EP3697734A1 - Gravity-bending glass in the presence of a radiative counter-frame - Google Patents

Gravity-bending glass in the presence of a radiative counter-frame

Info

Publication number
EP3697734A1
EP3697734A1 EP18814988.4A EP18814988A EP3697734A1 EP 3697734 A1 EP3697734 A1 EP 3697734A1 EP 18814988 A EP18814988 A EP 18814988A EP 3697734 A1 EP3697734 A1 EP 3697734A1
Authority
EP
European Patent Office
Prior art keywords
skeleton
glass
bending
distance
counter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18814988.4A
Other languages
German (de)
French (fr)
Inventor
Thierry Olivier
Jérôme PELLETIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1759859A external-priority patent/FR3072668B1/en
Priority claimed from FR1759862A external-priority patent/FR3072669B1/en
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP3697734A1 publication Critical patent/EP3697734A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/025Re-forming glass sheets by bending by gravity
    • C03B23/0256Gravity bending accelerated by applying mechanical forces, e.g. inertia, weights or local forces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/03Re-forming glass sheets by bending by press-bending between shaping moulds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B40/00Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it
    • C03B40/005Fabrics, felts or loose covers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2225/00Transporting hot glass sheets during their manufacture
    • C03B2225/02Means for positioning, aligning or orientating the sheets during their travel, e.g. stops

