dans la zone du milieu d'au moins un côté de la zone périphérique de la face principale supérieure du verre.  A device for gravity bending a glass sheet or a stack of glass sheets comprising a plurality of sides said glass, comprising a skeleton for supporting the glass in its peripheral area by a contact track, said contact track comprising concave curvatures in each of the sides of said skeleton, and a counter-skeleton able to come into contact with the glass in the middle zone of at least one side of the peripheral zone of the upper main face of the glass.
Dispositif selon la revendication précédente, caractérisé en ce qu'il donne au verre des formes concaves vue de dessus en sa zone centrale et en chacun de ses côtés, notamment au milieu de ses côtés.  Device according to the preceding claim, characterized in that it gives the glass concave shapes seen from above in its central zone and in each of its sides, in particular in the middle of its sides.
Dispositif selon l'une des revendications précédentes, caractérisé en ce que le contre-squelette entre en contact dans la zone du milieu de tous les côtés, généralement quatre côtés, de la zone périphérique de la face principale supérieure du verre.  Device according to one of the preceding claims, characterized in that the back-skeleton comes into contact in the middle zone of all sides, generally four sides, of the peripheral zone of the upper main face of the glass.
Dispositif selon l'une des revendications précédentes, caractérisé en ce que la zone du milieu d'au moins un côté comprend les 5 cm de part et d'autre du milieu, voire les 10 cm de part et d'autre du milieu, voire les 20 cm de part et d'autre du milieu, parallèlement au bord du verre et dans la zone périphérique.  Device according to one of the preceding claims, characterized in that the middle zone of at least one side comprises 5 cm on either side of the middle, or even 10 cm on either side of the middle, or the 20 cm on either side of the middle, parallel to the edge of the glass and in the peripheral zone.
Dispositif selon l'une des revendications précédentes, caractérisé en ce que le contre-squelette entre en contact avec le verre par un matériau fibreux réfractaire. Dispositif selon la revendication précédente, caractérisé en ce que le matériau fibreux est apte à se compresser sous l'effet de la force de pesanteur agissant sur le contre-squelette. Device according to one of the preceding claims, characterized in that the counter-skeleton comes into contact with the glass with a refractory fibrous material. Device according to the preceding claim, characterized in that the fibrous material is able to compress under the effect of the force of gravity acting on the back-skeleton.
Dispositif selon la revendication précédente, caractérisé en ce qu'un système de contrepoids relié au contre-squelette réduit la force de pression du contre-squelette sur le verre.  Device according to the preceding claim, characterized in that a counterweight system connected to the back-skeleton reduces the pressure force of the back-skeleton on the glass.
Dispositif selon l'une des revendications précédentes, caractérisé en ce que le squelette comprend une bande métallique dont une tranche est dirigée vers le haut, ladite tranche étant recouverte d'un matériau fibreux réfractaire formant la piste de contact pour le verre, le contre-squelette comprend une barre métallique, le dispositif comprenant un moyen d'imposer une distance minimale donnée Dm entre la bande métallique du squelette et la barre métallique du contre-squelette.  Device according to one of the preceding claims, characterized in that the skeleton comprises a metal strip whose slice is directed upwards, said slice being covered with a refractory fibrous material forming the contact track for the glass, the counter skeleton comprises a metal bar, the device comprising means for imposing a given minimum distance Dm between the metal strip of the skeleton and the metal bar of the back-skeleton.
Dispositif selon la revendication précédente, caractérisé en ce que le moyen d'imposer Dm comprend un élément formant butée, dit butée, solidaire de la bande métallique du squelette et sur lequel une contrebutée solidaire de la barre métallique du contre-squelette est apte à reposer. Device according to the preceding claim, characterized in that the means of imposing Dm comprises an abutment member, said abutment, integral with the metal strip of the skeleton and on which a counterstay integral with the metal bar of the back-skeleton is able to rest .
10. Dispositif selon l'une des deux revendications précédentes, caractérisé en ce que le moyen d'imposer Dm est réglable. 10. Device according to one of the two preceding claims, characterized in that the means of imposing Dm is adjustable.
