EP3676496B1 - Liquid ring pump - Google Patents

Liquid ring pump Download PDF

Info

Publication number
EP3676496B1
EP3676496B1 EP18772737.5A EP18772737A EP3676496B1 EP 3676496 B1 EP3676496 B1 EP 3676496B1 EP 18772737 A EP18772737 A EP 18772737A EP 3676496 B1 EP3676496 B1 EP 3676496B1
Authority
EP
European Patent Office
Prior art keywords
pump
liquid
chamber
ring
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18772737.5A
Other languages
German (de)
French (fr)
Other versions
EP3676496A1 (en
Inventor
Bernhard Herrmann
Eberhard Schlücker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydrogenious Technologies GmbH
Original Assignee
Hydrogenious LOHC Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydrogenious LOHC Technologies GmbH filed Critical Hydrogenious LOHC Technologies GmbH
Publication of EP3676496A1 publication Critical patent/EP3676496A1/en
Application granted granted Critical
Publication of EP3676496B1 publication Critical patent/EP3676496B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C19/00Rotary-piston pumps with fluid ring or the like, specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C19/00Rotary-piston pumps with fluid ring or the like, specially adapted for elastic fluids
    • F04C19/005Details concerning the admission or discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the invention relates to a liquid ring pump which is used, for example, to convey gases or to generate a vacuum.
  • Liquid ring pumps are usually used to convey gaseous media and usually include an approximately circular-cylindrical pump housing in which a pump wheel is eccentrically rotatable.
  • the impeller is usually an impeller that is approximately star-shaped when viewed in cross section.
  • a pump liquid (also referred to as "ring liquid”) is also arranged in the pump housing. This is circulated by rotation of the pump wheel in the circumferential direction of the pump wheel within the pump housing and forms a liquid ring along the inner circumference of the pump housing due to centrifugal force when the pump wheel rotates at a sufficient speed. Due to the eccentricity of the impeller, the individual blades in the circumferential direction are immersed to different depths in the ring liquid, specifically the liquid ring.
  • the gas standing between the individual vanes during operation of the liquid ring pump is thus compressed and/or displaced from the interspaces between the guide vanes as the impeller rotates due to the ever deeper immersion of the vanes in the liquid ring.
  • This compression or displacement effect is used by a suitable design of the pump housing in order to convey the gas out of the respective intermediate space through an associated housing opening.
  • the impeller is sealed off from the pump housing by means of the pump liquid and therefore there are hardly any components that slide against one another are present, sparking during operation of the liquid ring pump can be effectively prevented and thus explosive gases can be conveyed comparatively safely.
  • the pump liquid also serves as a cooling medium and, in particular, absorbs the thermal energy that occurs during the compression of the gases. This, in turn, is advantageous when conveying heat-sensitive gases.
  • a disadvantage of liquid ring pumps is that the vapor pressure (value) of the ring liquid limits the achievable suction pressure (specifically its value).
  • the achievable suction pressure (value) is therefore around 30 mbar. The deflagration also leads to a comparatively high level of noise, which makes operation of the liquid ring pumps unattractive, particularly in laboratories.
  • the invention is based on the object of specifying an improved liquid ring pump.
  • the liquid ring pump comprises a pump housing surrounding a pump chamber, with a pump liquid, also referred to below as ring liquid, being filled into the pump chamber in the intended operating state.
  • the liquid ring pump includes an impeller, which is arranged within the pump chamber and around a Axis of rotation is rotatable.
  • the impeller serves to convey a gaseous working medium.
  • the impeller has on its outer circumference a number of pumping chambers that are separated from one another at least in the circumferential direction.
  • the conveying chambers are preferably separated from one another by partition walls that run radially to the axis of rotation or are inclined in the circumferential direction.
  • the impeller also has an outlet opening assigned to each delivery chamber and made locally in a bottom wall of the impeller that delimits the respective delivery chamber radially on the inside for fluidic connection of the respective delivery chamber to a pressure area (also: "high-pressure area") of the pump chamber.
  • the bottom wall in each delivery chamber is inclined along the axis of rotation (ie viewed in the axial direction) on both sides of the outlet opening, at least in sections to the axis of rotation (and preferably also to the radial direction) and runs (from both sides) in the direction of the outlet opening.
  • the outlet opening is in each case arranged at a point in the respective delivery chamber which has the smallest radial distance from the axis of rotation.