Definitions

  • the invention relates to gravity bending of glass on a skeleton.
  • a counter-skeleton is arranged opposite the peripheral zone or the edge of the glass which prevents the formation of corrugations at its edges. This works even in the absence of contact between the skeleton and the glass.
  • the trend of car manufacturers is to reduce more and more the thickness of the glass sheets to be assembled in a laminated glazing. It tends to associate a thin sheet with a sheet of greater thickness. It has been found that the gravity bending of a glass sheet with a thickness of less than or equal to 2.1 mm produced, on a conventional skeleton, ripple defects on the edges of the glass, more particularly in the middle of different sides of the glass.
  • the phenomenon responsible for the creation of folds at the periphery of the glazing during its support at the periphery is a phenomenon of instability similar to buckling (or buckling) of elastic plates. In the same way as in the case of thin elastic plates, the phenomenon of peripheral instability observed in the forming of glass sheets is all the more important that the thickness of the glass is low and the temperature at the periphery of the glass is high.
  • the "marks” correspond to slight mechanical indentations created by the tools on the glass during its bending. They are particularly troublesome when they are on the lower surface of the glass (convex side) after bending because they are then visible from outside the vehicle.
  • the "marks” that are on the upper side of the glass (concave side) after bending are generally more easily accepted because they are inside the vehicle once mounted on it and these imperfections are hidden from the view of the vehicle. an observer outside the vehicle.
  • the bending of glass is achieved by means of a device for bending by gravity of a glass sheet or a stack of glass sheets, said glass, comprising a skeleton comprising a contact track to support the zoned peripheral of the lower main face of the glass, said contact track comprising concave curvatures in each of the sides of said skeleton, and a counter-skeleton comprising a metal bar, said counter-skeleton being configured so that its metal bar is present at a distance d positive from the peripheral area of the upper main face of the glass or its edge.
  • the fact that the distance d is positive and therefore non-zero implies the absence of contact of the back-skeleton with the glass at the point where the distance d is measured.
  • the distance d is measurable in a vertical (virtual) plane perpendicular to the edge of the glass.
  • the vertical plane in which the back-skeleton does not touch the glass is also perpendicular to the outer edge of the skeleton since the latter is substantially parallel to the edge of the glass.
  • the counter-skeleton bar is the element of the latter active for bending and the closest to the glass during bending. There is no solid element between the glass and the counter-squell bar.
  • the distances d and D of the present application relate to the metal bar of the back-skeleton.
  • the device according to the invention comprises a means
  • the counter-skeleton does not touch the glass at least in the middle zone of at least one of its sides. It is not excluded that it touches at least one corner of the glass but it is neither necessary nor preferred.
  • the means of imposing a distance d between the bar of the back-skeleton and the glass is also a means (distinct from the glass itself) of imposing a positive distance D between the bar of the counter-skeleton and skeleton, D being equal to d + e, if d is between the back-skeleton and the upper face of the glass, or at d + f if d is between the back-skeleton and the edge of the glass, f being the overflow of the glass towards the outside of the skeleton.
  • the back-skeleton does not touch the glass, and it does not touch the skeleton even if one does not place the glass on the skeleton.
  • the skeleton and the back-skeleton therefore have the same positions relative to each other, whether glass has been loaded on the skeleton or not.
  • the device for bending glass (of thickness e) by gravity is also such that it comprises a skeleton comprising a contact track for supporting the peripheral zone of the lower main face of the glass and a counter-skeleton comprising a bar metal, said backbone being configured to have at least one face directed towards the upper face of the skeleton or towards the outer face of the skeleton, said at least one face of the backbone being without contact with the skeleton, in the absence even of glass.
  • the skeleton supports the lower main face of the glass in its peripheral zone, that is to say the area between the edge of the glass and a distance from the edge of the glass of 50 mm.
  • the area of the glass touching the skeleton contact track is entirely included in this peripheral zone.
  • the counter-skeleton comes opposite the peripheral zone of the upper main face of the glass and / or towards the edge of the glass.
  • the metal bar of the back-skeleton is above and substantially opposite the skeleton.
  • the metal bar of the back-skeleton is made of a compact metal, that is to say without porosity, it being understood that it may be for example a tube or a T-shaped profile. rigid. It is substantially parallel to the glass and the skeleton so as to act on a whole portion or even the entire peripheral area parallel to the edge of the glass.
  • the preferred portions of action of the backbone are the zones of the middle of the sides of the glass.
  • the back-skeleton may possibly not cover the glass and thus not impede the loading of the glass on the skeleton, nor its unloading.
  • the back-skeleton is generally arranged vis-à-vis the edge of the glass next to the edge of the glass.
  • the back-skeleton can then possibly be connected to the skeleton by a fixed connection passing through the outside of the glass.
  • This fixed link is in this case the means for imposing a distance d between the glass and the back-skeleton (and therefore also the bar of the back-skeleton).
  • this connection is sized according to the dimensions of the glass and so that any face of the counter-skeleton facing the glass does not touch the glass.
  • the back-skeleton can be removable (synonymous: retractable) with respect to the skeleton and the glass. This is particularly necessary if, seen from above, the counter-skeleton covers part of the glass.
  • the glass placed on the skeleton may be an individual sheet of thickness less than or equal to 2.1 mm, or even less than or equal to 1.2 mm thick. Generally, the thickness of an individual sheet is greater than or equal to 0.4 mm.
  • the glass placed on the skeleton can also be a stack of glass sheets, especially sheets whose thickness has just been given. The stack may also include sheets of different thickness. This stack may comprise 2, 3 or 4 sheets.
  • the device according to the invention can be covered by a stack comprising a sheet whose thickness is in the range from 1.4 to 2.7 mm, generally in the range from 1.4 to 2.5 mm.
  • the thickest sheet being preferably under the thinnest leaf during bending on the skeleton.
  • the sheets curved together by the device according to the invention may be intended to be associated together in the same laminated glazing, but not necessarily.
  • the term "glass” is used to designate an individual sheet or a stack of sheets.
  • the skeleton comprises a metal strip (which may also be called “vertical plate", even if its large faces may optionally be inclined as shown in Figure 2) having one of its slices upwards to support the periphery of the glass.
  • the skeleton also comprises coated on the upper edge of its metal strip, a refractory fibrous material well known to those skilled in the art, forming the contact track for the glass.
  • the metal band is rigid while the fibrous material has some elasticity and compressibility.
  • This refractory metal and / or ceramic fiber material is generally of the felt or knit or fabric type, as is well known to those skilled in the art. These materials reduce the labeling of the glass by the skeleton.
  • the metal strip in the backbone generally has a width in the range of 1 to 10 mm.
  • the fibrous material generally has a thickness in the range of 0.3 to 1 mm.
  • the skeleton provides the glass, via its refractory fibrous material, with a contact track of width generally in the range from 1.6 to 12 mm (which includes the thickness due to the refractory fibrous material), more generally in the range from 3 mm to 10 mm.
  • the skeleton has concave curvatures in its contact face for the glass, and this for each of its sides and generally at least in the middle of each of its sides, the glass having generally four sides.
  • the contact track of the skeleton has concave curvatures for at least 80% and generally at least 90% of its length, said concavity being considered parallel to its contours (inside or outside).
  • the contact track of the skeleton has concave curvatures for at least 80% and generally at least 90% of the length of its longitudinal sides, said concavity being considered parallel to its contours (inside or outside).
  • the contact track of the skeleton has concave curvatures for the middle zone of its longitudinal sides, in particular for at least up to 20 cm on each side of this medium.
  • the contact track of the skeleton has concave curvatures for at least 80% and generally at least 90% of the length of its transverse sides, said concavity being considered parallel to its contours (inside or outside).
  • the contact track of the skeleton has concave curvatures for the middle zone of its transverse sides, in particular for at least up to 20 cm on each side of this medium.
  • the glass collapses under the effect of gravity on the skeleton during the bending and takes concave shapes seen from above (the concave face is the upper face) in its central zone and in each of its sides, especially in the middle of its sides, the metal bar being at a distance d at least at the end of the bending.
  • the skeleton has a shape conferring this concavity, since at the end of bending, the glass touches the entire circumference of the skeleton contact track.
  • the central zone of the upper face of the glass is concave in all directions.
  • the skeleton has substantially the same shape as the glass it must receive while being smaller since the glass overflows on all sides of the skeleton.
  • the contact track of the skeleton therefore generally has a concave shape in each of its sides, especially in the middle of its sides.
  • the main faces of the glass comprise a plurality of sides, generally four sides, the skeleton has as many sides as the glass and therefore generally four sides (also called "strips").
  • the glass Before bending, the glass usually overflows all around the skeleton by a distance in the range of 2 to 45 mm. This overflow decreases during the bending. This decrease depends on the importance of the curvatures given to the principal faces of the glass during the bending. At the end of bending, this overflow is generally in the range of 1 to 25 mm. From the beginning to the end of the bending, the skeleton generally supports the glass entirely in its peripheral zone and without overflowing out of this zone, neither outwards nor inwards.
  • the skeleton has a continuous annular shape and without interruption. Indeed, if the skeleton was segmented, this segmentation could produce a mark on the underside of the glass, given that in the process according to the invention the glass collapses essentially under the sole effect of its weight and therefore follows quite easily the shape of its support and remains quite sensitive to the unevenness of the skeleton.
  • the invention relates more particularly to the bending of glass for vehicle glazing (automobile, bus, truck, agricultural vehicle, etc.). It can be windshield, rear window, roof.
  • the glazings considered here comprise a plurality of sides, generally four sides (also called “strips"), one side joining another in a corner of the glazing, this corner comprising a segment of curve comprising radii of curvature much smaller than those of curvatures of the sides.
  • a segment of curve comprising radii of curvature much smaller than those of curvatures of the sides.
  • these windows have a PS vertical symmetry plane when mounted on the vehicle, the direction of movement of the vehicle (non-turned wheel) being included in this plane of symmetry .
  • the intersecting sides of this plane of symmetry are said transverse sides, the other two sides being said longitudinal sides.
  • the middle of the transverse sides is also at their intersection with the vertical plane of symmetry PS.
  • the counter-skeleton is therefore thermally more inert than glass. Consequently, the presence of the backbone could slow the rise in temperature of the periphery of the glass during the temperature rise phase to the bending temperature, producing a decrease in the temperature of the periphery of the glass, which would have a favorable effect on the phenomenon of peripheral instabilities.
  • the viscosity of the glass varies very strongly with the temperature and at 620 ° C, a drop of 10 ° C corresponds to an increase in viscosity by a factor of approximately 2.
  • a colder edge is more viscous and is therefore less sensitive to peripheral marking effects.
  • the invention relates to a method of gravity bending a glass sheet or a stack of glass sheets, said glass (which has a thickness e), comprising the bending of the glass by gravity on a skeleton comprising a track contact strip supporting the glass in the peripheral zone of its lower main face, said contact track comprising concave curvatures at each of the sides of said skeleton, a counter-skeleton comprising a metal bar being present during the bending at a distance d from the slice or the peripheral zone of the upper main face of the lens, the peripheral zone of a main face being the zone between the edge of the lens and a distance from the edge of the lens of 50 mm from said main face, d being included in the range ranging from 0.1 to 50 mm.
  • the back-skeleton can be present without interruption vis-à-vis the entire peripheral zone of the glass or its edge. In particular, it can be in one piece. In particular, it can not touch the glass anywhere. However, the counter-skeleton may not be present with respect to certain areas of the glass such as the corners of the glass.
  • the counter-skeleton is preferably present vis-à-vis of the middle zone of at least one side of the glass and even on all sides of the glass, the expression "vis-à-vis" concerning the peripheral zone of the upper face of the glass or its edge.
  • the problems of rippling of the glass mainly occur in the zone of the middle of the sides and the counter-skeleton is therefore preferentially present with respect to the zone of at least one middle of one of the sides of the glass.
  • the distance d is thus verified for the middle zone of at least one side of the glass, and preferably the middle zone on all sides, the glass having generally four sides.
  • the counter-skeleton may also be opposite the corners of the glass, but this is not usually necessary.
  • the invention also relates to a method of gravity bending a glass sheet or a stack of glass sheets, said glass (which has a thickness e), comprising the bending of the glass by gravity on a skeleton comprising a contact track supporting the glass in the peripheral zone of its lower main face, a counter-skeleton comprising a metal bar being present during the bending with respect to the peripheral zone of the glass or its edge, and at a distance of in places where undulations appear in the absence of the counter-skeleton.
  • the distance between the back-skeleton and the glass is not necessarily the same for the entire peripheral zone of the glass.
  • the middle zone of at least one side it is preferably at least 0.1 mm throughout this area, and preferably for all sides of the glass.
  • the middle zone of one side is the area on either side of the middle in the peripheral zone of the glass.
  • the middle zone of one side is the peripheral zone portion at least up to 5 cm on each side of the middle, and even at least up to 10 cm on each side of the middle, and even at least up to 20 cm each side of the middle.
  • a vertical (virtual) plane, perpendicular to the edge of the glass, in which the condition over the distance d is verified preferably passes in the middle zone of at least one side of the glass, which is included in the peripheral zone until 20 cm (or even up to 10 cm or even up to 5 cm) on either side of the middle of the side, parallel to the edge of the glass, and this, preferably for all sides.
  • the condition over the distance d is verified for at least 50%, and preferably at least 80%, of the length of the middle zone of at least one side of the glass parallel to the edge of the glass, preferably without otherwise contacting any tool with the wafer or the peripheral zone of the glass in the rest of this middle area of at least one side of the glass.
  • the condition over the distance d is verified for any vertical plane perpendicular to the edge of the glass and passing in the middle zone of at least one side of the glass (which implies in particular that the back-skeleton (or any other tool ), does not touch not the glass in this middle area), and this, preferably for all sides of the glass, generally four in number.
  • the counter-skeleton does not touch the glass anywhere, and in particular neither the upper main surface of the glass nor its edge. So there is always an air gap between the back-skeleton and the glass during bending.
  • the distance d in a vertical plane perpendicular to the edge of the glass is that between the point of the back-skeleton on the one hand and the point of the glass in the peripheral area on the other hand, the closest.
  • the counter-skeleton can possibly touch the glass at the beginning of bending, given that the glass is not yet curved but it does not touch the glass when the glass is in contact on its entire periphery with the skeleton, particularly at the end of bending.
  • the counter-skeleton (and therefore necessarily also its metal bar) does not preferably touch the glass at the moment when the glass comes into contact with the entire periphery of the skeleton.
  • d is at least 1 mm, preferably greater than 2 mm, in particular at least 5 mm. In particular, d may be at most 30 mm. Preferably, d is in the range of 1 mm to 50 mm and preferably in the range of 5 mm to 30 mm. These are distances d at the end of the bending while the glass touches all around the skeleton.
  • the back-skeleton may be at least partly on the side of the glass, or even not be above the glass, but vis-à-vis the edge of the glass.
  • the values of distance d given above are preferably verified at least at the end of the bending, it being understood that the distance d may vary during bending.
  • the counter-skeleton is preferably at least partially above the center point of the contact track for the skeleton glass.
  • This center is the point midway away from the width of the skeleton contact track in a vertical plane perpendicular to the skeleton (and thus also to the glass).
  • the centers form a central line all along the skeleton contact track.
  • the back-skeleton is preferably at a distance from the edge of the glass less than or equal to 20 mm at the end of bending.
  • the device according to the invention involves a means of imposing a non-zero distance between the glass and the back-skeleton, and therefore also a gap between the contact track of the skeleton and the back-skeleton.
  • This means serves to prevent the backbone from touching the glass. It has been observed that the greater the mass of metal of the backbone vis-à-vis the glass, the more the back-skeleton could be removed from the glass while maintaining the desired beneficial effect (no ripple edge).
  • This thermal effect can be enhanced by covering part of the counter-skeleton on at least one of its faces opposite to the glass and therefore also to the skeleton, of a thermally insulating material. This has the effect of slowing the rise in temperature of the back-skeleton when heating the glass for bending.
  • the counter-skeleton thus coated has a reinforced beneficial effect.
  • the same backing covered with a thermal insulating material has a beneficial effect on the glass.
  • the insulating material covering, if appropriate, the back-skeleton is a material that conducts heat less well than the metal bar. It may be a fibrous material of refractory fibers, metal and / or ceramic.
  • the glass slides on the skeleton during the bending.
  • the formation of curvatures desired during bending is not slowed down because of a nip between skeleton and counter-skeleton if it does not touch the glass. This is favorable for obtaining a shorter bending cycle time and this also allows a more reproducible operation because it is not necessary to very finely adjust the gap between the backbone and the glass.
  • the function of the counter-skeleton is not to bend the glass (this is the role of gravity), but just to prevent the formation of edge ripples.
  • a bending without the counter-skeleton would result in an identical bending in the central zone of the glass compared to a bending with counter-skeleton, all other conditions of realization being identical.
  • the back-skeleton touches the glass at the beginning of bending, it is preferably no longer the case at the end of bending. In this way, at the end of the bending and when the underside of the glass touches the entire periphery of the skeleton, the upper face of the glass is not in contact with any tool and is therefore in contact only with the air ambient. The final shape of the glass is thus obtained in the last moments of the bending by the effect of gravity alone.
  • the curvatures of glazing are characterized by the notions of arrow and double-bending. For the definitions of these characteristics, reference may be made to FIGS. 1a and 1b and to the description corresponding to them of WO2010 / 136702.
  • the invention is well suited to the bending of glass whose complexity of shape is moderate, including the arrow is less than 100 mm and the double bending is less than 20 mm (typically a glass windshield). These latter criteria are given as an indication because the propensity for edge instabilities also depends on other criteria, either geometric values of the glass itself (such as the size of the glass or its peripheral cutouts) or of parameters related to the process (such as thermal history of the glass during the bending, the temperature of its edges, or the initial temperature of the back-skeleton during the charging), or the constitution of the back-skeleton itself, in particular the mass of embedded metal, and whether it is coated or not in its face opposite to the glass (and thus also to the skeleton) of thermally insulating material.
  • geometric values of the glass itself such as the size of the glass or its peripheral cutouts
  • parameters related to the process such as thermal history of the glass during the bending, the temperature of its edges, or the initial temperature of the back-skeleton during the charging
  • the device according to the invention is not very demanding in terms of geometric tolerances. Indeed, the beneficial effect on the peripheral instabilities of the glass during forming comes from heat transfers by radiation which depend moderately on an inaccuracy of realization of the distance d. Also, this distance can be generally adjusted with tolerances greater than 0.1 mm, especially between 0.1 and 0.5 mm.
  • the shape of the back-skeleton seen from above does not necessarily correspond exactly to that of the skeleton (and therefore of the glass).
  • the counter-skeleton acts by thermal effect and the important thing is that it contains a metal mass likely to provide this effect and that it is close to the periphery of the glass, especially near the middle zone of the sides of its sides. main faces.
  • This thermal effect depends essentially on three criteria: 1) the temperature of the furnace counter-skeleton which must be relatively moderate, preferably less than 250 ° C, 2) the propensity of the back-skeleton to remain colder than the periphery of the glass while the glass is between 300 and 650 ° C, and especially during bending, 3) the effectiveness of the cooling of the edge of the glass by the back-skeleton, which depends on the area of glass exposed to the back-skeleton .
  • Criterion 1 is provided by sufficient cooling of the backbone after bending. Part of this cooling takes place in the bending furnace itself but also on the tool return chain when they go up empty from the furnace outlet to the furnace inlet. Additional cooling systems specifically dedicated to cooling the backbone can be installed, such as additional fans or air jets directed to this tool.
  • a dedicated cooling circuit directly attached to the backbone, and which is activated on the return path of the tools, and more particularly the back-skeleton.
  • It may in particular be a tube capable of receiving a current of a cooling fluid, especially fresh air (that is to say generally at room temperature, generally between 0 and 50 ° C).
  • a metal tube can be attached to the metal bar of the back-skeleton.
  • It may also be a counter-skeleton whose metal bar comprises a metal tube with square or rectangular section in which fresh air is circulated.
  • Criterion 2 is ensured, either by increasing the mass of metal embedded in the back-skeleton, which has the consequence of increasing its thermal inertia and therefore the amount of heat necessary to heat it, or by limiting the heat input to back-skeleton by covering the latter with thermal insulation.
  • the heating elements arranged in the vault of the furnace can heat the glass without unnecessarily losing energy to directly heat the back-skeleton.
  • the periphery of the glass is then all the colder that it is on the one hand masked from the direct heating by the heating elements of the oven (usually vaulted) and on the other hand that it faces the counter-skeleton that is kept at reduced temperature.
  • Criterion 3 is provided mainly by the geometry of the back-skeleton coupled to the distance between the back-skeleton and the glass.
  • the general form of the backbone is preferably complementary to that of the backbone.
  • the counter-skeleton then has convex curvatures to face the concave curvatures of the upper face of the glass.
  • the back-skeleton thus generally has curvatures substantially parallel to those of the skeleton.
  • the means for imposing the distance d between the back-skeleton and the glass can include a stop member, said abutment, integral with the skeleton and on which an abutment element, said abutment, integral with the counter-skeleton rests.
  • the stop is fixed directly or indirectly to the rigid metal band of the skeleton. It may be the upper surface of a plurality of candles or screw-jack.
  • the abutment is attached directly or indirectly to the rigid metal bar of the backbone. If the back-skeleton does not interfere with the loading and unloading of the glass, the skeleton and back-skeleton can be bound together in a fixed manner.
