EP3680982B1 - Radiofrequenz(rf)-drehkupplung für drehvorrichtung zur rf-wellenleitung, und rf-drehvorrichtung, die eine solche kupplung umfasst - Google Patents

Radiofrequenz(rf)-drehkupplung für drehvorrichtung zur rf-wellenleitung, und rf-drehvorrichtung, die eine solche kupplung umfasst Download PDF

Info

Publication number
EP3680982B1
EP3680982B1 EP19214965.6A EP19214965A EP3680982B1 EP 3680982 B1 EP3680982 B1 EP 3680982B1 EP 19214965 A EP19214965 A EP 19214965A EP 3680982 B1 EP3680982 B1 EP 3680982B1
Authority
EP
European Patent Office
Prior art keywords
transmission
axis
varying
rotary joint
curved sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19214965.6A
Other languages
English (en)
French (fr)
Other versions
EP3680982A1 (de
Inventor
Dimitri Vynohradov
Jérôme Brossier
Benjamin Monteillet
Jérôme LORENZO
Nicolas Ferrando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National dEtudes Spatiales CNES
Thales SA
Original Assignee
Centre National dEtudes Spatiales CNES
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National dEtudes Spatiales CNES, Thales SA filed Critical Centre National dEtudes Spatiales CNES
Publication of EP3680982A1 publication Critical patent/EP3680982A1/de
Application granted granted Critical
Publication of EP3680982B1 publication Critical patent/EP3680982B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • H01P3/123Hollow waveguides with a complex or stepped cross-section, e.g. ridged or grooved waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/06Movable joints, e.g. rotating joints
    • H01P1/062Movable joints, e.g. rotating joints the relative movement being a rotation
    • H01P1/063Movable joints, e.g. rotating joints the relative movement being a rotation with a limited angle of rotation
    • H01P1/065Movable joints, e.g. rotating joints the relative movement being a rotation with a limited angle of rotation the axis of rotation being parallel to the transmission path, e.g. stepped twist
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/06Movable joints, e.g. rotating joints
    • H01P1/062Movable joints, e.g. rotating joints the relative movement being a rotation
    • H01P1/066Movable joints, e.g. rotating joints the relative movement being a rotation with an unlimited angle of rotation
    • H01P1/068Movable joints, e.g. rotating joints the relative movement being a rotation with an unlimited angle of rotation the energy being transmitted in at least one ring-shaped transmission line located around the axis of rotation, e.g. "around the mast" rotary joint
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/182Waveguide phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/181Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being hollow waveguides
    • H01P5/182Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being hollow waveguides the waveguides being arranged in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/06Waveguide mouths
    • H01Q13/065Waveguide mouths provided with a flange or a choke
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials

