EP3690185B1 - Verfahren zum bestimmen eines verschleisses eines gestänges einer erdbohrvorrichtung - Google Patents

Verfahren zum bestimmen eines verschleisses eines gestänges einer erdbohrvorrichtung Download PDF

Info

Publication number
EP3690185B1
EP3690185B1 EP20165948.9A EP20165948A EP3690185B1 EP 3690185 B1 EP3690185 B1 EP 3690185B1 EP 20165948 A EP20165948 A EP 20165948A EP 3690185 B1 EP3690185 B1 EP 3690185B1
Authority
EP
European Patent Office
Prior art keywords
rod
section
load
sections
individual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20165948.9A
Other languages
English (en)
French (fr)
Other versions
EP3690185A1 (de
Inventor
Sebastian Fischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tracto Technik GmbH and Co KG
Original Assignee
Tracto Technik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tracto Technik GmbH and Co KG filed Critical Tracto Technik GmbH and Co KG
Publication of EP3690185A1 publication Critical patent/EP3690185A1/de
Application granted granted Critical
Publication of EP3690185B1 publication Critical patent/EP3690185B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/007Measuring stresses in a pipe string or casing
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/01Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/01Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
    • E21B47/017Protecting measuring instruments

Definitions

  • the invention relates to a method for determining wear on a rod of an earth boring device and to an earth boring device with a rod section.
  • the invention also relates to a use in an earth boring device for determining wear on a rod of the earth boring device.
  • Earth boring devices usually comprise a drive device and a linkage connected to it, to which a drill head, which can be designed as a tool, can be attached.
  • the drill head can be an expander head or a pipe retraction adapter.
  • the drive forces of the drive device are transmitted to the drill head via the rod, whereby it is propelled into the ground.
  • compressive forces are usually applied to the drill head, so that it is moved through the earth in a pushing manner.
  • the term "making an earth borehole" by means of the earth drilling device also includes a transmission of tensile forces to the rods and the drill head.
  • the rods of an earth boring device consist of a plurality of rod sections connected to one another, which are successively connected to one another (in pushing operation) or detached from one another (in pulling operation) according to the advance of the drill head in the ground.
  • a connection between the rod sections can be made, for example, via screw connections or plug-in couplings. Mixed connections from screw connections and plug-in couplings are possible.
  • linear drives When transferring drive forces to the drill head by means of the rod, linear drives are used almost exclusively, which transfer the drive forces or drive movements step by step to the rod, i.e. with a load stroke, in which the rod is connected to the linear drive, and an idle stroke, in which the connection between the linear drive and the linkage is released.
  • Usual linear drives for earth boring devices work with hydraulic cylinders as the drive source, which means that high forces can be applied with comparatively compact dimensions.
  • linear drives with rack and pinion drives are also known.
  • DE 11 2013 007 353 T5 discloses a well drilling optimization collar that has integrated fiber optic sensors to collect information about drilling conditions.
  • the DE 11 2013 007 353 T5 states that, in addition to measuring and surveying information properties in a wellbore, it may also be desirable to collect information about the conditions of a tool in a drill string.
  • a drill optimization collar could be included in a drill string to capture real-time measurements of weight, torque, and bending moment occurring on or near the drill bit. Such measurements could help optimize drilling parameters to maximize performance and minimize wasted energy transfer and vibrations while drilling.
  • a drilling optimization collar can contain multiple sensors to provide values for weight, torque and bending moment, and can also contain a vibration sensor that can produce and provide a whole series of vibration measurements relating to vibrations occurring in the drill pipe or localized vibration measurements that would occur at certain sensor positions.
  • the invention was based on the object of increasing the operational reliability of an earth drilling device and / or improving the service life calculations of a rod assembly of an earth drilling device.
  • the essence of the invention provides for the detection of bending loads on the rods in order to improve a service life calculation and / or to increase the operational safety of an earth drilling device, the load in particular not being determinable on the drive device, but in the earth borehole itself by determining the course of the earth borehole , in particular a curved area of the earth bore, can be detected.
  • a method for determining wear on a rod of an earth boring device therefore provides that a bending load on the rod is detected in order to carry out a service life calculation.
  • a load is also determined essentially in addition to the drive device and a load is determined in the earth borehole itself.
  • the load can be recorded within the earth borehole and taken into account for the service life calculation.
  • the prevailing view that the rod sections are exclusively exposed to the load from the drive device or that only the load on the drive device is determined has been supplemented according to the invention.
  • rods does not exclusively include rigid rods having individual rod sections connected directly or indirectly to one another, but in particular all force transmission elements that can be used in an earth boring device.
  • linkage should not only be understood to mean the force transmission element which is arranged between the drive device of the earth boring device and the drill head, but basically all components of a drill string, ie all components moved in the ground, of such an earth boring device that are subject to a load are exposed to forces and / or moments applied by the drive device.
  • the umbrella term “rods” can also be understood to mean the drill head as part of the drill string.
  • the term “drive device” includes a drive by means of which the drive forces or drive movements are transmitted to the rod or the drill string.
  • the drive device can be designed as a linear drive.
  • the drive device can also be designed as a rack and pinion drive.
  • the drive device can have hydraulic cylinders as a drive source.
  • the bending load on the linkage is measured by means of a linkage section on which there is at least one strain sensor. It was recognized that a detection of the load is required independently of the drive device of the auger, but this load does not necessarily have to be carried out by means of a measurement process on each rod section or a rod section, but rather on one or more rod sections that are located in the drill string or section. Rods are arranged, and which can be assigned to the rod sections.
  • machine data of the drive device can be used from which at least one additional piece of information can be derived from the following machine data in order to perform the service life calculation: torsion, tensile load, thrust load and speed.
  • the torsional load, tensile / compressive load and / or speed of the individual rod sections can then be determined from the machine data of the drive device.
  • the bending load is detected by means of a strain gauge, a fiber Bragg grating sensor or the like. This makes it possible to use robust and proven sensors or detection elements that can also be used under the harsh conditions in the ground.
  • the service life calculation is assigned to individual rod sections of the rod. This makes it possible not only to make a general statement about the rod sections of the rod located in the ground, but also to specify the load for each individual rod section. It can be taken into account how long and at what position the rod section is located in the rod. With regard to the bending load, it can thus be taken into account which rod section was exposed to a bending load or whether, for example, a rod section has not (yet) passed through a curved area of the earth borehole. Depending on the position of the rod section in the rod, the bending load can thus be taken into account.
  • the method described is therefore particularly suitable for determining the wear and tear on a linkage which comprises a plurality of linkage sections connected to one another.
  • the individual loads on individual or all of the rod sections are preferably measured and individual service life calculations are carried out for this purpose. This in turn can considerably increase the accuracy of the service life calculations carried out. This is due in particular to the fact that in the event of a load, i.e. when carrying out a completed work project (e.g. an earth drilling, a bursting process or a pipe pulling process), the individual rod sections differ depending on the point in time at which they are integrated into the rod be burdened for a long time.
  • a completed work project e.g. an earth drilling, a bursting process or a pipe pulling process
  • the individual rod sections are also used in a large number of work processes, whereby it is generally not possible to track which rod section was used in which work project and how long it was loaded. Due to the inventive preferred individual measuring or taking into account the load on the individual rod sections and This is now possible with a corresponding evaluation.
  • the values for the individual rod sections are preferably stored separately, this particularly preferably being able to take place in a storage element that is connected to the respective rod section itself.
  • memory element in the context of the invention relates to any data memory or a storage medium which can in particular be written to and / or read out electronically.
  • the memory element can store information based on electronic semiconductor components or other components.
  • the memory element can in particular be a non-volatile memory. Contactless reading out and / or writing of data to the memory element is preferred.
  • a memory element can preferably be an RFID chip, which usually has an antenna, an analog circuit as well as a digital circuit and a permanent memory.
  • the RFID chip can be a passive, active or semi-active RFID chip.