1 1 . Dispositif selon l'une des revendications précédentes, caractérisé en ce que le contre-squelette comprend une barre métallique du type bande métallique dont une tranche est tournée vers le bas, comprenant une pluralité de secteurs reliés entre eux par des articulations, chaque articulation comprenant une liaison pivot à l'axe sensiblement horizontal reliant deux secteurs entre eux.  1 1. Device according to one of the preceding claims, characterized in that the counter-skeleton comprises a metal strip of the metal strip type, a slice of which is turned downwards, comprising a plurality of sectors connected together by articulations, each hinge comprising a pivot connection to the substantially horizontal axis connecting two sectors together.
12. Dispositif selon la revendication précédente, caractérisé en ce que les extrémités de deux secteurs sont reliés entre eux par une articulation, ces extrémités comprenant chacune une zone de juxtaposition, ces zones de juxtaposition étant juxtaposées selon une direction perpendiculaire à l'axe de l'articulation, ledit axe traversant les zones de juxtaposition des deux secteurs.  12. Device according to the preceding claim, characterized in that the ends of two sectors are interconnected by a joint, these ends each comprising a juxtaposition zone, these juxtaposition zones being juxtaposed in a direction perpendicular to the axis of the articulation, said axis passing through the zones of juxtaposition of the two sectors.
13. Dispositif selon la revendication précédente, caractérisé en ce que les tranches tournées vers le bas de deux secteurs reliés entre eux par une articulation, sont alignées en vue de dessus, la zone de juxtaposition d'au moins un des deux secteurs étant, en vue de dessus, décalée par rapport à sa tranche tournée vers le bas, de sorte à ménager un espace occupé par la zone de juxtaposition de l'autre secteur.  13. Device according to the preceding claim, characterized in that the downwardly slices of two sectors interconnected by a hinge, are aligned in plan view, the juxtaposition zone of at least one of the two sectors being, in top view, offset from its slice facing downwards, so as to provide a space occupied by the juxtaposition zone of the other sector.
14. Dispositif selon l'une des revendications 1 1 à 13, caractérisé en ce que les secteurs sont groupés en autant de bandes que le verre a de côtés, chaque bande correspondant à un côté du verre, les extrémités des bandes n'étant pas reliés à leurs bande voisines.  14. Device according to one of claims 1 1 to 13, characterized in that the sectors are grouped in as many bands that the glass has sides, each band corresponding to one side of the glass, the ends of the strips not being connected to their neighboring bands.
15. Dispositif selon l'une des revendications 1 1 à 14, caractérisé en ce que le squelette comprend une bande métallique dont une tranche est dirigée vers le haut et une pluralité de butées reliées à la bande métallique et placées vis-à-vis d'articulations du contre-squelette, des contrebutées étant reliées au contre-squelette vis-à-vis des butées, notamment aux tiges formant axes des articulations, pour venir appuyer sur les butées, de sorte qu'une distance minimale Dm entre la bande métallique du squelette et la barre métallique du contre-squelette peut être imposée au niveau de chaque secteur lorsque les contrebutées reposent sur les butées.  15. Device according to one of claims 1 1 to 14, characterized in that the skeleton comprises a metal strip having a slice is directed upwards and a plurality of abutments connected to the metal strip and placed vis-à-vis counter-skeletal joints, counterbutts being connected to the counter-skeleton with respect to the stops, in particular to the rods forming axes of the articulations, to come to bear on the abutments, so that a minimum distance Dm between the metal strip the skeleton and the metal bar of the back-skeleton can be imposed at each sector when the abutments rest on the stops.
16. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comprend un système progressif apte à modifier progressivement au cours du bombage la distance entre le squelette et le contre-squelette.  16. Device according to one of the preceding claims, characterized in that it comprises a progressive system adapted to change progressively during bending the distance between the skeleton and the backbone.
17. Dispositif selon l'une des revendications précédentes, caractérisé en ce que le contre-squelette comprend une barre métallique et un élément structurel disposé au-dessus de la barre métallique, l'élément structurel et la barre métallique étant reliés entre eux par une pluralité d'entretoises réglables permettant de régler localement la distance entre l'élément structurel et la barre métallique. 17. Device according to one of the preceding claims, characterized in that the back-skeleton comprises a metal bar and a structural element disposed above the metal bar, the structural element and the metal bar being interconnected by a plurality of adjustable spacers for locally adjusting the distance between the structural member and the metal bar.
18. Dispositif selon l'une des revendications précédentes, caractérisé en ce que le contre-squelette est amovible. 18. Device according to one of the preceding claims, characterized in that the back-skeleton is removable.