Definitions

  • the present invention relates to an RF radiofrequency rotating joint having one or more RF radiofrequency transmission paths for connecting a first fixed part of a radiofrequency rotary device for guiding electromagnetic waves to a second rotating part relative to to the first part of said rotary radiofrequency device and transmitting electromagnetic waves between the first part and the second part of the rotary radiofrequency device, including during the rotation of the latter.
  • the present invention also relates to a radiofrequency rotary device, for example a rotary RF antenna including such an RF rotary joint.
  • RF rotating joints narrowband or wideband, having one or more RF transmission paths, are useful not only for satellites in low orbits called “scrolling” which require steerable or pointable antennas (in English “steerable” ») But also to geostationary satellites for some of their antennas, such as face-to-earth antennas for example.
  • Such RF rotary joints can also be useful for ground antennas such as for example gateway antennas to one or more satellites of a space system, said antennas forming part of access gateway stations, called “Gateways” in English.
  • ground antennas such as for example gateway antennas to one or more satellites of a space system, said antennas forming part of access gateway stations, called “Gateways” in English.
  • EP 2 343 774 A1 PANASONIC CORP [JP]
  • HIDEKI KIRINO ET AL "A 76 GHz Multi-Layered Phased Array Antenna Using a Non-Metal Contact Metamaterial Waveguide", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION .
  • a first document FR 3 029 018 describes an RF rotating joint, powered by two excitatory, polarizing and diplexing RF chains.
  • This RF transmission rotary joint consists of two distinct parts, respectively fixed and rotary, fitted together without contact, parallel to the longitudinal axis of said joint, the two fixed and rotary parts comprising a through cylindrical axial opening forming a guide of axial cylindrical wave common to both fixed and rotating parts.
  • the two parts, respectively fixed and rotating, of the rotary joint respectively form a stator and a rotor movable in rotation about the longitudinal axis.
  • the cylindrical axial opening through the rotating joint thus forming a waveguide with circular section, allows, with the particular configuration of the two exciters considered, the propagation of two electromagnetic waves in crossed circular polarization between the two RF exciters.
  • a wideband RF transmission rotary joint for a rotary RF antenna is described in the patent application, entitled “Rotary joint for a rotary antenna and rotary antenna comprising such a joint", filed on September 19 under deposit number FR1700950 , and forming a second document.
  • the rotary RF antenna has a first antenna part and a second antenna part, rotatable relative to the first part, and the RF rotary joint is configured to connect the first and second parts of the rotary RF antenna, and for transmitting RF electromagnetic signals between said first and second parts.
  • the rotary joint has the overall shape of a ring sector with a variable opening and a ring center, and has an axis of rotation (X) passing through the ring center, a plurality of circumferential directions extending following concentric circles arranged around the axis of rotation (X).
  • One of the transmission surfaces comprises main means for delimiting the RF electromagnetic signals and the other comprises complementary means for delimiting the RF electromagnetic signals.
  • the rotor is mounted to rotate relative to the stator about the axis of rotation (X) so that in any position of the rotor, at least part of the transmission surface of the rotor is disposed opposite at least a part of the transmission surface of the stator, without contact between the two parts, except for the external guide devices, for example ball bearings.
  • the parts facing the transmission surfaces of the rotor and of the stator form between them at least one transmission path for electromagnetic signals, the transmission path being delimited by the main and complementary delimiting means and extending in a circumferential direction.
  • This RF rotating joint solution is based on the use of meta-materials, by confining the wave in the guide using periodic pads, and behaves like a waveguide bent along the plane of the component in magnetic excitation H of the wave.
  • This solution produced in two contactless pieces, is broadband and has good RF performance.
  • the embodiment of the RF rotary joint comprises four RF transmission channels, and proposes a configuration which can be generalized to any number N of transmission channels with a non-negligible impact on the transmission path. compactness.
  • an RF rotary joint configured according to this embodiment for an antenna of a LEO low orbit satellite mission (in English “Low Earth Orbit”) requiring, for example, the order of ⁇ 55 ° angular range, is not compact.
  • the radius of curvature of this type of RF seal cannot be made too small because RF performance is directly impacted and degraded, and a minimum seal internal diameter of around five wavelengths must be observed.
  • the volume of such an RF rotary joint increases very quickly when the number of channels increases.
  • the configurations of RF rotating joints known to date do not make it possible to switch the entire Ka band to Tx transmission and Rx reception for two different polarizations of the RF electromagnetic waves with sufficient radio adaptation performance and small spatial congestion, as well as a large angular deflection, typically ⁇ 55 degrees.
  • the joint configurations which use meta-materials in the form of periodic arrays of pads require a very large number of pads, for example 1500 pads for a set of two Tx transmit channels and two Rx receive channels, which involves long and expensive machining.
  • this known RF rotary joint has a mechanical stop which limits the stacking possibilities of the associated piloted antenna.
  • a first technical problem is to reduce the bulk of a wideband RF transmission rotary joint, in particular along the radial direction of extension of the joint and / or overall along all the directions of extension of the joint.
  • a second technical problem is to increase the number of RF transmission channels, i.e. also the number of RF accesses, of a wideband RF transmission rotary joint with limited space.
  • the subject of the invention is also a rotary device for guiding RF waves comprising: a first part a second part which rotates with respect to the first part, and an RF rotary joint as described above, intended to connect the first and second parts. second parts of said rotary device and to transmit electromagnetic signals between these two parts.
  • a first concept underlying the invention is to use meta-materials to replace the metallic walls of confinement of the electromagnetic waves of one or more RF rotating waveguides and to make the rotating waveguide (s).
  • Contactless RF according to the principle of the waveguide with opening in the form of a groove or groove (in English "groove gap waveguide"), described for example in the document of Eva Rajo-Iglesias et al., Titled “Groove Gap Waveguide: A Rectangular Waveguide Between Contactless Metal Plates Enabled by Parallel-Plate Cut-Off”, and published in Proceedings of the Fourth European ConfInterle on Antenna and Propagation, 08 July 2010 .
  • a second underlying concept of the invention is to choose a guiding structure for the sliding waveguide curved RF according to the plane E as an electrical component of the electromagnetic field instead of the plane H as a magnetic excitation component of the same electromagnetic field. , which makes it possible to have a smaller radial radius of curvature and to obtain a much more compact RF rotary joint.
  • an RF radiofrequency rotary joint 2 according to the invention here comprises a single RF transmission path 4.
  • the RF radiofrequency rotary joint 2 is configured to mechanically connect together first and second parts 6, 8 of a rotary device 10 for guiding RF waves, for example of a rotary RF antenna, shown schematically and only on the figure.
  • Figure 1A to simplify reading, and to transmit RF electromagnetic signals between said first and second parts 6, 8 of the rotating antenna 10.
  • the first external part 12 comprises a first internal metallic surface 22 for transmitting RF electromagnetic signals, here having a cylindrical shape, defined by a first internal radius r1 equal to the radius of the cylindrical hole 14.
  • the second inner part 18 comprises a second outer metallic surface 28 for transmitting electromagnetic RF signals, here having a cylindrical shape, defined by a second outer radius r2, strictly less than the first inner radius r1, and movable in rotation with respect to the first internal transmission surface 22 around the axis (Z) 16, according to an angular displacement angle ⁇ , within a predetermined angular opening range 30.
  • the first internal transmission surface 22 here comprises a single first RF access port 32 and first means 34 for confining and guiding the RF electromagnetic signals, using meta-materials such as for example periodic structures of pads with an electrically conductive surface. .
  • the second external transmission surface 28 here comprises a single second RF port 38 and second means 40 for confining and guiding the RF electromagnetic signals, using meta-materials such as, for example, periodic structures of pads with an electrically conductive surface.
  • the first curved sliding RF waveguide 42 is delimited in radial height or short side b between a first circumferential metal track 46 and a second circumferential metal track 48 of the first and second metal surfaces 22, 28, in axial height or long side a in the longitudinal direction of the axis of symmetry (Z) between two side walls 52, 54 of confinement and guide, spaced apart by said width a , and lengthwise in the circumferential direction between a first circumferential end wall 62 and a second circumferential end wall 64, disposed respectively near the first RF access port 32 and the second RF access port 38, away from a reference half-midplane around which the angular movement has place.
  • the side walls 52 and 54 confinement and guide, spaced apart by the width a are each formed of a one-or two-dimensional network of metal studs 68, periodically spaced at a spacing pitch p and having a height h p .
  • the spacing step of the pads is less than or equal to a fraction of the wavelength and the height hp of the pads verifies the relationship: r 1 - r 2 - ⁇ 4 ⁇ h p ⁇ r 1 - r 2
  • the rows or lines of pads 68 thus dimensioned form side walls for confining and guiding the electromagnetic field which replace conventional metal walls on the small side b of the first sliding waveguide and prevent the field from leaving.
  • the light left by the pads between the metal tracks of the first and second transmission surfaces typically up to 0.5 mm in Ka band, allows the first and second transmission surfaces to slide between them without contact so as not to degrade the service life. antenna and do not generate particles.