  • the transmission of the measured load or the individual service life calculations of a load case can preferably be from the drive device (a device or device integrated in the drive device) or from a device adjacent to the drive device (an additional device that, for example, performs at least (partial) tasks of service life calculation or (partial) tasks to be carried out in this connection can carry out steps that enable (for example, as a module to be purchased) to be transferred to the individual storage elements.
  • This can take place particularly preferably when the respective linkage section is located in the drive device for incorporation in or for removal from the linkage.
  • a transmission device can preferably be provided on the device side (integrated on or in the drive device or separately from this), which is used to transmit the measured loads and / or the results of the service life calculations to the storage elements of the rod sections.
  • the transmission device is preferably arranged on the drive device or integrated in or on it.
  • the transmission facility can also be added separately to the drive device, for example the drive device can be supplemented or upgraded with the option of calculating the service life.
  • the transmission of the measured load or the individual lifetime calculations of a load case can take place in the case of a rod under tension, which comprises a plurality of rod sections connected to one another, if the rod is pulled step by step by the drive device through a hole in the ground, the individual rod sections can be pulled out of the earth borehole one after the other and detached from the rest of the rod by transferring the loads or the results of the service life calculations to the storage element of the rod section to be loosened shortly before, during the loosening of this rod section or shortly afterwards, in particular, as long as it is still in the area of the drive device.
  • the loads to which the individual rod sections were exposed in previous load cases when performing the service life calculation provision can also be made for the loads stored on the storage elements of the individual rod sections or the results of the service life calculation to be initially transferred to the drive device or a external device (module), then in the drive device or the external device (module) with the loads (for example the number of drive shafts with the respective force values and / or the bending load) or the life cycle calculation of the last load case to update and the updated To save values again on the storage elements.
  • the loads for example the number of drive shafts with the respective force values and / or the bending load
  • the invention also provides an earth boring apparatus having a rod section.
  • the rod section is designed for measuring bends and a data connection can be established between the rod section and a receiving device of the earth boring device.
  • a bending load that acts on the rod or the individual rod sections can be determined.
  • the rod section follows the course of the rod to create the earth borehole and can thus indicate which bend the individual rod sections are subjected to as they move through the earth borehole.
  • the bending is actually measured by means of the rod section arranged in the rod.
  • the rod section can preferably be arranged in the front region of the rod, behind the drill head, ie, directly following the drill head. But there can also be intermediate sections between the drill head and the rod section be provided. An arrangement of the rod section in the front area is desirable so that it can be detected by means of the rod section how the borehole extends, ie which bends are also present in the front area of the borehole.
  • the "receiving device” in the sense of the description is a device which can receive a signal for a bending or expansion from the rod section, which can be a measure of the bending load.
  • the receiving device can be arranged on the rod section and / or in the area of the drive device.
  • the signal can be transmitted to the receiving device as a raw signal or as an at least partially already evaluated signal.
  • the string section can be present as part of the string or drill string therein.
  • the rod section can have connecting elements by means of which the rod section can be connected to further sections of the rod or drill string.
  • the rod section can in particular be connected to the drill head, a sensor section that can be used for locating and / or a rod section. Plug and screw connections are possible and adapted to the other sections.
  • a detachable connection offers the advantage of a simple and quick exchange.
  • a read / write device (transmission device) can be provided with which the data stored on the memory elements relating to previous loads or previous results of the service life calculation can be read out.
  • the read / write device can be designed to be active for this purpose, i.e. it reads out the data stored in a passive memory element.
  • the read / write device can also interact with active memory elements which send the desired values to the read / write device.
  • the read / write device can be part of the receiving device or vice versa.
  • the writing / reading device and / or receiving device can be controlled by the control of the earth drilling device and can be functionally coupled to the control.
  • a read / write device which is separate from the earth boring device and which, for example, upgrades the earth boring device by carrying out the service life calculation, is possible.
  • the data connection between the rod section and the receiving device can take place wirelessly, for example by means of any data transmission technologies (for example radio and / or infrared data transmission, etc.).
  • a wireless one Transmission includes any at least partially contactless transmission of data, signals and / or energy.
  • the data connection can also be wired, which enables a simple configuration and can reduce the influence of interference.
  • At least one strain sensor is present on the rod section, the signal of which can be transmitted to the receiving device as a measure of the bending load by means of the data connection.
  • a “strain sensor” in the sense of the description is an element which can, in particular, provide signals that are correlated with an expansion or bending.
  • a strain sensor can be a passive component that can generate signals, but possibly only with the use of an excitation or in response to a signal, energy, pulse, or the like fed to the strain sensor.
  • Strain sensors can be measuring devices with which expanding and compressing deformations can be recorded. For example, these strain sensors, if designed as strain gauges, can change their electrical resistance in the event of slight deformations.
  • a strain sensor can be connected to the rod section, in particular the rod-shaped section of the rod section, which can be minimally deformed under load, in particular with an adhesive, cement or similar substance.
  • strain sensor can include various types of transducers, such as force transducers, pressure transducers, or even torque transducers.
  • a strain sensor can be designed as a strain gauge.
  • the strain gauges can for their part occur as foil, wire and semiconductor strain gauges as well as multiple strain gauges in various forms of arrangement, such as strain gauges with transverse strains, full bridge strain gauges and rosette strain gauges.
  • An embodiment as a fiber Bragg grating is also possible as an alternative or in addition.
  • an optical waveguide can be used in which an optical interference filter is written and in which an expansion due to a changing, coupled and reflected wavelength is detected.
  • the signal from a strain sensor is correlated with a compressing or expanding deformation.
  • the signal size can provide a conclusion about the size of the deformation.
  • the signal can be evaluated by an evaluation unit and a corresponding load can be calculated.
  • the evaluation unit can be arranged in the signal flow before or after the receiving device.
  • the evaluation unit can also be part of the receiving device and / or a strain sensor.
  • the evaluation unit can convert the signal detected by the strain sensor into a bending, strain and / or convert the curvature load or calculate and / or specify a value correlated therewith.
  • the rod section has a rod-shaped section on which at least one strain sensor is arranged.
  • a strain sensor on the linkage section can be sufficient. Multiple strain sensors, i.e. two, three or an even larger number of strain sensors, can provide redundancy and / or increased accuracy.
  • a plurality of strain sensors can be distributed on the rod section in the longitudinal direction and / or distributed in the circumferential direction.
  • strain sensors can be provided in an area of the linkage section which essentially corresponds to the central area of the linkage section in relation to the longitudinal extent of the linkage section. In this central area, the greatest bending loads can act on the rod section and the arrangement of the strain sensor in this area is therefore particularly sensitive.
  • the term “on” in the sense of the description relates to a spatial arrangement of a strain sensor on the rod section such that the strain sensor or at least a part of the strain sensor is connected to the rod section or attached to the rod section.
  • the strain sensor or the strain sensors can be attached to the rod section on the outside.
  • An attachment in recesses of the rod section on the outside is possible.
  • An arrangement on the inside is also possible.
  • Several strain sensors can be arranged in different ways on the rod section, for example at least one on the inside, at least one on the outside and / or at least one on a recess on the outside.
  • the arrangement of a strain sensor in a recess offers the possibility of improved protection of the strain sensor, since it is not located directly on the surface, but is offset from it.
  • the strain sensor can also be arranged on a sensitive section of the linkage section which, for example, is structurally different from the rest of the linkage section or is made of a different material; the strain sensor can be arranged, for example, on a thin-walled section of the rod section.
  • the rod section on which the strain sensor is arranged can in particular be made of steel.
  • the material or the rod section on which the at least one strain sensor is present is particularly preferably made from an isotropically behaving material in order not to allow a preferred direction for the bending load.
  • the rod section has a protective sleeve in which the rod-shaped section is arranged.
  • a protective sleeve in which the rod-shaped section is arranged.
  • the receiving rod-shaped section which in particular can have a smaller cross section than the rest of the linkage, can be protected.