  • the term “local” is understood here and in the following in particular to mean that the outlet opening is small compared to the areal extension (for example along the axial direction) of the bottom wall and thus also of the delivery chamber. In other words, the term “local” describes that the outlet opening does not extend over the entire surface of the respective delivery chamber running along the axial direction.
  • outlet opening is preferably arranged centrally in the bottom wall of the conveying chamber, viewed in the axial direction.
  • inclined is understood here and in the following in particular to mean that the bottom wall (at least in sections) is set at an angle to the axis of rotation or - viewed in a section along the axis of rotation - has a curved course (and is therefore locally inclined).
  • the outlet opening is therefore arranged in the respective pumping chamber in such a way that - when the impeller rotates, which is positioned eccentrically to the pump housing, and thus when the corresponding pumping chamber is increasingly immersed in the ring liquid, in particular in a liquid ring formed by the ring liquid - first the to conveying working medium (in particular a gas) and then a preferably small, in particular adjustable amount of ring liquid enters the outlet opening. It can thus advantageously be made possible for the working medium to be conveyed to be expelled as completely as possible from the respective conveying chamber by the following ring liquid.
  • the working medium in particular a gas
  • a streamlined chamber shape is made possible, which prevents or at least reduces a (wave-like) impact of the ring liquid on the bottom wall that contributes to the formation of the mixture (in particular to the formation of foam), and rather a directed flow in Supported towards the outlet opening.
  • the bottom wall tapering towards the outlet opening also ensures that the ring liquid "pushes" the working medium to be conveyed in front of it in the direction of the outlet opening and the risk of mixing of the ring liquid and the working medium is reduced.
  • suction pressures can be achieved which come particularly close to the value range of the respective vapor pressure of the ring liquid.
  • the impeller is arranged eccentrically in the pump chamber (and this is preferably also filled with ring liquid) such that a liquid ring formed by the pump liquid during normal operation, particularly in the pressure area the pump chamber completely covers at least one of the pumping chambers (in particular the "last" one or also the one ejecting the working medium) in the radial direction (on the inside).
  • the impeller in the region of this delivery chamber ie in the pressure region
  • the respective outlet opening is at least partially below the "level" of the liquid ring.
  • the respective outlet opening is preferably arranged and designed in such a way that (preferably in combination with the eccentricity selected above and the fill level of the ring liquid) in normal operation after the working medium has been ejected, at least a small proportion of the ring liquid flowing through the pumping chamber is also ejected . This enables the working medium to be conveyed “completely” out of the respective conveying chamber in a simple manner.
  • each delivery chamber is formed symmetrically to a radial plane of the impeller, which in this case at least partially represents a mirror surface.
  • the exit opening is advantageously arranged in the mirror surface, touching at least this mirror surface.
  • the ring liquid can flow in the direction of the outlet opening in a particularly orderly manner and while avoiding the formation of mixtures as completely as possible.
  • the outlet opening is at the ("geodesically") lowest point - ie at the point with the smallest radial distance to the axis of rotation - the pumping chamber.
  • the inclined bottom wall along the axis of rotation is essentially (i.e. exactly or approximately) U-shaped or V-shaped.
  • the outlet opening is arranged in particular at the lowest point of the U or the V.
  • the bottom wall thus runs curved on both sides to the mirror surface (in the case of the U's) or in a straight line at an angle ("funnel-like"; in the case of the V's) towards the outlet opening.
  • each delivery chamber is delimited at the front (i.e. in the axial direction) by at least one side wall (also referred to as front or end wall), preferably by one side wall each.
  • the or the respective side wall preferably connects to the bottom wall.
  • the individual delivery chambers are delimited from one another in the circumferential direction by the partition walls described above.
  • the side walls preferably run in a radial direction.
  • the side walls serve to delimit the respective delivery chamber from the pump chamber.
  • both side walls or at least one of the two side walls are formed integrally (i.e. monolithically) from an impeller body forming at least the bottom wall of the pumping chambers.
  • the other side wall or alternatively both side walls are optionally designed as "side shields" or “cover plates” and placed on the impeller body.
  • the impeller has, for each delivery chamber, an inflow opening locally in one of the walls delimiting the delivery chamber, in particular in the bottom wall or the side wall or one of the side walls, for the fluidic connection of the respective delivery chamber with a suction area (or "low-pressure area") of the pump chamber . i.e. When the liquid ring pump is in operation, the working medium to be pumped flows through this inflow opening into the respective pumping chamber.
  • this delivery chamber in particular this inflow opening, is covered, for example, by the ring liquid, so that the working medium is prevented from flowing out of the corresponding delivery chamber through this very inflow opening.