  • the pads with an electrically conductive surface of the two side walls for confining and guiding the same first curved sliding waveguide are slender and can protrude, either from a same circumferential transmission surface taken from among the first and second circumferential transmission surfaces of said first curved sliding waveguide as described in Figures 4A and 4C , or from the two circumferential transmission surfaces of said first curved sliding waveguide at a rate of a different circumferential transmission surface per side wall as described in Figure 4B , or by interlacing the studs from the two circumferential transmission surfaces for at least one side wall taken from among the two side walls.
  • the two circumferential end walls 62, 64 for confining the first curved sliding RF waveguide 52, arranged on either side of the first and second RF access ports 32, 38 are each formed of a uni- or two-dimensional metal studs spaced periodically with the same dimensioning in terms of pitch p spacing and height hp.
  • the rows of studs thus dimensioned form lengthwise end walls of confinement of the electromagnetic field between the first and second RF access ports which replace conventional metal walls of the small side b of the first curved sliding waveguide and prevent the field to exit on the circumferential ends while allowing non-contact sliding between the first transmission surface and the second transmission surface.
  • the studs of the two end walls are slender and protrude from the first transmission surface for the first end wall associated with and disposed in the vicinity of the first RF port, and from the second transmission surface for the. second end wall associated with and disposed in the vicinity of the second RF port.
  • the pads of the end walls of the first curved sliding waveguide RF 42 of the RF transmission path 4 are formed by circumferential rows or lines 72, 73, 74, 75, 76, 78 of pads arranged in a comb so as to allow a free mechanical crossing of the first and second end walls 62, 64 when the first and second parts 12, 18 rotate between them while ensuring their function of confining the electromagnetic waves.
  • the first curved sliding waveguide RF 42 of the RF rotary joint according to the invention differs from an RF curved sliding waveguide of the known RF rotary joint described in the second cited document in that the deformation of the RF confinement and guiding structure is operated according to the plane E of the electrical component of the electromagnetic waves instead of the H plane of the magnetic component of said same waves.
  • This thus makes it possible to obtain a radius of curvature of the first and second transmission surfaces which is much smaller and consequently a structure of the RF rotary joint which is much more compact in volume.
  • such a structure requires having containment studs on a curved surface instead of a flat surface as for the RF rotary joint known from the second document.
  • the structure of the curved sliding waveguide RF 82, used to produce the rotary joint RF 84 known from the second cited document, has a non-zero curvature of the plane H of the magnetic excitation component of the wave electromagnetic while the extension planes of the first and second tracks 86, 88 of the long side a of the curved sliding waveguide RF 82 are plane and perpendicular to the axis of rotation (Z) of the rotary joint RF 82.
  • the walls of short side b of the curved sliding waveguide, formed by lateral confinement walls 90, 92 are here straight sections of cylindrical surfaces concentric around the axis of rotation (Z) of the rotary joint RF 82.
  • the structure of the first curved sliding waveguide RF 42, used to produce the RF rotary joint 2 according to the invention of Figures 1A and 1B exhibits a non-zero curvature of the plane E of the electric field component of the electromagnetic wave, while the extension planes of the small side walls b of the same first curved sliding waveguide RF 42, formed by the walls side containment 52, 54, are plane and perpendicular to the axis of rotation (Z) of the RF rotary joint according to the invention.
  • the long side walls a, formed by the first and second circumferential tracks 22, 28, are here straight sections of cylindrical surfaces concentric around the axis of rotation (Z) of the rotary joint RF.
  • the surfaces 22 and 28 of the first curved sliding waveguide 42 of the Figure 6B are substantially closer to each other than the surfaces 90 and 92 of the curved sliding waveguide 82 of the Figure 6A corresponding to the design and structure of the second cited document, for example with a “large side to small side” ratio equal to 4/1. Consequently, the RF transmission parameters such as the Standing Wave Ratio (SWR) which depend on it will be less degraded in the configuration of the first curved sliding waveguide of the Figure 6B that in the configuration of the state of the art as described in the second cited document and the Figure 6A , at equivalent radius of curvature.
  • SWR Standing Wave Ratio
  • the RF rotary joint 2 based on the use of an electric plane curved sliding waveguide E will therefore have as a feature a radial electric field E, unlike a curved sliding rotary joint RF 82 of the state art using a plane curved waveguide in magnetic excitation H, the electric field of which is axial along the axis of rotation (Z).
  • an RF radiofrequency rotary joint 202 according to the invention comprises a first RF transmission path 204 and a second RF transmission path 206.
  • the RF rotary joint 202 is configured to mechanically connect together first and second parts of a rotary RF waveguide device and to transmit RF electromagnetic signals between said first and second parts of the rotary antenna.
  • the first external part 212 comprises a first internal surface 222, electrically conductive, for transmitting the electromagnetic signals RF, here having a cylindrical shape, defined by a first internal radius r1, equal to the radius of the cylindrical hole 214.
  • the second internal part 218 comprises a second external surface 228, electrically conductive, for transmitting electromagnetic signals RF, here having a cylindrical shape, defined by a second external radius r2, strictly less than the first internal radius r1, and movable in rotation with respect to to the first internal transmission surface 222 around the axis (Z) 16, at an angular displacement angle ⁇ , within a predetermined angular opening range 230.
  • electromagnetic signals RF here having a cylindrical shape, defined by a second external radius r2, strictly less than the first internal radius r1, and movable in rotation with respect to to the first internal transmission surface 222 around the axis (Z) 16, at an angular displacement angle ⁇ , within a predetermined angular opening range 230.
  • the first internal transmission surface 222 here comprises a first RF access port 232, a second first RF access port 233, and first means 234, for confining and guiding the RF electromagnetic signals, using meta-materials such as for example periodic structures of pads with electrically conductive surfaces.
  • the second external transmission surface 228 here comprises a first second RF access port 238, a second second RF access port 239, and second means 240 based on meta-materials for confining and guiding the RF electromagnetic signals.
  • the first rotating curved sliding waveguide RF 242 is delimited in radial height or short side b between two first first metal tracks 246, 248 of the first and second transmission surfaces 222, 228, in axial height or long side a in the longitudinal direction of the axis of symmetry (Z) between two first first lateral confinement and guide walls spaced apart at said width a, and lengthwise in the circumferential direction between two first first circumferential end walls, one arranged near the first first RF access port and the other near the first second access port RF, without one of them interposing between the first two RF access ports.
  • the second first curved sliding waveguide RF 243 is delimited in radial height or short side b between two second first metal tracks 250, 252 of the first and second transmission surfaces 222, 228, in axial height or long side a depending on the direction of the axis of symmetry (Z) between two second first lateral confinement and guide walls spaced apart by said radial height a , and lengthwise in the circumferential direction between two second first circumferential end walls, arranged for one near the second first first RF access port and for the other near the second second RF access port, without one of them interposing between the two second first and second RF ports d 'access.
  • the first external part comprises a first internal surface, electrically conductive, for transmitting RF electromagnetic signals, having a cylindrical shape, defined by a first internal radius r1 equal to the radius of the hole.
  • the second internal part comprises a second external surface, electrically conductive, for transmitting RF electromagnetic signals, having a cylindrical shape, defined by a second external radius r2, strictly less than the first internal radius r1, and movable in rotation with respect to the first internal transmission surface around the axis (Z), according to an angular displacement angle ⁇ , within a predetermined angular opening range.
  • the first internal transmission surface comprises N first RF access ports and first means for confining and guiding the RF electromagnetic signals, using metamaterials such as, for example, periodic structures of pads with an electrically conductive surface.
  • the second external transmission surface comprises N second RF access ports and second means for confining and guiding the RF electromagnetic signals, using meta-materials such as, for example, periodic structures of pads with an electrically conductive surface.
  • Each curved RF sliding waveguide, associated in its own right with an RF transmission channel numbered by an index i, i between 1 and N, is delimited in radial height or short side b between a first track and a second row track i of the first and second transmission surfaces, cut in the middle by a same transverse plane PL1, in axial height or long side a along the longitudinal direction of the axis of symmetry (Z) between two first lateral confinement and guide walls spaced apart by said width a , and lengthwise along the circumferential direction of the circle transverse between two first circumferential end walls, one arranged close to the associated first RF access port and the other close to the associated second RF access port, without one of these two first end walls are interposed between said two first RF access ports.
  • an RF radiofrequency rotary joint 302 according to the invention comprises a first RF transmission channel 304 and a second RF transmission channel 306.
  • the RF rotary joint 302 is configured to mechanically connect together first and second parts of a rotary RF waveguide device and to transmit RF electromagnetic signals between said first and second parts of said rotary guide device.
  • the first external part 312 comprises a first internal metallic surface 322 for transmitting RF electromagnetic signals, having a cylindrical shape, defined by a first internal radius r1, equal to the radius of the cylindrical hole 314.
  • the second internal part 318 comprises a second metal external surface 328 for transmitting the electromagnetic RF signals, having a cylindrical shape, defined by a second external radius r2, strictly less than the first internal radius r1, and movable in rotation with respect to the first surface. internal of transmission 322 around the axis (Z), at an angular displacement angle ⁇ , within a predetermined angular opening range 330.