  • the protective cover can protect a strain sensor fastened on the outside of the rod-shaped section from the ground. The strain sensor is not exposed in the ground due to the use of a protective cover.
  • the protective sheath can have a diameter substantially similar to that in the drill string of adjacent pipe sections.
  • the protective cover can be made of metal or a plastic.
  • the protective cover can be releasably fixed by means of a releasable fixation on the rod-shaped section, whereby by loosening the fixation, in particular, a displacement of the protective cover relative to the rod-shaped section is possible, for example in order to exchange the strain sensor, the protective cover and / or the rod-shaped section.
  • the rod-shaped section is designed to be hollow, as a result of which a geometry that is particularly sensitive and particularly sensitive to bending loads can be created.
  • the invention also creates a use in determining wear of a rod of an earth drilling device, wherein a rod section is designed for measuring a bend which is used to detect a bending load on the rod.
  • the bending load that is obtained by using the rod section to measure a bend can be used to calculate the service life of a rod, in particular of individual rod sections of the rod.
  • Fig. 1 shows a schematic representation of an earth boring device.
  • the earth boring device comprises a drive device 1 with two hydraulic cylinders 2 operated in parallel, the piston rods 3 of which transmit a linear movement to a rod 6 of the earth boring device via a pressure bridge 4 and a coupling element 5 connected to it.
  • the transfer takes place step by step, in that the hydraulic cylinders 2 of the drive device 1 each perform a working and an idle stroke cyclically.
  • the earth boring device with the drive device 1 is suitable for both pushing and pulling operation.
  • the linkage 6 has a plurality of linkage sections 8 connected to one another via couplings 7.
  • the earth boring device has a detection device for detecting an instantaneous load on the rod, which includes a pressure sensor 9 and the in the Figs. 2 and 3 illustrated linkage section 15, which in connection with the Figs. 2 and 3 is described in more detail includes.
  • the Fig. 1 Earth drilling device shown has an evaluation device 13 for carrying out a service life calculation for the rods.
  • the hydraulic pressure in one or in both of the hydraulic cylinders 2 can be measured by means of the pressure sensor 9.
  • the hydraulic pressure is proportional to the compressive or tensile forces exerted on the linkage 6.
  • the hydraulic pressure is transmitted to a computer unit of the evaluation device 13.
  • the earth boring device also comprises a transmission device 16 which, in the exemplary embodiment shown, comprises a writing unit 10 and a reading unit 11.
  • a transmission device 16 which, in the exemplary embodiment shown, comprises a writing unit 10 and a reading unit 11.
  • data can be written wirelessly to memory elements 12, one of which is attached to each of the rod sections 8, or can be read from them.
  • Both the writing unit 10 and the reading unit 11 are connected to the evaluation device 13.
  • the earth boring device enables the individual loads to which the individual rod sections 8 are exposed to be determined and, from this, individual service life calculations to be carried out.
  • the data stored on the corresponding memory element 12 is read out by means of the reading unit 11.
  • the evaluation device 13 determines the load exerted on the rod section 8, the data from the pressure sensor 9 and the data recorded on the rod section 15 being evaluated for the determination.
  • an individual service life calculation can be carried out for each individual one of the rod sections 8 of the rod 6 in the evaluation unit 13.
  • the first rod section 8 of the rod 6, which is directly connected to the drill head, is loaded the longest, since it is coupled as the first rod section and the last to be uncoupled again (for example when creating a pilot bore and withdrawing the rod with an expander head).
  • FIG. 1 The embodiment of an earth boring device shown here has a screen 14 on which the result of the service life calculation, as it is stored on the corresponding RFID chip when each rod section 8 is uncoupled, is displayed. This enables the operator of the earth boring device to read off the information presented there with regard to the expected service life for the respective rod section 8. In this way, for example, rod sections 8 whose expected service life is no longer long enough for subsequent use can be sorted out directly. In addition, the individual rod sections 8 can be sorted according to their expected service life after uncoupling and stored accordingly.
  • a front area of the drill string with rod assemblies 8 and a drill head 17 is shown schematically in a view obliquely from the rear.
  • a transmitter section 18 with a transmitter, to which the rod section 15 is connected, is arranged between the drill head 17 and the rod sections 8.
  • the transmitter in the transmitter section 18 is used to locate the drill head 17 or to locate the drill string.
  • the drill head 17 with the following transmitter section 18 and rod section 15 as well as the rod sections 8 follows the earth drilling that is created in the ground. The curvature of the course of the earth borehole can be detected with the rod section 15.
  • the linkage section 15 detects a bending load.
  • the linkage section 15 is in the Fig. 3 shown enlarged.
  • the rod section 15 has a rod-shaped section 19, the diameter of which is smaller than the diameter of the rod sections 8.
  • the rod-shaped section 19 is surrounded by a protective sheath 20, which essentially has an outer dimension that corresponds to the dimension of the drill head 17 and the transmitter section 18.
  • the protective cover 20 protects the rod-shaped section, which is designed to be hollow.
  • the protective cover 20 protects the strain sensors 21 arranged on the rod-shaped section 19, which essentially are attached centrally with respect to the longitudinal extent of the rod-shaped portion 19 on this.
  • a cable 22 is transmitted for connection to a receiving device 23, which transmits the data to a control of the earth drilling device or the evaluation device 13.
  • the values of the strain sensors 21 can be transmitted wirelessly to the receiving device 23.
  • the receiving device 23 is connected to the evaluation device 13 in a wired or wireless manner.
  • the receiving device 23 transmits the signals from the strain sensor 21 to the evaluation device 13 in an evaluated form and / or in a raw version so that the evaluation device 13 can calculate the service life of the rod or the individual rod section 8 using the data from the pressure sensor 9.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Geophysics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Earth Drilling (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Bestimmen eines Verschleißes eines Gestänges einer Erdbohrvorrichtung sowie eine Erdbohrvorrichtung mit einem Gestängeabschnitt. Ferner betrifft die Erfindung eine Verwendung bei einer Erdbohrvorrichtung zum Bestimmen eines Verschleißes eines Gestänges der Erdbohrvorrichtung.
  • Erdbohrvorrichtungen umfassen üblicherweise eine Antriebsvorrichtung sowie ein hiermit verbundenes Gestänge, an dem ein Bohrkopf, der als Werkzeug ausgestaltet sein kann, befestigt sein kann. Der Bohrkopf kann ein Aufweitkopf oder Rohreinzugsadapter sein. Über das Gestänge werden die Antriebskräfte der Antriebsvorrichtung auf den Bohrkopf übertragen, wodurch dieser in dem Erdreich vorangetrieben wird. Für einen bohrenden Betrieb der Erdbohrvorrichtung werden in der Regel Drucckräfte auf den Bohrkopf aufgebracht, so dass dieser schiebend durch das Erdreich bewegt wird. Allerdings umfasst der Begriff "Einbringen einer Erdbohrung" mittels der Erdbohrvorrichtung auch eine Übertragung von Zugkräften auf das Gestänge und den Bohrkopf. Bei der Übertragung von Zugkräften mittels des Gestänges auf den Bohrkopf wird üblicherweise eine bestehende Bohrung aufgeweitet, eine bestehende Altleitung geborsten und/oder ein Neurohr in eine bestehende Bohrung bzw. Altleitung eingezogen. Das Gestänge einer Erdbohrvorrichtung besteht regelmäßig aus einer Mehrzahl von miteinander verbundenen Gestängeschüssen, die entsprechend des Vortriebs des Bohrkopfes im Erdreich sukzessive miteinander verbunden (im schiebenden Betrieb) oder voneinander gelöst werden (im ziehenden Betrieb). Eine Verbindung zwischen den Gestängeschüssen kann beispielsweise über Schraubverbindungen oder über Steckkupplungen erfolgen. Mischverbindungen aus Schraubverbindungen und Stecckupplungen sind möglich.
  • Bei der Übertragung von Antriebskräften auf den Bohrkopf mittels des Gestänges kommen fast ausschließlich Linearantriebe zum Einsatz, die die Antriebskräfte bzw. Antriebsbewegungen schrittweise auf das Gestänge übertragen, d.h., mit einem Lasthub, bei dem das Gestänge mit dem Linearantrieb verbunden ist, und einem Leerhub, bei dem die Verbindung zwischen dem Linearantrieb und dem Gestänge gelöst ist. Übliche Linearantriebe für Erdbohrvorrichtungen arbeiten mit Hydraulikzylindern als Antriebsquelle, wobei mittels dieser hohe Kräfte bei vergleichsweise kompakten Abmessungen aufgebracht werden können. Zudem sind auch Linearantriebe mit Zahnstangenantrieben bekannt.
  • Die voraussichtliche Lebensdauer grundsätzlich aller Komponenten dieser Vorrichtungen, insbesondere des Gestänges, die durch das Erdreich bewegt werden, ist schwierig abzuschätzen. Dies ist insbesondere darauf zurückzuführen, dass die Lebensdauer der Komponenten neben den geometrischen Abmessungen und des verwendeten Werkstoffs im Wesentlichen davon abhängt, wie diese belastet werden. Dazu schlägt DE 10 2008 052 510 B3 vor, eine Messeinrichtung zur Messung der Momentanbelastung des Gestänges vorzusehen, bei der zur Bestimmung der Momentanbelastung des Gestänges die Betriebskräfte der mit dem Gestänge verbundenen Antriebsvorrichtung gemessen werden.
  • DE 11 2013 007 353 T5 offenbart einen Bohrlochbohroptimierungskragen, der integrierte Glasfasersensoren aufweist, um Informationen über Bohrzustände zu sammeln. Die DE 11 2013 007 353 T5 führt aus, dass zusätzlich zu der Messung und Vermessung von Informationseigenschaften in einer Bohrung es außerdem wünschenswert sein könne, Informationen über die Zustände eines Werkzeugs in einem Bohrgestänge zu sammeln. Zum Beispiel könne ein Bohroptimierungskragen in einem Bohrgestänge enthalten sein, um Echtzeitmessungen des Gewichts, des Drehmoments und des Biegemoments zu erfassen, die an oder in der Nähe der Bohrkrone auftreten. Solche Messungen könnten dazu beitragen, Bohrparameter zu optimieren, um die Leistung zu maximieren und eine vergeudete Energieübertragung und Vibrationen während des Bohrens zu minimieren. Ein Bohroptimierungskragen könne mehrere Sensoren enthalten, um Werte für das Gewicht, das Drehmoment und das Biegemoment bereitzustellen und könne ebenso ein Vibrationssensor enthalten, der eine ganze Folge von Vibrationsmessungen, die sich auf Vibrationen beziehen, die in dem Bohrgestänge aufträten oder lokalisierte Vibrationsmessungen erstellen und liefern, die an bestimmten Sensorpositionen aufträten.