  • the device generally comprises a frame on which the skeleton is fixed.
  • any stop element can be fixed on the frame or on the skeleton, it always amounts to the fact that the abutment is integral directly or indirectly with the skeleton.
  • the means of imposing the distance d between the back-skeleton and the glass is adjustable.
  • the device according to the invention may therefore comprise means for adjusting the distance d.
  • the adjustment means can be located at the abutment and / or abutment.
  • the device according to the invention may comprise a system able to modify during bending the distance between the skeleton and the counter-skeleton.
  • the counter-skeleton preferably has a shape closer to that of the upper face of the glass at the end of the bending, rather than at the beginning of the bending.
  • the glass is flat or only slightly curved because of its natural flexibility.
  • the counter-skeleton therefore has a shape more curved than the glass at the beginning of the bending and could touch it and, by elastic deformation, force it to adopt the peripheral shape of the skeleton.
  • Such a situation may cause a breakage of the glass at the entrance of the oven. That is why, without excluding that the counter-skeleton can touch the glass from the beginning of the bending (from the oven entrance), it may be preferable that the back-skeleton is at first quite far from the skeleton and then gets closer to it during the bending. This reduces the gap between the skeleton and the glass (and therefore between the skeleton and the skeleton) as the glass softens and follows the contours of the skeleton.
  • the duration of the approach phase between the glass and the back-skeleton can be adjusted between five tenths of a second to 30 seconds, or even up to one minute depending on the previous heat history and the complexity of the glazing itself.
  • the back-skeleton is in partial contact with the glass, particularly at medium or near the middle of the top and bottom sides of the glass (in position mounted on a motor vehicle) from the time of charging and secondly, it is possible to force the glass to bulge due to the descent of the counter- skeleton.
  • the counter-skeleton presses on the glass during its descent, which forces the peripheral bending.
  • Such kinematics is advantageous because it facilitates the main bending of the glass and thus reduces the forming cycle time.
  • the distance between the glass and the backbone in the middle zone of one side can be in the range from 0 to 30 mm at the beginning of the bending, to finish in the range from 0 to , 1 to 30 mm at the end of bending.
  • the glass is bulged by gravity at a temperature in the range of 570 to 650 ° C, more generally in the range of 610 to 650 ° C.
  • the device generally comprises a plurality of skeleton / backskeletal assemblies each loaded with glass and circulating behind each other in the oven. This furnace may be traversed by a plurality of such sets each loaded with glass and circulating behind each other in the oven.
  • the oven can include different temperature zones to gradually heat up and gradually cool the glass.
  • the Skeleton and counter-skeleton form an embedded assembly capable of being conveyed together horizontally but without relative horizontal displacement of one relative to the other.
  • the glass is in contact with the skeleton for more than 10 minutes and generally more than 15 minutes and more generally between 15 and 30 minutes in the oven while being conveyed into the oven.
  • the backbone bar is generally at a distance from the glass and preferably at least partially above the glass, for more than 10 minutes in the oven.
  • the bending is done by gravity. In the absence of counter-skeleton, during the bending, the glass will touch the entire skeleton, then some areas (especially in the middle area of at least one side of the peripheral area) would rise to leave the contact with the skeleton.
  • the counter-skeleton by its radiative effect, serves to prevent this raising of the glass and to guarantee a total contact of the glass with the skeleton at the end of the bending.
  • the skeleton and the counter-skeleton form an embedded assembly capable of being conveyed into the furnace by a conveying means.
  • the device may include means for the skeleton and backbone to move toward or away from each other by relative vertical movement without relative horizontal displacement relative to each other, even though skeleton / counter-skeleton is conveyed into the oven.
  • the term "relative" qualifying a movement means that it may be the effect of the single backbone or the skeleton alone or both.
  • the absence of relative horizontal movement of the skeleton and the back-skeleton relative to each other means that these two elements remain vis-à-vis one another in view-over while moving horizontal skeleton / counter-skeleton assembly during bending in the oven.
  • the device according to the invention generally comprises an oven and a conveying means capable of moving horizontally together the skeleton and the back-skeleton, said skeleton / back-skeleton assembly in the furnace and without relative horizontal displacement of the one by report to the other. It may include means of vertical translation allowing the skeleton and the back-skeleton to move toward or away from each other by relative vertical movement during their horizontal movement and without relative horizontal displacement from one to the other. .
  • the glass After bending, the glass is cooled. For this cooling and so as not to cause in the glass too large edge extension stresses, advantageously moves the back-skeleton of the glass.
  • the removal of the back-skeleton is advantageously carried out during cooling of the glass and when the latter is at a temperature of between 620 and 500 ° C. This distance can be achieved by different systems. It can be a re-engagement system that performs the inverse function of the "trigger" described above.
  • the counter skeleton may comprise or be composed of retractable strips laterally, generally four in number, such as glass since one side of the glass is associated with a retractable band (see Figure 10).
  • the strips of the back-skeleton deviate at least laterally and if necessary also vertically if necessary at the time of the retraction so as to move away from the glass.
  • the system which controls the retraction of the belts may be similar to one of those described in US Pat. No. 8,156,664, that is to say for example through the side walls of the oven or the hearth of the furnace.
  • the backbone and the backbone are advantageously independent of each other, that is to say that the backbone can then be separated entirely without having any link with the backbone.
  • the glass can then be loaded on the skeleton and then the back-skeleton is put in place.
  • the loading of the glass on the device according to the invention can be carried out manually.
  • the back-skeleton being removed if necessary, operators put the glass on the skeleton. Then they place the counter-skeleton according to its intended position.
  • the position of the backbone is advantageously given by positioning columns (or any other means) attached to the skeleton or the frame. These positioning columns guide the counter-skeleton during its installation. This guidance is made possible for example by orifices in guide tabs connected to the back-skeleton and through which the positioning columns pass.
  • the loading and unloading of the glass can also be automated, in particular using robots, one for loading, the other for unloading.
  • robots makes it possible to have precise and reproducible movements as well as a reliable and tolerant coupling system between the skeleton and its associated counter-skeleton.
  • This system in which the back-skeleton is completely separable from the skeleton allows 1) to have a minimum of embedded functions in the tool and thus to minimize the weight of the latter, which is an important factor of energy consumption , 2) to minimize the risk of mechanical seizure and 3) to minimize costly maintenance operations on forming tools.
  • the back-skeleton can be part of a system directly embedded on the skeleton itself and able to retract the back-skeleton.
  • the back-skeleton may be composed of four separate strips integral with the skeleton and which are retractable. They can move away or meet each other by displacements having both a horizontal component and if necessary a vertical component to move away from the glass, without sliding on it, while moving away laterally skeleton. Such a movement can be performed by a simple rotation whose axis is carefully chosen, especially outside the skeleton. As these bands move away, the skeleton becomes accessible for unloading or loading glass.
  • the back-skeleton is of too light constitution, it may be of low rigidity and its shape may change slightly during its use, due to thermal stresses during the heating and cooling cycles. In this case, one can possibly find that the gap between skeleton and back-skeleton is no longer uniform and as it had been initially adjusted. Thus, depending on the case of bending, a simple adjustment of deviation by a system located only at the corners of the device, in particular by four jack screws, may be insufficient. Therefore, especially if the back-skeleton is very close to the glass, advantageously, a rigid structural element is disposed above the metal bar, the structural element and the metal bar being interconnected by a plurality of spacers preferably adjustable in length for locally adjusting the distance between the structural member and the metal bar.
  • the structural element is rigid so that it is considered indeformable despite the multiple thermal cycles of heating and cooling undergone to bombard glass sheets industrially. It can be used as a reference to adjust the shape of the metal bar.
  • the structural element advantageously comprises a metal section, in particular a metal tube, in particular of the frame type. This tube may in particular have a square or rectangular section. It may include lateral extensions to come over the adjustment areas, the upper end of the struts being connected to the extensions. The upper end of the spacers can also be connected directly to the structural element.
  • the device according to the invention may comprise a structural element arranged at a dimension higher than that of the metal bar of the back-skeleton, the structural element and the metal bar being connected by a plurality of adjustable spacers to adjust locally. the distance between the structural element and the metal bar, and locally the distance between the metal bar and the glass and therefore also the distance between the metal bar and the skeleton.
  • the plurality of spacers is evenly distributed all around the counter-skeleton.
  • the device is configured to perform the method according to the invention.
  • FIG. 1 represents in section and in a vertical plane perpendicular to the edge of the glass and the skeleton, a device according to the invention comprising a backbone 300 and a backbone 301.
  • a stack of two sheets of glass 310 rests at its periphery on the skeleton.
  • the two tools each have an annular shape whose central zone is located to the left of their representation in the figure.
  • the skeleton 300 comprises a metal strip 302 of width 303 whose upper edge 304 is covered with a refractory fibrous material 305 forming a contact track of width 306 for the glass 310.
  • the counter-skeleton comprises a metal bar 301 disposed above the glass and without contact with him.
  • the distance d between the metal bar of the backskeleton and the glass is in the range of 0.1 to 50 mm. This distance is the distance between the nearest points of the counter-skeleton and the glass.
  • the metal bar of the back-skeleton is above the dimension (horizontal line H in the figure) of the center 307 (mid-width) of the contact track for the skeleton glass.
  • FIG. 2 represents in section and in a vertical plane perpendicular to the edge of the glass and the skeleton, a device according to the invention comprising a skeleton 333 of which a wafer 335 is directed upwards and a counter-skeleton 331.
  • the counter-skeleton is located relatively inwardly of the glass, but it is at a distance of less than 50 mm from the peripheral zone 332 of the upper face of the glass 334.
  • FIG. 3 shows in section and in a vertical plane perpendicular to the edge of the glass and the skeleton a device according to the invention comprising a skeleton 320 and a backbone 321.
  • a stop 327 is fixed to the metal strip 322 of the skeleton.
  • the edge of this upwardly-turned metal strip is covered with a refractory fibrous material 323.
  • the back-skeleton comprises a metal bar 324 not coated with fibrous material, and not in contact with the glass.
  • a abutment 326 is connected to the metal bar 324 and can rest on the abutment 327, blocking the progression of the backbone to the skeleton and preventing contact of the backbone with the glass.
  • FIG. 4 shows various possible configurations of a device according to the invention comprising a skeleton 401 and a radiative counter-skeleton 402, that is to say without contact with the glass 400 (here a stack of two sheets of glass) but stabilizing the periphery of the glass during bending.
  • This view is made in a vertical plane perpendicular to the edge of the glass and the skeleton.
  • the counter-skeleton is a T-shaped metal bar, the vertical plate of the T is in alignment with the skeleton band.
  • the horizontal bar helps to form a screen between the furnace resistors and the periphery of the glass.
  • the backbone 402 T of a) is covered in its upper part with an insulating material 403 which delays the heating of the metal bar of the backbone.
  • the back-skeleton 402 comprises a bar 404 of the horizontal band-type forming a screen between the heating resistors and the glass, said bar being covered with an insulating material 403.
  • the backbone is L-shaped and is opposite to the edge 41 1 of the glass and vis-à-vis the outer face 410 of the skeleton.
  • Backbone 402 is not above the skeleton or above the glass.
  • most of the metal bar 412 of the back-skeleton is above the dimension H of the center line of the contact track of the skeleton. Thanks to this shape and arrangement, the counter-skeleton forms an effective shield for the glass for the radiation of the furnace resistances coming from lateral directions.
  • An insulating material 413 covers the opposite sides of the skeleton opposite the glass. This arrangement of the back-skeleton frees the space above the glass, which is advantageous for the loading and unloading of the glass.
  • the back-skeleton comprises a T-shaped metal bar 405, the upper part of which is covered with an insulating material 403.
  • Metal tubes 406 traversed by a cooling fluid make it possible to cool the back-skeleton.
  • the back-skeleton comprises a metal rod 407 of the tube type rectangular section. This bar is hollow, and a cooling fluid can flow through its interior 409 to cool it. Its upper part is covered with an insulating material 408.
  • FIG. 5 represents a device according to the invention at the moment when a backbone 8 (grayed in the figure) is being placed in position above the glass, the latter not being represented in the figure by concern for clarity.
  • a backbone 8 (grayed in the figure) is being placed in position above the glass, the latter not being represented in the figure by concern for clarity.
  • the glass (not shown) is placed on the skeleton 2.
  • Operators hold the back-skeleton 8 by handles 6.
  • These handles are fixed to a frame 7 on which the backbone 8 is fixed by means of tabs 9 and 10.
  • the exact positioning of the backbone is ensured by guidance by means of four positioning columns (11 and 12 in the foreground ), one at each corner. These columns are integral with the frame 1.
  • Tabs 13 and 14 fixed to the frame 7 of the backbone each comprising an orifice, are threaded onto the columns 1 1 and 12 through their orifices.
  • Candles 15 and 16 are part of the means of imposing a non-zero distance d between the glass and the back-skeleton. They are each provided with bearing surfaces 17 and 18 adjustable in height by means of screws 19 and 20.
  • the frame 7 connected to the counter-skeleton comprises tabs 21 and 22 which rest on the support surfaces 17 and 20. 18 when the operators have finished depositing the counter-skeleton.
  • the weight of the back-skeleton therefore rests on the bearing surfaces 17 and 18, the height thereof being adjusted so that the spacing between the back-skeleton and the glass is the one chosen.
  • the bearing surfaces 17 and 18 form abutments integral with the skeleton and the pasta 21 and 22 are integral abutments against the backbone.
  • the back-skeleton is present without interruption vis-à-vis the entire peripheral zone of the glass. It is in one piece and, once installed, it does not touch anywhere the glass at least at the end of bending.
  • the skeleton and the counter-skeleton form here an embedded assembly able to be moved horizontally in an oven.
  • the four positioning columns (1 1 and 12 in the foreground) are part of vertical translation means allowing the skeleton and the back-skeleton to move towards or away by a relative vertical movement without relative horizontal displacement of the one compared to each other. In this way, the skeleton and the back-skeleton remain opposite one another (on both sides of the glass) during the horizontal displacement of the skeleton / back-skeleton assembly in the oven.
  • Figure 6 shows a top view of a rigid structural member 50 above a portion 51 of the back-skeleton comprising a vertical plate (non-visible) just above the glass and serving as a metal bar.
  • the visible part 51 is a horizontal plate 57 coming just above the vertical plate and to which it is connected.
  • the structural element 50 is in a metal square and has the shape of a rectangular frame in plan view. It comprises a plurality of extensions 52 connected to its inner or outer vertical faces, said extensions coming, in top view, above areas 53 of distance adjustment d with the glass. These adjustments are made by jack screws 54 passing through the rigid structural element 50 here.
  • Figure 7 shows the back-skeleton of Figure 6 according to section AA 'in a) and the side view in the direction B in b).
  • the metal square of the rigid structural element 50 is found, an extension 52 being welded to an outer vertical face of said square. This extension is also in a metal square.
  • the vertical plate 55 (metal bar) is connected indirectly to the rigid structural element 50 so that it is integral. The lower edge 56 of this vertical plate 55 comes just above the glass and it is its distance from the glass that should be adjusted. This adjustment is ensured by the screw jack 54 by screwing or unscrewing the nuts 58 and 59.
  • the vertical plate 55 is welded by its upper edge to a horizontal plate 57, in order to stabilize the position of the plate 55.
  • the horizontal plate 57 is connected to the lower end of the jack screw 54 via a pivot connection
  • FIG. 8 represents a back-skeleton according to the invention seen entirely in a), a portion being enlarged in b).
  • a structural member 75 is made from segments of metal squares welded together. View from above, this structural element has a shape similar to that of the skeleton and therefore the glass to be bomber.
  • Lateral extensions 76 have been welded to inner vertical faces of the structural member. Caliper adjustment cylinder screws traverse these extensions vertically. The adjustment of a jack screw makes it possible to locally adjust the height dimension of the lower edge 77 of a vertical plate 78 serving as a metal bar. This vertical plate is secured to a horizontal plate 79 by a system of brackets 80 and screws and nuts.
  • a pivot connection 81 above the horizontal plate 79 makes it possible to adjust the local inclination of the horizontal plate 79 in the context of the adjustment of the height dimension of the edge 77.
  • the correct lateral positioning of the back-skeleton is ensured by means of focusing not shown and can be of the candle type 1 1 of Figure 5.
  • Figure 9 shows in section a schematic view of a backbone 205 comprising laterally retractable strips.
  • a backbone 205 comprising laterally retractable strips.
  • the glass rests with its lower main surface 201 on the skeleton 202, which comprises a metal strip 203, a slice of which is directed upwards.
  • the counter-skeleton comprises as a metallic bar a vertical plate 214 and a horizontal plate 215. Both skeleton and counter-skeleton are provided with a refractory fibrous material (not shown) for contacting the glass.
  • the backbone 205 is secured to a U-shaped structure returned 208.
  • the latter is connected to a foot 206 itself secured to the structure 207 of the skeleton 202 via a substantially horizontal axis pivot connection 209.
  • the pivot connection allows to retract the whole 'back-skeleton + structure' U 'once the bending of the glass is achieved, which allows to easily clear the curved glass.
  • the assembly 'back-skeleton + structure' U ' is shown in the retracted position in dashed line 212.
  • the retraction system is made by a trigger system not described here but may for example pass through the side walls of the oven or the oven floor. The retraction performed during cooling makes it possible to obtain good glass edge stresses. Moreover, the retraction also makes it possible to remove the skeleton glass by a conventional harrow system pushing it from below, and to easily load it in the oven inlet, using a robot for example.
  • the counter-skeleton is again set up by a rotary movement reverse once the next glass is loaded onto the skeleton. It can be seen that the contact track of the skeleton is well concave along the entire length of the visible side of the figure, parallel to its inner and outer contours, this concavity being in the plane of the figure.
  • FIG. 10 shows an automobile glazing 450 in plan view on its concave main face, surmounted by retractable strips (451, 452, 453, 454) of the back-skeleton as explained for FIG. 9. These retractable strips are above the edge of the glass and can be retracted laterally towards the outside of the glass (according to the arrows) as explained in FIG. 9, so as not to be above the upper face of the glass.
  • Figure 1 1 shows a windshield-type automotive glazing seen from above, and placed on a horizontal plane, concave face facing downwards. It comprises four sides, two transverse sides 350 and 351 and two longitudinal sides 352 and 353. One side joins another side by a corner whose edge has radii of curvature R (in vision perpendicular to the glass surface and in each corner ) very small relative to the radii of curvature of the edges towards the middle of the sides.
  • This glazing is symmetrical with respect to the vertical plane of symmetry PS.
  • This PS plane passes through the mediums 354 and 355 of the transverse sides.
  • This glazing rests on four points 356, 357, 358, 359 located in the corners. Dotted lines 360, 361, 362 and 363 connecting these four points.
  • each of these segments has a medium 364, 365, 366, 367.
  • For each segment there is a plane perpendicular (368, 369, 370, 371) to the segment and passing through its middle.
  • Each of these planes intersects with its associated edge at a point 372, 355, 373, 354 which is their middle.
  • the glazing is concave (in this figure, the concave face is facing downwards) at least at the midpoints of the edges 372, 355, 373, 354 and in all the shaded areas on either side of these midpoints, said concavity being considered parallel to the outer edge of the glazing.
  • the dotted line 376 is 50 mm from the edge of the glass and forms the boundary of the peripheral zone, which is between the edge of the glass and this line.
  • the middle zone of the side 353 of the peripheral zone of the upper main face of the glass is the hatched area on the left. This zone surrounds the middle point 373.
  • the hatched area is included in the peripheral zone between points 374 and 375 on the edge.
  • the points 374 and 375 there is a vertical plane 377 perpendicular to the edge of the glass in which the condition over the distance d is verified.
  • the points 374 and 375 are each distant from point 373 by 20 cm, even from 10 cm or even 5 cm.
  • the counter-skeleton is located opposite this zone (above the glass or facing its edge) at least in this zone and, where appropriate, continuously over the entire length of this zone parallel to the edge of the glass, that is to say without discontinuity between the points 374 and 375, but not necessarily throughout the width of this zone.
  • a method of gravity bending a glass sheet or a stack of glass sheets comprising bending the glass by gravity on a skeleton comprising a contact track supporting the glass in the peripheral zone of its face lower main, said contact track comprising concave curvatures at each of the sides of said skeleton, a counter-skeleton comprising a metal bar being present during the bending at a distance d from the edge or the peripheral zone of the upper main face of the glass , the peripheral zone of a main face being the zone between the edge of the glass and a distance from the edge of the glass of 50 mm from said main face, d being in the range from 0.1 to 50 mm.
  • Method according to the preceding claim characterized in that it gives the glass concave shapes seen from above in its central zone and in each of its sides, in particular in the middle of its sides, the metal bar being at least at a distance d end of bending.
  • Method according to the preceding claim characterized in that the condition on the distance d is verified in at least one vertical plane perpendicular to the edge of the glass passing in the middle zone of at least one side of the glass, said middle zone being comprised in the peripheral area up to 10 cm on either side of the middle of the side, preferably for all sides.
  • Method according to one of the two preceding claims characterized in that the condition on the distance d is satisfied for any vertical plane passing through the middle zone of at least one side of the glass, preferably for all sides .
  • the glass comprises four sides.
  • d is in the range of 1 mm to 50 mm and preferably in the range of 5 mm to 30 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

The invention relates to a device and a method for gravity-bending a glass sheet or stack of glass sheets, referred to as the glass, involving gravity-bending the glass on a frame that comprises a contact track for bearing the glass in the peripheral zone of its lower main face, said contact track having concave curvatures at each of the sides of said frame, and a counter-frame that comprises a metal bar which, as bending takes place, is at a distance d from the edge or from the peripheral zone of the upper main face of the glass, wherein said peripheral zone of a main face is the zone between the glass rim and a distance of 50 mm from the glass rim of the main face in question, and d is in the range from 0.1 to 50 mm. The invention is particularly useful for bending thin glass and for reducing the ripples that tend to form towards the middle of the sides.