  • the working medium to be conveyed can also flow into the impeller via the conveying chamber, which is preferably open on the (outer) circumference of the impeller.
  • the working medium to be conveyed can flow into the respective conveying chamber even if one or both side walls are missing and/or if at least one of the side walls has a correspondingly shortened radial extent, even without a specifically designed inflow opening.
  • a non-return valve which preferably limits the delivery chamber (in particular on the outlet side)
  • This check valve is designed to open in the exit direction from the respective delivery chamber and to seal against the exit direction.
  • the check valve arranged in the outlet opening (also referred to as "outlet valve") is also set up to only open above a predetermined value of a delivery pressure (or: compression pressure) within the delivery chamber. This makes it possible to specify (adjust) a pressure difference between the suction area and the pressure area in the pump chamber in a targeted manner.
  • such a non-return valve can prevent or at least significantly reduce deflagration effects out of the delivery chamber or back into it.
  • the noise generated by the liquid ring pump during operation can advantageously be reduced.
  • this is in the respective outlet opening
  • the built-in outlet valve is designed for the lowest possible pressure loss (value).
  • the outlet valve preferably also has a high sealing effect.
  • the respective outlet valve is preferably mounted in the impeller in such a way that its closing function is brought about, or at least supported, by the centrifugal force (occurring due to the rotation of the impeller) during operation of the liquid ring pump.
  • valve springs or comparable means for closing the respective outlet valve are optionally omitted.
  • a check valve which preferably delimits the delivery chamber (in particular on the inflow side) is arranged inside the inflow opening.
  • This is designed in such a way that a backflow of the working medium (and possibly also the ring liquid) from the delivery chamber into the suction area of the pump chamber is prevented.
  • the “loading” (ie the filling) of the delivery chamber with working medium can thus advantageously be controlled by means of this “inflow valve”.
  • a particularly precise control of the loading and unloading of the respective delivery chamber is possible, preferably purely as a function of the pressure.
  • the respective inflow valve is mounted in the impeller in such a way that its function is supported by the centrifugal force.
  • the respective inflow valve is here installed in such a way that opening of the inflow valve in the inflow direction is supported by centrifugal force.
  • the inflow valves and optionally also the outlet valves are preferably designed as diaphragm valves.
  • the inflow valves and/or the outlet valves are formed by flaps, pressure-controlled valves (for example valves produced by a printing process) or the like.
  • the outlet openings of the pumping chambers open into a (preferably common) outlet chamber arranged on the impeller (in particular on the outlet side).
  • This outlet chamber is preferably designed for the centrifugal force-related separation of the working medium from the ring liquid.
  • the outlet chamber is set up for the separation ("separation") of gases and liquids.
  • the outlet chamber has an outer wall running parallel or preferably obliquely to the axis of rotation and thus in the latter case approximately a hollow conical shape.
  • this outer wall rotates with the impeller, so that due to the centrifugal effect, the ring liquid is deposited on the outer wall and can flow off along it, in particular along its sloping course.
  • the ring liquid separated off in this way is preferably (directly or indirectly via a reservoir) fed back to the liquid ring, so that it is at least not continuously reduced in size during normal operation.
  • the respective outlet chamber can also be omitted.
  • the reservoir described above also has a cooling device, by means of which the separated ring liquid is cooled before it is returned to the liquid ring during normal operation.
  • means for supporting the separation of the working medium from the ring liquid are arranged in the outlet chamber.
  • These means are, for example, guide vanes or, in particular, radially aligned guide disks, which promote the separation caused by centrifugal force, for example, by means of targeted guidance in particular of the ring liquid.
  • a device downstream of the liquid ring pump (on the pressure side) for separating the working medium from the ring liquid can be dispensed with or at least simplified.
  • the above-described outer wall of the outlet chamber and a drain device (or: “liquid drain”) optionally used to drain the separated ring liquid are arranged in such a way that the ring liquid is guided over a gap between the impeller and the pump housing during operation and thereby acts as a gas barrier Sealing of the gap causes.
  • the liquid ring pump comprises a control ring which can be rotated relative to the impeller and is preferably arranged in a stationary manner relative to the impeller during normal operation.
  • This control ring closes a large number of the outlet openings of the impeller in sections against the impeller on the output side.
  • at least one of the outlet openings namely preferably the ejecting outlet opening or additionally also a number of the outlet openings trailing behind the ejecting outlet opening in the direction of rotation of the impeller—is open for the outflow of the working medium.
  • the control ring can be adjusted so that it releases a different number of outlet openings.