  • Es hat sich herausgestellt, dass die bekannte Ermittlung zur Bestimmung der Momentanbelastung des Gestänges, mit der eine Lebensdauerberechnung durchgeführt werden kann, bisweilen ein Ergebnis liefert, das von der realen Lebensdauer abweichen kann.
  • Ausgehend von diesem Stand der Technik lag der Erfindung die Aufgabe zugrunde, die Betriebssicherheit einer Erdbohrvorrichtung zu erhöhen und/oder Lebensdauerberechnungen eines Gestänges einer Erdbohrvorrichtung zu verbessern.
  • Diese Aufgabe wird durch die Gegenstände der unabhängigen Patentansprüche gelöst. Vorteilhafte Ausführungen sind Gegenstand der jeweiligen abhängigen Patentansprüche und ergeben sich aus der nachfolgenden Beschreibung der Erfindung.
  • Der Kern der Erfindung sieht vor, Biegebelastungen des Gestänges zu erfassen, um eine Lebensdauerberechnung zu verbessern und/oder die Betriebssicherheit einer Erdbohrvorrichtung zu erhöhen, wobei die Belastung insbesondere nicht an der Antriebsvorrichtung ermittelbar ist, sondern in der Erdbohrung selbst, indem ein Verlauf der Erdbohrung, insbesondere ein gekrümmter Bereich der Erdbohrung, erfasst werden kann.
  • Ein Verfahren zum Bestimmen eines Verschleißes eines Gestänges einer Erdbohrvorrichtung sieht daher vor, dass eine Biegebelastung des Gestänges erfasst wird, um eine Lebensdauerberechnung durchzuführen.
  • Es wurde erstmalig erkannt, dass eine Belastung auch im Wesentlichen zusätzlich zur Antriebsvorrichtung ermittelt wird und eine Belastung in der Erdbohrung selbst festgestellt wird. Die Belastung kann innerhalb der Erdbohrung erfasst und für die Lebensdauerberechnung berücksichtigt werden. Die vorherrschende Auffassung, dass die Gestängeschüsse ausschließlich der Belastung durch die Antriebsvorrichtung ausgesetzt sind bzw. alleine die Belastung an der Antriebsvorrichtung ermittelt wird, wurde erfindungsgemäß ergänzt.
  • Der Begriff "Gestänge" umfasst im Sinne der Beschreibung nicht ausschließlich starre, einzelne miteinander unmittelbar oder mittelbar verbundene Gestängeschüsse aufweisende Gestänge, sondern insbesondere sämtliche Kraftübertragungselemente, die bei einer Erdbohrvorrichtung eingesetzt werden können. Zudem soll unter dem Begriff "Gestänge" nicht lediglich das Kraftübertragungselement, das zwischen der Antriebsvorrichtung der Erdbohrvorrichtung und dem Bohrkopf angeordnet ist, verstanden werden, sondern grundsätzlich alle Komponenten eines Bohrstrangs, d.h. alle im Erdreich bewegten Komponenten, einer solchen Erdbohrvorrichtung, die einer Belastung durch von der Antriebsvorrichtung aufgebrachten Kräften und/oder Momenten ausgesetzt sind. Unter dem Überbegriff "Gestänge" kann auch der Bohrkopf als Teil des Bohrstrangs verstanden werden.
  • Der Begriff "Antriebsvorrichtung" umfasst im Sinne der Beschreibung einen Antrieb, mittels dem die Antriebskräfte bzw. Antriebsbewegungen auf das Gestänge bzw. dem Bohrstrang übertragen werden. In einer bevorzugten Ausführungsform kann die Antriebsvorrichtung als Linearantrieb ausgestaltet sein. Die Antriebsvorrichtung kann auch als Zahnstangenantrieb ausgestaltet sein. Die Antriebsvorrichtung kann Hydraulikzylinder als Antriebsquelle aufweisen.
  • In einer bevorzugten Ausführungsform wird die Biegebelastung des Gestänges mittels eines Gestängeabschnitts, an dem mindestens ein Dehnungssensor vorhanden ist, gemessen. Es wurde erkannt, dass eine Erkennung der Belastung unabhängig von der Antriebsvorrichtung der Erdbohrvorrichtung benötigt wird, aber diese Belastung muss nicht notwendigerweise mittels eines Messvorgangs an jedem Gestängeabschnitt bzw. einem Gestängeschuss durchgeführt werden, sondern stellvertretend an einem oder mehreren Gestängeabschnitten, die im Bohrstrang bzw. Gestänge angeordnet sind, und die den Gestängeschüssen zugeordnet werden können.
  • Neben einer Biegebelastung der Gestängeschüsse an dem Gestänge können Maschinendaten der Antriebsvorrichtung verwendet werden, aus denen mindestens eine weitere Information aus den folgenden Maschinendaten ableitbar ist, um die Lebensdauerberechnung durchzuführen: Torsion, Zugbelastung, Schubbelastung und Drehzahl. Aus den Maschinendaten der Antriebsvorrichtung kann dann die Torsionsbelastung, Zug-/Druckbelastung und/oder Drehzahl der einzelnen Gestängeschüsse ermittelt werden.
  • In einer bevorzugten Ausführungsform wird die Biegebelastung mittels eines Dehnungs-Messstreifens, eines Faser-Bragg-Gittersensors oder ähnlichem erfasst. Hierdurch ist es möglich, robuste und bewährte Sensoren bzw. Erfassungselemente zu verwenden, die auch unter den harschen Bedingungen im Erdreich genutzt werden können.
  • In einer bevorzugten Ausführungsform wird die Lebensdauerberechnung einzelnen Gestängeschüssen des Gestänges zugeordnet. Hierdurch ist es möglich, dass nicht nur eine allgemeine Aussage zu den im Erdreich befindlichen Gestängeschüssen des Gestänges möglich ist, sondern für jeden einzelnen Gestängeschuss die Belastung angegeben werden kann. Es kann berücksichtigt werden, wie lange und an welcher Position der Gestängeschuss in dem Gestänge befindlich ist. Im Hinblick auf die Biegebelastung kann damit berücksichtigt werden, welcher Gestängeschuss einer Biegebelastung ausgesetzt war oder, ob beispielsweise ein Gestängeschuss einen gekrümmten Bereich der Erdbohrung (noch) nicht durchlaufen hat. Je nach der Position des Gestängeschusses im Gestänge kann damit die Biegebelastung berücksichtigt werden.
  • Das beschriebene Verfahren eignet sich somit besonders zum Bestimmen des Verschleißes eines Gestänges, das eine Mehrzahl von miteinander verbundenen Gestängeschüssen umfasst. Vorzugsweise werden hierbei die individuellen Belastungen einzelner oder aller der Gestängeschüsse gemessen und hierzu individuelle Lebensdauerberechnungen durchgeführt. Hierdurch kann sich wiederum erheblich die Genauigkeit der durchgeführten Lebensdauerberechnungen erhöhen. Dies ist insbesondere darauf zurückzuführen, dass bei einem Belastungsfall, d.h., bei der Durchführung eines abgeschlossenen Arbeitsvorhabens (zum Beispiel einer Erdbohrung, eines Berstprozesses oder eines Rohreinzugsprozesses) die einzelnen Gestängeschüsse in Abhängigkeit von dem Zeitpunkt, zu dem diese in das Gestänge eingegliedert werden, unterschiedlich lang belastet werden. Die einzelnen Gestängeschüsse werden zudem bei einer Vielzahl von Arbeitsvorgängen eingesetzt, wobei in der Regel nicht nachgehalten werden kann, welcher Gestängeschuss bei welchem Arbeitsvorhaben eingesetzt und wie lange er dabei belastet wurde. Durch das erfindungsgemäße bevorzugte individuelle Messen bzw. Berücksichtigen der Belastung der einzelnen Gestängeschüsse und einer entsprechenden Auswertung wird dies nun möglich. Hierzu werden die Werte für die einzelnen Gestängeschüsse vorzugsweise separat gespeichert, wobei dies besonders bevorzugt in einem Speicherelement erfolgen kann, das mit dem jeweiligen Gestängeschuss selbst verbunden ist. Durch das Versehen einzelner oder aller Gestängeschüsse mit entsprechenden Speicherelementen kann ausgeschlossen werden, dass die individuellen Messungen und Lebensdauerberechnungen vertauscht werden. Zudem entfällt eine aufwendige Datenverwaltung, wenn die verschiedenen Gestängeschüsse für verschiedene Arbeitsvorhaben vermischt und an unterschiedlichen Baustellen eingesetzt werden.
  • Der Begriff "Speicherelement" im Sinne der Erfindung betrifft einen beliebigen Datenspeicher oder ein Speichermedium, welches insbesondere elektronisch beschrieben und/oder ausgelesen werden kann. Das Speicherelement kann auf Basis auf elektronischen Halbleiterbauelementen oder anderen Bauelementen eine Information speichern. Das Speicherelement kann insbesondere ein nicht-flüchtiger Speicher sein. Ein berührungsloses Auslesen und/oder Schreiben von Daten auf das Speicherelement ist bevorzugt. Bei einem Speicherelement kann es sich bevorzugt um einen RFID-Chip handeln, der üblicherweise eine Antenne, einen analogen Schaltkreis sowie einen digitalen Schaltkreis und einen Permanentspeicher aufweist. Bei dem RFID-Chip kann es sich um einen passiven, aktiven oder semi-aktiven RFID-Chip handeln.
  • Es ist jedoch auch möglich, die Werte für die einzelnen Gestängeschüsse zentral zu speichern und jeden Gestängeschuss mit einem identifizierbaren Code (zum Beispiel Seriennummer des Gestängeschusses, die beispielsweise optisch ermittelt wird) zu versehen, der dann den zentral gespeicherten Werten zugeordnet wird.
  • Die Übertragung der gemessenen Belastung bzw. der individuellen Lebensdauerberechnungen eines Belastungsfalls können bevorzugt von der Antriebsvorrichtung (eine in der Antriebsvorrichtung integrierte Vorrichtung bzw. Einrichtung) oder einer von zur Antriebsvorrichtung benachbarten Vorrichtung (eine zusätzliche Vorrichtung, die beispielsweise zumindest (Teil-)Aufgaben der Lebensdauerberechnung oder in diesem Zusammenhang durchzuführende (Teil-)Aufgaben ermöglichende Schritte durchführen kann, beispielsweise als zuzukaufendes Modul) auf die einzelnen Speicherelemente übertragen werden. Dies kann besonders bevorzugt dann erfolgen, wenn sich der jeweilige Gestängeschuss zur Eingliederung in oder zur Ausgliederung aus dem Gestängestrang in der Antriebsvorrichtung befindet. Hierzu kann vorrichtungsseitig (integriert an bzw. in die Antriebsvorrichtung oder separat hierzu) vorzugsweise eine Übertragungseinrichtung vorgesehen, die der Übertragung der gemessenen Belastungen und/oder der Ergebnisse der Lebensdauerberechnungen an die Speicherelemente der Gestängeschüsse dient. Die Übertragungseinrichtung ist vorzugsweise an der Antriebsvorrichtung angeordnet bzw. in oder an dieser integriert. Die Übertragungseinrichtung kann auch separat zur Antriebsvorrichtung hinzugefügt werden, beispielsweise kann die Antriebsvorrichtung um die Möglichkeit einer Lebensdauerberechnung ergänzt oder aufgewertet werden.
  • Besonders bevorzugt kann die Übertragung der gemessenen Belastung bzw. der individuellen Lebensdauerberechnungen eines Belastungsfalls bei einem auf Zug belasteten Gestänge, das eine Mehrzahl von miteinander verbundenen Gestängeschüssen umfasst, erfolgen, wenn das Gestänge schrittweise von der Antriebsvorrichtung durch eine Bohrung im Erdreich gezogen wird, wobei die einzelnen Gestängeschüsse nacheinander aus der Erdbohrung herausgezogen und von dem Rest des Gestänges gelöst werden, indem das Übertragen der Belastungen bzw. der Ergebnisse der Lebensdauerberechnungen auf das Speicherelement des zu lösenden Gestängeschusses kurz vor, während des Lösens dieses Gestängeschusses oder kurz danach durchgeführt wird, insbesondere, solange sich dieser noch im Bereich der Antriebsvorrichtung befindet.