Description

BOMBAGE DE VERRE PAR GRAVITE  GLASS BOMBAGE BY GRAVITY
EN PRESENCE D'UN CONTRE-SQUELETTE RADIATIF  IN THE PRESENCE OF A RADIATIVE BACK-SKELET
L'invention concerne le bombage par gravité du verre sur un squelette. Un contre- squelette est disposé vis-à-vis de la zone périphérique ou de la tranche du verre ce qui évite la formation d'ondulations à ses bords. Ceci fonctionne même en l'absence de contact entre le contre-squelette et le verre. The invention relates to gravity bending of glass on a skeleton. A counter-skeleton is arranged opposite the peripheral zone or the edge of the glass which prevents the formation of corrugations at its edges. This works even in the absence of contact between the skeleton and the glass.
Le bombage par gravité du verre est bien connu et notamment documenté dans EP448447, EP0705798, EP885851. Dans le US1999558, le verre est forcé à se bomber par un appui sur la tranche.  The gravity bending of glass is well known and in particular documented in EP448447, EP0705798, EP885851. In US1999558, the glass is forced to bulge by pressing on the wafer.
La tendance des constructeurs automobile est à réduire de plus en plus l'épaisseur des feuilles de verre destinées à être assemblées au sein d'un vitrage feuilleté. On tend à associer une feuille mince avec une feuille de plus grande épaisseur. On s'est aperçu que le bombage par gravité d'une feuille de verre d'épaisseur inférieure ou égale à 2,1 mm produisait, sur squelette classique, des défauts d'ondulation sur les bords du verre, plus particulièrement au milieu des différents côtés du verre. Le phénomène responsable de la création de plis en périphérie du vitrage lors de son supportage en périphérie est un phénomène d'instabilité similaire à du flambement (ou du voilement) de plaques élastiques. De la même façon que dans le cas de plaques élastiques minces, le phénomène d'instabilité périphérique observé dans le formage de feuilles de verre est d'autant plus important que l'épaisseur du verre est faible et que la température à la périphérie du verre est élevée.  The trend of car manufacturers is to reduce more and more the thickness of the glass sheets to be assembled in a laminated glazing. It tends to associate a thin sheet with a sheet of greater thickness. It has been found that the gravity bending of a glass sheet with a thickness of less than or equal to 2.1 mm produced, on a conventional skeleton, ripple defects on the edges of the glass, more particularly in the middle of different sides of the glass. The phenomenon responsible for the creation of folds at the periphery of the glazing during its support at the periphery is a phenomenon of instability similar to buckling (or buckling) of elastic plates. In the same way as in the case of thin elastic plates, the phenomenon of peripheral instability observed in the forming of glass sheets is all the more important that the thickness of the glass is low and the temperature at the periphery of the glass is high.
Si l'on cherche à contrecarrer la formation de ces ondulations en appuyant sur la face supérieure du verre en cours de bombage cela tend à produire des marques sur cette face ainsi que sur la face inférieure, et même à gêner le bombage puisque le verre se retrouve coincé entre un outil inférieur et un outil supérieur comme dans une mâchoire, ce qui freine son effondrement. Les «marques» correspondent à de légères indentations mécaniques crées par les outillages sur le verre lors de son bombage. Elles sont particulièrement gênantes lorsque qu'elles se situent sur la surface inférieure du verre (face convexe) après bombage car elles sont alors visibles depuis l'extérieur du véhicule. Les « marques » qui se situent sur la face supérieure du verre (face concave) après bombage sont en général plus facilement acceptées car elles se trouvent à l'intérieur du véhicule une fois monté sur lui et ces imperfections sont donc cachées de la vue d'un observateur extérieur au véhicule.  If one seeks to thwart the formation of these undulations by pressing the upper face of the glass during bending this tends to produce marks on this face and on the underside, and even to hinder the bending since the glass is found stuck between a lower tool and a superior tool as in a jaw, which slows down its collapse. The "marks" correspond to slight mechanical indentations created by the tools on the glass during its bending. They are particularly troublesome when they are on the lower surface of the glass (convex side) after bending because they are then visible from outside the vehicle. The "marks" that are on the upper side of the glass (concave side) after bending are generally more easily accepted because they are inside the vehicle once mounted on it and these imperfections are hidden from the view of the vehicle. an observer outside the vehicle.
Selon l'invention, le bombage de verre est réalisé grâce à un dispositif de bombage par gravité d'une feuille de verre ou d'un empilement de feuilles de verre, dit le verre, comprenant un squelette comprenant une piste de contact pour supporter la zone périphérique de la face principale inférieure du verre, ladite piste de contact comprenant des courbures concaves en chacun des côtés dudit squelette, et un contre-squelette comprenant une barre métallique, ledit contre-squelette étant configuré pour que sa barre métallique soit présente à une distance d positive de la zone périphérique de la face principale supérieure du verre ou de sa tranche. Le fait que la distance d soit positive et donc non nulle implique l'absence de contact du contre-squelette avec le verre à l'endroit où la distance d est mesurée. La distance d est mesurable dans un plan vertical (virtuel) perpendiculaire au bord du verre. Le plan vertical dans lequel le contre-squelette ne touche pas le verre est également perpendiculaire au bord extérieur du squelette puisque ce dernier est sensiblement parallèle au bord du verre. La barre du contre-squelette est l'élément de ce dernier actif pour le bombage et le plus proche du verre au cours du bombage. Il n'y a aucun élément solide entre le verre et la barre du contre-squellette. Les distances d et D dont la présente demande fait état concernent la barre métallique du contre-squelette. According to the invention, the bending of glass is achieved by means of a device for bending by gravity of a glass sheet or a stack of glass sheets, said glass, comprising a skeleton comprising a contact track to support the zoned peripheral of the lower main face of the glass, said contact track comprising concave curvatures in each of the sides of said skeleton, and a counter-skeleton comprising a metal bar, said counter-skeleton being configured so that its metal bar is present at a distance d positive from the peripheral area of the upper main face of the glass or its edge. The fact that the distance d is positive and therefore non-zero implies the absence of contact of the back-skeleton with the glass at the point where the distance d is measured. The distance d is measurable in a vertical (virtual) plane perpendicular to the edge of the glass. The vertical plane in which the back-skeleton does not touch the glass is also perpendicular to the outer edge of the skeleton since the latter is substantially parallel to the edge of the glass. The counter-skeleton bar is the element of the latter active for bending and the closest to the glass during bending. There is no solid element between the glass and the counter-squell bar. The distances d and D of the present application relate to the metal bar of the back-skeleton.
Pour ne pas toucher le verre, le dispositif selon l'invention comprend un moyen In order not to touch the glass, the device according to the invention comprises a means
(distinct du verre lui-même) d'imposer une distance d entre le verre et la barre du contre- squelette. Le contre-squelette ne touche pas le verre au moins dans la zone du milieu d'au moins un de ses côtés. Il n'est pas exclu qu'il touche au moins un coin du verre mais cela n'est ni nécessaire, ni préféré. Si le verre est d'épaisseur e, le moyen d'imposer une distance d entre la barre du contre-squelette et le verre est aussi un moyen (distinct du verre lui-même) d'imposer une distance D positive entre la barre du contre-squelette et le squelette, D étant égal à d+e, si d est entre le contre-squelette et la face supérieure du verre, ou à d+f si d est entre le contre-squelette et la tranche du verre, f étant le débordement du verre vers l'extérieur du squelette. A un endroit pour lequel la distance d est respectée, alors le contre-squelette ne touche pas le verre, et il ne touche pas le squelette même si l'on ne place pas le verre sur le squelette. Dans le dispositif selon l'invention, le squelette et le contre-squelette ont donc les mêmes positions l'un par rapport à l'autre, que du verre ait été chargé sur le squelette ou non. Ainsi, le dispositif de bombage de verre (d'épaisseur e) par gravité est également tel qu'il comprend un squelette comprenant une piste de contact pour supporter la zone périphérique de la face principale inférieure du verre et un contre-squelette comprenant une barre métallique, ledit contre-squelette étant configuré pour avoir au moins une face dirigée vers la face supérieur du squelette ou vers la face extérieure du squelette, ladite au moins une face du contre-squelette étant sans contact avec le squelette, en l'absence même de verre. (distinct from the glass itself) to impose a distance d between the glass and the bar of the back-skeleton. The counter-skeleton does not touch the glass at least in the middle zone of at least one of its sides. It is not excluded that it touches at least one corner of the glass but it is neither necessary nor preferred. If the glass is of thickness e, the means of imposing a distance d between the bar of the back-skeleton and the glass is also a means (distinct from the glass itself) of imposing a positive distance D between the bar of the counter-skeleton and skeleton, D being equal to d + e, if d is between the back-skeleton and the upper face of the glass, or at d + f if d is between the back-skeleton and the edge of the glass, f being the overflow of the glass towards the outside of the skeleton. At a place where the distance d is respected, then the back-skeleton does not touch the glass, and it does not touch the skeleton even if one does not place the glass on the skeleton. In the device according to the invention, the skeleton and the back-skeleton therefore have the same positions relative to each other, whether glass has been loaded on the skeleton or not. Thus, the device for bending glass (of thickness e) by gravity is also such that it comprises a skeleton comprising a contact track for supporting the peripheral zone of the lower main face of the glass and a counter-skeleton comprising a bar metal, said backbone being configured to have at least one face directed towards the upper face of the skeleton or towards the outer face of the skeleton, said at least one face of the backbone being without contact with the skeleton, in the absence even of glass.
Le squelette supporte la face principale inférieure du verre dans sa zone périphérique, c'est-à-dire la zone entre le bord du verre et une distance du bord du verre de 50 mm. La zone du verre touchant la piste de contact du squelette est entièrement comprise dans cette zone périphérique. Le contre-squelette vient vis-à-vis de la zone périphérique de la face principale supérieure du verre et/ou vis-à-vis de la tranche du verre. De préférence, la barre métallique du contre-squelette est au-dessus et sensiblement vis-à-vis du squelette. The skeleton supports the lower main face of the glass in its peripheral zone, that is to say the area between the edge of the glass and a distance from the edge of the glass of 50 mm. The area of the glass touching the skeleton contact track is entirely included in this peripheral zone. The counter-skeleton comes opposite the peripheral zone of the upper main face of the glass and / or towards the edge of the glass. Preferably, the metal bar of the back-skeleton is above and substantially opposite the skeleton.
La barre métallique du contre-squelette est en un métal compact, c'est-à-dire sans porosité, étant entendu qu'il peut s'agir par exemple d'un tube ou d'un profilé en forme de T. Elle est rigide. Elle est sensiblement parallèle au verre et au squelette de façon à pouvoir agir sur toute une portion voire la totalité de la zone périphérique parallèlement au bord du verre. Les portions préférées d'action du contre-squelette sont les zone des milieux des côtés du verre.  The metal bar of the back-skeleton is made of a compact metal, that is to say without porosity, it being understood that it may be for example a tube or a T-shaped profile. rigid. It is substantially parallel to the glass and the skeleton so as to act on a whole portion or even the entire peripheral area parallel to the edge of the glass. The preferred portions of action of the backbone are the zones of the middle of the sides of the glass.
Vu de dessus, le contre-squelette peut éventuellement ne pas recouvrir le verre et donc ne pas gêner le chargement du verre sur le squelette, ni son déchargement. Dans ce cas, le contre-squelette est généralement disposé vis-à-vis de la tranche du verre à côté du bord du verre. Le contre-squelette peut alors éventuellement être relié au squelette par une liaison fixe passant par l'extérieur du verre. Cette liaison fixe est dans ce cas le moyen permettant d'imposer une distance d entre le verre et le contre-squelette (et donc également la barre du contre-squelette). Bien entendu, cette liaison est dimensionnée en fonction des dimensions du verre et pour que toute face du contre- squelette dirigée vers le verre ne touche pas le verre.  Viewed from above, the back-skeleton may possibly not cover the glass and thus not impede the loading of the glass on the skeleton, nor its unloading. In this case, the back-skeleton is generally arranged vis-à-vis the edge of the glass next to the edge of the glass. The back-skeleton can then possibly be connected to the skeleton by a fixed connection passing through the outside of the glass. This fixed link is in this case the means for imposing a distance d between the glass and the back-skeleton (and therefore also the bar of the back-skeleton). Of course, this connection is sized according to the dimensions of the glass and so that any face of the counter-skeleton facing the glass does not touch the glass.
Le contre-squelette peut être amovible (synonyme : escamotable) par rapport au squelette et au verre. Ceci est en particulier nécessaire si, vu de dessus, le contre- squelette recouvre une partie du verre.  The back-skeleton can be removable (synonymous: retractable) with respect to the skeleton and the glass. This is particularly necessary if, seen from above, the counter-skeleton covers part of the glass.
Le verre posé sur le squelette peut être une feuille individuelle d'épaisseur inférieure ou égale à 2,1 mm, voire d'épaisseur inférieure ou égale à 1 ,2 mm. Généralement, l'épaisseur d'une feuille individuelle est supérieure ou égale à 0,4 mm. Le verre posé sur le squelette peut également être un empilement de feuilles de verre, notamment de feuilles dont les épaisseurs viennent d'être données. L'empilement peut également comprendre des feuilles d'épaisseur différentes. Cet empilement peut comprendre 2, 3 ou 4 feuilles. On peut notamment bomber par le dispositif selon l'invention un empilement comprenant une feuille dont l'épaisseur est comprise dans le domaine allant de 1 ,4 à 2,7 mm, généralement dans le domaine allant de 1 ,4 à 2,5 mm, et une feuille dont l'épaisseur est comprise dans le domaine allant de 0,4 à 1 ,6 mm, notamment dans le domaine allant de 0,4 à 1 ,2 mm, la feuille la plus épaisse se trouvant de préférence sous la feuille la plus mince pendant le bombage sur le squelette. Les feuilles bombées ensemble par le dispositif selon l'invention peuvent être destinées à être associées ensemble dans un même vitrage feuilleté, mais pas nécessairement. Par simplification, on emploie les termes « le verre » pour désigner une feuille individuelle ou un empilement de feuilles. The glass placed on the skeleton may be an individual sheet of thickness less than or equal to 2.1 mm, or even less than or equal to 1.2 mm thick. Generally, the thickness of an individual sheet is greater than or equal to 0.4 mm. The glass placed on the skeleton can also be a stack of glass sheets, especially sheets whose thickness has just been given. The stack may also include sheets of different thickness. This stack may comprise 2, 3 or 4 sheets. In particular, the device according to the invention can be covered by a stack comprising a sheet whose thickness is in the range from 1.4 to 2.7 mm, generally in the range from 1.4 to 2.5 mm. , and a sheet whose thickness is in the range of 0.4 to 1.6 mm, in particular in the range of 0.4 to 1.2 mm, the thickest sheet being preferably under the thinnest leaf during bending on the skeleton. The sheets curved together by the device according to the invention may be intended to be associated together in the same laminated glazing, but not necessarily. By simplification, the term "glass" is used to designate an individual sheet or a stack of sheets.
Le squelette comprend une bande métallique (que l'on peut également appeler « plat vertical », même si ses grandes faces peuvent éventuellement être inclinées comme représenté sur la figure 2) présentant une de ses tranches vers le haut pour supporter la périphérie du verre. Le squelette comprend également en revêtement sur la tranche supérieure de sa bande métallique, un matériau fibreux réfractaire bien connu de l'homme du métier, formant la piste de contact pour le verre. La bande métallique est rigide alors que le matériau fibreux a une certaine élasticité et compressibilité. Ce matériau de fibres réfractaires métalliques et/ou céramique est généralement du type feutre ou tricot ou tissu, comme cela est bien connu de l'homme du métier. Ces matériaux réduisent le marquage du verre par le squelette. La bande métallique dans le squelette a généralement une largeur comprise dans le domaine allant de 1 à 10 mm. Le matériau fibreux présente généralement une épaisseur comprise dans le domaine allant de 0,3 à 1 mm. Le squelette offre au verre via son matériau fibreux réfractaire une piste de contact de largeur comprise généralement dans le domaine allant de 1 ,6 à 12 mm (ce qui inclut l'épaisseur due au matériau fibreux réfractaire), plus généralement dans le domaine allant de 3 mm à 10 mm. Le squelette présente en sa face de contact pour le verre des courbures concaves, et ce, pour chacun de ses côtés et généralement au moins au milieu de chacun de ses côtés, le verre ayant généralement quatre côtés. La piste de contact du squelette présente des courbures concaves pour au moins 80% et généralement au moins 90% de sa longueur, ladite concavité étant considérée parallèlement à ses contours (intérieur ou extérieur). La piste de contact du squelette présente des courbures concaves pour au moins 80% et généralement au moins 90% de la longueur de ses côtés longitudinaux, ladite concavité étant considérée parallèlement à ses contours (intérieur ou extérieur). En particulier, la piste de contact du squelette présente des courbures concaves pour la zone du milieu de ses côtés longitudinaux, notamment pour au moins jusqu'à 20 cm de chaque côté de ce milieu. La piste de contact du squelette présente des courbures concaves pour au moins 80% et généralement au moins 90% de la longueur de ses côtés transversaux, ladite concavité étant considérée parallèlement à ses contours (intérieur ou extérieur). En particulier, la piste de contact du squelette présente des courbures concaves pour la zone du milieu de ses côtés transversaux, notamment pour au moins jusqu'à 20 cm de chaque côté de ce milieu. Le verre s'effondre sous l'effet de la gravité sur le squelette pendant le bombage et prend des formes concaves vue de dessus (la face concave est la face supérieure) en sa zone centrale et en chacun de ses côtés, notamment au milieu de ses côtés, la barre métallique étant à la distance d au moins en fin de bombage. Le squelette à une forme conférant cette concavité, puisqu'en fin de bombage, le verre touche tout le pourtour de la piste de contact du squelette. En fin de bombage, le verre étant posé sur le squelette, la zone centrale de la face supérieure du verre est concave dans toutes les directions. Vu de dessus, le squelette a sensiblement la même forme que le verre qu'il doit recevoir tout en étant plus petit puisque le verre déborde de tous côtés du squelette. La piste de contact du squelette présente donc généralement une forme concave en chacun de ses côtés, notamment au milieu de ses côtés. Les faces principales du verre comprennent une pluralité de côtés, généralement quatre côtés, le squelette présente autant de côtés que le verre et donc généralement quatre côtés (également appelées « bandes »). Avant bombage, le verre déborde généralement de tout le pourtour du squelette d'une distance comprise dans le domaine allant de 2 à 45 mm. Ce débordement diminue au cours du bombage. Cette diminution dépend de l'importance des courbures données aux faces principales du verre pendant le bombage. En fin de bombage, ce débordement est généralement compris dans le domaine allant de 1 à 25 mm. Du début à la fin du bombage, le squelette supporte généralement le verre entièrement dans sa zone périphérique et sans déborder hors de cette zone, ni vers l'extérieur, ni vers l'intérieur. The skeleton comprises a metal strip (which may also be called "vertical plate", even if its large faces may optionally be inclined as shown in Figure 2) having one of its slices upwards to support the periphery of the glass. The skeleton also comprises coated on the upper edge of its metal strip, a refractory fibrous material well known to those skilled in the art, forming the contact track for the glass. The metal band is rigid while the fibrous material has some elasticity and compressibility. This refractory metal and / or ceramic fiber material is generally of the felt or knit or fabric type, as is well known to those skilled in the art. These materials reduce the labeling of the glass by the skeleton. The metal strip in the backbone generally has a width in the range of 1 to 10 mm. The fibrous material generally has a thickness in the range of 0.3 to 1 mm. The skeleton provides the glass, via its refractory fibrous material, with a contact track of width generally in the range from 1.6 to 12 mm (which includes the thickness due to the refractory fibrous material), more generally in the range from 3 mm to 10 mm. The skeleton has concave curvatures in its contact face for the glass, and this for each of its sides and generally at least in the middle of each of its sides, the glass having generally four sides. The contact track of the skeleton has concave curvatures for at least 80% and generally at least 90% of its length, said concavity being considered parallel to its contours (inside or outside). The contact track of the skeleton has concave curvatures for at least 80% and generally at least 90% of the length of its longitudinal sides, said concavity being considered parallel to its contours (inside or outside). In particular, the contact track of the skeleton has concave curvatures for the middle zone of its longitudinal sides, in particular for at least up to 20 cm on each side of this medium. The contact track of the skeleton has concave curvatures for at least 80% and generally at least 90% of the length of its transverse sides, said concavity being considered parallel to its contours (inside or outside). In particular, the contact track of the skeleton has concave curvatures for the middle zone of its transverse sides, in particular for at least up to 20 cm on each side of this medium. The glass collapses under the effect of gravity on the skeleton during the bending and takes concave shapes seen from above (the concave face is the upper face) in its central zone and in each of its sides, especially in the middle of its sides, the metal bar being at a distance d at least at the end of the bending. The skeleton has a shape conferring this concavity, since at the end of bending, the glass touches the entire circumference of the skeleton contact track. At the end of bending, the glass being placed on the skeleton, the central zone of the upper face of the glass is concave in all directions. Seen from above, the skeleton has substantially the same shape as the glass it must receive while being smaller since the glass overflows on all sides of the skeleton. The contact track of the skeleton therefore generally has a concave shape in each of its sides, especially in the middle of its sides. The main faces of the glass comprise a plurality of sides, generally four sides, the skeleton has as many sides as the glass and therefore generally four sides (also called "strips"). Before bending, the glass usually overflows all around the skeleton by a distance in the range of 2 to 45 mm. This overflow decreases during the bending. This decrease depends on the importance of the curvatures given to the principal faces of the glass during the bending. At the end of bending, this overflow is generally in the range of 1 to 25 mm. From the beginning to the end of the bending, the skeleton generally supports the glass entirely in its peripheral zone and without overflowing out of this zone, neither outwards nor inwards.
Vue de dessus, le squelette présente une forme annulaire continue et sans interruption. En effet, si le squelette était segmenté, cette segmentation pourrait produire une marque sur la face inférieure du verre compte tenu du fait que dans le procédé selon l'invention le verre s'effondre essentiellement sous le seul effet de son poids et il suit donc assez facilement la forme de son support et reste assez sensible aux dénivelés du squelette.  Viewed from above, the skeleton has a continuous annular shape and without interruption. Indeed, if the skeleton was segmented, this segmentation could produce a mark on the underside of the glass, given that in the process according to the invention the glass collapses essentially under the sole effect of its weight and therefore follows quite easily the shape of its support and remains quite sensitive to the unevenness of the skeleton.
L'invention concerne plus particulièrement le bombage de verre pour vitrage de véhicule (automobile, bus, camion, véhicule agricole, etc). Il peut s'agir de pare-brise, lunette arrière, toit. Les vitrages ici considérés comprennent une pluralité de côtés, généralement quatre côtés (également appelées « bandes »), un côté rejoignant un autre en un coin du vitrage, ce coin comprenant un segment de courbe comprenant des rayons de courbure bien plus petits que ceux des courbures des côtés. On prend ici en considération les rayons de courbure du pourtour des faces principales en vision perpendiculaire aux faces principales et au bord du verre. Le milieu d'un côté se trouve à sensiblement égale distance de ses deux coins. Dans le cas de pare-brise, lunette arrière et toit, ces vitrages ont un plan de symétrie vertical PS lorsqu'ils sont montés sur le véhicule, la direction de déplacement du véhicule (volant non-tourné) étant comprise dans ce plan de symétrie. Les côtés venant en intersection de ce plan de symétrie sont dits côtés transversaux, les deux autres côtés étant dits côtés longitudinaux. On trouve le milieu des côtés de la façon suivante : on pose le vitrage bombé sur un plan horizontal, côté concave vers le bas. Le vitrage touche le plan horizontal par 4 points de contact aux coins du vitrage. On relie les points de contact entre eux par des segments de droite. L'intersection avec le bord du verre du plan perpendiculaire au segment et passant par le milieu de ce segment, est le milieu du côté du verre. Le milieu des côtés transversaux se trouve aussi à leur intersection avec le plan de symétrie vertical PS. The invention relates more particularly to the bending of glass for vehicle glazing (automobile, bus, truck, agricultural vehicle, etc.). It can be windshield, rear window, roof. The glazings considered here comprise a plurality of sides, generally four sides (also called "strips"), one side joining another in a corner of the glazing, this corner comprising a segment of curve comprising radii of curvature much smaller than those of curvatures of the sides. Consideration here is given to the radii of curvature of the perimeter of the main faces in vision perpendicular to the main faces and the edge of the glass. The middle of one side is at approximately equal distance from its two corners. In the case of windshield, rear window and roof, these windows have a PS vertical symmetry plane when mounted on the vehicle, the direction of movement of the vehicle (non-turned wheel) being included in this plane of symmetry . The intersecting sides of this plane of symmetry are said transverse sides, the other two sides being said longitudinal sides. We find the middle of the sides as follows: we place the curved glazing on a horizontal plane, concave side down. The glazing touches the horizontal plane by 4 points of contact corners of the glazing. The points of contact between them are connected by segments of the line. The intersection with the edge of the glass plane perpendicular to the segment and passing through the middle of this segment, is the middle side of the glass. The middle of the transverse sides is also at their intersection with the vertical plane of symmetry PS.