  • the first internal transmission surface 322 here comprises a first first RF access port 332, a second first RF access port 333, and first means 334 based on meta-materials, for confining and guiding the electromagnetic RF signals. .
  • the second external transmission surface 328 here comprises a first second RF access port 338, a second second RF access port 339, and second means 340 based on meta-materials for confining and guiding the RF electromagnetic signals.
  • the first curved sliding waveguide RF 242 is delimited in radial height or short side b between two first first metal tracks 352, 354 of the first and second transmission surfaces 322, 328 cut by the first transverse plane PL1, in height axial or long side a in the longitudinal direction of the axis of symmetry (Z) between two first first lateral confinement and guide walls 356, 358 spaced apart by said width a , and lengthwise in the circumferential direction between two first first walls circumferential end 360, 361, arranged for one near the first first RF access port and for the other near the first second RF access port, without one of them being 'interpose between the first two RF access ports.
  • the second first rotating curved sliding waveguide RF 343 is delimited in radial height or short side b between two second first metal tracks 362, 364 of the first and second transmission surfaces 322, 328 cut by the second transverse plane PL2, in axial height or long side a in the longitudinal direction of the axis of symmetry (Z) 316 between two second first side walls 358, 368, of confinement and guide spaced by said width a , and lengthwise in the circumferential direction between two second first circumferential end walls 370, 371 arranged one near the second first RF access port and the other near the second second RF access port, without one of them do not come between the two second first and second RF access ports.
  • the first external part comprises a first internal surface, electrically conductive, for transmitting RF electromagnetic signals, having a cylindrical shape, defined by a first internal radius r1 equal to the radius of the cylindrical hole.
  • the second internal part comprises a second electrically conductive external surface, for transmitting RF electromagnetic signals, having a cylindrical shape, defined by a second external radius r2, strictly less than the first internal radius r1, and movable in rotation with respect to the first surface. internal transmission around the axis of symmetry (Z), according to an angular displacement angle ⁇ , within a predetermined angular opening range.
  • the first internal transmission surface comprises N first RF access ports and first means based on meta-materials, for confining and guiding the RF electromagnetic signals.
  • the second external transmission surface comprises N second RF access ports and second means based on meta-materials for confining and guiding the RF electromagnetic signals.
  • Each first curved RF sliding waveguide, associated in its own right with an RF transmission path Vi is delimited in radial height or short side b between a first metal track and a second metal track of rank i of the first and second transmission surfaces , cut in the middle by a different transverse plane, in axial height or long side a in the longitudinal direction of the axis of symmetry (Z) between two first lateral confinement and guide walls spaced apart by said width a , and in length in the circumferential direction of the associated transverse circle between two first circumferential end walls, one arranged near the associated first RF access port and the other near the associated first second RF access port, without one of these first two end walls being interposed between said first two RF access ports.
  • the RF 402 rotary joint is a rotary joint which has four RF transmission channels, two Rx 404, 406 receive and two Tx 408, 410 transmission channels, with four input RF ports 414, 416, 418, 420 , located on the first annular outer part 422 here forming a stator, and four RF output ports 424, 426, 428, 430, located on the second cylindrical inner part 432 here forming a rotor, the four RF transmission channels 404, 406, 408, 410 being produced here using four first curved sliding RF waveguides, not visible on the Figure 9 and possibly broadband, two curved sliding waveguides dedicated to the two RF transmission channels in Rx reception being angularly distributed over the same first first circumferential track at a first longitudinal level L1, and two curved sliding waveguides RF, dedicated with the two RF transmission channels in Tx
  • the first outer part comprises a first inner surface, electrically conductive for transmitting RF electromagnetic signals, having a cylindrical shape, defined by a first radius r1 equal to the radius of the cylindrical hole.
  • the second internal part comprises a second external surface, electrically conductive, for transmitting RF electromagnetic signals, having a cylindrical shape, defined by a second external radius r2, strictly less than the first internal radius r1, and movable in rotation with respect to the first internal transmission surface around the axis of symmetry (Z), according to an angular displacement angle ⁇ , within a predetermined angular opening range.
  • the first internal transmission surface comprises N first RF access ports and first means for confining and guiding the RF electromagnetic signals, using meta-materials such as for example periodic structures of pads with an electrically conductive surface.
  • the second external transmission surface comprises N second RF access ports and second means for confining and guiding the RF electromagnetic signals, using meta-materials such as, for example, periodic structures of pads with an electrically conductive surface.
  • Each first curved RF sliding waveguide, associated in its own right with an RF transmission path Vi is delimited in radial height or short side b between a first metal track and a second metal track of rank i of the first and second transmission surfaces , cut in the middle by a different transverse plane, in axial height or long side a in the longitudinal direction of the axis of symmetry (Z) between two first lateral confinement and guide walls spaced apart by said width a , and in length in the circumferential direction of the associated transverse circle between two first circumferential end walls, one arranged close to the associated first RF access port and the other close to the associated first second RF access port, without that one of these first two end walls does not come between said first two RF access ports.
  • the respective sizes and dimensions of the RF rotary joint 402 according to the fourth embodiment of the Figure 9 and a wideband RF 502 rotary joint having the known structure described in the second cited document and the same RF transmission requirements (ie the same number of RF transmission channels, same frequency and bandwidth) and angular deflection as those of the swivel joint RF 402, are compared. It clearly appears that the RF rotary joint 402 according to the invention has a smaller size than that of the conventional RF rotary joint 502.
  • a first relative angular position 492 of the second cylindrical part, here forming a rotor, with respect to the first annular part, here forming a stator, of the RF rotary joint 402 of the Figure 10 corresponds to an extreme angular displacement in a direction of rotation, here the trigonometric direction on the Figure 11A .
  • a second relative angular position 494 of the RF rotary joint 402 of the Figure 10 corresponds to a neutral or reference position in which the angular displacement is zero.
  • a third relative angular position 496 of the RF rotary joint 402 of the Figure 9 corresponds to an extremal angular displacement in the other direction of rotation, here the clockwise direction on the Figure 11C .
  • the two RF ports for external connection to a mobile part of the antenna here arranged inside the central hole of the first annular part, belong to and are fixed to the second cylindrical part forming a rotor.
  • the second part of cylindrical external shape, is provided with studs forming side or end walls to confine and guide the electromagnetic waves in the joint, and that the cylindrical external surface of extension of the top faces pads has a radius less than the internal radius r1 of the internal transmission surface of the first annular face here forming the stator.
  • the opening formed between the first and second transmission surfaces allows the second part forming a rotor to slide and pivot inside the first annular part forming a stator, and makes it possible to produce curved sliding waveguides RF without contact. to transmit electromagnetic waves while the joint rotates.
  • an RF radiofrequency rotary joint 502 according to the invention here comprises a single RF transmission path 504.
  • the RF radio frequency rotary joint 502 is configured here to mechanically connect together first and second parts of a rotary RF waveguiding device, for example a rotary RF antenna, and to transmit RF electromagnetic signals on a channel. single RF transmission V1 504 between said first and second parts of said RF rotary device.
  • the first external part 512 comprises a first internal surface 522, electrically conductive, for transmitting the electromagnetic signals RF, located at a first level L1 along the longitudinal axis L1 and having a cylindrical shape, defined by a first internal radius r1, equal to the radius of the cylindrical hole 514.
  • the second internal part 518 comprises a second external surface 528, electrically conductive for transmitting the electromagnetic signals RF, located at the first level L1 along the longitudinal axis (Z) and having a cylindrical shape, defined by a second external radius r2, strictly less than the first internal radius r1, facing and movable in rotation with respect to the first internal transmission surface 522, and a third external surface 530, electrically conductive metal, for transmitting RF electromagnetic signals, located at a second level L2 along the longitudinal axis L2 and having a cylindrical shape, defined by a third external radius r3.
  • the third part 520 exterior, comprises a fourth internal surface 532, electrically conductive, for transmitting RF electromagnetic signals, located at the second level L2 along the longitudinal axis (Z) and having a cylindrical shape, defined by a fourth radius internal r4, strictly greater than the third external radius r3, opposite and mobile in rotation with respect to the third external surface 530, and mobile around the axis of symmetry (Z), according to an angular displacement angle ⁇ , included in a predetermined angular opening range 534.
  • a fourth internal surface 532 electrically conductive, for transmitting RF electromagnetic signals, located at the second level L2 along the longitudinal axis (Z) and having a cylindrical shape, defined by a fourth radius internal r4, strictly greater than the third external radius r3, opposite and mobile in rotation with respect to the third external surface 530, and mobile around the axis of symmetry (Z), according to an angular displacement angle ⁇ , included in a predetermined angular opening range 534.
  • the first internal transmission surface 522 here comprises a first RF access port 542 and first means 544 based on meta-materials, for confining and guiding the RF electromagnetic signals.
  • the second external transmission surface 528 here comprises a second RF access 546 and second means 548 based on meta-materials for confining and guiding the RF electromagnetic signals.