  • Um auch die Belastungen, denen die einzelnen Gestängeschüsse in vorausgegangen Belastungsfällen ausgesetzt waren, bei der Durchführung der Lebensdauerberechnung berücksichtigen zu können, kann weiterhin vorgesehen sein, die auf den Speicherelementen der einzelnen Gestängeschüsse gespeicherten Belastungen bzw. die Ergebnisse der Lebensdauerberechnung zunächst zu der Antriebsvorrichtung oder einer externen Vorrichtung (Modul) zu übertragen, daraufhin in der Antriebsvorrichtung oder der externen Vorrichtung (Modul) mit den Belastungen (zum Beispiel der Anzahl der Antriebshube mit den jeweiligen Kräftewerten und/oder die Biegebelastung) bzw. Lebensdauerberechnung des letzten Belastungsfalls zu aktualisieren und die aktualisierten Werte wieder auf den Speicherelementen zu speichern. Auf diese Weise kann eine Alterung der einzelnen Gestängeschüsse auf der derzeitigen Baustelle mit denjenigen auf den vorangegangenen Baustellen verrechnet werden.
  • Die Erfindung schafft auch eine Erdbohrvorrichtung mit einem Gestängeabschnitt. Der Gestängeabschnitt ist zum Messen von Biegungen ausgestaltet und eine Datenverbindung ist zwischen dem Gestängeabschnitt und einer Empfangseinrichtung der Erdbohrvorrichtung herstellbar. Mittels des Gestängeabschnitts kann eine Biegebelastung, die auf das Gestänge bzw. die einzelnen Gestängeschüsse wirkt, ermittelt werden. Der Gestängeabschnitt folgt dem Verlauf des Gestänges zur Erstellung der Erdbohrung und kann damit angeben, welcher Biegung die einzelnen Gestängeschüsse bei fortschreitender Bewegung durch die Erdbohrung unterworfen werden. Die Messung der Biegung erfolgt real mittels des in dem Gestänge angeordneten Gestängeabschnitts. Vorzugsweise kann der Gestängeabschnitt im vorderen Bereich des Gestänges, hinter dem Bohrkopf, d.h., unmittelbar dem Bohrkopf folgend, angeordnet sein. Es können aber auch Zwischenabschnitte zwischen dem Bohrkopf und dem Gestängeabschnitt vorgesehen sein. Eine Anordnung des Gestängeabschnitts im vorderen Bereich ist wünschenswert, damit mittels des Gestängeabschnitts erfasst werden kann, wie die Erdbohrung verläuft, d.h., welche Biegungen auch im vorderen Bereich der Erdbohrung vorhanden sind.
  • Die "Empfangseinrichtung" im Sinne der Beschreibung ist eine Einrichtung, die ein Signal für eine Biegung oder Dehnung von dem Gestängeabschnitt erhalten kann, welches ein Maß für die Biegebelastung sein kann. Die Empfangseinrichtung kann an dem Gestängeabschnitt und/oder im Bereich der Antriebsvorrichtung angeordnet sein. Der Empfangseinrichtung kann das Signal als Rohsignal übermittelt werden oder als zumindest teilweise schon ausgewertetes Signal.
  • Der Gestängeabschnitt kann als Teil des Gestänges oder Bohrstrangs in diesem vorhanden sein. Der Gestängeabschnitt kann Verbindungselemente aufweisen, mittels derer der Gestängeabschnitt mit weiteren Abschnitten des Gestänges bzw. Bohrstrangs verbunden werden kann. Der Gestängeabschnitt kann insbesondere mit dem Bohrkopf, einem Sensorabschnitt, der der Ortung dienen kann und/oder einem Gestängeschuss verbunden werden. Steck- und Schraubverbindungen sind möglich und an die weiteren Abschnitte angepasst. Eine lösbare Verbindung bietet den Vorteil eines einfachen und schnellen Austauschs.
  • Zusätzlich zum Gestängeabschnitt zum Messen von Biegungen und der Empfangseinrichtung der Erdbohrvorrichtung kann eine Schreib-/Leseeinrichtung (Übertragungseinrichtung) vorgesehen sein, mit der die auf den Speicherelementen gespeicherten Daten betreffend früherer Belastungen bzw. früherer Ergebnisse der Lebensdauerberechnung ausgelesen werden können. Die Schreib-/Leseeinrichtung kann hierzu aktiv ausgebildet sein, d.h., diese liest die in einem passiven Speicherelement gespeicherten Daten aus. Alternativ kann die Schreib-/Leseeinrichtung auch mit aktiven Speicherelementen zusammenwirken, die die gewünschten Werte an die Schreib-/Leseeinrichtung senden.
  • Die Schreib-/Leseeinrichtung kann Teil der Empfangseinrichtung oder umgekehrt sein. Schreib-/Leseeinrichtung und/oder Empfangseinrichtung können von der Steuerung der Erdbohrvorrichtung gesteuert werden und können mit der Steuerung funktionell gekoppelt sein. Eine separat zur Erdbohrvorrichtung vorliegende Schreib-/Leseeinrichtung, die beispielsweise die Erdbohrvorrichtung um die Durchführung der Lebensdauerberechnung aufwertet, ist möglich.
  • Die Datenverbindung zwischen dem Gestängeabschnitt und der Empfangseinrichtung kann kabellos, beispielsweise mittels beliebiger Datenübertragungstechnologien (beispielsweise Funk- und/oder Infrarotdatenübertragung, etc.) erfolgen. Eine kabellose Übertragung umfasst jede zumindest abschnittsweise kontaktlose Übertragung von Daten, Signalen und/oder Energie. Die Datenverbindung kann auch kabelgebunden ausgestaltet sein, was eine einfache Ausgestaltung ermöglicht und den Einfluss von Störungen reduzieren kann.
  • In einer bevorzugten Ausführungsform ist an dem Gestängeabschnitt mindestens ein Dehnungssensor vorhanden, dessen Signal als Maß der Biegebelastung mittels der Datenverbindung an die Empfangseinrichtung übermittelt werden kann.
  • Ein "Dehnungssensor" im Sinne der Beschreibung ist ein Element, welches insbesondere Signale bereitstellen kann, die mit einer Dehnung bzw. Biegung korreliert sind. Ein Dehnungssensor kann ein passives Bauteil sein, das zwar Signale erzeugen kann, aber ggf. nur unter Verwendung einer Anregung bzw. in Antwort auf ein dem Dehnungssensor zugeführtes Signal, Energie, Impuls, oder ähnlichem. Dehnungssensoren können Messeinrichtungen sein, mit denen dehnende und stauchende Verformungen erfasst werden können. Beispielsweise können diese Dehnungssensoren, sofern als Dehnungsmessstreifen ausgeführt, bei geringen Verformungen ihren elektrischen Widerstand ändern. Ein Dehnungssensor kann insbesondere mit einem Kleber, Zement oder ähnlicher Substanz, stoffschlüssig mit dem Gestängeabschnitt, insbesondere dem stabförmigen Abschnitt des Gestängeabschnitts, welches sich unter Belastung minimal verformen kann, verbunden sein. Die Verformung (Dehnung oder Stauchung) führt zur Veränderung eines Signals, insbesondere des Widerstands des Dehnungssensors. Der Begriff "Dehnungssensor" kann verschiedene Aufnehmertypen umfassen, wie beispielsweise Kraftaufnehmer, Druckaufnehmer, oder auch Drehmomentaufnehmer. Ein Dehnungssensor kann als Dehnungsmessstreifen ausgestaltet sein. Die Dehnungsmessstreifen können ihrerseits als Folien-, Draht- und Halbleiter-Dehnungsmessstreifen sowie als Mehrfach-Dehnungsmessstreifen in verschiedenen Anordnungsformen vorkommen, wie Dehnungsmessstreifen mit Querdehnungen, Vollbrücken-Dehnungsmessstreifen und Rosettendehnungsmessstreifen angeordnet sein. Eine Ausgestaltung als Faser-Bragg-Gitter ist ebenfalls alternativ oder zusätzlich möglich. Dabei kann ein Lichtwellenleiter verwendet werden, in den ein optischer Interferenzfilter eingeschrieben ist und bei dem eine Dehnung aufgrund einer sich ändernden, eingekoppelten und reflektierten Wellenlänge erfasst wird.
  • Das Signal eines Dehnungssensors ist mit einer stauchenden oder dehnenden Verformung korreliert. Die Signalgröße kann einen Rückschluss auf die Größe der Verformung liefern. Das Signal kann durch eine Auswerteeinheit ausgewertet werden und eine entsprechende Belastung berechnet werden. Die Auswerteeinheit kann vor oder nach der Empfangseinrichtung im Signalfluss angeordnet sein. Die Auswerteeinheit kann auch Teil der Empfangseinrichtung und/oder eines Dehnungssensors sein. Die Auswerteeinheit kann das vom Dehnungssensor erfasste Signal in eine Biege-, Dehnungs- und/oder Krümmungsbelastung umrechnen bzw. einen damit korrelierten Wert berechnen und/oder angeben.
  • In einer bevorzugten Ausführungsform weist der Gestängeabschnitt einen stabförmigen Abschnitt auf, an dem mindestens ein Dehnungssensor angeordnet ist. Ein Dehnungssensor an dem Gestängeabschnitt kann ausreichend sein. Mehrere Dehnungssensoren, d.h., zwei, drei oder eine noch größere Anzahl von Dehnungssensoren, können eine Redundanz und/oder eine erhöhte Genauigkeit liefern. Mehrere Dehnungssensoren können an dem Gestängeabschnitt in Längsrichtung verteilt und/oder in Umfangsrichtung verteilt angeordnet sein. Insbesondere können Dehnungssensoren an einem Bereich des Gestängeabschnitts vorgesehen sein, der im Wesentlichen dem mittleren Bereich des Gestängeabschnitts bezogen auf die Längserstreckung des Gestängeabschnitts entspricht. In diesem mittleren Bereich können die größten Biegebelastungen auf den Gestängeabschnitt einwirken und die Anordnung des Dehnungssensors in diesem Bereich ist damit besonders sensibel.
  • Der Begriff "an" im Sinne der Beschreibung betrifft eine räumliche Anordnung eines Dehnungssensors am Gestängeabschnitt derart, dass der Dehnungssensor bzw. zumindest ein Teil des Dehnungssensors mit dem Gestängeabschnitt verbunden bzw. an dem Gestängeabschnitt befestigt ist. Der Dehnungssensor bzw. die Dehnungssensoren können an dem Gestängeabschnitt außen befestigt sein. Eine Befestigung in Ausnehmungen des Gestängeabschnitts außen ist möglich. Eine Anordnung an einer Innenseite ist ebenfalls möglich. Mehrere Dehnungssensoren können auf unterschiedliche Art an dem Gestängeabschnitt angeordnet sein, beispielsweise mindestens einer an der Innenseite, mindestens einer an der Außenseite und/oder mindestens einer an einer Ausnehmung an der Außenseite. Die Anordnung eines Dehnungssensors in einer Ausnehmung bietet die Möglichkeit eines verbesserten Schutzes des Dehnungssensors, da dieser nicht direkt an der Oberfläche vorliegt, sondern hierzu versetzt ist. Der Dehnungssensor kann auch an einem sensiblen Abschnitt des Gestängeabschnitts, der beispielsweise strukturell anders als der übrige Gestängeabschnitt oder aus einem anderen Material ausgestaltet ist, angeordnet sein; der Dehnungssensor kann beispielsweise an einem dünnwandig ausgestalteten Abschnitt des Gestängeabschnitts angeordnet sein Der Gestängeabschnitt, an dem der Dehnungssensor angeordnet ist, kann insbesondere aus Stahl hergestellt sein. Besonders bevorzugt ist das Material bzw. der Gestängeabschnitt, an dem der mindestens eine Dehnungssensor vorhanden ist, aus einem sich isotrop verhaltenden Material hergestellt, um keine Vorzugsrichtung bei der Biegebelastung zuzulassen.