On a constaté une action bénéfique de la présence du contre-squelette au-dessus du verre, même en l'absence de tout contact avec le verre. On attribue ce phénomène à un effet thermique favorable entre le verre et le contre-squelette. Il n'est pas nécessaire (même si cela n'est pas exclu) de munir le contre-squelette d'un matériau fibreux réfractaire revêtant sa face dirigée vers le verre. Cet effet thermique peut d'une part provenir de ce que le contre-squelette fait écran pour le verre à des radiations thermiques venant directement d'éléments chauffants dans le four de bombage, et d'autre part, de ce que le contre-squelette reste plus froid que la périphérie du verre pendant la montée en température et le bombage. En effet, en raison du métal qu'il contient, la capacité calorifique du contre-squelette est plus forte que celle du verre. Le contre-squelette est donc thermiquement plus inerte que le verre. En conséquence, la présence du contre- squelette pourrait ralentir la montée en température de la périphérie du verre pendant la phase de montée en température jusqu'à la température de bombage, produisant une diminution de la température de la périphérie du verre, ce qui aurait un effet favorable sur le phénomène d'instabilités périphériques. Au voisinage de la température de ramollissement, la viscosité du verre varie très fortement avec la température et vers 620 °C, une baisse de 10°C correspond en effet à une augmentation de la viscosité d'un facteur 2 approximativement. Un bord plus froid est plus visqueux et est donc moins sensible aux effets de marquage périphérique.  A beneficial effect of the presence of the back-skeleton above the glass has been found, even in the absence of any contact with the glass. This phenomenon is attributed to a favorable thermal effect between the glass and the counter-skeleton. It is not necessary (although this is not excluded) to provide the backbone with a refractory fibrous material coated on its face facing the glass. This thermal effect can on the one hand come from the fact that the back-skeleton shields the glass for thermal radiations coming directly from heating elements in the bending furnace, and on the other hand, that the back-skeleton remains cooler than the periphery of the glass during the rise in temperature and the bending. Indeed, because of the metal it contains, the heat capacity of the back-skeleton is stronger than that of glass. The counter-skeleton is therefore thermally more inert than glass. Consequently, the presence of the backbone could slow the rise in temperature of the periphery of the glass during the temperature rise phase to the bending temperature, producing a decrease in the temperature of the periphery of the glass, which would have a favorable effect on the phenomenon of peripheral instabilities. In the vicinity of the softening temperature, the viscosity of the glass varies very strongly with the temperature and at 620 ° C, a drop of 10 ° C corresponds to an increase in viscosity by a factor of approximately 2. A colder edge is more viscous and is therefore less sensitive to peripheral marking effects.
L'invention concerne un procédé de bombage par gravité d'une feuille de verre ou d'un empilement de feuilles de verre, dit le verre (lequel a une épaisseur e), comprenant le bombage du verre par gravité sur un squelette comprenant une piste de contact supportant le verre dans la zone périphérique de sa face principale inférieure, ladite piste de contact comprenant des courbures concaves en chacun des côtés dudit squelette, un contre-squelette comprenant une barre métallique étant présent pendant le bombage à une distance d de la tranche ou de la zone périphérique de la face principale supérieure du verre, la zone périphérique d'une face principale étant la zone entre le bord du verre et une distance du bord du verre de 50 mm de ladite face principale, d étant compris dans le domaine allant de 0,1 à 50 mm. Le contre-squelette peut être présent sans interruption vis-à-vis de l'intégralité de la zone périphérique du verre ou de sa tranche. Notamment, il peut être en une seule pièce. Notamment, il peut ne toucher nulle part le verre. Cependant, le contre-squelette peut ne pas être présent vis-à-vis de certains endroits du verre comme les coins du verre. Le contre-squelette est de préférence présent vis-à-vis de la zone du milieu d'au moins un côté du verre et même de tous les côtés du verre, l'expression « vis-à-vis » concernant la zone périphérique de la face supérieure du verre ou sa tranche. En effet, les problèmes d'ondulation du verre ont principalement lieu dans la zone du milieu des côtés et le contre-squelette est donc préférentiellement présent vis- à-vis de la zone d'au moins un milieu d'un des côtés du verre, et même de tous les côtés du verre. La distance d est donc vérifiée pour la zone du milieu d'au moins un côté du verre, et de préférence la zone du milieu de tous ses côtés, le verre ayant généralement quatre côtés. Le contre-squelette peut également se trouver vis-à-vis des coins du verre, mais cela n'est généralement pas nécessaire. The invention relates to a method of gravity bending a glass sheet or a stack of glass sheets, said glass (which has a thickness e), comprising the bending of the glass by gravity on a skeleton comprising a track contact strip supporting the glass in the peripheral zone of its lower main face, said contact track comprising concave curvatures at each of the sides of said skeleton, a counter-skeleton comprising a metal bar being present during the bending at a distance d from the slice or the peripheral zone of the upper main face of the lens, the peripheral zone of a main face being the zone between the edge of the lens and a distance from the edge of the lens of 50 mm from said main face, d being included in the range ranging from 0.1 to 50 mm. The back-skeleton can be present without interruption vis-à-vis the entire peripheral zone of the glass or its edge. In particular, it can be in one piece. In particular, it can not touch the glass anywhere. However, the counter-skeleton may not be present with respect to certain areas of the glass such as the corners of the glass. The counter-skeleton is preferably present vis-à-vis of the middle zone of at least one side of the glass and even on all sides of the glass, the expression "vis-à-vis" concerning the peripheral zone of the upper face of the glass or its edge. In fact, the problems of rippling of the glass mainly occur in the zone of the middle of the sides and the counter-skeleton is therefore preferentially present with respect to the zone of at least one middle of one of the sides of the glass. , and even on all sides of the glass. The distance d is thus verified for the middle zone of at least one side of the glass, and preferably the middle zone on all sides, the glass having generally four sides. The counter-skeleton may also be opposite the corners of the glass, but this is not usually necessary.
L'invention concerne également un procédé de bombage par gravité d'une feuille de verre ou d'un empilement de feuilles de verre, dit le verre (lequel a une épaisseur e), comprenant le bombage du verre par gravité sur un squelette comprenant une piste de contact supportant le verre dans la zone périphérique de sa face principale inférieure, un contre-squelette comprenant une barre métallique étant présent pendant le bombage vis- à-vis de la zone périphérique du verre ou de sa tranche, et à une distance d, aux endroits où des ondulations apparaissent en l'absence du contre-squelette.  The invention also relates to a method of gravity bending a glass sheet or a stack of glass sheets, said glass (which has a thickness e), comprising the bending of the glass by gravity on a skeleton comprising a contact track supporting the glass in the peripheral zone of its lower main face, a counter-skeleton comprising a metal bar being present during the bending with respect to the peripheral zone of the glass or its edge, and at a distance of in places where undulations appear in the absence of the counter-skeleton.
La distance entre le contre-squelette et le verre n'est pas forcément la même pour toute la zone périphérique du verre. En ce qui concerne la zone du milieu d'au moins un côté elle est de préférence d'au moins 0,1 mm dans toute cette zone, et ce, de préférence pour tous les côtés du verre. La zone du milieu d'un côté est la zone de part et d'autre du milieu dans la zone périphérique du verre. Notamment, la zone du milieu d'un côté est la partie de zone périphérique au moins jusqu'à 5 cm de chaque côté du milieu, et même au moins jusqu'à 10 cm de chaque côté du milieu, et même au moins jusqu'à 20 cm de chaque côté du milieu.  The distance between the back-skeleton and the glass is not necessarily the same for the entire peripheral zone of the glass. As regards the middle zone of at least one side it is preferably at least 0.1 mm throughout this area, and preferably for all sides of the glass. The middle zone of one side is the area on either side of the middle in the peripheral zone of the glass. In particular, the middle zone of one side is the peripheral zone portion at least up to 5 cm on each side of the middle, and even at least up to 10 cm on each side of the middle, and even at least up to 20 cm each side of the middle.
Ainsi, un plan vertical (virtuel), perpendiculaire au bord du verre, dans lequel la condition sur la distance d est vérifiée passe de préférence dans la zone du milieu d'au moins un côté du verre, laquelle est comprise dans la zone périphérique jusqu'à 20 cm (voire jusqu'à 10 cm, voire jusqu'à 5 cm) de part et d'autre du milieu du côté, parallèlement au bord du verre, et ce, de préférence pour tous les côtés. De préférence, la condition sur la distance d est vérifiée pour au moins 50%, et de préférence au moins 80%, de la longueur de la zone du milieu d'au moins un côté du verre parallèlement au bord du verre, de préférence sans contact par ailleurs d'aucun outil avec la tranche ou la zone périphérique du verre dans le reste de cette zone du milieu d'au moins un côté du verre. De préférence, la condition sur la distance d est vérifiée pour tout plan vertical perpendiculaire au bord du verre et passant dans la zone du milieu d'au moins un côté du verre (ce qui implique notamment que le contre-squelette (ni aucun autre outil), ne touche pas le verre dans cette zone du milieu), et ce, de préférence pour tous les côtés du verre, généralement au nombre de quatre. Thus, a vertical (virtual) plane, perpendicular to the edge of the glass, in which the condition over the distance d is verified preferably passes in the middle zone of at least one side of the glass, which is included in the peripheral zone until 20 cm (or even up to 10 cm or even up to 5 cm) on either side of the middle of the side, parallel to the edge of the glass, and this, preferably for all sides. Preferably, the condition over the distance d is verified for at least 50%, and preferably at least 80%, of the length of the middle zone of at least one side of the glass parallel to the edge of the glass, preferably without otherwise contacting any tool with the wafer or the peripheral zone of the glass in the rest of this middle area of at least one side of the glass. Preferably, the condition over the distance d is verified for any vertical plane perpendicular to the edge of the glass and passing in the middle zone of at least one side of the glass (which implies in particular that the back-skeleton (or any other tool ), does not touch not the glass in this middle area), and this, preferably for all sides of the glass, generally four in number.
Généralement, le contre-squelette ne touche nulle part le verre, et en particulier ni la face principale supérieure du verre ni sa tranche. Il y a donc toujours une lame d'air entre le contre-squelette et le verre pendant le bombage. La distance d dans un plan vertical perpendiculaire au bord du verre (et donc aussi perpendiculaire au squelette puisque celui-ci est parallèle au bord du verre) est celle entre le point du contre-squelette d'une part et le point du verre dans la zone périphérique d'autre part, les plus proches. Le contre-squelette peut éventuellement toucher le verre en début de bombage compte tenu de ce que le verre n'est pas encore bombé mais il ne touche pas le verre au moment où le verre est en contact sur toute sa périphérie avec le squelette, en particulier en fin de bombage. Ainsi, le contre-squelette (et donc nécessairement aussi sa barre métallique) ne touche de préférence pas le verre au moment où le verre vient au contact de tout le pourtour du squelette.  Generally, the counter-skeleton does not touch the glass anywhere, and in particular neither the upper main surface of the glass nor its edge. So there is always an air gap between the back-skeleton and the glass during bending. The distance d in a vertical plane perpendicular to the edge of the glass (and therefore also perpendicular to the skeleton since it is parallel to the edge of the glass) is that between the point of the back-skeleton on the one hand and the point of the glass in the peripheral area on the other hand, the closest. The counter-skeleton can possibly touch the glass at the beginning of bending, given that the glass is not yet curved but it does not touch the glass when the glass is in contact on its entire periphery with the skeleton, particularly at the end of bending. Thus, the counter-skeleton (and therefore necessarily also its metal bar) does not preferably touch the glass at the moment when the glass comes into contact with the entire periphery of the skeleton.
De préférence, d est d'au moins 1 mm, de préférence supérieure à 2 mm, notamment d'au moins 5 mm. Notamment, d peut être d'au plus 30 mm. De préférence, d est compris dans le domaine allant de 1 mm à 50 mm et de préférence dans le domaine allant de 5 mm à 30 mm. Il s'agit ici de distances d en fin de bombage alors que le verre touche tout le pourtour du squelette. Le contre-squelette peut être au moins en partie sur le côté du verre, voire même ne pas se trouver au-dessus du verre, mais vis-à-vis de la tranche du verre. Les valeurs de distance d ci-dessus données sont de préférence vérifiées au moins à la fin du bombage, étant entendu que la distance d peut varier au cours du bombage. Le contre-squelette, notamment sa barre métallique, est de préférence au moins partiellement au-dessus de la cote du centre de la piste de contact pour le verre du squelette. Ce centre est le point à mi-distance de la largeur de la piste de contact du squelette dans un plan vertical perpendiculaire au squelette (et donc aussi au verre). Les centres forment une ligne centrale tout le long de la piste de contact du squelette. Lorsque le contre-squelette est au moins en partie au-dessus du verre, le contre-squelette est de préférence à une distance du bord du verre inférieure ou égale à 20 mm, en fin de bombage.  Preferably, d is at least 1 mm, preferably greater than 2 mm, in particular at least 5 mm. In particular, d may be at most 30 mm. Preferably, d is in the range of 1 mm to 50 mm and preferably in the range of 5 mm to 30 mm. These are distances d at the end of the bending while the glass touches all around the skeleton. The back-skeleton may be at least partly on the side of the glass, or even not be above the glass, but vis-à-vis the edge of the glass. The values of distance d given above are preferably verified at least at the end of the bending, it being understood that the distance d may vary during bending. The counter-skeleton, particularly its metal bar, is preferably at least partially above the center point of the contact track for the skeleton glass. This center is the point midway away from the width of the skeleton contact track in a vertical plane perpendicular to the skeleton (and thus also to the glass). The centers form a central line all along the skeleton contact track. When the back-skeleton is at least partly above the glass, the back-skeleton is preferably at a distance from the edge of the glass less than or equal to 20 mm at the end of bending.
Le dispositif selon l'invention fait intervenir un moyen d'imposer une distance non nulle entre le verre et le contre-squelette, et donc également un écart entre la piste de contact du squelette et le contre-squelette. Ce moyen sert à empêcher que le contre- squelette ne touche le verre. On a observé que plus la masse de métal du contre- squelette vis-à-vis du verre était importante, plus le contre-squelette pouvait être éloigné du verre tout en conservant l'effet bénéfique recherché (pas d'ondulation de bord). On peut renforcer cet effet thermique en recouvrant une partie du contre-squelette sur au moins une de ses faces opposée au verre et donc également au squelette, d'un matériau thermiquement isolant. Cela a pour effet de ralentir la montée en température du contre- squelette lors de la chauffe du verre en vue du bombage. On a en effet constaté que le contre-squelette ainsi revêtu avait un effet bénéfique renforcé. A une distance du verre à laquelle un contre-squelette non revêtu n'a plus d'effet sur le verre, le même contre- squelette revêtu d'un matériau isolant thermique retrouve un effet bénéfique sur le verre. Le matériau isolant recouvrant le cas échéant le contre-squelette est un matériau conduisant moins bien la chaleur que la barre métallique. Il peut s'agir d'un matériau fibreux de fibres réfractaires, métalliques et/ou céramique. The device according to the invention involves a means of imposing a non-zero distance between the glass and the back-skeleton, and therefore also a gap between the contact track of the skeleton and the back-skeleton. This means serves to prevent the backbone from touching the glass. It has been observed that the greater the mass of metal of the backbone vis-à-vis the glass, the more the back-skeleton could be removed from the glass while maintaining the desired beneficial effect (no ripple edge). This thermal effect can be enhanced by covering part of the counter-skeleton on at least one of its faces opposite to the glass and therefore also to the skeleton, of a thermally insulating material. This has the effect of slowing the rise in temperature of the back-skeleton when heating the glass for bending. It has indeed been found that the counter-skeleton thus coated has a reinforced beneficial effect. At a distance from the glass to which an uncoated backbone has no effect on the glass, the same backing covered with a thermal insulating material has a beneficial effect on the glass. The insulating material covering, if appropriate, the back-skeleton is a material that conducts heat less well than the metal bar. It may be a fibrous material of refractory fibers, metal and / or ceramic.
Le verre glisse sur le squelette pendant le bombage. La formation des courbures souhaitées lors du bombage n'est pas freinée en raison d'un pincement entre squelette et contre-squelette si ce dernier ne touche pas le verre. Ceci est favorable à l'obtention d'un plus faible temps de cycle de bombage et cela permet de plus un fonctionnement plus reproductible car il n'est pas nécessaire d'ajuster très finement l'écart entre le contre- squelette et le verre.  The glass slides on the skeleton during the bending. The formation of curvatures desired during bending is not slowed down because of a nip between skeleton and counter-skeleton if it does not touch the glass. This is favorable for obtaining a shorter bending cycle time and this also allows a more reproducible operation because it is not necessary to very finely adjust the gap between the backbone and the glass.
La fonction du contre-squelette n'est pas de bomber le verre (c'est le rôle de la gravité), mais juste d'empêcher la formation d'ondulations de bord. Un bombage sans le contre-squelette aboutirait à un bombage identique en zone centrale du verre comparé à un bombage avec contre-squelette, toutes autres conditions de réalisation étant identique. S'il est possible que le contre-squelette touche le verre en début de bombage, ce n'est de préférence plus le cas en fin de bombage. De la sorte, en fin de bombage et au moment où la face inférieure du verre touche tout le pourtour du squelette, la face supérieure du verre n'est en contact avec aucun outil et n'est donc en contact qu'avec l'air ambiant. La forme finale du verre est donc obtenue dans les derniers instants du bombage par l'effet de la gravité seule.  The function of the counter-skeleton is not to bend the glass (this is the role of gravity), but just to prevent the formation of edge ripples. A bending without the counter-skeleton would result in an identical bending in the central zone of the glass compared to a bending with counter-skeleton, all other conditions of realization being identical. If it is possible that the back-skeleton touches the glass at the beginning of bending, it is preferably no longer the case at the end of bending. In this way, at the end of the bending and when the underside of the glass touches the entire periphery of the skeleton, the upper face of the glass is not in contact with any tool and is therefore in contact only with the air ambient. The final shape of the glass is thus obtained in the last moments of the bending by the effect of gravity alone.
On caractérise les courbures des vitrages par les notions de flèche et de double- bombage. Pour les définitions de ces caractéristiques, on peut se rapporter aux figures 1 a et 1 b et à la description leur correspondant du WO2010/136702.  The curvatures of glazing are characterized by the notions of arrow and double-bending. For the definitions of these characteristics, reference may be made to FIGS. 1a and 1b and to the description corresponding to them of WO2010 / 136702.
L'invention convient bien au bombage de verre dont la complexité de forme est modérée, notamment dont la flèche est inférieure à 100 mm et le double bombage est inférieur à 20 mm (typiquement un verre de pare-brise). Ces derniers critères sont donnés à titre indicatif car la propension aux instabilités de bord dépend aussi d'autres critères, soit géométriques du verre lui-même (comme la taille du verre ou ses découpes périphériques) soit de paramètres liés au procédé (comme l'histoire thermique du verre au cours du bombage, de la température de ses bords, ou bien de la température initiale du contre-squelette lors de l'enfournement), soit à la constitution du contre-squelette lui- même, notamment de la masse de métal embarquée, et s'il est revêtu ou non en sa face opposée au verre (et donc aussi au squelette) de matériau isolant thermiquement. Le dispositif selon l'invention est peu exigeant en termes de tolérances géométriques. En effet, l'effet bénéfique sur les instabilités périphériques du verre lors du formage provient de transferts thermiques par rayonnement qui dépendent modérément d'une imprécision de réalisation de la distance d. Aussi, cette distance peut être généralement ajustée avec des tolérances supérieures à 0,1 mm, notamment entre 0,1 et 0,5 mm. The invention is well suited to the bending of glass whose complexity of shape is moderate, including the arrow is less than 100 mm and the double bending is less than 20 mm (typically a glass windshield). These latter criteria are given as an indication because the propensity for edge instabilities also depends on other criteria, either geometric values of the glass itself (such as the size of the glass or its peripheral cutouts) or of parameters related to the process (such as thermal history of the glass during the bending, the temperature of its edges, or the initial temperature of the back-skeleton during the charging), or the constitution of the back-skeleton itself, in particular the mass of embedded metal, and whether it is coated or not in its face opposite to the glass (and thus also to the skeleton) of thermally insulating material. The device according to the invention is not very demanding in terms of geometric tolerances. Indeed, the beneficial effect on the peripheral instabilities of the glass during forming comes from heat transfers by radiation which depend moderately on an inaccuracy of realization of the distance d. Also, this distance can be generally adjusted with tolerances greater than 0.1 mm, especially between 0.1 and 0.5 mm.
La forme du contre-squelette vue de dessus ne correspond pas nécessairement exactement à celle du squelette (et donc du verre). Le contre-squelette agit par effet thermique et l'important est qu'il contienne une masse métallique susceptible de procurer cet effet et qu'il soit à proximité de la périphérie du verre, surtout à proximité de la zone du milieu des côtés de ses faces principales. Cet effet thermique dépend essentiellement de trois critères : 1 ) la température du contre-squelette en entrée four qui doit être relativement modérée, de préférence inférieure à 250°C, 2) la propension du contre- squelette à rester plus froid que la périphérie du verre alors que le verre est entre 300 et 650°C, et notamment pendant le bombage , 3) l'efficacité du refroidissement du bord du verre par le contre-squelette, ce qui dépend de l'aire de verre exposée au contre- squelette. Le critère 1 est assuré par un refroidissement suffisant du contre-squelette une fois un bombage effectué. Une partie de ce refroidissement a lieu dans le four de bombage lui-même mais aussi sur la chaîne de retour des outillages lors de leur remontée à vide de la sortie du four vers l'entrée du four. Des systèmes de refroidissement complémentaires spécifiquement dédiés au refroidissement du contre-squelette peuvent être installés, tels des ventilateurs additionnels ou des jets d'air dirigés vers cet outillage. Il est aussi possible de prévoir un circuit de refroidissement dédié, directement fixé au contre-squelette, et qui est activé sur le trajet de retour des outillages, et plus particulièrement du contre-squelette. Il peut notamment s'agir d'un tube apte à recevoir un courant d'un fluide de refroidissement, notamment de l'air frais (c'est-à-dire généralement à température ambiante, généralement entre 0 et 50°C). Un tel tube métallique peut être accolé à la barre métallique du contre-squelette. Il peut également s'agir d'un contre- squelette dont la barre métallique comprend un tube métallique à section carrée ou rectangulaire dans lequel on fait circuler de l'air frais. Le critère 2 est assuré, soit en augmentant la masse de métal embarqué dans le contre-squelette, ce qui a pour conséquence d'augmenter son inertie thermique et donc la quantité de chaleur nécessaire pour le réchauffer, soit en limitant l'apport calorifique au contre-squelette en recouvrant ce dernier par un isolant thermique. Ainsi, les éléments chauffants disposés en voûte du four peuvent chauffer le verre sans pour autant perdre inutilement de l'énergie à réchauffer directement le contre-squelette. La périphérie du verre est alors d'autant plus froide qu'elle est d'une part masquée de la chauffe directe par les éléments chauffant du four (généralement en voûte) et d'autre part qu'elle fait face au contre-squelette qui est maintenu à température réduite. Il est à noter que le refroidissement d'un contre-squelette revêtu d'un matériau isolant est plus lent car la surface directement exposée à l'air libre sur la chaîne de retour des outillages est réduite. Le critère 3 est assuré principalement par la géométrie du contre-squelette couplé à la distance entre le contre-squelette et le verre. The shape of the back-skeleton seen from above does not necessarily correspond exactly to that of the skeleton (and therefore of the glass). The counter-skeleton acts by thermal effect and the important thing is that it contains a metal mass likely to provide this effect and that it is close to the periphery of the glass, especially near the middle zone of the sides of its sides. main faces. This thermal effect depends essentially on three criteria: 1) the temperature of the furnace counter-skeleton which must be relatively moderate, preferably less than 250 ° C, 2) the propensity of the back-skeleton to remain colder than the periphery of the glass while the glass is between 300 and 650 ° C, and especially during bending, 3) the effectiveness of the cooling of the edge of the glass by the back-skeleton, which depends on the area of glass exposed to the back-skeleton . Criterion 1 is provided by sufficient cooling of the backbone after bending. Part of this cooling takes place in the bending furnace itself but also on the tool return chain when they go up empty from the furnace outlet to the furnace inlet. Additional cooling systems specifically dedicated to cooling the backbone can be installed, such as additional fans or air jets directed to this tool. It is also possible to provide a dedicated cooling circuit, directly attached to the backbone, and which is activated on the return path of the tools, and more particularly the back-skeleton. It may in particular be a tube capable of receiving a current of a cooling fluid, especially fresh air (that is to say generally at room temperature, generally between 0 and 50 ° C). Such a metal tube can be attached to the metal bar of the back-skeleton. It may also be a counter-skeleton whose metal bar comprises a metal tube with square or rectangular section in which fresh air is circulated. Criterion 2 is ensured, either by increasing the mass of metal embedded in the back-skeleton, which has the consequence of increasing its thermal inertia and therefore the amount of heat necessary to heat it, or by limiting the heat input to back-skeleton by covering the latter with thermal insulation. Thus, the heating elements arranged in the vault of the furnace can heat the glass without unnecessarily losing energy to directly heat the back-skeleton. The periphery of the glass is then all the colder that it is on the one hand masked from the direct heating by the heating elements of the oven (usually vaulted) and on the other hand that it faces the counter-skeleton that is kept at reduced temperature. It should be noted that the cooling of a backbone coated with an insulating material is slower because the surface directly exposed to the open air on the tool return chain is reduced. Criterion 3 is provided mainly by the geometry of the back-skeleton coupled to the distance between the back-skeleton and the glass.
La forme générale du contre-squelette est de préférence complémentaire à celle du squelette. Le contre-squelette présente alors des courbures convexes pour faire face aux courbures concaves de la face supérieure du verre. Le contre-squelette présente donc généralement des courbures sensiblement parallèles à celles du squelette.  The general form of the backbone is preferably complementary to that of the backbone. The counter-skeleton then has convex curvatures to face the concave curvatures of the upper face of the glass. The back-skeleton thus generally has curvatures substantially parallel to those of the skeleton.
Le moyen d'imposer la distance d entre le contre-squelette et le verre (et donc aussi un écart minimal entre le contre-squelette et le squelette), peut notamment comprendre un élément formant butée, dit butée, solidaire du squelette et sur laquelle un élément formant contrebutée, dit contrebutée, solidaire du contre-squelette repose. La butée est fixée directement ou indirectement à la bande métallique rigide du squelette. Elle peut être la surface supérieure d'une pluralité de chandelles ou de vis-vérin. La contrebutée est fixée directement ou indirectement à la barre métallique rigide du contre- squelette. Si le contre-squelette ne gêne pas le chargement et le déchargement du verre, le squelette et le contre-squelette peuvent être liés ensemble de façon fixe.  The means for imposing the distance d between the back-skeleton and the glass (and thus also a minimum distance between the back-skeleton and the skeleton) can include a stop member, said abutment, integral with the skeleton and on which an abutment element, said abutment, integral with the counter-skeleton rests. The stop is fixed directly or indirectly to the rigid metal band of the skeleton. It may be the upper surface of a plurality of candles or screw-jack. The abutment is attached directly or indirectly to the rigid metal bar of the backbone. If the back-skeleton does not interfere with the loading and unloading of the glass, the skeleton and back-skeleton can be bound together in a fixed manner.