  • the third external transmission surface 530 here comprises a single third RF access 550 and third means 552 based on meta-materials for confining and guiding the RF electromagnetic signals.
  • the fourth internal transmission surface 532 here comprises a single fourth RF access 554 and fourth means 556 based on meta-materials for confining and guiding the RF electromagnetic signals.
  • the first curved sliding RF waveguide is delimited in radial height or short side b between a first metal track and a second metal track of the first and second metal surfaces, in axial height or long side a in the longitudinal direction of the axis of symmetry (Z) between two transverse lateral confinement and guide walls spaced apart by said width a on either side of the transverse circle situated in the transverse plane having a first predetermined level, and lengthwise in the circumferential direction between a a first circumferential end wall and a second circumferential end wall, disposed in proximity to the first RF access port and the second RF access port, respectively.
  • the second curved sliding RF waveguide is delimited in radial height or short side b between a third metal track and a fourth metal track of the third and fourth transmission surfaces, in width or long side a in the longitudinal direction of the axis of symmetry (Z) between two lateral confinement and guide walls spaced apart by said width a , and lengthwise in the circumferential direction between a first circumferential end wall and a second circumferential end wall, respectively arranged near the first RF access port and the second RF access port.
  • the first external part comprises a first internal surface, electrically conductive, for transmitting RF electromagnetic signals, located at a first level L1 along the longitudinal axis L1 and having a cylindrical shape, defined by a first internal radius r1, equal to the radius of the cylindrical hole.
  • the second inner part has a second outer surface, electrically conductive, for transmitting RF electromagnetic signals, located at the first level L1 along the longitudinal axis (Z) and having a cylindrical shape, defined by a second outer radius r2, strictly less than the first internal radius r1, facing and rotatable relative to the first internal transmission surface, and a third metallic external surface for transmitting RF electromagnetic signals, located at a second level L2 along the 'longitudinal axis L2 and having a cylindrical shape, defined by a third external radius r3.
  • the third outer part has a fourth electrically conductive inner surface for transmitting RF electromagnetic signals, located at the second level L2 along the longitudinal axis (Z) and having a cylindrical shape, defined by a fourth inner radius r4, strictly greater than the third external radius r3, facing each other and movable in rotation with respect to the third external surface 530, and mobile, around the axis of symmetry (Z) according to an angular displacement angle a, included in a predetermined internal angular opening range 534.
  • the first transmission surface comprises N first RF access ports and first means for confining and guiding the RF electromagnetic signals.
  • the second external transmission surface comprises N second RF ports and second means for confining and guiding the RF electromagnetic signals.
  • the third external transmission surface comprises N third RF access ports and third means for confining and guiding the RF electromagnetic signals.
  • the fourth internal transmission surface comprises N fourth RF access ports and fourth means for confining and guiding the RF electromagnetic signals.
  • the first curved sliding waveguide RF of each RF transmission path Vi is delimited in radial height or short side b between a first metal track and a second metal track of the first and second transmission surfaces RF, in axial height or long side a in the longitudinal direction of the axis of symmetry (Z) between two transverse side walls of containment and guide spaced by said width a on either side of the first transverse circle located at the first predetermined level L1i, and lengthwise in the circumferential direction between a first circumferential end wall and a second circumferential end wall, respectively arranged at proximity to the first RF access port and the second RF access port.
  • the second curved sliding waveguide RF of each RF transmission path Vi is delimited in radial height or short side b between a third metal track and a fourth metal track of the third and fourth transmission surfaces RF, in axial height or long side a in the longitudinal direction of the axis of symmetry (Z) between two transverse lateral confinement and guide walls spaced apart by said width a on either side of the second transverse circle located at the second predetermined level L2i, and lengthwise in the circumferential direction between a first circumferential end wall and a second circumferential end wall, disposed respectively near the first RF access port and the second RF access port.
  • the first external part comprises N first RF terminals for external channel connection, respectively connected one by one to the N first RF access ports of the N first guides.
  • the second internal part comprises N second RF terminals for external connection of the channels, respectively connected one by one to the N second RF access ports of the channels.
  • corresponding first RF curved sliding waveguides from the second RF transmission surface through N separate corresponding second transition links which longitudinally and internally traverse the second interior piece.
  • the N second RF terminals for external connection of the second internal part are arranged and distributed on one side only on one of the first and second end and end faces of the cylinder forming the second internal part, or two sides on the first face and the second end and end face of the cylinder forming the second interior part.
  • the first outer part and the second inner part can be respectively a stator and a rotor or can reciprocally be a rotor and a stator.
  • the third external part comprises N second RF terminals for external connection of the RF transmission path, respectively connected one by one to the N fourth RF access ports of the N second guides RF curved sliding waveforms from the fourth RF transmission surface through N separate corresponding second transition links, passing through the third outer piece.
  • the first external part and the third external part can be respectively a stator and a rotor or can reciprocally be a rotor and a stator.
  • cylindrical shapes of the first, second, and / or third, fourth transmission surfaces of the RF rotary joints of the invention described above can be generalized to shapes of surfaces of revolution around the axis. of symmetry (Z) each formed of a succession of sections of surfaces of revolution around the longitudinal axis (Z) forming circumferential tracks at different axial levels which may have different or equal radii.
  • an RF radiofrequency rotary joint is configured to mechanically and radio-electrically connect together first and second parts of a rotary device for guiding RF waves, and to transmit electromagnetic signals. RF between said first and second portions of said rotary RF waveguiding device.
  • the first internal surface for transmitting electromagnetic signals comprises a succession of a predetermined number NC, greater than or equal to 1 and less than or equal to N, of first sections of surfaces of revolution around the axis (Z), located at first different levels L1 (k), k varying from 1 to NC, along the longitudinal axis of symmetry (Z) around the associated first mean internal radius (s) r1 (k) , k varying from 1 to NC, and comprises N first RF access port (s) and first means, based on meta-materials, for confining and guiding the RF electromagnetic signals.
  • the second external surface for transmitting RF electromagnetic signals comprises a succession of NC second sections of surfaces of revolution around the axis (Z), located respectively at the first different levels L1 (k), k varying from 1 to NC, along of the longitudinal axis of symmetry (Z) around second (s) mean external radius (s) r2 (k) associated (s), k varying from 1 to NC, strictly less than (x) first corresponding internal mean ray (s) r1 (k), and comprises N second RF access ports and second means based on meta-materials for confining and guiding the RF electromagnetic signals.
  • the guiding in rotation of the part forming the rotor relative to the part forming the stator can be achieved with at least one electric motor, preferably a stepping electric motor.
  • the electric stepping motor allows the selection of an angular position relative to another without using external telemetry.
  • the material used to confine and guide the RF electromagnetic waves is an electrical conductor, for example a metal, and the electrical insulator used inside the waveguide (s) is vacuum or air.
  • the electrical power at emission is compatible with terrestrial or ground applications and with space applications, on board a satellite.
  • the RF rotary joint according to the invention described above in the various embodiments is a compact, non-contacting joint with very good RF performance both in terms of insertion losses and in terms of decoupling between the transmission paths.
  • a typical use of the RF rotary joint according to the invention is that of an RF rotary joint with four RF transmission channels, two channels in Tx transmission band and two channels in Rx reception band, operating in broadband (typically 2.5 GHz band).
  • a use has also been described with a larger number N of channels applicable to multi-spot or multi-beam antenna configurations.
  • the second internal part further comprises a third external surface for transmitting the electromagnetic RF signals, electrically conductive, with symmetry of revolution about the longitudinal axis (Z) over the angular extension interval.
  • the third external part comprises a fourth internal surface for transmitting the electromagnetic RF signals, electrically conductive, with symmetry of revolution about the longitudinal axis (Z) on the angular extension interval, arranged without mechanical contact in opposite direction. vis-à-vis the third external surface and movable around the longitudinal axis (Z) over the predetermined angular rotation interval.
  • the third external RF transmission surface comprises a succession of NC third sections of surfaces of revolution around the axis (Z), located at different second levels L2 (k), k varying from 1 to NC, along the longitudinal axis of symmetry (Z) around third (s) mean external radius (s) r3 (k) associated, k varying from 1 to NC, and includes N third (s) port (s) d RF access and third means based on meta-materials for confining and guiding RF electromagnetic signals.
  • the fourth internal RF transmission surface comprises a succession of NC fourth (s) section (s) of surfaces of revolution around the longitudinal axis (Z), located respectively at the second different levels L2 (k), k varying from 1 to NC, along the longitudinal axis (Z) around the fourth internal mean radius (s) r4 (k) associated, k varying from 1 to NC, strictly smaller than the corresponding third external mean radius (s) r3 (k), and comprises N fourth RF access port (s) and fourth means to basis of meta-materials for confinement and guidance of RF electromagnetic signals.