  • In einer bevorzugten Ausführungsform weist der Gestängeabschnitt eine Schutzhülle auf, in der der stabförmige Abschnitt angeordnet ist. Hierdurch kann den im Erdreich vorliegenden harschen Bedingungen Rechnung getragen werden. Der die Biegebelastungen aufnehmende stabförmige Abschnitt, der insbesondere einen geringeren Querschnitt als der übrige Teil des Gestänges aufweisen kann, kann geschützt werden. Insbesondere kann die Schutzhülle einen außen auf dem stabförmigen Abschnitt befestigten Dehnungssensor vor dem Erdreich schützen. Der Dehnungssensor ist durch die Verwendung einer Schutzhülle nicht im Erdreich exponiert. Die Schutzhülle kann im Wesentlichen einen ähnlichen Durchmesser wie im Bohrstrang benachbarter Gestängeschüsse aufweisen. Die Schutzhülle kann aus Metall oder einem Kunststoff sein. Die Schutzhülle kann mittels einer lösbaren Fixierung am stabförmigen Abschnitt lösbar fixiert sein, wobei durch ein Lösen der Fixierung insbesondere ein Verschieben der Schutzhülle gegenüber dem stabförmigen Abschnitt möglich ist, um beispielsweise den Dehnungssensor, die Schutzhülle und/oder den stabförmigen Abschnitt auszutauschen.
  • In einer bevorzugten Ausführungsform ist der stabförmige Abschnitt hohl ausgestaltet, wodurch eine besonders sensible und auf Biegebelastungen besonders empfindliche Geometrie geschaffen werden kann.
  • Die Erfindung schafft auch eine Verwendung beim Bestimmen eines Verschleißes eines Gestänges einer Erdbohrvorrichtung, wobei ein Gestängeabschnitt zum Messen einer Biegung ausgestaltet ist, die zur Erfassung einer Biegebelastung des Gestänges verwendet wird. Insbesondere kann die Biegebelastung, die durch die Verwendung des Gestängeabschnitts zum Messen einer Biegung erhalten wird, zur Lebensdauerberechnung eines Gestänges, insbesondere von einzelnen Gestängeschüssen des Gestänges, verwendet werden.
  • Ausführungen bezüglich der unterschiedlichen Aspekte betreffend das Verfahren, die Erdbohrvorrichtung sowie die Verwendung sind als einander ergänzend zu verstehen, wobei Ausführungen betreffend einen Aspekt auch für Ausgestaltungen eines anderen der drei Aspekte gelten und somit auch für einen anderen der Aspekte offenbart sind. Mittels der strukturellen bzw. körperlichen Ausgestaltungen der Vorrichtung sind beispielsweise Verfahrensschritte ausführbar, wobei die in Bezug auf das Verfahren beschriebenen Verfahrensschritte zur Ausführung eine körperliche Ausbildung in Form von körperlichen Vorrichtungen und/oder Einrichtungen und Komponenten bedingen können.
  • Die vorstehenden Ausführungen stellen ebenso wie die nachfolgende Beschreibung beispielhafter Ausführungsformen keinen Verzicht auf bestimmte Ausführungsformen oder Merkmale dar.
  • Die Erfindung wird nachfolgend anhand eines in den Zeichnungen dargestellten Ausführungsbeispiels näher erläutert.
  • In den Zeichnungen zeigt:
  • Fig. 1
    eine Erdbohrvorrichtung in einer schematischen Darstellung;
    Fig. 2
    einen endseitigen Bereich des Gestänges der Erdbohrvorrichtung von Fig. 1; und
    Fig. 3
    eine Detailansicht eines Gestängeabschnitts aus Fig. 2.
  • Fig. 1 zeigt in einer schematischen Darstellung eine Erdbohrvorrichtung. Die Erdbohrvorrichtung umfasst eine Antriebsvorrichtung 1 mit zwei parallel betriebenen Hydraulikzylindern 2, deren Kolbenstangen 3 über eine Druckbrücke 4 sowie ein damit verbundenes Kupplungselement 5 eine Linearbewegung auf ein Gestänge 6 der Erdbohrvorrichtung übertragen. Die Übertragung erfolgt schrittweise, indem die Hydraulikzylinder 2 der Antriebsvorrichtung 1 zyklisch jeweils einen Arbeits- und einen Leerhub ausführen.
  • Die Erdbohrvorrichtung ist mit der Antriebsvorrichtung 1 sowohl für einen schiebenden als auch einen ziehenden Betrieb geeignet. Das Gestänge 6 weist eine Mehrzahl von miteinander über Kupplungen 7 verbundenen Gestängeschüsse 8 auf.
  • Die Erdbohrvorrichtung weist eine Erfassungseinrichtung zum Erfassen einer Momentanbelastung des Gestänges auf, die einen Drucksensor 9 und den in den Fig. 2 und 3 dargestellten Gestängeabschnitt 15, der im Zusammenhang mit den Fig. 2 und 3 näher beschrieben wird, umfasst.
  • Ferner weist die in der Fig. 1 dargestellte Erdbohrvorrichtung eine Auswerteeinrichtung 13 zur Durchführung einer Lebensdauerberechnung für das Gestänge auf.
  • Mittels des Drucksensors 9 kann der Hydraulikdruck in einem oder auch in beiden der Hydraulikzylinder 2 gemessen werden. Der Hydraulikdruck ist proportional zu den auf das Gestänge 6 ausgeübten Druck- bzw. Zugkräften. Der Hydraulikdruck wird an eine Rechnereinheit der Auswerteeinrichtung 13 übertragen.
  • Die Erdbohrvorrichtung umfasst zudem eine Übertragungseinrichtung 16, die im dargestellten Ausführungsbeispiel eine Schreibeinheit 10 und eine Leseeinheit 11 umfasst. Mittels der Übertragungseinrichtung 16 können Daten kabellos zu Speicherelementen 12, von denen jeweils eines an jedem der Gestängeschüsse 8 befestigt ist, geschrieben bzw. von diesen ausgelesen werden. Sowohl die Schreib- 10 als auch die Leseeinheit 11 sind mit der Auswerteeinrichtung 13 verbunden.
  • Die Erdbohrvorrichtung ermöglicht, die individuellen Belastungen, denen die einzelnen Gestängeschüsse 8 ausgesetzt werden, zu ermitteln und hieraus individuelle Lebensdauerberechnungen durchzuführen. Hierzu wird bei jedem der Gestängeschüsse 8 kurz vor dem Abkuppeln die auf dem entsprechenden Speicherelement 12 gespeicherten Daten (zu gegebenenfalls bereits erfolgten Vorbenutzungen dieses Gestängeschusses 8) mittels der Leseeinheit 11 ausgelesen. Aufgrund des Arbeitsvorgangs, bei dem der Gestängeschuss 8 verwendet wurde, wird von der Auswerteeinrichtung 13 die auf den Gestängeschuss 8 ausgeübte Belastung bestimmt, wobei zur Bestimmung die Daten des Drucksensors 9 und des am Gestängeabschnitts 15 erfassten Daten ausgewertet werden. Ausgehend von diesen konkreten Werten können für jeden einzelnen der Gestängeschüsse 8 des Gestänges 6 in der Auswerteeinheit 13 eine individuelle Lebensdauerberechnung durchgeführt werden. Das Ergebnis dieser Lebensdauerberechnung, bei neben dem derzeitigen Arbeitsvorgang auch alle vorhergehenden Belastungen des jeweiligen Gestängeschusses 8 berücksichtigt werden, wird mittels der Schreibeinheit 10 wieder auf das als RFID-Chip ausgestaltete Speicherelement 12 des jeweiligen Gestängeschusses 8 gespeichert, so dass diese Daten bei einem nachfolgenden Einsatz des entsprechenden Gestängeschusses 8 wiederum zur Verfügung stehen und bei einer weiteren Aktualisierung der Lebensdauerberechnung berücksichtigt werden können. Eine entsprechende Lebensdauerberechnung wird für jeden der Gestängeschüsse 8 des Gestänges 6 durchgeführt. Für alle der Gestängeschüsse 8 können sich in Abhängigkeit von der Position, an der diese in das Gestänge 6 eingegliedert werden bzw. wurden, unterschiedliche Ergebnisse ergeben. Beispielsweise wird der erste Gestängeschuss 8 des Gestänges 6, der direkt mit dem Bohrkopf verbunden ist, am längsten belastet, da dieser als erster Gestängeschuss angekoppelt und als letztes wieder abgekoppelt wird (beispielsweise bei Erstellung einer Pilotbohrung und eines Zurückziehens des Gestänges mit einem Aufweitkopf).
  • Auf dem RFID-Chip können in einer Ausführungsform folgende Daten hinterlegt werden:
    • Produktionsauftragsnummer,
    • Durchschnittsdruck,
    • Rissprüfung ja/nein,
    • Lebensdauerverzehr,
    • Hubzahl gesamt,
    • Hubzahl je Lasthorizont (8 Mal),
    • Gesamtschädigung bisher,
    • meistschädigender Lasthorizont,
    • zu erwartende Lebensdauer bei Volllast,
    • zu erwartende Lebensdauer bei Durchschnittslast.
  • In der in Fig. 1 dargestellten Ausführungsform einer Erdbohrvorrichtung weist diese einen Bildschirm 14 auf, auf dem das Ergebnis der Lebensdauerberechnung, so wie es beim Abkuppeln jedes Gestängeschusses 8 auf dem entsprechenden RFID-Chip gespeichert wird, angezeigt wird. Dies ermöglicht dem Bediener der Erdbohrvorrichtung, die dort dargestellten Informationen hinsichtlich der zu erwartenden Lebensdauer für den jeweiligen Gestängeschuss 8 abzulesen. Hierdurch können beispielsweise Gestängeschüsse 8, deren zu erwartende Lebensdauer nicht mehr hoch genug für einen nachfolgenden Einsatz ist, direkt aussortiert werden. Zudem können die einzelnen Gestängeschüsse 8 entsprechend ihrer zu erwartenden Lebensdauer nach dem Abkuppeln sortiert und entsprechend eingelagert werden. Auf diese Weise wird beispielsweise ermöglicht, in nachfolgenden Arbeitsvorhaben diejenigen Gestängeschüsse 8, die nur noch eine geringe Lebensdauererwartung haben, erst spät an das Gestänge 6 anzukuppeln, um die zusätzlichen Belastungen auf diese Gestängeschüsse 8 gering zu halten bzw. um einen solchen Gestängeschuss 8 für den Fall, dass er zerstört wird, schnell und einfach bergen zu können. Es besteht auch die Möglichkeit, ein tragbares Handhabungsgerät vorzusehen, das zumindest eine entsprechende Leseeinheit sowie ein Display aufweist. Mit diesem tragbaren Handhabungsgerät können die Speicherelemente 12 gelagerter Gestängeschüsse 8 auch unabhängig von der Antriebsvorrichtung 1 ausgelesen werden, um den zukünftigen Einsatz der einzelnen Gestängeschüsse 8 entsprechend planen zu können. Die ausgelesenen Werte können beispielsweise für eine Inventarisierung oder auch zur Erstellung von Mietlisten etc. verwendet werden.
  • In Fig. 2 ist schematisch in einer Ansicht schräg von hinten ein vorderer Bereich des Bohrstrangs mit Gestängeschüssen 8 und einem Bohrkopf 17 gezeigt. Zwischen dem Bohrkopf 17 und den Gestängeschüssen 8 ist ein Senderabschnitt 18 mit einem Sender angeordnet, an den sich der Gestängeabschnitt 15 anschließt. Der Sender im Senderabschnitt 18 dient der Ortung des Bohrkopfs 17 bzw. dem Orten des Bohrstrangs. Der Bohrkopf 17 mit nachfolgendem Senderabschnitt 18 und Gestängeabschnitt 15 sowie der Gestängeschüsse 8 folgt der Erdbohrung, die im Boden erstellt wird. Mit dem Gestängeabschnitt 15 kann die Krümmung des Erdbohrlochsverlaufs erfasst werden. Der Gestängeabschnitt 15 erfasst eine Biegebelastung. Der Gestängeabschnitt 15 ist in der Fig. 3 vergrößert dargestellt. Der Gestängeabschnitt 15 weist einen stabförmigen Abschnitt 19 auf, dessen Durchmesser geringer als der Durchmesser der Gestängeschüsse 8 ist. Der stabförmige Abschnitt 19 wird von einer Schutzhülle 20 umgeben, die im Wesentlichen eine äußere Abmessung aufweist, die der Abmessung von Bohrkopf 17 und Senderabschnitt 18 entspricht. Die Schutzhülle 20 schützt den stabförmigen Abschnitt, der hohl ausgestaltet ist. Insbesondere schützt die Schutzhülle 20 auf dem stabförmigen Abschnitt 19 angeordnete Dehnungssensoren 21, die im Wesentlichen mittig in Bezug auf die Längserstreckung des stabförmigen Abschnitts 19 an diesem befestigt sind.
  • In der in den Fig. 2 und 3 dargestellten Ausführungsform wird ein Kabel 22 zur Anbindung an eine Empfangseinrichtung 23 übermittelt, die die Daten an eine Steuerung der Erdbohrvorrichtung oder die Auswerteeinrichtung 13 übermittelt. Anstelle eines in den Fig. 2 und 3 dargestellten Kabels 22 kann eine kabellose Übermittlung der Werte der Dehnungssensoren 21 an die Empfangseinrichtung 23 erfolgen. Die Empfangseinrichtung 23 ist mit der Auswerteeinrichtung 13 kabelgebunden oder kabellos verbunden. Die Empfangseinrichtung 23 übermittelt der Auswerteeinrichtung 13 die Signale des Dehnungssensors 21 in ausgewerteter Form und/oder in Rohversion, damit die Auswerteeinrichtung 13 unter Einbeziehung der Daten des Drucksensors 9 eine Lebensdauerberechnung für das Gestänge bzw. den einzelnen Gestängeschuss 8 vornehmen kann.