19. Dispositif selon l'une des revendications précédentes, caractérisé en ce que le contre-squelette comprend des bandes escamotables latéralement. 19. Device according to one of the preceding claims, characterized in that the back-skeleton comprises laterally retractable strips.
20. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comprend des moyens permettant au squelette et au contre-squelette de se rapprocher ou de s'éloigner par un mouvement vertical relatif sans déplacement horizontal relatif de l'un par rapport à l'autre.  20. Device according to one of the preceding claims, characterized in that it comprises means allowing the skeleton and the back-skeleton to move towards or away by a relative vertical movement without relative horizontal displacement of the one by report to the other.
21 . Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comprend un four et un moyen de convoyage apte à déplacer horizontalement ensemble le squelette et le contre-squelette dans le four alors qu'ils sont vis-à-vis l'un de l'autre, et des moyens de translation verticale permettant au squelette et au contre-squelette de se rapprocher ou de s'éloigner par un mouvement vertical relatif au cours de leur déplacement horizontal et sans déplacement horizontal relatif de l'un par rapport à l'autre.  21. Device according to one of the preceding claims, characterized in that it comprises an oven and a conveying means capable of moving horizontally together the skeleton and the back-skeleton in the oven while they are opposite the one of the other, and means of vertical translation allowing the skeleton and the back-skeleton to move towards or away from each other by relative vertical movement during their horizontal displacement and without relative horizontal displacement of the relative to the other.
22. Dispositif selon l'une des revendications précédentes, caractérisé en ce que le contre-squelette est apte à exercer un poids sur le verre par mètre linéaire de contre-squelette inférieure à 2 kg/m et de préférence inférieure à 1 kg/m, et de préférence supérieur à 0,1 kg/m.  22. Device according to one of the preceding claims, characterized in that the back-skeleton is capable of exerting a weight on the glass per linear meter of back-skeleton less than 2 kg / m and preferably less than 1 kg / m and preferably greater than 0.1 kg / m.
23. Procédé de bombage d'une feuille de verre ou d'un empilement de feuilles de verre comprenant une pluralité de côtés, dit le verre, le cas échéant par le dispositif de l'une des revendications précédentes, comprenant le bombage du verre par gravité sur un squelette supportant le verre dans sa zone périphérique par une piste de contact, ladite piste de contact comprenant des courbures concaves en chacun des côtés dudit squelette, un contre-squelette venant au contact du verre dans la zone du milieu d'au moins un des côtés du verre dans la zone périphérique de sa face principale supérieure.  23. A method of bending a glass sheet or a stack of glass sheets comprising a plurality of sides, said glass, where appropriate by the device of one of the preceding claims, comprising bending the glass by gravity on a skeleton supporting the glass in its peripheral zone by a contact track, said contact track comprising concave curvatures in each of the sides of said skeleton, a counter-skeleton coming into contact with the glass in the middle zone of at least one of the sides of the glass in the peripheral zone of its upper main face.
24. Procédé selon la revendication précédente, caractérisé en ce que le verre prend une forme concave vue de dessus en sa zone centrale et en chacun de ses côtés, notamment au milieu de ses côtés. 24. Method according to the preceding claim, characterized in that the glass takes a concave shape seen from above in its central zone and in each of its sides, especially in the middle of its sides.
25. Procédé selon l'une des revendications précédentes de procédé, caractérisé en ce que le contre-squelette vient au contact de la zone du milieu de tous les côtés du verre, généralement quatre côtés, de la zone périphérique de la face principale supérieure du verre. 25. Method according to one of the preceding method claims, characterized in that the back-skeleton comes into contact with the middle zone of all sides of the glass, generally four sides, of the peripheral zone of the upper main face of the glass. glass.
26. Procédé selon l'une des revendications précédentes de procédé, caractérisé en ce que le contre-squelette vient au contact du verre par un matériau fibreux réfractaire.26. Method according to one of the preceding process claims, characterized in that the back-skeleton comes into contact with the glass by a refractory fibrous material.
27. Procédé selon la revendication précédente, caractérisé en ce que le matériau fibreux réfractaire se compresse pendant le bombage sous l'effet de la force de pesanteur agissant sur le contre-squelette. 27. Method according to the preceding claim, characterized in that the refractory fibrous material compresses during the bending under the effect of the gravitational force acting on the backbone.