Landscapes

  • Waveguide Connection Structure (AREA)

Claims (20)

  1. RF-(Radiofrequenz)-Drehkupplung zum radioelektrischen Anschließen eines ersten und zweiten Teils einer RF-Wellenleiterdrehvorrichtung und zum Übertragen von elektromagnetischen RF-Signalen zwischen dem ersten und zweiten Teil (6, 8) der RF-Wellenleiterdrehvorrichtung (10), wobei die RF-Drehkupplung Folgendes umfasst:
    - ein erstes, äußeres, allgemein ringförmiges Stück (12; 212; 312; 422; 512) mit einer ersten elektrisch leitfähigen, rotationssymmetrischen Innenfläche (22; 222; 322; 522) zum Übertragen elektromagnetischer Signale über einen Erstreckungswinkelbereich mit einer Länge von ungleich Null und gleich oder kleiner als 360 Grad um eine Längsdrehachse (Z) (16; 216; 316; 516); und
    - ein zweites Stück (18; 218; 318; 432; 518) innerhalb des ersten Stücks, mit einer zweiten elektrisch leitfähigen, rotationssymmetrischen Außenfläche (28; 228; 328; 528) zum Übertragen elektromagnetischer Signale über den Erstreckungswinkelbereich um die Längsachse (Z) (16; 216; 316; 516), die der ersten Innenfläche ohne mechanischen Kontakt gegenüberliegt und über einen vorbestimmten Drehwinkelbereich um die Längsachse (Z) (16; 216; 316; 516) drehbeweglich ist; und
    - eine ganze Zahl N gleich oder größer als 1 von separaten RF-Übertragungspfaden Vi (4; 204, 206; 304, 306; 404, 406, 408, 410; 504), wobei i von 1 bis N variiert, zwischen dem ersten Teil und dem zweiten Teil der RF-Wellenleiterdrehvorrichtung;
    wobei die erste Innenfläche (22; 222; 322; 522) zum Übertragen elektromagnetischer Signale eine Folge einer vorbestimmten Anzahl NC gleich oder größer als 1 und gleich oder kleiner als N von ersten Drehflächenabschnitten um die Achse (Z) in unterschiedlichen ersten Ebenen L1(k), wobei k von 1 bis NC variiert, entlang der Symmetrielängsachse (Z) um ein oder mehrere assoziierte erste innere mittlere(n) Radien r1(k), wobei k von 1 bis NC variiert, und N erste RF-Zugangsports (32; 232, 233; 332, 333; 542) und erste elektromagnetische Mittel (34; 234; 334; 544) zum Einschränken und Führen von elektromagnetischen RF-Signalen auf der Basis von Metamaterial aufweist; und
    wobei die zweite Außenfläche (28; 228; 328; 528) zum Übertragen von elektromagnetischen RF-Signalen eine Folge von NC zweiten Drehflächenabschnitten um die Achse (Z) jeweils in den ersten unterschiedlichen Ebenen L1(k), wobei k von 1 bis NC variiert, entlang der Symmetrielängsachse (Z) um ein oder mehrere assoziierte zweite äußere mittlere Radien r2(k), wobei k von 1 bis NC variiert, die strikt kleiner als die entsprechenden ein oder mehreren ersten inneren mittleren Radien r1(k) sind, und N zweite RF-Zugangsports (38; 238, 239; 338, 339; 546) und zweite Mittel (40; 240; 340; 548) zum Einschränken und Führen von elektromagnetischen RF-Signalen auf der Basis von Metamaterialien aufweist; und
    - wobei die erste und zweite RF-Übertragungsfläche (22, 28; 222, 228; 322, 328; 522, 528) konfiguriert werden durch den ersten und zweiten mittleren Radius r1(k), r2(k), die ersten Längsebenen L1(k), wobei k von 1 bis NC variiert, die Geometrie des ersten und zweiten RF-Zugangs und die Geometrie des ersten und zweiten RF-Einschränkungs- und Führungsmittels (34, 40; 234, 240; 334, 340; 544, 548), so dass:
    - jeder RF-Übertragungspfad Vi (4; 204, 206; 304, 306; 404, 406, 408, 410; 504), wobei i von 1 bis N variiert, einen unterschiedlichen ersten gekrümmten RF-Gleitwellenleiter (42; 242, 243; 342, 343) umfasst, und
    - die N ersten gekrümmten RF-Gleitwellenleiter (42; 242, 243; 342, 343) winkelmäßig über die NC ersten Drehflächenabschnitte um die Achse (Z) verteilt sind, wobei sich jeder der NC Drehflächenabschnitte um die Achse (Z) entlang der Symmetrielängsachse (Z) auf ihrer assoziierten ersten Ebene L1 (k) befindet, wobei k von 1 bis NC variiert.
  2. RF-Drehkupplung nach Anspruch 1, wobei
    jeder mit einem RF-Übertragungspfad Vi assoziierte erste gekrümmte RF-Gleitwellenleiter (42; 242, 243; 342, 343), wobei i von 1 bis N variiert, begrenzt ist:
    - in der radialen Höhe oder der kleinen Seite b k zwischen einem ersten Drehflächenabschnitt und einem zweiten Drehflächenabschnitt um die Achse (Z) von Rang k der ersten und zweiten Übertragungsfläche, wobei k zwischen 1 und NC liegt,
    - in der axialen Höhe oder der großen Seite a k zwischen den ersten beiden seitlichen Einschränkungs- und Führungswänden des ersten und zweiten Drehflächenabschnitts um die Achse (Z) von Rang k, und
    - in der Länge zwischen zwei ersten umlaufenden Einschränkungs- und Führungsendwänden, von denen eine in der Nähe des assoziierten ersten RF-Zugangsports und die andere in der Nähe des assoziierten zweiten RF-Zugangsports angeordnet ist, ohne dass eine der zwei ersten umlaufenden Endwände zwischen den beiden ersten RF-Zugangsports zu liegen kommt.
  3. RF-(Radiofrequenz)-Drehkupplung nach einem der Ansprüche 1 bis 2, wobei
    die ganze Zahl N von RF-Übertragungspfaden gleich 1 ist und
    der einzelne RF-Übertragungspfad V1 (4) einen einzelnen ersten gekrümmten Gleitwellenleiter (42) umfasst, der orthogonal zur Symmetrielängsachse (Z) (16) in einer vorbestimmten Ebene L1 angeordnet ist.
  4. RF-(Radiofrequenz)-Drehkupplung nach einem der Ansprüche 1 bis 2, wobei
    - die ganze Zahl N von separaten RF-Übertragungspfaden Vi (204, 206) gleich oder größer als 2 ist, und
    - jeder RF-Übertragungspfad Vi (204, 206), wobei i von 1 bis N variiert, einen assoziierten separaten ersten gekrümmten RF-Gleitwellenleiter (242, 243) aufweist, und
    - die N ersten gekrümmten RF-Gleitwellenleiter (242, 243) winkelmäßig entlang des gleichen transversalen Kreises verteilt sind, der orthogonal zur Symmetrielängsachse in einer ersten vorbestimmten Ebene L1 angeordnet ist.
  5. RF-(Radiofrequenz)-Drehkupplung nach einem der Ansprüche 1 bis 2, wobei
    - die ganze Zahl N von separaten RF-Übertragungspfaden Vi (304, 306) gleich oder größer als 2 ist, und
    - jeder RF-Übertragungspfad Vi (304, 306), wobei i von 1 bis N variiert, einen assoziierten separaten ersten gekrümmten RF-Gleitwellenleiter (342, 343) aufweist, und
    - die N ersten gekrümmten RF-Gleitwellenleiter (342, 343) longitudinal entlang der Symmetrielängsachse (Z) auf vorbestimmten separaten ersten Li-Ebenen entlang der Achse (Z) verteilt sind, wobei i von 1 bis N variiert.
  6. RF-(Radiofrequenz)-Drehkupplung nach einem der Ansprüche 1 bis 2, wobei
    - die ganze Zahl N von separaten RF-Übertragungspfaden Vi (404, 406, 408, 410) gleich oder größer als 3 ist, und
    - jeder RF-Übertragungspfad Vi (404, 406, 408, 410), wobei i von 1 bis N variiert, einen assoziierten separaten ersten gekrümmten RF-Gleitwellenleiter hat, und
    - die N ersten gekrümmten RF-Gleitwellenleiter longitudinal entlang der Symmetrieachse (Z) auf einer Anzahl NC von ersten Ebenen gleich oder größer als 2 und strikt kleiner als N verteilt sind; und
    - mindestens zwei erste gekrümmte RF-Gleitwellenleiter unter den N ersten Drehleitern orthogonal zur Symmetrieachse (Z) auf einer gleichen vorbestimmten Ebene und jeweils durch einen entsprechenden Winkelsektor begrenzt sind.
  7. RF-(Radiofrequenz)-Drehkupplung nach einem der Ansprüche 1 bis 2, die ferner Folgendes umfasst:
    ein drittes, allgemein ringförmiges äußeres Stück (520), das Seite an Seite mit dem ersten ringförmigen äußeren Stück (512) entlang der Symmetrielängsachse (Z) (516) montiert und translational entlang der Achse (Z) gesperrt ist, und das mit dem ersten äußeren Stück (512) frei drehbar ist, um sich um das zweite innere Stück (518) zu drehen; und wobei
    das zweite innere Stück (518) ferner eine dritte elektrisch leitfähige Außenfläche (530) zur Übertragung von elektromagnetischen RF-Signalen rotationssymmetrisch um die Längsachse (Z) über den Erstreckungswinkelbereich aufweist; und
    das dritte äußere Stück (520) eine vierte elektrisch leitfähige Innenfläche (532) zur Übertragung von elektromagnetischen RF-Signalen rotationssymmetrisch um die Längsachse (Z) über den Winkelbereich aufweist, die ohne mechanischen Kontakt gegenüber der dritten Außenfläche (530) angeordnet und über den vorbestimmten Drehwinkelbereich um die Längsachse (Z) bewegbar ist; und
    die dritte äußere RF-Übertragungsfläche (530) eine Folge von NC dritten Drehflächenabschnitte um die Achse (Z) auf zweiten verschiedenen Ebenen L2(k), wobei k von 1 bis NC variiert, entlang der Symmetrielängsachse (Z) um die ein oder mehreren assoziierten dritten äußeren mittleren Radien r3(k), wobei k von 1 bis NC variiert, und N dritte(n) RF-Zugangsport(s) (550) und dritte Mittel (552) zum Einschränken und Führen der elektromagnetischen RF-Signale auf der Basis von Metamaterialien aufweist; und
    die vierte innere RF-Übertragungsfläche (532) eine Folge von NC vierten Drehflächenabschnitten um die Längsachse (Z) jeweils auf den zweiten verschiedenen Ebenen L2(k), wobei k von 1 bis NC variiert, entlang der Längsachse (Z) um die ein oder mehreren assoziierten vierten inneren mittleren Radien r4(k), wobei k von 1 bis NC variiert, die strikt kleiner sind als die entsprechenden ein oder mehreren dritten äußeren mittleren Radien r3(k), und N vierte RF-Zugangsports (554) und vierte Mittel (556) zum Einschränken und Führen der elektromagnetischen RF-Signale auf der Basis von Metamaterialien aufweist; und