Claims (5)

  1. Verfahren zum Bestimmen eines Verschleißes eines Gestänges (6) einer Erdbohrvorrichtung, dadurch gekennzeichnet, dass eine Biegebelastung des Gestänges (6) stellvertretend an einem oder mehreren Gestängeabschnitten, die im Gestänge (6) angeordnet sind, erfasst wird und die Biegebelastung einzelnen Gestängeschüssen (8) des Gestänges (6) zugeordnet wird und zur Durchführung einer Lebensdauerberechnung der einzelnen Gestängeschüsse (8) herangezogen wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass für die Zuordnung der Belastung einzelner Gestängeschüsse (8) die Position des Gestängeschusses (8) im Gestänge (6) berücksichtigt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass berücksichtigt wird, wie lange der Gestängeschuss (8) in dem Gestänge (6) befindlich ist.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Biegebelastung des Gestänges (6) mittels eines Gestängeabschnitts (15), an dem mindestens ein Dehnungssensor (21) vorhanden ist, gemessen wird.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der Dehnungssensor (21) mittels des Prinzips eines Dehnungsmessstreifens, eines Faser-Bragg-Gitter-Sensors oder ähnlichem die Krümmungsbelastung erfasst.
EP20165948.9A 2017-08-18 2018-06-25 Verfahren zum bestimmen eines verschleisses eines gestänges einer erdbohrvorrichtung Active EP3690185B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017118853.3A DE102017118853A1 (de) 2017-08-18 2017-08-18 Verfahren zum Bestimmen eines Verschleißes eines Gestänges einer Erdbohrvorrichtung
EP18179478.5A EP3444433B1 (de) 2017-08-18 2018-06-25 Verfahren zum bestimmen eines verschleisses eines gestänges einer erdbohrvorrichtung