28. Procédé selon l'une des revendications précédentes de procédé, caractérisé en ce que le squelette comprend une bande métallique dont une tranche est dirigée vers le haut, ladite tranche étant recouverte d'un matériau fibreux réfractaire formant la piste de contact pour le verre, ledit matériau fibreux réfractaire se compressant pendant le bombage sous l'effet de la pression exercée par la face inférieure du verre.  28. Method according to one of the preceding process claims, characterized in that the skeleton comprises a metal strip having a slice is directed upwards, said slice being covered with a refractory fibrous material forming the contact track for the glass said refractory fibrous material compressing during bending under the effect of the pressure exerted by the underside of the glass.
29. Procédé selon la revendication précédente, le contre-squelette comprenant une barre métallique dont la face inférieure est revêtue de matériau fibreux réfractaire, la compression du matériau fibreux réfractaire équipant le squelette et le contre- squelette étant limitée par un moyen apte à imposer une distance minimale Dm entre la bande métallique du squelette et la barre métallique du contre-squelette. 29. Method according to the preceding claim, the back-skeleton comprising a metal bar whose lower face is coated with refractory fibrous material, the compression of the refractory fibrous material equipping the skeleton and the back-skeleton being limited by a means able to impose a minimum distance Dm between the metal band of the skeleton and the metal bar of the back-skeleton.
30. Procédé selon l'une des revendications précédentes de procédé, caractérisé en ce que le squelette et le contre-squelette se rapprochent progressivement au cours du bombage. 30. Method according to one of the preceding method claims, characterized in that the skeleton and the back-skeleton are gradually approaching during the bending.
31 . Procédé selon l'une des revendications précédentes de procédé, caractérisé en ce que la zone périphérique est la zone entre le bord du verre et une distance du bord du verre de 50 mm. 31. Method according to one of the preceding method claims, characterized in that the peripheral zone is the area between the edge of the glass and a distance from the edge of the glass of 50 mm.
32. Procédé selon l'une des revendications précédentes de procédé, caractérisé en ce que le verre est un empilement de feuilles de verre, notamment un empilement comprenant une feuille d'épaisseur comprise dans le domaine allant de 1 ,4 à 2,7 mm, généralement dans le domaine allant de 1 ,4 à 2,5 mm et une feuille d'épaisseur comprise dans le domaine allant de 0,4 à 1 ,6 mm.  32. Method according to one of the preceding process claims, characterized in that the glass is a stack of glass sheets, in particular a stack comprising a sheet of thickness in the range of 1, 4 to 2.7 mm generally in the range of 1.4 to 2.5 mm and a thickness sheet in the range of 0.4 to 1.6 mm.
33. Procédé selon l'une des revendications précédentes de procédé, caractérisé en ce que le verre est bombé à une température comprise dans le domaine allant de 570 à 650°C.  33. Method according to one of the preceding process claims, characterized in that the glass is curved at a temperature in the range of 570 to 650 ° C.
34. Procédé selon l'une des revendications précédentes de procédé, caractérisé en ce que le contre-squelette exerce pendant le bombage un poids sur le verre par mètre linéaire de contre-squelette inférieure à 2 kg/m et de préférence inférieure à 1 kg/m, et de préférence supérieur à 0,1 kg/m.  34. Method according to one of the preceding process claims, characterized in that the counter-skeleton during bending a weight on the glass per linear meter of back-skeleton less than 2 kg / m and preferably less than 1 kg / m, and preferably greater than 0.1 kg / m.
35. Procédé selon l'une des revendications précédentes de procédé, caractérisé en ce que le squelette et le contre-squelette sont convoyés ensemble dans un four alors qu'ils sont vis-à-vis l'un de l'autre de part et d'autre du verre, le verre étant au contact du squelette pendant plus de 10 minutes dans le four et le contre-squelette touchant le verre pendant plus de 10 minutes dans le four. 35. Method according to one of the preceding method claims, characterized in that the skeleton and the back-skeleton are conveyed together in an oven while they are facing each other on the other hand. other glass, the glass being Skeleton contact for more than 10 minutes in the oven and counter-skeleton touching the glass for more than 10 minutes in the oven.
EP18812230.3A 2017-10-19 2018-10-18 Gravity-bending glass between a frame and a counter-frame Withdrawn EP3697733A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1759859A FR3072668B1 (en) 2017-10-19 2017-10-19 GLASS BENDING BY GRAVITY BETWEEN SKELETON AND COUNTER-SKELETON
FR1759862A FR3072669B1 (en) 2017-10-19 2017-10-19 GLASS BENDING BY GRAVITY IN THE PRESENCE OF A RADIATIVE COUNTER-SKELETON
PCT/FR2018/052596 WO2019077277A1 (en) 2017-10-19 2018-10-18 Gravity-bending glass between a frame and a counter-frame