  • the liquid ring pump comprises in this case also an adjusting device for adjusting this control ring.
  • the control ring for adjusting the released number of outlet openings comprises two partial rings that can be rotated in relation to one another and lie one above the other with bores that form a through-opening that can be adjusted in size (by rotating the partial rings in relation to one another).
  • the control ring (which in particular carries bores) (or only ring sectors thereof) can also be displaced radially or axially in order to release a different number of outlet openings.
  • the control ring also has bores of different sizes.
  • the liquid ring pump includes means for throttling the suction flow in addition to this control ring.
  • a throttle in particular a throttle valve, is arranged on the inlet side of the pump chamber to reduce the pressure value present in the suction area of the pump chamber.
  • the delivery pressure value that can be achieved in the delivery chamber in the pressure region of the pump chamber can also be set, in particular lowered, as a result of which deflagration effects from the respective delivery chamber can advantageously be reduced or avoided.
  • a poly-alpha-olefin is used as the ring liquid.
  • a poly-alpha-olefin advantageously has a vapor pressure value that is significantly lower (in particular by a multiple, for example at least ten times) compared to water, so that suction pressure values in the range below 1 mbar are also possible. It is thus advantageously possible to also use the liquid ring pump described above for the so-called fine vacuum range.
  • the poly-alpha-olefin can also have a lubricating effect and/or contribute to sealing gaps between components due to its comparatively high viscosity.
  • the liquid ring pump 1 comprises a pump housing 2 (represented schematically as a hollow cylinder) which encloses an interior space referred to as the pump chamber 3 .
  • the liquid ring pump 1 also includes a pump wheel 4 , which is arranged inside the pump chamber 3 such that it can rotate about an axis of rotation 6 .
  • the pump wheel 4 is arranged eccentrically to the pump housing 2 with its axis of rotation 6 .
  • the impeller 4 serves to convey a gaseous working medium, specifically a gas.
  • the impeller 4 has on its outer circumference a number of delivery chambers 8 which are separated from one another in the circumferential direction.
  • the delivery chambers 8 are separated from one another in the circumferential direction by intermediate walls 10 .
  • Each delivery chamber 8 also has an outlet opening 12 which is arranged at a point in the respective delivery chamber 8 which is at the smallest radial distance from the axis of rotation 6 .
  • a pump liquid called ring liquid 14 is filled into the pump chamber 3 .
  • the ring liquid 14 is also set in rotation along the inner wall of the pump housing 2 and forms there due to the centrifugal force an in 1 schematically indicated liquid ring 18 from. Due to the eccentricity of the axis of rotation 6 in relation to the pump housing 2 , the impeller 4 and thus also the individual delivery chambers 12 dip into the liquid ring 18 at different depths along the direction of rotation 16 .
  • the liquid ring 18 seals the delivery chambers 8 that are open on the outer circumference of the impeller 4 (cf. partial section II-II in 2 ) and pushes the gas in the pump chamber 3 and the respective pumping chamber 8 in front of it in the direction of the respective outlet opening 12 with increasing immersion depth of the impeller 6 in the liquid ring 18 .
  • the gas In order to convey the gas, in an area in which the impeller 4 only dips slightly into the liquid ring 18 (in 1 the position at about 11:00 a.m.) the gas is introduced into the pump chamber 3 via a supply opening (not shown in detail). This area is also referred to as the suction area 20 of the pump chamber 3 .
  • the gas enters the respective pumping chamber 8, which is located in the suction area 20 at this point in time, and when the pump wheel 4 rotates due to the "rising" liquid level of the ring liquid 14 in the respective pumping chamber 8 - due to the progressive immersion of the pump wheel 4 the ring liquid 14 flows into the liquid ring 18 in a radial direction into the respective delivery chamber 8 -- pressed in the direction of the outlet opening 12 .
  • the liquid ring pump 1 is designed in such a way that the outlet openings 12 of the impeller 4 are initially closed on the outlet side. Only in a pressure area 22 that is essentially diametrically opposite the suction area 20 and in which the liquid level of the liquid ring 18 reaches up to a bottom wall 24 that delimits the respective delivery chamber 8 radially on the inside (in 1 in the range of about 5:00 a.m.) or even radially inside exceeds (or: “covers"; cf. 2 ), the respective outlet opening 12 is open and the compressed gas can flow out of the respective pumping chamber 8 and out of the pump housing 2 via a corresponding gas guide line, not shown in detail.
  • the outlet opening 12 thus serves to fluidically connect the respective delivery chamber 8 to the pressure area 22 of the pump chamber 3.