Le dispositif comprend généralement un châssis sur lequel le squelette est fixé. The device generally comprises a frame on which the skeleton is fixed.
Tout élément butée peut être fixé sur le châssis ou sur le squelette, cela revient toujours au fait que la butée est solidaire directement ou indirectement du squelette. Avantageusement, le moyen d'imposer la distance d entre le contre-squelette et le verre (et donc également entre le contre-squelette et le squelette) est réglable. Le dispositif selon l'invention peut donc comprendre un moyen de réglage de la distance d. Le moyen de réglage peut se situer au niveau de la butée et/ou de la contrebutée. Any stop element can be fixed on the frame or on the skeleton, it always amounts to the fact that the abutment is integral directly or indirectly with the skeleton. Advantageously, the means of imposing the distance d between the back-skeleton and the glass (and therefore also between the back-skeleton and the skeleton) is adjustable. The device according to the invention may therefore comprise means for adjusting the distance d. The adjustment means can be located at the abutment and / or abutment.
Pour le cas de courbures prononcées ou de formes complexes, notamment comprenant des courbures prononcées dans des directions orthogonales entre elles, il peut être avantageux que le dispositif selon l'invention comprenne un système apte à modifier au cours du bombage la distance entre le squelette et le contre-squelette. En effet, le contre-squelette a de préférence une forme plus proche de celle de la face supérieure du verre à la fin du bombage, plutôt qu'au début du bombage. Or à la pose du verre sur le squelette, le verre est plan ou seulement légèrement courbé en raison de sa flexibilité naturelle. Le contre-squelette a donc une forme plus courbée que le verre au début du bombage et pourrait le toucher et, par déformation élastique le contraindre à adopter la forme périphérique du squelette. Une telle situation risque d'entraîner une casse du verre à l'entrée du four. C'est pourquoi, sans exclure que le contre-squelette ne puisse toucher le verre dès le début du bombage (dès l'entrée four), il peut être préférable que le contre-squelette soit d'abord assez éloigné du squelette puis s'en rapproche au cours du bombage. On abaisse ainsi l'écart entre le contre-squelette et le verre (et donc entre le contre-squelette et le squelette) au fur et à mesure que le verre se ramolli et épouse les contours du squelette. La durée de la phase de rapprochement entre le verre et le contre-squelette peut être ajustée entre cinq dixièmes de seconde à 30 secondes, voire jusqu'à une minute en fonction de l'histoire thermique précédente et la complexité du vitrage lui-même. For the case of pronounced curvatures or complex shapes, in particular comprising pronounced curvatures in directions orthogonal to each other, it may be advantageous for the device according to the invention to comprise a system able to modify during bending the distance between the skeleton and the counter-skeleton. Indeed, the counter-skeleton preferably has a shape closer to that of the upper face of the glass at the end of the bending, rather than at the beginning of the bending. When the glass is placed on the skeleton, the glass is flat or only slightly curved because of its natural flexibility. The counter-skeleton therefore has a shape more curved than the glass at the beginning of the bending and could touch it and, by elastic deformation, force it to adopt the peripheral shape of the skeleton. Such a situation may cause a breakage of the glass at the entrance of the oven. That is why, without excluding that the counter-skeleton can touch the glass from the beginning of the bending (from the oven entrance), it may be preferable that the back-skeleton is at first quite far from the skeleton and then gets closer to it during the bending. This reduces the gap between the skeleton and the glass (and therefore between the skeleton and the skeleton) as the glass softens and follows the contours of the skeleton. The duration of the approach phase between the glass and the back-skeleton can be adjusted between five tenths of a second to 30 seconds, or even up to one minute depending on the previous heat history and the complexity of the glazing itself.
Si les efforts appliqués sur le verre en entrée four et au cours du bombage sont suffisamment modérés pour éviter une casse du verre, il est d'une part tout à fait possible que le contre-squelette soit en contact partiel avec le verre, notamment au milieu ou à proximité du milieu des côtés haut et bas du verre (en position monté sur un véhicule automobile) dès l'enfournement et d'autre part, il est possible de forcer le verre à se bomber du fait de la descente du contre-squelette. Le contre-squelette appuie sur le verre lors de sa descente, ce qui force le bombage périphérique. Une telle cinématique est avantageuse car elle permet de faciliter le bombage principal du verre et ainsi de réduire le temps de cycle de formage. Notons qu'au début du procédé vers l'entrée du four, le verre est à basse température et moins sensible au marquage et c'est pourquoi, hormis le cas de casse, le contact assez appuyé du contre-squelette à ce stade n'est pas forcément gênant. Le déclenchement du rapprochement entre verre et contre-squelette peut être relativement brutal (déclenchement simple c'est-à-dire passant d'un seul coup d'une configuration éloignée à une configuration rapprochée) ou bien progressif. Un système de déclenchement peut être actionné au travers des parois latérales du four ou bien à travers la sole du four. Un système de déclenchement peut notamment être analogue à celui décrit dans le US8156764. A titre d'exemple, la distance entre le verre et le contre- squelette dans la zone du milieu d'un côté peut être comprise dans le domaine allant de 0 à 30 mm au début du bombage, pour finir dans le domaine allant de 0,1 à 30 mm en fin de bombage.  If the forces applied to the glass in the oven inlet and during the bending are sufficiently moderate to avoid breakage of the glass, it is firstly possible that the back-skeleton is in partial contact with the glass, particularly at medium or near the middle of the top and bottom sides of the glass (in position mounted on a motor vehicle) from the time of charging and secondly, it is possible to force the glass to bulge due to the descent of the counter- skeleton. The counter-skeleton presses on the glass during its descent, which forces the peripheral bending. Such kinematics is advantageous because it facilitates the main bending of the glass and thus reduces the forming cycle time. Let us note that at the beginning of the process towards the entrance of the furnace, the glass is at low temperature and less sensitive to the marking and that is why, except the case of breakage, the sufficiently supported contact of the back-skeleton at this stage is not necessarily embarrassing. The initiation of the approximation between glass and back-skeleton can be relatively brutal (simple trigger that is to say, passing from a single stroke of a remote configuration to a close configuration) or progressive. A trip system can be operated through the side walls of the oven or through the oven floor. A triggering system may in particular be similar to that described in US8156764. By way of example, the distance between the glass and the backbone in the middle zone of one side can be in the range from 0 to 30 mm at the beginning of the bending, to finish in the range from 0 to , 1 to 30 mm at the end of bending.
Le verre est bombé par gravité à une température comprise dans le domaine allant de 570 à 650°C, plus généralement dans le domaine allant de 610 à 650°C. Pour réaliser ce bombage, on peut convoyer l'ensemble squelette/contre-squelette chargé de verre au travers d'un four tunnel porté à la température de déformation plastique du verre. Le dispositif comprend généralement une pluralité d'ensembles squelette/contre-squelette chargés chacun de verre et circulant les uns derrière les autres dans le four. Ce four peut être traversé par une pluralité de tels ensembles chargés chacun de verre et circulant les uns derrière les autres dans le four. Le four peut comprendre différentes zones de température pour chauffer progressivement puis refroidir progressivement le verre. Le squelette et le contre-squelette forment un ensemble embarqué apte à être convoyé ensemble horizontalement mais sans déplacement horizontal relatif de l'un par rapport à l'autre. The glass is bulged by gravity at a temperature in the range of 570 to 650 ° C, more generally in the range of 610 to 650 ° C. To achieve this bending, we can convey the skeleton / counter-skeleton charged with glass through a tunnel kiln heated to the plastic deformation temperature of the glass. The device generally comprises a plurality of skeleton / backskeletal assemblies each loaded with glass and circulating behind each other in the oven. This furnace may be traversed by a plurality of such sets each loaded with glass and circulating behind each other in the oven. The oven can include different temperature zones to gradually heat up and gradually cool the glass. The Skeleton and counter-skeleton form an embedded assembly capable of being conveyed together horizontally but without relative horizontal displacement of one relative to the other.
Le verre est au contact du squelette pendant plus de 10 minutes et généralement plus de 15 minutes et plus généralement entre 15 et 30 minutes dans le four tout en étant convoyé dans le four. La barre du contre-squelette est généralement à distance d du verre et de préférence au moins partiellement au-dessus du verre, pendant plus de 10 minutes dans le four. Le bombage est réalisé par gravité. En l'absence de contre- squelette, au cours du bombage, le verre toucherai l'intégralité du squelette, puis, certaines zones (notamment dans la zone du milieu d'au moins un côté de la zone périphérique) se relèveraient pour quitter le contact avec le squelette. Le contre-squelette, par son effet radiatif , sert à empêcher ce relèvement du verre et garantir un contact total du verre avec le squelette en fin de bombage. Le squelette et le contre-squelette forment un ensemble embarqué apte à être convoyé dans le four par un moyen de convoyage. Le dispositif peut comprendre des moyens permettant au squelette et au contre-squelette de se rapprocher ou de s'éloigner par un mouvement vertical relatif sans déplacement horizontal relatif de l'un par rapport à l'autre, et ce alors même que l'ensemble squelette/contre-squelette est convoyé dans le four. Le terme « relatif » qualifiant un mouvement signifie que celui-ci peut être le fait du contre-squelette seul ou du squelette seul ou de ces deux éléments. L'absence de déplacement horizontal relatif du squelette et du contre-squelette l'un par rapport à l'autre signifie que ces deux éléments restent vis-à- vis l'un de l'autre en vue-de-dessus pendant le déplacement horizontal de l'ensemble squelette/contre-squelette au cours du bombage dans le four. Ainsi, le dispositif selon l'invention comprend généralement un four et un moyen de convoyage apte à déplacer horizontalement ensemble le squelette et le contre-squelette, dit ensemble squelette/contre-squelette dans le four et sans déplacement horizontal relatif de l'un par rapport à l'autre. Il peut comprendre des moyens de translation verticale permettant au squelette et au contre-squelette de se rapprocher ou de s'éloigner par un mouvement vertical relatif au cours de leur déplacement horizontal et sans déplacement horizontal relatif de l'un par rapport à l'autre.  The glass is in contact with the skeleton for more than 10 minutes and generally more than 15 minutes and more generally between 15 and 30 minutes in the oven while being conveyed into the oven. The backbone bar is generally at a distance from the glass and preferably at least partially above the glass, for more than 10 minutes in the oven. The bending is done by gravity. In the absence of counter-skeleton, during the bending, the glass will touch the entire skeleton, then some areas (especially in the middle area of at least one side of the peripheral area) would rise to leave the contact with the skeleton. The counter-skeleton, by its radiative effect, serves to prevent this raising of the glass and to guarantee a total contact of the glass with the skeleton at the end of the bending. The skeleton and the counter-skeleton form an embedded assembly capable of being conveyed into the furnace by a conveying means. The device may include means for the skeleton and backbone to move toward or away from each other by relative vertical movement without relative horizontal displacement relative to each other, even though skeleton / counter-skeleton is conveyed into the oven. The term "relative" qualifying a movement means that it may be the effect of the single backbone or the skeleton alone or both. The absence of relative horizontal movement of the skeleton and the back-skeleton relative to each other means that these two elements remain vis-à-vis one another in view-over while moving horizontal skeleton / counter-skeleton assembly during bending in the oven. Thus, the device according to the invention generally comprises an oven and a conveying means capable of moving horizontally together the skeleton and the back-skeleton, said skeleton / back-skeleton assembly in the furnace and without relative horizontal displacement of the one by report to the other. It may include means of vertical translation allowing the skeleton and the back-skeleton to move toward or away from each other by relative vertical movement during their horizontal movement and without relative horizontal displacement from one to the other. .
Après bombage, le verre est refroidit. Pour ce refroidissement et afin de ne pas engendrer dans le verre de contraintes d'extension de bord trop importantes, on éloigne avantageusement le contre-squelette du verre. L'éloignement du contre-squelette est avantageusement effectué en cours de refroidissement du verre et lorsque celui-ci est à une température comprise entre 620 et 500° C. Cet éloignement peut être réalisé par différents systèmes. Il peut s'agir d'un système de ré-enclenchement qui réalise la fonction inverse du « déclenchement » décrit plus haut. Alternativement, le contre- squelette peut comprendre ou être composé de bandes escamotables latéralement, généralement au nombre de quatre, comme le verre puisqu'à un côté du verre est associé une bande escamotable (voir figure 10). Les bandes du contre-squelette s'écartent au moins latéralement et le cas échéant également verticalement si nécessaire au moment de l'escamotage de sorte à s'éloigner du verre. Le système qui commande l'escamotage des bandes peut être analogue à l'un de ceux décrits dans le US8156764, c'est-à-dire par exemple au travers des parois latérales du four ou de la sole du four. After bending, the glass is cooled. For this cooling and so as not to cause in the glass too large edge extension stresses, advantageously moves the back-skeleton of the glass. The removal of the back-skeleton is advantageously carried out during cooling of the glass and when the latter is at a temperature of between 620 and 500 ° C. This distance can be achieved by different systems. It can be a re-engagement system that performs the inverse function of the "trigger" described above. Alternatively, the counter skeleton may comprise or be composed of retractable strips laterally, generally four in number, such as glass since one side of the glass is associated with a retractable band (see Figure 10). The strips of the back-skeleton deviate at least laterally and if necessary also vertically if necessary at the time of the retraction so as to move away from the glass. The system which controls the retraction of the belts may be similar to one of those described in US Pat. No. 8,156,664, that is to say for example through the side walls of the oven or the hearth of the furnace.
Le squelette et le contre-squelette sont avantageusement indépendants l'un de l'autre, c'est-à-dire que le contre-squelette peut alors être séparé entièrement sans plus avoir de lien avec le squelette. Le verre peut alors être chargé sur le squelette puis le contre-squelette est mis en place.  The backbone and the backbone are advantageously independent of each other, that is to say that the backbone can then be separated entirely without having any link with the backbone. The glass can then be loaded on the skeleton and then the back-skeleton is put in place.
Le chargement du verre sur le dispositif selon l'invention peut être réalisé manuellement. Le contre-squelette étant écarté si nécessaire, des opérateurs posent le verre sur le squelette. Ensuite, ils placent le contre-squelette selon sa position prévue. La position du contre-squelette est avantageusement donnée par des colonnes de positionnement (ou tout autre moyen) fixées au squelette ou au châssis. Ces colonnes de positionnement guident le contre-squelette lors de sa pose. Ce guidage est rendu possible par exemple par des orifices dans des pattes de guidage liée au contre-squelette et au travers desquelles passent les colonnes de positionnement.  The loading of the glass on the device according to the invention can be carried out manually. The back-skeleton being removed if necessary, operators put the glass on the skeleton. Then they place the counter-skeleton according to its intended position. The position of the backbone is advantageously given by positioning columns (or any other means) attached to the skeleton or the frame. These positioning columns guide the counter-skeleton during its installation. This guidance is made possible for example by orifices in guide tabs connected to the back-skeleton and through which the positioning columns pass.
Le chargement et déchargement du verre peut également être automatisé, notamment à l'aide de robots, l'un pour le chargement, l'autre pour le déchargement. L'utilisation de robots permet d'avoir des mouvements précis et reproductibles ainsi qu'un système d'accouplement fiable et tolérant entre le squelette et son contre-squelette associé. Ce système selon lequel le contre-squelette est entièrement séparable du squelette, permet 1 ) d'avoir un minimum de fonctions embarquées dans l'outillage et ainsi de minimiser le poids de ce dernier, ce qui est un facteur important de consommation d'énergie, 2) de minimiser le risque de grippage mécanique et 3) de minimiser les opérations d'entretien coûteuses sur les outillages de formage. Ces avantages rendent ce système plus avantageux que celui décrit ci-après (embarquement du contre-squelette sur le squelette).  The loading and unloading of the glass can also be automated, in particular using robots, one for loading, the other for unloading. The use of robots makes it possible to have precise and reproducible movements as well as a reliable and tolerant coupling system between the skeleton and its associated counter-skeleton. This system in which the back-skeleton is completely separable from the skeleton, allows 1) to have a minimum of embedded functions in the tool and thus to minimize the weight of the latter, which is an important factor of energy consumption , 2) to minimize the risk of mechanical seizure and 3) to minimize costly maintenance operations on forming tools. These advantages make this system more advantageous than that described hereinafter (boarding of the backbone on the skeleton).
Alternativement, le contre-squelette peut faire partie d'un système directement embarqué sur le squelette lui-même et apte à escamoter le contre-squelette. Pour ce faire, à titre d'exemple, le contre-squelette peut être composé de quatre bandes séparées solidaires du squelette et qui sont escamotables. Elles peuvent s'éloigner ou se rejoindre les unes des autres par des déplacements ayant à la fois une composante horizontale et le cas échéant une composante verticale permettant de s'éloigner du verre, sans glissement sur celui-ci, tout en s'éloignant latéralement du squelette. Un tel mouvement peut être effectué par une simple rotation dont l'axe est judicieusement choisi, notamment en dehors du squelette. Lorsque ces bandes s'éloignent, le squelette devient accessible pour un déchargement ou un chargement de verre. Alternatively, the back-skeleton can be part of a system directly embedded on the skeleton itself and able to retract the back-skeleton. To do this, by way of example, the back-skeleton may be composed of four separate strips integral with the skeleton and which are retractable. They can move away or meet each other by displacements having both a horizontal component and if necessary a vertical component to move away from the glass, without sliding on it, while moving away laterally skeleton. Such a movement can be performed by a simple rotation whose axis is carefully chosen, especially outside the skeleton. As these bands move away, the skeleton becomes accessible for unloading or loading glass.
Si le contre-squelette est de constitution trop légère, il peut être de trop faible rigidité et sa forme peut évoluer légèrement au cours de son utilisation, suite aux contraintes thermiques subies lors des cycles de chauffe et de refroidissement. Dans ce cas, on peut éventuellement constater que l'écart entre squelette et contre-squelette n'est plus uniforme et tel qu'il avait été réglé initialement. Ainsi, selon les cas de bombage, un réglage simple d'écart par un système situé seulement aux coins du dispositif, notamment par quatre vis vérins, peut s'avérer insuffisant. C'est pourquoi, notamment si le contre- squelette est très proche du verre, avantageusement, un élément structurel rigide est disposé au-dessus de la barre métallique, l'élément structurel et la barre métallique étant reliés entre eux par une pluralité d'entretoises de préférence réglables en longueur permettant de régler localement la distance entre l'élément structurel et la barre métallique. L'élément structurel est rigide de sorte qu'il est considéré comme indéformable malgré les multiples cycles thermiques de chauffage et de refroidissement subis pour bomber des feuilles de verre industriellement. On peut se servir de lui comme référence pour ajuster la forme de la barre métallique. L'élément structurel comprend avantageusement un profilé métallique, notamment un tube métallique, notamment du type cadre. Ce tube peut notamment avoir une section carrée ou rectangulaire. Il peut comprendre des extensions latérales pour venir au-dessus des zones de réglage, l'extrémité supérieure des entretoises étant reliées aux extensions. L'extrémité supérieure des entretoises peut également être reliée directement à l'élément structurel.  If the back-skeleton is of too light constitution, it may be of low rigidity and its shape may change slightly during its use, due to thermal stresses during the heating and cooling cycles. In this case, one can possibly find that the gap between skeleton and back-skeleton is no longer uniform and as it had been initially adjusted. Thus, depending on the case of bending, a simple adjustment of deviation by a system located only at the corners of the device, in particular by four jack screws, may be insufficient. Therefore, especially if the back-skeleton is very close to the glass, advantageously, a rigid structural element is disposed above the metal bar, the structural element and the metal bar being interconnected by a plurality of spacers preferably adjustable in length for locally adjusting the distance between the structural member and the metal bar. The structural element is rigid so that it is considered indeformable despite the multiple thermal cycles of heating and cooling undergone to bombard glass sheets industrially. It can be used as a reference to adjust the shape of the metal bar. The structural element advantageously comprises a metal section, in particular a metal tube, in particular of the frame type. This tube may in particular have a square or rectangular section. It may include lateral extensions to come over the adjustment areas, the upper end of the struts being connected to the extensions. The upper end of the spacers can also be connected directly to the structural element.
Ainsi, le dispositif selon l'invention peut comprendre un élément structurel disposé à une cote supérieure à celle de la barre métallique du contre-squelette, l'élément structurel et la barre métallique étant reliés par une pluralité d'entretoises réglables permettant de régler localement la distance entre l'élément structurel et la barre métallique, et localement la distance barre métallique/verre et donc aussi la distance barre métallique/squelette. La pluralité d'entretoises est répartie régulièrement sur tout le pourtour du contre-squelette.  Thus, the device according to the invention may comprise a structural element arranged at a dimension higher than that of the metal bar of the back-skeleton, the structural element and the metal bar being connected by a plurality of adjustable spacers to adjust locally. the distance between the structural element and the metal bar, and locally the distance between the metal bar and the glass and therefore also the distance between the metal bar and the skeleton. The plurality of spacers is evenly distributed all around the counter-skeleton.
Le dispositif est configuré pour exercer le procédé selon l'invention.  The device is configured to perform the method according to the invention.
Les figures ci-après décrites ne sont pas à l'échelle.  The figures below are not to scale.
La figure 1 représente en coupe et dans un plan vertical perpendiculaire au bord du verre et du squelette, un dispositif selon l'invention comprenant un squelette 300 et un contre-squelette 301 . Un empilement de deux feuilles de verre 310 repose par sa périphérie sur le squelette. Les deux outils ont chacun une forme annulaire dont la zone centrale est située à gauche de leur représentation sur la figure. Le squelette 300 comprend une bande métallique 302 de largeur 303 dont la tranche supérieure 304 est recouverte d'un matériau fibreux réfractaire 305 formant une piste de contact de largeur 306 pour le verre 310. Le contre-squelette comprend une barre métallique 301 disposée au-dessus du verre et sans contact avec lui. La distance d entre la barre métallique du contre-squelette et le verre est comprise dans le domaine allant de 0,1 à 50 mm. Cette distance est celle entre les points les plus proches du contre-squelette et du verre. La barre métallique du contre-squelette, est au-dessus de la cote (ligne horizontale H sur la figure) du centre 307 (à mi-largeur) de la piste de contact pour le verre du squelette. FIG. 1 represents in section and in a vertical plane perpendicular to the edge of the glass and the skeleton, a device according to the invention comprising a backbone 300 and a backbone 301. A stack of two sheets of glass 310 rests at its periphery on the skeleton. The two tools each have an annular shape whose central zone is located to the left of their representation in the figure. The skeleton 300 comprises a metal strip 302 of width 303 whose upper edge 304 is covered with a refractory fibrous material 305 forming a contact track of width 306 for the glass 310. The counter-skeleton comprises a metal bar 301 disposed above the glass and without contact with him. The distance d between the metal bar of the backskeleton and the glass is in the range of 0.1 to 50 mm. This distance is the distance between the nearest points of the counter-skeleton and the glass. The metal bar of the back-skeleton, is above the dimension (horizontal line H in the figure) of the center 307 (mid-width) of the contact track for the skeleton glass.
La figure 2 représente en coupe et dans un plan vertical perpendiculaire au bord du verre et du squelette, un dispositif selon l'invention comprenant un squelette 333 dont une tranche 335 est dirigée vers le haut et un contre-squelette 331. Le contre-squelette est situé relativement vers l'intérieur du verre, mais il est à une distance d inférieure à 50 mm de la zone périphérique 332 de la face supérieure du verre 334.  FIG. 2 represents in section and in a vertical plane perpendicular to the edge of the glass and the skeleton, a device according to the invention comprising a skeleton 333 of which a wafer 335 is directed upwards and a counter-skeleton 331. The counter-skeleton is located relatively inwardly of the glass, but it is at a distance of less than 50 mm from the peripheral zone 332 of the upper face of the glass 334.
La figure 3 représente en coupe et dans un plan vertical perpendiculaire au bord du verre et du squelette un dispositif selon l'invention comprenant un squelette 320 et un contre-squelette 321. Une butée 327 est fixée à la bande métallique 322 du squelette. La tranche de cette bande métallique tournée vers le haut est recouverte d'un matériau fibreux réfractaire 323. Le contre-squelette comprend une barre métallique 324 non revêtue de matériau fibreux, et n'entrant pas en contact avec le verre. Une contrebutée 326 est reliée à la barre métallique 324 et peut reposer sur la butée 327, bloquant la progression du contre-squelette vers le squelette et empêchant le contact du contre- squelette avec le verre.  3 shows in section and in a vertical plane perpendicular to the edge of the glass and the skeleton a device according to the invention comprising a skeleton 320 and a backbone 321. A stop 327 is fixed to the metal strip 322 of the skeleton. The edge of this upwardly-turned metal strip is covered with a refractory fibrous material 323. The back-skeleton comprises a metal bar 324 not coated with fibrous material, and not in contact with the glass. A abutment 326 is connected to the metal bar 324 and can rest on the abutment 327, blocking the progression of the backbone to the skeleton and preventing contact of the backbone with the glass.