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP18179478.5A Division EP3444433B1 (de) 2017-08-18 2018-06-25 Verfahren zum bestimmen eines verschleisses eines gestänges einer erdbohrvorrichtung
EP18179478.5A Division-Into EP3444433B1 (de) 2017-08-18 2018-06-25 Verfahren zum bestimmen eines verschleisses eines gestänges einer erdbohrvorrichtung

Publications (2)

Publication Number Publication Date
EP3690185A1 EP3690185A1 (de) 2020-08-05
EP3690185B1 true EP3690185B1 (de) 2021-12-22

Family

ID=62778746

Family Applications (2)

Application Number Title Priority Date Filing Date
EP18179478.5A Active EP3444433B1 (de) 2017-08-18 2018-06-25 Verfahren zum bestimmen eines verschleisses eines gestänges einer erdbohrvorrichtung
EP20165948.9A Active EP3690185B1 (de) 2017-08-18 2018-06-25 Verfahren zum bestimmen eines verschleisses eines gestänges einer erdbohrvorrichtung

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP18179478.5A Active EP3444433B1 (de) 2017-08-18 2018-06-25 Verfahren zum bestimmen eines verschleisses eines gestänges einer erdbohrvorrichtung

Country Status (4)

Country Link
US (1) US11566512B2 (de)
EP (2) EP3444433B1 (de)
AU (1) AU2018217302B2 (de)
DE (1) DE102017118853A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019002549A1 (de) * 2019-04-08 2020-10-08 TRACTO-TECHNlK GmbH & Co. KG Erdbohrvorrichtung, Transfervorrichtung einer Erdbohrvorrichtung, Steuerung einer Transfervorrichtung einer Erdbohrvorrichtung und Verfahren zur Steuerung einer Erdbohrvorrichtung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4547833A (en) * 1983-12-23 1985-10-15 Schlumberger Technology Corporation High density electronics packaging system for hostile environment
US4715451A (en) * 1986-09-17 1987-12-29 Atlantic Richfield Company Measuring drillstem loading and behavior
US6021377A (en) * 1995-10-23 2000-02-01 Baker Hughes Incorporated Drilling system utilizing downhole dysfunctions for determining corrective actions and simulating drilling conditions
DE102008052510B3 (de) * 2008-10-21 2010-07-22 Tracto-Technik Gmbh & Co. Kg Verfahren zum Bestimmen des Verschleißes eines mit Kräften belasteten Gestänges einer Erdarbeitsvorrichtung
GB2532604B (en) 2013-08-20 2020-03-25 Halliburton Energy Services Inc System for collecting wellbore information and method for monitoring environmental conditions proximate a drilling tool
US9945223B2 (en) * 2014-08-14 2018-04-17 Schlumberger Technology Corporation Fatigue calculator generation system
WO2016077239A1 (en) * 2014-11-10 2016-05-19 Halliburton Energy Services, Inc. Methods and apparatus for monitoring wellbore tortuosity

Also Published As

Publication number Publication date
EP3444433A1 (de) 2019-02-20
AU2018217302A1 (en) 2019-03-07
EP3690185A1 (de) 2020-08-05
DE102017118853A1 (de) 2019-02-21
EP3444433B1 (de) 2020-06-17
AU2018217302B2 (en) 2020-05-14
US11566512B2 (en) 2023-01-31
US20190055831A1 (en) 2019-02-21

Similar Documents

Publication Publication Date Title
DE102012106503B4 (de) Spannvorrichtung zum Dehnen eines Gewindebolzens
EP2543770B1 (de) Vorrichtung und Verfahren zum Vermessen von Düsenstrahlsäulen im Untergrund
DE102015105908A1 (de) Bohrgerät zum Erstellen einer verrohrten Bohrung und Verfahren zum Betreiben eines Bohrgerätes
EP3701126B1 (de) Tunnelbohrmaschine und verfahren zum vortreiben eines tunnels
DE102008052510B3 (de) Verfahren zum Bestimmen des Verschleißes eines mit Kräften belasteten Gestänges einer Erdarbeitsvorrichtung
DE112007001567T5 (de) Dehnungsmesseinrichtung
EP2035767B1 (de) Verfahren und einrichtung zum ermitteln von verschiebungen und/oder deformationen im untertagbau
EP3690185B1 (de) Verfahren zum bestimmen eines verschleisses eines gestänges einer erdbohrvorrichtung
DE112013007460T5 (de) Verfahren und Lastanalyse für mehrfache außerachsige Werkzeuge
DE60123545T2 (de) Erzeugen eines pfahles durch schneckenbohren
WO2021083796A1 (de) Computergestütztes verfahren und system zur ermittlung und visualisierung von kraftflüssen in einem baugerüst
DE3100984A1 (de) Verfahren zur ermittlung, ueberwachung und zum abbau der gebirgsschlaggefahr
EP3331340B1 (de) Dreipunktaufhängung
DE102005038313B4 (de) Verfahren zur Messung der geologischen Lagerungsdichte und zur Detektion von Hohlräumen im Bereich eines Vortriebstunnels
DE102012207391A1 (de) Werkzeugvorrichtung zum Einbringen von Stanznieten mit einer Prüfeinrichtung für die Stanzmatrize
EP3124740B1 (de) Bohrgerät und verfahren zum erstellen einer bohrung von einer schwimmenden plattform
DE102013205319A1 (de) Bohr- und Düsenstrahlgestänge
EP1839983B1 (de) Vorrichtung zur Messung der Bremskraft eines Bremssystems eines Flugzeugs.
DE2312078C3 (de) Verfahren und Vorrichtung zur Überwachung der Vortriebsrichtung unterirdisch vorpressbarer Rohr- oder Tunnelschilde
EP3907371B1 (de) Arbeitsmaschine und verfahren zum bearbeiten eines bodens
AT525566B1 (de) Sensorgestütztes hohlstab-system
WO2017032457A1 (de) Verfahren und vorrichtung zum erfassen einer beim einziehen eines rohres oder einer leitung eingeleiteten zugkraft
EP4141211A1 (de) Bohrer zur kampfmitteldetektion
DE202021106176U1 (de) Bohrer zur Kampfmitteldetektion
DE102023002396A1 (de) Horizontalbohranlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 3444433

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210205

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210727

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 3444433

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018008296

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1457212

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220322

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220322

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220422

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018008296

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220422

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

26N No opposition filed

Effective date: 20220923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220625

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220625

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230622

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230622

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230720

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222