Publications (1)

Publication Number Publication Date
EP3697733A1 true EP3697733A1 (en) 2020-08-26

Family

ID=64572387

Family Applications (2)

Application Number Title Priority Date Filing Date
EP18814988.4A Withdrawn EP3697734A1 (en) 2017-10-19 2018-10-18 Gravity-bending glass in the presence of a radiative counter-frame
EP18812230.3A Withdrawn EP3697733A1 (en) 2017-10-19 2018-10-18 Gravity-bending glass between a frame and a counter-frame

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP18814988.4A Withdrawn EP3697734A1 (en) 2017-10-19 2018-10-18 Gravity-bending glass in the presence of a radiative counter-frame

Country Status (4)

Country Link
US (2) US20200346965A1 (en)
EP (2) EP3697734A1 (en)
CN (2) CN109952276B (en)
WO (2) WO2019077278A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112469673B (en) * 2018-12-28 2023-05-23 株式会社三光精衡所 Method for producing thermoplastic plate with paraboloid and clamping device
US11702356B2 (en) * 2019-04-15 2023-07-18 Corning Incorporated Assemblies and methods for bending glass
US11905197B2 (en) * 2019-04-16 2024-02-20 Corning Incorporated Tooling design for a self-weight edge press molding element for thin-sheet glass and thin hybrid-glass stack forming
FR3106827B1 (en) * 2020-01-31 2022-02-04 Saint Gobain Method and device for bending a sheet of glass by pressing against a bending mold
FR3111889A1 (en) 2020-06-29 2021-12-31 Saint-Gobain Glass France Bending frame of glass sheets with reduced strain

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE536315A (en) *
US999558A (en) 1911-04-06 1911-08-01 Anilin Fabrikation Of Berlin Ag F Polyazo dye and process of making same.
US2003383A (en) * 1933-12-18 1935-06-04 Pittsburgh Plate Glass Co Process and apparatus for bending glass sheets
US1999558A (en) 1934-01-26 1935-04-30 Pittsburgh Plate Glass Co Form for bending glass
GB1157090A (en) * 1965-12-02 1969-07-02 Triplex Safety Glass Co Improvements in or relating to a method and apparatus for Bending Glass in Sheet Form
GB1463062A (en) * 1973-07-20 1977-02-02 Triplex Safety Glass Co Bending of glass sheets
US4396410A (en) * 1981-08-12 1983-08-02 Libbey-Owens-Ford Company Method of and apparatus for press bending glass sheets
US4804397A (en) * 1987-12-16 1989-02-14 Ppg Industries, Inc. Partial press in gravity bending furnace and method of use
JPH0729792B2 (en) * 1988-03-10 1995-04-05 旭硝子株式会社 Method and apparatus for bending glass plate for laminated glass
US5049178A (en) * 1989-09-11 1991-09-17 Ppg Industries, Inc. Partial press apparatus and method for glass sheet bending
FR2659957B1 (en) 1990-03-20 1993-07-16 Saint Gobain Vitrage Int METHOD AND DEVICE FOR THE BOMBING OF GLASS SHEETS.
JPH06211532A (en) * 1993-01-14 1994-08-02 Asahi Glass Co Ltd Mold for bent sandwich glass sheet
FR2725194B1 (en) 1994-10-04 1996-10-31 Saint Gobain Vitrage METHOD AND DEVICE FOR THE BOMBING OF GLASS SHEETS
US6076373A (en) 1997-06-16 2000-06-20 Ppg Industries Ohio, Inc. Apparatus and method for bending glass sheets
CN1321081C (en) * 2002-11-18 2007-06-13 Ppg工业俄亥俄公司 Apparatus and method for bending glass sheets
FR2852951B1 (en) * 2003-03-26 2007-02-16 Saint Gobain METHOD FOR BOMBING GLASS SHEETS BY PRESSING AND SUCTION
FI118178B (en) * 2003-06-25 2007-08-15 Tamglass Ltd Oy Device for bending glass sheets
FR2894955B1 (en) 2005-12-20 2008-05-02 Saint Gobain GRAVITY GLASS BONDING DEVICE IN SEVERAL FORMS OF CONTROLLED SHAPE TRANSITIONAL SUPPORT
FR2942793B1 (en) * 2009-03-05 2012-03-23 Saint Gobain FORMING A GLAZING COMPRISING AN OPENING
FR2945985B1 (en) 2009-05-27 2011-05-20 Saint Gobain GLAZING WITH LOW LEVEL OF DOUBLE IMAGE.
FR3017865A1 (en) * 2014-02-27 2015-08-28 Saint Gobain GRAVITY BOMBAGE ON DOUBLE SUPPORT