    die erste, zweite, dritte und vierte RF-Übertragungsfläche (522, 528, 530, 534) durch den ersten, zweiten, dritten, vierten mittleren Radius r1(k), r2(k), r3(k), r4(k), die erste und zweite Längsebene L1(k), L2(k), die Geometrie des ersten, zweiten, dritten, vierten RF-Zugangsports und die Geometrie des ersten, zweiten, dritten, vierten RF-Einschränkungs- und Führungsmittels (544, 548, 554, 556) konfiguriert werden, so dass:
    - jeder RF-Übertragungspfad Vi (504), wobei i von 1 bis N variiert, in Reihe geschaltet einen ersten gekrümmten RF-Gleitwellenleiter zwischen dem ersten äußeren Stück (512) und dem zweiten inneren Stück (518) und einen zweiten gekrümmten RF-Gleitwellenleiter zwischen dem zweiten inneren Stück (518) und dem dritten äußeren Stück (530) umfasst; und
    - wobei die N ersten und zweiten gekrümmten RF-Gleitwellenleiter jedes Übertragungspfades Vi (504), wobei i von 1 bis N variiert, unterschiedlich sind, orthogonal zur Symmetrieachse (Z) angeordnet sind, winkelmäßig und jeweils auf den NC zweiten und dritten Drehflächenabschnitten der zweiten Außenfläche (528) und der dritten Außenfläche (530) verteilt sind, wobei der zweite und dritte Drehflächenabschnitt um die Längsachse (Z) des ersten und zweiten Wellenleiters jedes Pfades Vi aneinander angepasst sind, einen gleichen Index k(i) des zweiten und dritten Abschnitts auf der zweiten und dritten Fläche haben und sich entlang der Längsachse (Z) auf ihren assoziierten Ebenen L1 k(i), L2k(i) befinden.
  8. RF-(Radiofrequenz)-Drehkupplung nach einem der Ansprüche 1 bis 7, wobei
    das erste äußere Stück (12; 212; 312; 422; 512) N erste RF-Anschlüsse für den externen Anschluss von RF-Übertragungspfaden aufweist, die jeweils einzeln an die N ersten RF-Zugangsports der entsprechenden N ersten gekrümmten RF-Gleitwellenleiter der ersten RF-Übertragungsfläche durch N separate entsprechende erste Übergangsverbindungen sind, die durch das erste äußere Stück verlaufen.
  9. RF-Drehkupplung nach einem der Ansprüche 1 bis 6, wobei
    das zweite innere Stück (18; 218; 318; 432) N zweite RF-Anschlüsse für den externen Anschluss von RF-Übertragungspfaden umfasst, die jeweils einzeln an die N zweiten RF-Zugangsports der entsprechenden ersten gekrümmten RF-Gleitwellenleiter der zweiten RF-Übertragungsfläche durch N zweite separate entsprechende Übergangsverbindungen angeschlossen sind, die longitudinal und innerhalb durch das zweite innere Stück verlaufen.
  10. RF-Drehkupplung nach Anspruch 9, wobei
    das erste äußere Stück (12; 212; 312; 422) und das zweite innere Stück (18; 218; 318; 432) jeweils ein Stator und ein Rotor sind oder wechselseitig ein Rotor und ein Stator sind.
  11. RF-Drehkupplung nach einem der Ansprüche 7 bis 8, wobei
    das dritte äußere Stück (520) N zweite äußere RF-Anschlüsse für den äußeren RF-Übertragungspfadanschluss aufweist, die jeweils einzeln an die N vierten RF-Zugangsports der entsprechenden N zweiten gekrümmten RF-Gleitwellenleiter der vierten RF-Übertragungsfläche durch N zweite separate entsprechende Übergangsverbindungen angeschlossen sind, die durch das dritte äußere Stück verlaufen, und
    die N zweiten Zugangsports der ersten gekrümmten Gleitwellenleiter einzeln für eine einheitliche Übertragung zu den N dritten Zugangsports der zweiten gekrümmten Gleitwellenleiter verbunden sind.
  12. RF-Drehkupplung nach Anspruch 11, wobei das erste äußere Stück (512) und das dritte äußere Stück (520) jeweils ein Stator und ein Rotor sind oder jeweils wechselweise ein Rotor und ein Stator sind.
  13. RF-Drehkupplung nach einem der Ansprüche 2 bis 12, wobei
    die beiden seitlichen Beschränkungs- und Führungswände jedes ersten gekrümmten Gleitwellenleiters jeweils aus einem ein- oder zweidimensionalen Netzwerk von Blöcken mit elektrisch leitfähiger Oberfläche gebildet sind;
    die Blöcke der beiden seitlichen Wände jedes ersten gekrümmten Gleitwellenleiters schlank sind und von ein und derselben elektrisch leitfähigen umlaufenden Fläche des ersten Wellenleiters oder von den beiden elektrisch leitfähigen umlaufenden Flächen des ersten Wellenleiters aufgrund einer Seitenwand pro Umfangsfläche oder durch Verschachtelung der Blöcke von den beiden elektrisch leitfähigen umlaufenden Flächen für mindestens eine Seitenwand unter den beiden Seitenwänden vorstehen.
  14. RF-Drehkupplung nach einem der Ansprüche 2 bis 13, wobei
    die beiden umlaufenden Einschränkungs- und Führungsendwände jedes ersten gekrümmten Gleitwellenleiters auf beiden Seiten der ersten und zweiten RF-Ports angeordnet sind; und
    die beiden umlaufenden Einschränkungs- und Führungsendwände jeweils aus einem ein- oder zweidimensionalen Netzwerk von Blöcken mit elektrisch leitfähiger Oberfläche gebildet sind; und
    die Blöcke der beiden umlaufenden Endwände schlank sind und jeweils von der ersten Übertragungsfläche für die mit dem ersten RF-Zugang assoziierte und daneben angeordnete erste Endwand und von der zweiten Übertragungsfläche für die mit dem zweiten RF-Zugang assoziierte und daneben angeordnete zweite Endwand vorstehen.
  15. RF-Drehkupplung nach Anspruch 14, wobei die Blöcke der Endwände der ein oder mehreren RF-Übertragungspfade, die sich auf derselben Längsebene befinden, durch umlaufende Linien von kammartig angeordneten Blöcken gebildet werden, um ein mechanisch freies Kreuzen der ersten und zweiten Endwand zu ermöglichen, wenn sich das erste und zweite Stück unter Gewährleistung ihrer Funktion des Einschränkens von elektromagnetischen Wellen relativ zueinander drehen.
  16. RF-Drehkupplung nach einem der Ansprüche 1 bis 15, wobei
    Mittel zum Einschränken und Führen der elektromagnetischen RF-Signale, die ausgewählt sind aus den ersten und zweiten Mitteln zum Einschränken und Führen der elektromagnetischen RF-Signale zwischen umfangsmäßig oder seitlich benachbarten ersten gekrümmten Gleitwellenleitern gemeinsam genutzt werden.
  17. RF-Drehkupplung nach einem der Ansprüche 1 bis 16, wobei
    die ein oder mehreren ersten inneren mittleren Radien r1(k) und die ein oder mehreren zweiten äußeren mittleren Radien r2(k), wobei k von 1 bis NC variiert, jeweils gleich einer ersten Konstante r1 und einer zweiten Konstante r2 sind.
  18. RF-Drehkupplung nach einem der Ansprüche 1 bis 16, wobei
    die Anzahl NC von Abschnitten der ersten Übertragungsfläche bzw. von Abschnitten der zweiten Übertragungsfläche gleich oder größer als 2 ist und mindestens zwei Abschnitte der ersten Übertragungsfläche unterschiedliche erste innere Radien aufweisen; und
    die mindestens zwei einander gegenüberliegend assoziierten Abschnitte der zweiten Übertragungsfläche unterschiedliche zweite äußere Radien aufweisen.
  19. RF-Drehkupplung nach einem der Ansprüche 1 bis 18, wobei
    die NC ersten Drehflächenabschnitte um die Achse (Z) zylindrische Abschnitte um die Achse (Z) in verschiedenen ersten Ebenen L1(k), wobei k von 1 bis NC variiert, entlang der Symmetrielängsachse (Z) sind und mit ersten inneren Radien r1(k), wobei k von 1 bis NC variiert, assoziiert sind; und die NC zweiten Drehflächenabschnitte um die Achse (Z) zylindrische Abschnitte um die Achse (Z) jeweils in den ersten verschiedenen Ebenen L1 (k), wobei k von 1 bis NC variiert, entlang der Symmetrielängsachse (Z) und mit einem oder mehreren zweiten äußeren Radien r2 (k), wobei k von 1 bis NC variiert, assoziiert sind; und/oder
    die NC dritten Drehflächenabschnitte um die Achse (Z) zylindrische Abschnitte um die Achse (Z) auf zweiten verschiedenen Ebenen L2(k), wobei k von 1 bis NC variiert, entlang der Symmetrielängsachse (Z) sind und mit dritten äußeren Radien r3(k), wobei k von 1 bis NC variiert, assoziiert sind; und die NC vierten Drehflächenabschnitte um die Achse (Z) zylindrische Abschnitte um die Achse (Z) jeweils in den ein oder mehreren zweiten unterschiedlichen Ebene(n) L2(k), wobei k von 1 bis NC variiert, entlang der Symmetrielängsachse (Z) sind und mit den ein oder mehren vierten inneren Radien r4(k), wobei k von 1 bis NC variiert, assoziiert sind.
  20. RF-Drehwellenleitervorrichtung, die Folgendes umfasst:
    - einen ersten Teil;
    - einen zweiten Teil, der relativ zum ersten Teil drehbar ist; und
    - eine RF-Drehkupplung nach einem der Ansprüche 1 bis 19 zum Anschließen des ersten und zweiten Teils der Drehvorrichtung und zum Übertragen elektromagnetischer Signale zwischen diesen beiden Teilen.
EP19214965.6A 2018-12-18 2019-12-10 Radiofrequenz(rf)-drehkupplung für drehvorrichtung zur rf-wellenleitung, und rf-drehvorrichtung, die eine solche kupplung umfasst Active EP3680982B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1873020A FR3090216B1 (fr) 2018-12-18 2018-12-18 Joint tournant radiofrequence rf pour dispositif rotatif de guidage d’ondes rf et dispositif rotatif rf incluant un tel joint