La figure 4 représente différentes configurations possibles d'un dispositif selon l'invention comprenant un squelette 401 et un contre-squelette radiatif 402, c'est-à-dire sans contact avec le verre 400 (ici un empilement de deux feuilles de verre), mais stabilisant la périphérie du verre pendant le bombage. Cette vue est réalisée dans un plan vertical perpendiculaire au bord du verre et du squelette. On distingue les variantes suivantes :  FIG. 4 shows various possible configurations of a device according to the invention comprising a skeleton 401 and a radiative counter-skeleton 402, that is to say without contact with the glass 400 (here a stack of two sheets of glass) but stabilizing the periphery of the glass during bending. This view is made in a vertical plane perpendicular to the edge of the glass and the skeleton. We distinguish the following variants:
a) Le contre-squelette est une barre métallique en forme de T, le plat vertical du T est dans l'alignement de la bande du squelette. La barre horizontale contribue à former un écran entre les résistances du four et la périphérie du verre.  a) The counter-skeleton is a T-shaped metal bar, the vertical plate of the T is in alignment with the skeleton band. The horizontal bar helps to form a screen between the furnace resistors and the periphery of the glass.
b) Le contre-squelette 402 en T de a) est recouvert en sa partie supérieure d'un matériau isolant 403 qui retarde le réchauffement de la barre métallique du contre-squelette.  b) The backbone 402 T of a) is covered in its upper part with an insulating material 403 which delays the heating of the metal bar of the backbone.
c) Le contre-squelette 402 comprend une barre 404 du type bande horizontale formant écran entre les résistances chauffantes et le verre, ladite barre étant recouverte d'un matériau isolant 403. d) Le contre-squelette est en forme de L et se trouve vis-à-vis de la tranche 41 1 du verre et vis-à-vis de la face extérieure 410 du squelette. Le contre- squelette 402 ne se trouve ni au-dessus du squelette ni au-dessus du verre. Par contre, la plus grande partie de la barre métallique 412 du contre-squelette est au-dessus de la cote H de la ligne centrale de la piste de contact du squelette. Grâce à cette forme et disposition, le contre-squelette forme un écran efficace pour le verre pour le rayonnement des résistances du four venant de directions latérales. Un matériau isolant 413 recouvre les faces du contre-squelette opposées au verre. Cette disposition du contre-squelette libère l'espace au-dessus du verre, ce qui est avantageux pour le chargement et déchargement du verre. c) The back-skeleton 402 comprises a bar 404 of the horizontal band-type forming a screen between the heating resistors and the glass, said bar being covered with an insulating material 403. d) The backbone is L-shaped and is opposite to the edge 41 1 of the glass and vis-à-vis the outer face 410 of the skeleton. Backbone 402 is not above the skeleton or above the glass. By cons, most of the metal bar 412 of the back-skeleton is above the dimension H of the center line of the contact track of the skeleton. Thanks to this shape and arrangement, the counter-skeleton forms an effective shield for the glass for the radiation of the furnace resistances coming from lateral directions. An insulating material 413 covers the opposite sides of the skeleton opposite the glass. This arrangement of the back-skeleton frees the space above the glass, which is advantageous for the loading and unloading of the glass.
e) Le contre-squelette comprend une barre métallique 405 en forme de T dont la partie supérieure est recouverte d'un matériau isolant 403. Des tubes métalliques 406 parcourus par un fluide de refroidissement permettent de refroidir le contre-squelette.  e) The back-skeleton comprises a T-shaped metal bar 405, the upper part of which is covered with an insulating material 403. Metal tubes 406 traversed by a cooling fluid make it possible to cool the back-skeleton.
f) Le contre-squelette comprend une barre métallique 407 du type tube à section rectangulaire. Cette barre est creuse, et un fluide de refroidissement peut parcourir son intérieur 409 pour la refroidir. Sa partie supérieure est recouverte d'un matériau isolant 408.  f) The back-skeleton comprises a metal rod 407 of the tube type rectangular section. This bar is hollow, and a cooling fluid can flow through its interior 409 to cool it. Its upper part is covered with an insulating material 408.
La figure 5 représente un dispositif selon l'invention au moment où un contre- squelette 8 (grisé sur la figure) est en train d'être mis en position au-dessus du verre, ce dernier n'étant pas représenté sur la figure par soucis de clarté. On distingue un châssis 1 sur lequel est fixé le squelette 2 par l'intermédiaire de pattes 3 et 4. Le verre (non représenté) est posé sur le squelette 2. Des opérateurs tiennent le contre-squelette 8 par des poignées 6. Ces poignées sont fixées à un châssis 7 sur lequel est fixé le contre- squelette 8 par l'intermédiaire de pattes 9 et 10. Le positionnement exact du contre- squelette est assuré par guidage grâce à quatre colonnes de positionnement (1 1 et 12 au premier plan), une à chaque coin. Ces colonnes sont solidaires du châssis 1. Des pattes 13 et 14 fixées au châssis 7 du contre-squelette comprenant chacune un orifice, sont enfilées sur les colonnes 1 1 et 12 par leurs orifices. Les chandelles 15 et 16 font partie du moyen d'imposer une distance d non nulle entre le verre et le contre-squelette. Elles sont chacune munies de surfaces d'appui 17 et 18 réglables en hauteur par l'intermédiaire de vis 19 et 20. Le châssis 7 relié au contre-squelette comprend des pattes 21 et 22 qui vont reposer sur les surfaces d'appuis 17 et 18 lorsque les opérateurs auront terminé de déposer le contre-squelette. Le poids du contre-squelette repose donc sur les surfaces d'appuis 17 et 18, la hauteur de celles-ci étant réglées pour que l'écartement entre le contre-squelette et le verre soit celui choisi. Les surfaces d'appui 17 et 18 forment des butées solidaires du squelette et les pâtes 21 et 22 sont des contrebutées solidaires du contre-squelette. Dans cet exemple, le contre-squelette est présent sans interruption vis- à-vis de l'intégralité de la zone périphérique du verre. Il est en une seule pièce et, une fois posé, il ne touche nulle part le verre au moins en fin de bombage. Le squelette et le contre-squelette forment ici un ensemble embarqué apte à être déplacé horizontalement dans un four. Les quatre colonnes de positionnement (1 1 et 12 au premier plan) font partie de moyens de translation verticale permettant au squelette et au contre-squelette de se rapprocher ou de s'éloigner par un mouvement vertical relatif sans déplacement horizontal relatif de l'un par rapport à l'autre. De la sorte, le squelette et le contre- squelette restent en vis-à-vis l'un de l'autre (de part et d'autre du verre) pendant le déplacement horizontal de l'ensemble squelette/contre-squelette dans le four. FIG. 5 represents a device according to the invention at the moment when a backbone 8 (grayed in the figure) is being placed in position above the glass, the latter not being represented in the figure by concern for clarity. There is a frame 1 on which is fixed the skeleton 2 via lugs 3 and 4. The glass (not shown) is placed on the skeleton 2. Operators hold the back-skeleton 8 by handles 6. These handles are fixed to a frame 7 on which the backbone 8 is fixed by means of tabs 9 and 10. The exact positioning of the backbone is ensured by guidance by means of four positioning columns (11 and 12 in the foreground ), one at each corner. These columns are integral with the frame 1. Tabs 13 and 14 fixed to the frame 7 of the backbone each comprising an orifice, are threaded onto the columns 1 1 and 12 through their orifices. Candles 15 and 16 are part of the means of imposing a non-zero distance d between the glass and the back-skeleton. They are each provided with bearing surfaces 17 and 18 adjustable in height by means of screws 19 and 20. The frame 7 connected to the counter-skeleton comprises tabs 21 and 22 which rest on the support surfaces 17 and 20. 18 when the operators have finished depositing the counter-skeleton. The weight of the back-skeleton therefore rests on the bearing surfaces 17 and 18, the height thereof being adjusted so that the spacing between the back-skeleton and the glass is the one chosen. The bearing surfaces 17 and 18 form abutments integral with the skeleton and the pasta 21 and 22 are integral abutments against the backbone. In this example, the back-skeleton is present without interruption vis-à-vis the entire peripheral zone of the glass. It is in one piece and, once installed, it does not touch anywhere the glass at least at the end of bending. The skeleton and the counter-skeleton form here an embedded assembly able to be moved horizontally in an oven. The four positioning columns (1 1 and 12 in the foreground) are part of vertical translation means allowing the skeleton and the back-skeleton to move towards or away by a relative vertical movement without relative horizontal displacement of the one compared to each other. In this way, the skeleton and the back-skeleton remain opposite one another (on both sides of the glass) during the horizontal displacement of the skeleton / back-skeleton assembly in the oven.
La figure 6 représente en vue de dessus un élément structurel rigide 50 au-dessus d'une partie 51 du contre-squelette comprenant un plat vertical (non-visible) venant juste au-dessus du verre et faisant office de barre métallique. La partie 51 visible est un plat horizontal 57 venant juste au-dessus du plat vertical et auquel il est relié. L'élément structurel 50 est en un carré métallique et a la forme d'un cadre rectangulaire en vue de dessus. Il comprend une pluralité d'extensions 52 reliées à ses faces verticales intérieures ou extérieures, lesdites extensions venant, en vue de dessus, au-dessus de zones 53 de réglage de distance d avec le verre. Ces réglages sont réalisés par des vis vérin 54 traversant ici l'élément structurel rigide 50.  Figure 6 shows a top view of a rigid structural member 50 above a portion 51 of the back-skeleton comprising a vertical plate (non-visible) just above the glass and serving as a metal bar. The visible part 51 is a horizontal plate 57 coming just above the vertical plate and to which it is connected. The structural element 50 is in a metal square and has the shape of a rectangular frame in plan view. It comprises a plurality of extensions 52 connected to its inner or outer vertical faces, said extensions coming, in top view, above areas 53 of distance adjustment d with the glass. These adjustments are made by jack screws 54 passing through the rigid structural element 50 here.
La figure 7 montre le contre-squelette de la figure 6 selon la section AA' en a) et la vue de côté selon la direction B en b). On retrouve le carré métallique de l'élément structurel rigide 50, une extension 52 étant soudée à une face verticale extérieure dudit carré. Cette extension est également en un carré métallique. Le plat vertical 55 (barre métallique) est relié indirectement à l'élément structurel rigide 50 de sorte qu'il en est solidaire. Le chant inférieur 56 de ce plat vertical 55 vient juste au-dessus du verre et c'est sa distance d au verre qu'il convient de régler. Ce réglage est assuré par le vérin à vis 54 par vissage ou dévissage des écrous 58 et 59. Le plat vertical 55 est soudé par son chant supérieur à un plat horizontal 57, afin de stabiliser la position du plat 55. Le plat horizontal 57 est relié à l'extrémité inférieure de la vis vérin 54 par l'intermédiaire d'une liaison pivot Figure 7 shows the back-skeleton of Figure 6 according to section AA 'in a) and the side view in the direction B in b). The metal square of the rigid structural element 50 is found, an extension 52 being welded to an outer vertical face of said square. This extension is also in a metal square. The vertical plate 55 (metal bar) is connected indirectly to the rigid structural element 50 so that it is integral. The lower edge 56 of this vertical plate 55 comes just above the glass and it is its distance from the glass that should be adjusted. This adjustment is ensured by the screw jack 54 by screwing or unscrewing the nuts 58 and 59. The vertical plate 55 is welded by its upper edge to a horizontal plate 57, in order to stabilize the position of the plate 55. The horizontal plate 57 is connected to the lower end of the jack screw 54 via a pivot connection
60 dont le pivotement est réglable et biocable en une position donnée grâce aux écrous60 whose pivoting is adjustable and biocable in a given position thanks to the nuts
61 et 62. Le réglage de ce pivotement permet de régler l'inclinaison locale du chant 56 afin que celui-ci soit bien parallèle au squelette et que l'écart entre le contre-squelette et le verre soit bien constant pour toute la périphérie du verre. 61 and 62. The adjustment of this pivoting makes it possible to adjust the local inclination of the edge 56 so that it is well parallel to the skeleton and that the distance between the backbone and the glass is constant for the entire periphery of the edge. glass.
La figure 8 représente un contre-squelette selon l'invention vue entièrement en a), une partie en étant agrandie en b). Un élément structurel 75 est réalisé à partir de segments de carrés métalliques soudés entre eux. Vue de dessus, cet élément structurel a une forme voisine de celle du squelette et donc du verre à bomber. Des extensions latérales 76 ont été soudées sur des faces verticales intérieures de l'élément structurel. Des vis vérin de réglage de l'entrefer traversent verticalement ces extensions. Le réglage d'une vis vérin permet de régler localement la cote en hauteur du chant inférieur 77 d'un plat vertical 78 faisant office de barre métallique. Ce plat vertical est rendu solidaire d'un plat horizontal 79 par un système d'équerres 80 et de vis et écrous. Une liaison pivot 81 au-dessus du plat horizontal 79 permet de régler l'inclinaison locale du plat horizontal 79 dans le cadre du réglage de la cote en hauteur du chant 77. On distingue également des poignées 82 permettant à des opérateurs de manipuler ce contre-squelette et de le poser au-dessus du verre. Le bon positionnement latéral du contre-squelette est assuré grâce à des moyens de focalisation non représentés et pouvant être du type des chandelles 1 1 de la figure 5. FIG. 8 represents a back-skeleton according to the invention seen entirely in a), a portion being enlarged in b). A structural member 75 is made from segments of metal squares welded together. View from above, this structural element has a shape similar to that of the skeleton and therefore the glass to be bomber. Lateral extensions 76 have been welded to inner vertical faces of the structural member. Caliper adjustment cylinder screws traverse these extensions vertically. The adjustment of a jack screw makes it possible to locally adjust the height dimension of the lower edge 77 of a vertical plate 78 serving as a metal bar. This vertical plate is secured to a horizontal plate 79 by a system of brackets 80 and screws and nuts. A pivot connection 81 above the horizontal plate 79 makes it possible to adjust the local inclination of the horizontal plate 79 in the context of the adjustment of the height dimension of the edge 77. There are also some handles 82 enabling operators to manipulate this against skeleton and lay it over the glass. The correct lateral positioning of the back-skeleton is ensured by means of focusing not shown and can be of the candle type 1 1 of Figure 5.
La figure 9 représente en coupe une vue schématique d'un contre-squelette 205 comprenant des bandes escamotables latéralement. Par simplification, un seul côté du contre-squelette a été représentée, et ce vu dans le sens de sa longueur. Le verre repose par sa face principale inférieure 201 sur le squelette 202, lequel comprend une bande métallique 203 dont une tranche est dirigée vers le haut. Le contre-squelette comprend en tant que barre métallique un plat vertical 214 et un plat horizontal 215. Squelette et contre-squelette sont tous deux munis d'un matériau fibreux réfractaire (non représenté) pour venir au contact du verre. Le contre-squelette 205 est solidaire d'une structure en forme de « U » retourné 208. Cette dernière est reliée à un pied 206 lui-même solidaire de la structure 207 du squelette 202 via une liaison pivot d'axe 209 sensiblement horizontal. Lors du bombage, le contre-squelette est maintenu au-dessus de la surface principale supérieure du verre 210, sans le toucher au moins en fin de bombage. La liaison pivot permet d'escamoter l'ensemble 'contre-squelette + structure en « U »' une fois que le bombage du verre est réalisé, ce qui permet de dégager facilement le verre bombé. L'ensemble 'contre-squelette + structure en « U »' est représenté en position escamotée en ligne pointillée 212. La position de l'axe de rotation 209 de la structure du contre- squelette, à la fois assez haute et éloignée du bord du verre 21 1 , ce qui permet au contre- squelette de s'écarter du verre par un mouvement de rotation (flèche 213) l'entraînant à la fois vers le haut mais aussi latéralement. Le système d'escamotage est réalisé par un système de déclenchement non décrit ici mais pouvant par exemple traverser les parois latérales du four ou bien la sole du four. L'escamotage réalisé en cours de refroidissement permet l'obtention de bonnes contraintes de bord du verre. Par ailleurs, l'escamotage permet aussi de retirer le verre du squelette par un système classique de herse le poussant par en-dessous, et de le charger facilement en entrée four, à l'aide d'un robot par exemple. Le contre-squelette est de nouveau mis en place par un mouvement rotatif inverse une fois que le verre suivant est chargé sur le squelette. On voit que la piste de contact du squelette est bien concave sur toute la longueur du côté visible sur la figure, parallèlement à ses contours intérieur et extérieur, cette concavité étant dans le plan de la figure. Figure 9 shows in section a schematic view of a backbone 205 comprising laterally retractable strips. For simplicity, only one side of the counter-skeleton has been shown, and seen in the direction of its length. The glass rests with its lower main surface 201 on the skeleton 202, which comprises a metal strip 203, a slice of which is directed upwards. The counter-skeleton comprises as a metallic bar a vertical plate 214 and a horizontal plate 215. Both skeleton and counter-skeleton are provided with a refractory fibrous material (not shown) for contacting the glass. The backbone 205 is secured to a U-shaped structure returned 208. The latter is connected to a foot 206 itself secured to the structure 207 of the skeleton 202 via a substantially horizontal axis pivot connection 209. During bending, the back-skeleton is held above the upper main surface of the glass 210, without touching it at least at the end of bending. The pivot connection allows to retract the whole 'back-skeleton + structure' U 'once the bending of the glass is achieved, which allows to easily clear the curved glass. The assembly 'back-skeleton + structure' U 'is shown in the retracted position in dashed line 212. The position of the axis of rotation 209 of the structure of the back-skeleton, both quite high and away from the edge glass 21 1, which allows the back-skeleton to deviate from the glass by a rotational movement (arrow 213) causing it both upwards but also laterally. The retraction system is made by a trigger system not described here but may for example pass through the side walls of the oven or the oven floor. The retraction performed during cooling makes it possible to obtain good glass edge stresses. Moreover, the retraction also makes it possible to remove the skeleton glass by a conventional harrow system pushing it from below, and to easily load it in the oven inlet, using a robot for example. The counter-skeleton is again set up by a rotary movement reverse once the next glass is loaded onto the skeleton. It can be seen that the contact track of the skeleton is well concave along the entire length of the visible side of the figure, parallel to its inner and outer contours, this concavity being in the plane of the figure.
La figure 10 représente un vitrage automobile 450 en vue de dessus sur sa face principale concave, surmontées par des bandes escamotables (451 , 452, 453, 454) du contre-squelette comme expliqué pour la figure 9. Ces bandes escamotable sont au- dessus de la bordure du verre et peuvent être escamotées latéralement vers l'extérieur du verre (selon les flèches) comme expliqué pour la figure 9, de sorte à ne plus être au- dessus de la face supérieure du verre.  FIG. 10 shows an automobile glazing 450 in plan view on its concave main face, surmounted by retractable strips (451, 452, 453, 454) of the back-skeleton as explained for FIG. 9. These retractable strips are above the edge of the glass and can be retracted laterally towards the outside of the glass (according to the arrows) as explained in FIG. 9, so as not to be above the upper face of the glass.
La figure 1 1 représente un vitrage automobile du type pare-brise vu de dessus, et posé sur un plan horizontal, face concave tournée vers le bas. Il comprend quatre côtés, deux côtés transversaux 350 et 351 et deux côtés longitudinaux 352 et 353. Un côté rejoint un autre côté par un coin dont le bord présente des rayons de courbure R (en vision perpendiculaire à la surface du verre et dans chaque coin) très faibles par rapport au rayons de courbure des bords vers les milieux des côtés. Ce vitrage est symétrique par rapport au plan de symétrie vertical PS. Ce plan PS passe par les milieux 354 et 355 des côtés transversaux. Ce vitrage repose sur quatre points 356, 357, 358, 359 se trouvant dans les coins. On a tracé en pointillé les segments 360, 361 , 362 et 363 reliant ces quatre points. Ce sont les segments les plus proches des bords. A un bord est associé un segment. Chacun de ces segments a un milieu 364, 365, 366, 367. Pour chaque segment, il existe un plan perpendiculaire (368, 369, 370, 371 ) au segment et passant par son milieu. Chacun de ces plans vient en intersection avec son bord associé en un point 372, 355, 373, 354 qui est leur milieu. Le vitrage est concave (sur cette figure, la face concave est tournée vers le bas) au moins aux points milieux des bords 372, 355, 373, 354 et dans toutes les zones hachurées de part et d'autre de ces points milieux, ladite concavité étant considérée parallèlement au bord extérieur du vitrage. Il en est de même pour le squelette ayant supporté ce verre et pour les zones du squelette correspondant aux zones des milieux des côtés du verre, ladite concavité étant considérée parallèlement aux contours (intérieur ou extérieur) du squelette et vue de dessus en situation de bombage. La ligne en pointillé 376 est à 50 mm du bord du verre et forme la limite de la zone périphérique, laquelle est comprise entre le bord du verre et cette ligne. La zone du milieu du côté 353 de la zone périphérique de la face principale supérieure du verre est la zone hachurée sur la gauche. Cette zone entoure le point milieu 373. La zone hachurée est comprise dans la zone périphérique entre les points 374 et 375 sur le bord. Entre ces points 374 et 375, il existe un plan vertical 377 perpendiculaire au bord du verre dans lequel la condition sur la distance d est vérifiée. Les points 374 et 375 sont chacun distants du point 373 de 20 cm, voir de 10 cm, voire de 5 cm. Le contre-squelette se trouve vis-à-vis de cette zone (au-dessus du verre ou face à sa tranche) au moins dans cette zone et le cas échéant de façon continue au-dessus de toute la longueur de cette zone parallèlement au bord du verre, c'est-à-dire sans discontinuité entre les points 374 et 375, mais pas nécessairement dans toute la largeur de cette zone. Figure 1 1 shows a windshield-type automotive glazing seen from above, and placed on a horizontal plane, concave face facing downwards. It comprises four sides, two transverse sides 350 and 351 and two longitudinal sides 352 and 353. One side joins another side by a corner whose edge has radii of curvature R (in vision perpendicular to the glass surface and in each corner ) very small relative to the radii of curvature of the edges towards the middle of the sides. This glazing is symmetrical with respect to the vertical plane of symmetry PS. This PS plane passes through the mediums 354 and 355 of the transverse sides. This glazing rests on four points 356, 357, 358, 359 located in the corners. Dotted lines 360, 361, 362 and 363 connecting these four points. These are the segments closest to the edges. At an edge is associated a segment. Each of these segments has a medium 364, 365, 366, 367. For each segment, there is a plane perpendicular (368, 369, 370, 371) to the segment and passing through its middle. Each of these planes intersects with its associated edge at a point 372, 355, 373, 354 which is their middle. The glazing is concave (in this figure, the concave face is facing downwards) at least at the midpoints of the edges 372, 355, 373, 354 and in all the shaded areas on either side of these midpoints, said concavity being considered parallel to the outer edge of the glazing. It is the same for the skeleton having supported this glass and for the zones of the skeleton corresponding to the zones of the middle of the sides of the glass, said concavity being considered parallel to the contours (inside or outside) of the skeleton and top view in a bending situation. . The dotted line 376 is 50 mm from the edge of the glass and forms the boundary of the peripheral zone, which is between the edge of the glass and this line. The middle zone of the side 353 of the peripheral zone of the upper main face of the glass is the hatched area on the left. This zone surrounds the middle point 373. The hatched area is included in the peripheral zone between points 374 and 375 on the edge. Between these points 374 and 375, there is a vertical plane 377 perpendicular to the edge of the glass in which the condition over the distance d is verified. The points 374 and 375 are each distant from point 373 by 20 cm, even from 10 cm or even 5 cm. The counter-skeleton is located opposite this zone (above the glass or facing its edge) at least in this zone and, where appropriate, continuously over the entire length of this zone parallel to the edge of the glass, that is to say without discontinuity between the points 374 and 375, but not necessarily throughout the width of this zone.
REVENDICATIONS
Procédé de bombage par gravité d'une feuille de verre ou d'un empilement de feuilles de verre, dit le verre, comprenant le bombage du verre par gravité sur un squelette comprenant une piste de contact supportant le verre dans la zone périphérique de sa face principale inférieure, ladite piste de contact comprenant des courbures concaves en chacun des côtés dudit squelette, un contre-squelette comprenant une barre métallique étant présent pendant le bombage à une distance d de la tranche ou de la zone périphérique de la face principale supérieure du verre, la zone périphérique d'une face principale étant la zone entre le bord du verre et une distance du bord du verre de 50 mm de ladite face principale, d étant compris dans le domaine allant de 0,1 à 50 mm. Procédé selon la revendication précédente, caractérisé en ce qu'il donne au verre des formes concaves vue de dessus en sa zone centrale et en chacun de ses côtés, notamment au milieu de ses côtés, la barre métallique étant à la distance d au moins en fin de bombage.  A method of gravity bending a glass sheet or a stack of glass sheets, said glass, comprising bending the glass by gravity on a skeleton comprising a contact track supporting the glass in the peripheral zone of its face lower main, said contact track comprising concave curvatures at each of the sides of said skeleton, a counter-skeleton comprising a metal bar being present during the bending at a distance d from the edge or the peripheral zone of the upper main face of the glass , the peripheral zone of a main face being the zone between the edge of the glass and a distance from the edge of the glass of 50 mm from said main face, d being in the range from 0.1 to 50 mm. Method according to the preceding claim, characterized in that it gives the glass concave shapes seen from above in its central zone and in each of its sides, in particular in the middle of its sides, the metal bar being at least at a distance d end of bending.
Procédé selon l'une des revendications précédentes, caractérisé en ce que la condition sur la distance d est vérifiée dans au moins un plan vertical perpendiculaire au bord du verre passant dans la zone du milieu d'au moins un côté du verre, ladite zone du milieu étant comprise dans la zone périphérique jusqu'à 20 cm de part et d'autre du milieu du côté, et ce, de préférence pour tous les côtés.  Method according to one of the preceding claims, characterized in that the condition on the distance d is verified in at least one vertical plane perpendicular to the edge of the glass passing in the middle zone of at least one side of the glass, said zone of the medium being included in the peripheral zone up to 20 cm on both sides of the middle of the side, and this, preferably for all sides.
Procédé selon la revendication précédente, caractérisé en ce que la condition sur la distance d est vérifiée dans au moins un plan vertical perpendiculaire au bord du verre passant dans la zone du milieu d'au moins un côté du verre, ladite zone du milieu étant comprise dans la zone périphérique jusqu'à 10 cm de part et d'autre du milieu du côté, et ce, de préférence pour tous les côtés. Procédé selon l'une des deux revendications précédentes, caractérisé en ce que la condition sur la distance d est vérifiée pour tout plan vertical passant dans la zone du milieu d'au moins un côté du verre, et ce, de préférence pour tous les côtés.  Method according to the preceding claim, characterized in that the condition on the distance d is verified in at least one vertical plane perpendicular to the edge of the glass passing in the middle zone of at least one side of the glass, said middle zone being comprised in the peripheral area up to 10 cm on either side of the middle of the side, preferably for all sides. Method according to one of the two preceding claims, characterized in that the condition on the distance d is satisfied for any vertical plane passing through the middle zone of at least one side of the glass, preferably for all sides .
Procédé selon la revendication précédente, caractérisé en ce que le verre comprend quatre côtés.  Method according to the preceding claim, characterized in that the glass comprises four sides.
Procédé selon l'une des revendications précédentes, caractérisé en ce que d est compris dans le domaine allant de 1 mm à 50 mm et de préférence dans le domaine allant de 5 mm à 30 mm.  Method according to one of the preceding claims, characterized in that d is in the range of 1 mm to 50 mm and preferably in the range of 5 mm to 30 mm.