Also Published As

Publication number Publication date
CN109937192B (en) 2022-03-08
US20200346965A1 (en) 2020-11-05
WO2019077277A1 (en) 2019-04-25
WO2019077278A1 (en) 2019-04-25
CN109937192A (en) 2019-06-25
CN109952276B (en) 2022-03-08
CN109952276A (en) 2019-06-28
US20210188686A1 (en) 2021-06-24
EP3697734A1 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
EP3697733A1 (en) Gravity-bending glass between a frame and a counter-frame
EP0640569B1 (en) Method and apparatus for bending glass-sheets
EP0448447B1 (en) Method and apparatus for bending glass-sheets
EP3277640B1 (en) Apparatus for bending sheets of glass
CA2803974C (en) Method for producing a central wing box
WO2016016138A1 (en) Method for the powder-based additive manufacture of a component, notably a sype-moulding tyre-mould liner, with an asociated reinforcing element
CA3019305A1 (en) Glass sheet bending
BE1010024A5 (en) Opening device container with a tarp.
CA2415572A1 (en) Method and device for bending a glass sheet
FR2624848A1 (en) METHOD AND APPARATUS FOR PROFILING A GLASS SHEET TO A DESIRED CONTOUR, IN PARTICULAR MOTOR VEHICLES
FR2465692A1 (en) METHOD AND DEVICE FOR SHAPING GLASS SHEETS USING MOLDS OF DIFFERENT SHAPES
WO2004087589A2 (en) Method and device for crowning glass sheets
EP1441890A1 (en) Method and device for producing a profiled rim on a component, and glazing provided with a profiled rim
FR3072668A1 (en) GRAVITY GLASS BOMBAGE BETWEEN SKELETON AND COUNTER SKELETON
EP3585714A1 (en) Device comprising two holders
FR3072669A1 (en) GRAVITY GLASS BOMBAGE IN THE PRESENCE OF A RADIATIVE BACK-SKELETON
WO2014009638A1 (en) Device and method for cutting plastic material, in particular a laminated glazing element
EP3781527A1 (en) Support for gravity bending of glass
EP3820673B1 (en) Machine and method for laminating two faces of a part
EP0389323B1 (en) Apparatus for bending and tempering a glass sheet
EP1742884B1 (en) Bending glass sheets
EP0374194B1 (en) Systeme for driving carriages on a rail and process for operating same
FR3110156A3 (en) Device for the bending by gravity of at least one sheet of glass comprising at least one metallic cable intended to support said at least one sheet of glass during bending
EP4308510A1 (en) Device and method for forming a glass sheet
WO2022189748A1 (en) Method and device for positioning glass sheets for a glazing manufacturing facility

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200519

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230503