Publications (2)

Publication Number Publication Date
EP3680982A1 EP3680982A1 (de) 2020-07-15
EP3680982B1 true EP3680982B1 (de) 2021-10-20

Family

ID=66690510

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19214965.6A Active EP3680982B1 (de) 2018-12-18 2019-12-10 Radiofrequenz(rf)-drehkupplung für drehvorrichtung zur rf-wellenleitung, und rf-drehvorrichtung, die eine solche kupplung umfasst

Country Status (5)

Country Link
US (1) US11075436B2 (de)
EP (1) EP3680982B1 (de)
CA (1) CA3065566A1 (de)
ES (1) ES2902479T3 (de)
FR (1) FR3090216B1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021107602A1 (ko) * 2019-11-26 2021-06-03 삼성전자 주식회사 회전형 데이터 전송 소자 및 이를 포함하는 전자 장치
US11689344B2 (en) * 2020-05-11 2023-06-27 Analog Devices International Unlimited Company Full-duplex wireless data transfer for rotary joints
WO2022053368A1 (en) * 2020-09-08 2022-03-17 Hochschule Fur Angewandte Wissenschaften Augsburg Rotary transmission system using a waveguide
EP4087051A1 (de) * 2021-05-03 2022-11-09 Hochschule für angewandte Wissenschaften Augsburg Drehübertragungssystem mit verwendung eines wellenleiters
CN112290173B (zh) * 2020-10-12 2021-07-20 盐城市星地通信设备有限公司 一种接触式无间隙的波导旋转关节
EP4335000A1 (de) * 2021-05-03 2024-03-13 Schleifring GmbH Rotierendes übertragungssystem mit einem wellenleiter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8779995B2 (en) * 2008-10-29 2014-07-15 Panasonic Corporation High-frequency waveguide and phase shifter using same, radiator, electronic device which uses this phase shifter and radiator, antenna device, and electronic device equipped with same
FR3029018B1 (fr) 2014-11-26 2016-12-30 Thales Sa Module compact d'excitation radiofrequence a cinematique integree et antenne compacte biaxe comportantau moins un tel module compact
EP3147994B1 (de) * 2015-09-24 2019-04-03 Gapwaves AB Wellenleiter und übertragungsleitungen in zwischenräumen zwischen parallelen leitenden oberflächen
DE112017000573B4 (de) * 2016-01-29 2024-01-18 Nidec Corporation Wellenleitervorrichtung und Antennenvorrichtung mit der Wellenleitervorrichtung
FR3071363B1 (fr) 2017-09-19 2019-09-06 Thales Joint tournant pour une antenne rotative et antenne rotative comportant un tel joint

Also Published As

Publication number Publication date
US20200194861A1 (en) 2020-06-18
FR3090216B1 (fr) 2020-12-18
FR3090216A1 (fr) 2020-06-19
CA3065566A1 (en) 2020-06-18
US11075436B2 (en) 2021-07-27
EP3680982A1 (de) 2020-07-15
ES2902479T3 (es) 2022-03-28

Similar Documents

Publication Publication Date Title
EP3680982B1 (de) Radiofrequenz(rf)-drehkupplung für drehvorrichtung zur rf-wellenleitung, und rf-drehvorrichtung, die eine solche kupplung umfasst
EP2564466B1 (de) Kompaktes strahlungselement mit hohlraumresonatoren
EP2415120B1 (de) Mehrschichtige pillbox-antenne mit parallelen ebenen und entsprechendes antennensystem
EP1407512B1 (de) Antenne
EP2869400B1 (de) Doppelpolarisierter kompakter Leistungsverteiler, Netz aus mehreren Verteilern, kompaktes Strahlungselement und Flachantenne, die einen solchen Verteiler umfasst
EP3057130A1 (de) Rf-übertragungsvorrichtung mit integriertem reflektor von elektromagnetischen wellen
FR2810163A1 (fr) Perfectionnement aux antennes-sources d'emission/reception d'ondes electromagnetiques
WO2002031920A1 (fr) Perfectionnement aux sources d'emission / reception d'ondes electromagnetiques pour antenne a multireflecteurs
EP0372451A1 (de) Multifrequenz-Strahlungsvorrichtung
EP3843202B1 (de) Horn für eine zirkular polarisierte duale ka-band-satellitenantenne
EP0098192B1 (de) Multiplexanordnung zum Zusammenfügen von zwei Frequenzbändern
CA2460820C (fr) Antenne a large bande ou multi-bandes
EP2434578A1 (de) Antennensystem mit zwei Spot-Gittern mit komplementären überlappten Netzen
EP3176875B1 (de) Aufbau einer aktiven hybriden rekonfigurierbaren strahlbildungsantenne
EP2610966B1 (de) Kompakte Breitbandantenne von sehr geringer Dicke und mit doppelten orthogonalen linearen Polarisierungen, die für den V/UHF-Bandbereich konzipiert ist
EP2006954B1 (de) Kommunikationsgerät für Schienenfahrzeuge
EP1191630A1 (de) Divergierende kuppelförmige geodätische Linse für HF und Antenne bestehend aus solcher Linse
EP0377155A1 (de) Doppelfrequenz strahlende Vorrichtung
EP2637254B1 (de) Flachantenne für Endgerät, das über eine doppelte Kreispolarisierung funktioniert, auf dem Luftweg transportiertes Endgerät und Satellitentelekommunikationssystem, das mindestens eine solche Antenne umfasst
EP3902059A1 (de) Breitband-richtantenne mit longitudinalwellen-übertragung
WO2021074505A1 (fr) Antenne-reseau
FR3105612A1 (fr) Antenne à cavité résonante compacte
EP3537542B1 (de) 3d-antenne
EP3075031B1 (de) Anordnung von antennenstrukturen für satellitentelekommunikationen
EP2889955B1 (de) Kompaktantennenstruktur für Telekommunikationen über Satelliten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201203

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01P 3/123 20060101ALI20210415BHEP

Ipc: H01P 1/06 20060101AFI20210415BHEP

INTG Intention to grant announced

Effective date: 20210511

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019008523

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1440672

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211115

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CENTRE NATIONAL D'ETUDES SPATIALES

Owner name: THALES

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211020

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220127 AND 20220202

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1440672

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211020

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2902479

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220120

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220220

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220221

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220120

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019008523

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

26N No opposition filed

Effective date: 20220721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211210

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211210

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20191210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231116

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231122

Year of fee payment: 5

Ref country code: DE

Payment date: 20231114

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240118

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 5