Claims

8. Procédé selon l'une des revendications précédentes, caractérisé en ce que le contre-squelette ne touche ni la face principale supérieure du verre ni sa tranche au moins en fin de bombage. 8. Method according to one of the preceding claims, characterized in that the back-skeleton does not touch the upper main face of the glass or its slice at least at the end of bending.
9. Procédé selon l'une des revendications précédentes, caractérisé en ce que le contre-squelette est recouvert d'un isolant thermique sur au moins une de ses faces opposées au verre.  9. Method according to one of the preceding claims, characterized in that the back-skeleton is covered with a thermal insulator on at least one of its faces opposite the glass.
10. Procédé selon l'une des revendications précédentes, caractérisé en ce que le contre-squelette fait écran pour le verre à des radiations thermiques venant directement d'éléments chauffants.  10. Method according to one of the preceding claims, characterized in that the back-skeleton shields the glass to thermal radiation coming directly from heating elements.
1 1 . Procédé selon l'une des revendications précédentes, caractérisé en ce que le contre-squelette ralentit la montée en température de la périphérie du verre pendant la phase de montée en température en vue du bombage. 1 1. Method according to one of the preceding claims, characterized in that the back-skeleton slows the rise in temperature of the periphery of the glass during the temperature rise phase for bending.
12. Procédé selon l'une des revendications précédentes, caractérisé en ce que le verre est un empilement de feuilles de verre, notamment un empilement comprenant une feuille d'épaisseur comprise dans le domaine allant de 1 ,4 à 12. Method according to one of the preceding claims, characterized in that the glass is a stack of glass sheets, in particular a stack comprising a sheet of thickness in the range of 1, 4 to
2,7 mm, généralement dans le domaine allant de 1 ,4 à 2,5 mm et une feuille d'épaisseur comprise dans le domaine allant de 0,4 à 1 ,6 mm. 2.7 mm, generally in the range of 1.4 to 2.5 mm and a thickness sheet in the range of 0.4 to 1.6 mm.
13. Procédé selon l'une des revendications précédentes, caractérisé en ce que le verre est bombé par gravité à une température comprise dans le domaine allant de 570 à 650°C.  13. Method according to one of the preceding claims, characterized in that the glass is bulging by gravity at a temperature in the range of 570 to 650 ° C.
14. Procédé selon l'une des revendications précédentes, caractérisé en ce que le contre-squelette est plus froid que la périphérie du verre pendant le bombage. 14. Method according to one of the preceding claims, characterized in that the back-skeleton is colder than the periphery of the glass during bending.
15. Procédé selon l'une des revendications précédentes, caractérisé en ce que le bombage est réalisé dans un four, le contre-squelette étant à une température inférieure à 250°C en entrant dans le four de bombage. 15. Method according to one of the preceding claims, characterized in that the bending is carried out in an oven, the back-skeleton being at a temperature below 250 ° C entering the bending furnace.
16. Procédé selon l'une des revendications précédentes de procédé, caractérisé en ce que le squelette et le contre-squelette sont convoyés ensemble dans un four, le verre étant au contact du squelette pendant plus de 10 minutes dans le four.  16. Method according to one of the preceding process claims, characterized in that the skeleton and the back-skeleton are conveyed together in an oven, the glass being in contact with the skeleton for more than 10 minutes in the oven.
17. Procédé selon l'une des revendications précédentes, caractérisé en ce que le contre-squelette ne touche pas le verre au moment où le verre vient au contact de tout le pourtour du squelette. 17. Method according to one of the preceding claims, characterized in that the back-skeleton does not touch the glass at the moment when the glass comes into contact with the entire periphery of the skeleton.
18. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'au moment où le verre vient au contact de tout le pourtour du squelette, la face supérieure du verre n'est au contact qu'avec l'air ambiant.  18. Method according to one of the preceding claims, characterized in that at the moment when the glass comes into contact with the entire periphery of the skeleton, the upper face of the glass is in contact only with the ambient air.
19. Dispositif de bombage par gravité d'une feuille de verre ou d'un empilement de feuilles de verre, dit le verre, comprenant un squelette comprenant une piste de contact pour supporter la zone périphérique de la face principale inférieure du verre, ladite piste de contact comprenant des courbures concaves en chacun des côtés dudit squelette, et un contre-squelette comprenant une barre métallique, ledit contre-squelette étant configuré pour que sa barre métallique soit présente à une distance d positive de la zone périphérique de la face principale supérieure du verre ou de sa tranche. 19. Device for bending by gravity of a glass sheet or a stack of glass sheets, said glass, comprising a skeleton comprising a track contact member for supporting the peripheral zone of the lower main face of the lens, said contact track comprising concave curvatures at each of the sides of said skeleton, and a counter-skeleton comprising a metal bar, said counter-skeleton being configured so that its bar metal is present at a positive distance from the peripheral zone of the upper main face of the glass or its edge.
20. Dispositif selon la revendication précédente caractérisé en ce qu'il donne au verre des formes concaves vue de dessus en sa zone centrale et en chacun de ses côtés, notamment au milieu de ses côtés, la distance d étant respectée au moins en fin de bombage.  20. Device according to the preceding claim characterized in that it gives the glass concave shapes seen from above in its central zone and in each of its sides, particularly in the middle of its sides, the distance d being respected at least at the end of bending.
21 . Dispositif selon l'une des revendications précédentes de dispositif, caractérisé en ce que la condition sur la distance d est vérifiée dans au moins un plan vertical perpendiculaire au bord du verre passant dans la zone du milieu d'au moins un côté du verre, ladite zone du milieu étant comprise dans la zone périphérique jusqu'à 20 cm de part et d'autre du milieu du côté, et ce, de préférence pour tous les côtés.  21. Device according to one of the preceding device claims, characterized in that the condition on the distance d is verified in at least one vertical plane perpendicular to the edge of the glass passing in the middle zone of at least one side of the glass, said middle zone being in the peripheral zone up to 20 cm on either side of the middle of the side, and this, preferably for all sides.
22. Dispositif selon la revendication précédente, caractérisé en ce que la condition sur la distance d est vérifiée dans au moins un plan vertical perpendiculaire au bord du verre passant dans la zone du milieu d'au moins un côté du verre, ladite zone du milieu étant comprise dans la zone périphérique jusqu'à 10 cm de part et d'autre du milieu du côté, et ce, de préférence pour tous les côtés. 22. Device according to the preceding claim, characterized in that the condition on the distance d is verified in at least one vertical plane perpendicular to the edge of the glass passing in the middle zone of at least one side of the glass, said middle zone. being included in the peripheral zone up to 10 cm on either side of the middle of the side, and this, preferably for all sides.
23. Dispositif selon l'une des revendications précédentes de dispositif, caractérisé en ce que la condition sur la distance d est vérifiée pour tout plan vertical passant dans la zone du milieu d'au moins un côté du verre, et ce, de préférence pour tous les côtés. 23. Device according to one of the preceding device claims, characterized in that the condition on the distance d is verified for any vertical plane passing in the middle zone of at least one side of the glass, and this, preferably for all sides.
24. Dispositif selon l'une des revendications précédentes de dispositif, caractérisé en ce que le verre comprend quatre côtés.  24. Device according to one of the preceding device claims, characterized in that the glass comprises four sides.
25. Dispositif selon l'une des revendications précédentes de dispositif, caractérisé en ce que la distance d est comprise dans le domaine allant de 0,1 à 50 mm et de préférence dans le domaine allant de 1 mm à 50 mm et de préférence dans le domaine allant de 5 mm à 30 mm.  25. Device according to one of the preceding device claims, characterized in that the distance d is in the range from 0.1 to 50 mm and preferably in the range from 1 mm to 50 mm and preferably in the range from 1 mm to 50 mm. the range from 5 mm to 30 mm.
26. Dispositif selon l'une des revendications précédentes de dispositif, caractérisé en ce que la barre métallique du contre-squelette est au moins partiellement au-dessus du squelette et/ou vis-à-vis de la face extérieure du squelette.  26. Device according to one of the preceding device claims, characterized in that the metal bar of the back-skeleton is at least partially above the skeleton and / or vis-à-vis the outer face of the skeleton.
27. Dispositif selon l'une des revendications précédentes de dispositif, caractérisé en ce que la barre métallique du contre-squelette est au moins partiellement au-dessus de la cote du centre de la piste de contact pour le verre du squelette. 27. Device according to one of the preceding device claims, characterized in that the metal bar of the back-skeleton is at least partially above the coast of the center of the contact strip for the skeleton glass.
28. Dispositif selon l'une des revendications précédentes de dispositif, caractérisé en ce que le squelette comprend une bande métallique dont une tranche est dirigée vers le haut, ladite tranche étant recouverte d'un matériau fibreux réfractaire formant la piste de contact pour le verre.  28. Device according to one of the preceding device claims, characterized in that the skeleton comprises a metal strip whose one edge is directed upwards, said wafer being covered with a refractory fibrous material forming the contact track for the glass .
29. Dispositif selon l'une des revendications précédentes de dispositif, caractérisé en ce que le contre-squelette est amovible.  29. Device according to one of the preceding device claims, characterized in that the back-skeleton is removable.
30. Dispositif selon la revendication précédente, caractérisé en ce que le contre- squelette comprend des bandes escamotables latéralement.  30. Device according to the preceding claim, characterized in that the backbone comprises laterally retractable strips.
31 . Dispositif selon l'une des revendications précédentes de dispositif, caractérisé en ce qu'il comprend un moyen d'imposer la distance d comprenant une butée solidaire du squelette et une contrebutée solidaire du contre-squelette, la contrebutée étant apte à reposer sur la butée.  31. Device according to one of the preceding device claims, characterized in that it comprises means for imposing the distance d comprising an abutment integral with the skeleton and a fixed abutment against the back-skeleton, the abutment being able to rest on the abutment .
32. Dispositif selon l'une des revendications précédentes de dispositif, caractérisé en ce qu'il comprend un moyen de réglage de la distance d. 32. Device according to one of the preceding device claims, characterized in that it comprises a means for adjusting the distance d.
33. Dispositif selon l'une des revendications précédentes de dispositif, caractérisé en ce que le contre-squelette est recouvert d'un isolant thermique sur une de ses faces opposée au squelette. 33. Device according to one of the preceding device claims, characterized in that the back-skeleton is covered with a thermal insulator on one of its faces opposite the skeleton.
34. Dispositif selon l'une des revendications précédentes de dispositif, caractérisé en ce que le contre-squelette comprend un tube apte à recevoir un courant d'un fluide de refroidissement. 34. Device according to one of the preceding device claims, characterized in that the back-skeleton comprises a tube adapted to receive a current of a cooling fluid.
35. Dispositif selon l'une des revendications précédentes de dispositif, caractérisé en ce qu'il comprend un élément structurel rigide disposé au-dessus de la barre métallique du contre-squelette, l'élément structurel et la barre métallique étant reliés entre eux par une pluralité d'entretoises de préférence réglables dans leur longueur.  35. Device according to one of the preceding device claims, characterized in that it comprises a rigid structural element disposed above the metal bar of the back-skeleton, the structural element and the metal bar being interconnected by a plurality of spacers preferably adjustable in their length.
36. Dispositif selon l'une des revendications précédentes de dispositif, caractérisé en ce qu'il comprend un four et un moyen de convoyage apte à déplacer horizontalement ensemble le squelette et le contre-squelette, dit ensemble squelette/contre-squelette dans le four et sans déplacement horizontal relatif de l'un par rapport à l'autre.  36. Device according to one of the preceding device claims, characterized in that it comprises an oven and a conveying means capable of horizontally moving together the skeleton and the back-skeleton, said skeleton / counter-skeleton assembly in the oven and without relative horizontal displacement of the one relative to the other.
37. Dispositif selon la revendication précédente, caractérisé en ce qu'il comprend une pluralité d'ensembles squelette/contre-squelette chargés chacun de verre et circulant les uns derrière les autres dans le four.  37. Device according to the preceding claim, characterized in that it comprises a plurality of skeleton / back-skeleton assemblies each loaded with glass and circulating behind each other in the oven.
EP18814988.4A 2017-10-19 2018-10-18 Gravity-bending glass in the presence of a radiative counter-frame Withdrawn EP3697734A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1759859A FR3072668B1 (en) 2017-10-19 2017-10-19 GLASS BENDING BY GRAVITY BETWEEN SKELETON AND COUNTER-SKELETON
FR1759862A FR3072669B1 (en) 2017-10-19 2017-10-19 GLASS BENDING BY GRAVITY IN THE PRESENCE OF A RADIATIVE COUNTER-SKELETON
PCT/FR2018/052597 WO2019077278A1 (en) 2017-10-19 2018-10-18 Gravity-bending glass in the presence of a radiative counter-frame

Publications (1)

Publication Number Publication Date
EP3697734A1 true EP3697734A1 (en) 2020-08-26

Family

ID=64572387

Family Applications (2)

Application Number Title Priority Date Filing Date
EP18812230.3A Withdrawn EP3697733A1 (en) 2017-10-19 2018-10-18 Gravity-bending glass between a frame and a counter-frame
EP18814988.4A Withdrawn EP3697734A1 (en) 2017-10-19 2018-10-18 Gravity-bending glass in the presence of a radiative counter-frame

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP18812230.3A Withdrawn EP3697733A1 (en) 2017-10-19 2018-10-18 Gravity-bending glass between a frame and a counter-frame

Country Status (4)

Country Link
US (2) US20200346965A1 (en)
EP (2) EP3697733A1 (en)
CN (2) CN109952276B (en)
WO (2) WO2019077278A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112018007688T5 (en) * 2018-12-28 2021-06-17 Sanko Seikosho Co., Ltd. Thermoplastic sheet bending method, machining fixture and thermoplastic concave sheet
US11702356B2 (en) * 2019-04-15 2023-07-18 Corning Incorporated Assemblies and methods for bending glass
US11905197B2 (en) * 2019-04-16 2024-02-20 Corning Incorporated Tooling design for a self-weight edge press molding element for thin-sheet glass and thin hybrid-glass stack forming
FR3106827B1 (en) * 2020-01-31 2022-02-04 Saint Gobain Method and device for bending a sheet of glass by pressing against a bending mold
FR3111889A1 (en) * 2020-06-29 2021-12-31 Saint-Gobain Glass France Bending frame of glass sheets with reduced strain

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE536315A (en) *
US999558A (en) 1911-04-06 1911-08-01 Anilin Fabrikation Of Berlin Ag F Polyazo dye and process of making same.
US2003383A (en) * 1933-12-18 1935-06-04 Pittsburgh Plate Glass Co Process and apparatus for bending glass sheets
US1999558A (en) 1934-01-26 1935-04-30 Pittsburgh Plate Glass Co Form for bending glass
GB1157090A (en) * 1965-12-02 1969-07-02 Triplex Safety Glass Co Improvements in or relating to a method and apparatus for Bending Glass in Sheet Form
GB1463062A (en) * 1973-07-20 1977-02-02 Triplex Safety Glass Co Bending of glass sheets
US4396410A (en) * 1981-08-12 1983-08-02 Libbey-Owens-Ford Company Method of and apparatus for press bending glass sheets
US4804397A (en) * 1987-12-16 1989-02-14 Ppg Industries, Inc. Partial press in gravity bending furnace and method of use
JPH0729792B2 (en) * 1988-03-10 1995-04-05 旭硝子株式会社 Method and apparatus for bending glass plate for laminated glass
US5049178A (en) * 1989-09-11 1991-09-17 Ppg Industries, Inc. Partial press apparatus and method for glass sheet bending
FR2659957B1 (en) 1990-03-20 1993-07-16 Saint Gobain Vitrage Int METHOD AND DEVICE FOR THE BOMBING OF GLASS SHEETS.
JPH06211532A (en) * 1993-01-14 1994-08-02 Asahi Glass Co Ltd Mold for bent sandwich glass sheet
FR2725194B1 (en) 1994-10-04 1996-10-31 Saint Gobain Vitrage METHOD AND DEVICE FOR THE BOMBING OF GLASS SHEETS
US6076373A (en) 1997-06-16 2000-06-20 Ppg Industries Ohio, Inc. Apparatus and method for bending glass sheets
CN1321081C (en) * 2002-11-18 2007-06-13 Ppg工业俄亥俄公司 Apparatus and method for bending glass sheets
FR2852951B1 (en) * 2003-03-26 2007-02-16 Saint Gobain METHOD FOR BOMBING GLASS SHEETS BY PRESSING AND SUCTION
FI118178B (en) * 2003-06-25 2007-08-15 Tamglass Ltd Oy Device for bending glass sheets
FR2894955B1 (en) 2005-12-20 2008-05-02 Saint Gobain GRAVITY GLASS BONDING DEVICE IN SEVERAL FORMS OF CONTROLLED SHAPE TRANSITIONAL SUPPORT
FR2942793B1 (en) * 2009-03-05 2012-03-23 Saint Gobain FORMING A GLAZING COMPRISING AN OPENING
FR2945985B1 (en) 2009-05-27 2011-05-20 Saint Gobain GLAZING WITH LOW LEVEL OF DOUBLE IMAGE.
FR3017865A1 (en) * 2014-02-27 2015-08-28 Saint Gobain GRAVITY BOMBAGE ON DOUBLE SUPPORT

Also Published As

Publication number Publication date
US20210188686A1 (en) 2021-06-24
US20200346965A1 (en) 2020-11-05
EP3697733A1 (en) 2020-08-26
CN109937192B (en) 2022-03-08
CN109952276A (en) 2019-06-28
CN109952276B (en) 2022-03-08
WO2019077277A1 (en) 2019-04-25
CN109937192A (en) 2019-06-25
WO2019077278A1 (en) 2019-04-25

Similar Documents

Publication Publication Date Title
WO2019077278A1 (en) Gravity-bending glass in the presence of a radiative counter-frame
EP3277640B1 (en) Apparatus for bending sheets of glass
EP3548441B1 (en) Bending thin glass
EP0240418B1 (en) Method and apparatus for shaping glass
WO2018154247A1 (en) Glass panel with reduced extension strain
CA2988786A1 (en) Device for conveying glass sheets
FR2546505A1 (en) PRESSURE SUPPORT, EQUIPPED WITH ANTI-BOMBING MEANS, FOR FORMING GLASS SHEETS
EP3585714A1 (en) Device comprising two holders
EP1611062A2 (en) Method and device for crowning glass sheets
EP3110767B1 (en) Gravity bending on dual mounting
FR3072669A1 (en) GRAVITY GLASS BOMBAGE IN THE PRESENCE OF A RADIATIVE BACK-SKELETON
FR2546506A1 (en) SUPPORT WITH DEFORMABLE DEPRESSION, EQUIPPED WITH HELICAL SPRING SPRINGS, FOR FORMING GLASS SHEETS
EP0389315B1 (en) Positioning of a glass sheet opposite to devices for bending and/or another thermal treatment
FR2546503A1 (en) MULTI-CHAMBER VACUUM SUPPORT, USED FOR FORMING GLASS SHEETS, WITH MEANS FOR ISOLATING NEIGHBORING VACUUM CHAMBERS
WO2012049433A1 (en) Bending method and thermal tempering support
FR3072668A1 (en) GRAVITY GLASS BOMBAGE BETWEEN SKELETON AND COUNTER SKELETON
EP0928284B1 (en) Roller-hearth kiln for heating glazing sheets
FR2552754A1 (en) PROCESS FOR PROVIDING COMPLICATED SHAPES TO GLASS SHEETS USING A SPECIAL LIFTING MOLD
EP1670728B1 (en) Compound glass bowing
FR3120625A1 (en) Method and device for positioning glass sheets for a glazing manufacturing installation
FR3110156A3 (en) Device for the bending by gravity of at least one sheet of glass comprising at least one metallic cable intended to support said at least one sheet of glass during bending
EP1742884B1 (en) Bending glass sheets
WO2019202242A1 (en) Support for gravity bending of glass
WO2022189748A1 (en) Method and device for positioning glass sheets for a glazing manufacturing facility
FR3093333A1 (en) MANUFACTURING OF GLAZING WITH REDUCED EXTENSION STRESS

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200519

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230503