  • the impeller 4 comprises two side walls 26 for covering the respective pumping chamber 8 at the front (or: axial end) and which in the exemplary embodiment shown are formed in one piece (ie monolithically) from an impeller body 28 forming the impeller 4 .
  • the side walls 26 merge into the bottom wall 24, which is U-shaped. i.e. the bottom wall 24 runs in an arc along the axis of rotation 6 from two sides in the direction of the "geodetically lowest" point (ie the point with the smallest radial distance from the axis of rotation 6) of the pumping chamber 8.
  • the outlet opening 12 is arranged.
  • the respective pumping chamber 8 specifically its geometric structure symmetrical to a mirror surface 30, which is formed by a radial plane to the axis of rotation 6.
  • a uniform flow of the ring liquid 14 in the direction of the outlet opening 12 is thereby achieved.
  • the outlet opening 12 is designed as a right-angled bore and thus represents a channel that first leads in the radial direction out of the respective pumping chamber 8 and then out of the impeller 4 parallel to the axis of rotation 6 on an end face 32 .
  • an inflow opening 36 is made in the side wall 26 there, which allows the gas to flow into the delivery chamber 8 in the suction area 20 .
  • This inflow opening 36 is particularly expedient when the liquid level of the ring liquid 14 is selected in such a way that the outer circumference of the impeller 4 is constantly immersed in the liquid ring 18 .
  • the illustrated shape of the bottom wall 24 enables an approximately linear increase in speed of the annular liquid 14 flowing into the conveying chamber 8 .
  • the arched or inclined bottom wall 24 positioned against the axis of rotation 6 also prevents the annular liquid 14 from hitting the bottom wall 24 abruptly and the development of foam (ie mixture) and noise associated therewith.
  • the fact that the outlet opening 12 is arranged at the lowest point of the pumping chamber 8 also makes it possible for the ring liquid 14 to push the gas in front of it and in the pressure region 22 of the pump chamber 3 the gas can initially flow out via the outlet opening 12 .
  • the filling quantity of the ring liquid 14 and the eccentricity of the axis of rotation 6 in the pump housing 2 are selected such that the liquid level of the liquid ring 18 in the pressure area 22 completely covers the outlet opening 12. This makes it possible for the gas standing in the conveying chamber 8 and the outlet opening 12 to be completely expelled through the ring liquid 14 and even for a portion of the ring liquid 14 to also be conveyed out of the conveying chamber 8 .
  • the measures described above make it possible to pump the gas out of the respective pumping chamber 8 to a negligible proportion, so that a suction pressure value in the range of the vapor pressure of the ring liquid can be achieved.
  • the side walls 26 are formed by plates or shields placed on both sides of the impeller body 28 (and thus produced separately from it).
  • the bottom wall 24 is V-shaped and thus has two straight sections running obliquely to the axis of rotation 6 (ie one section on each side of the mirror surface). Consequently, the bottom wall 24 runs in section according to FIG 2 viewed like a funnel towards the outlet opening 12 .
  • the outlet opening 12 specifically its channel section leading out of the impeller body 28 , is also set at an angle to the axis of rotation 6 . This makes it possible for the annular liquid 14 to always push the gas in front of it, even within the outlet opening 12 . The risk of (turbulent) mixing of the ring liquid 14 with the gas is thus further reduced.
  • the side walls 26 can also be omitted, in particular if the "V" of the bottom wall 24 is raised laterally.
  • a control ring 40 serves to release the outlet openings 12 into the pressure area 22 .
  • the ring body of the control ring 40 covers the outlet openings 12 on the outlet side against the impeller 4 .
  • the control ring 40 has an annular gap 42, within which the outlet openings 12 are not covered.
  • the control ring 40 can be rotated about the axis of rotation 6 with respect to the pump wheel 4 . The more the outlet openings 12 are open in the pressure area 22, the lower the pressure difference.
  • FIG 5 is a to 4 alternative embodiment of the liquid ring pump 1, specifically the impeller 4, shown.
  • the outlet valve 50 To control the pressure ratio between the suction area 20 and the pressure area 22 and for the targeted discharge of the gas in the delivery chamber 8 and compressed by the rising ring liquid 14, there is a check valve in the respective outlet opening 12 of each delivery chamber 8, referred to below as the outlet valve 50 , arranged. the inside 4 illustrated control ring 40 can thus be omitted.
  • the outlet valve 50 advantageously also prevents gas that has already been expelled from the pressure area 22 from flowing back into the already discharged delivery chamber 8 or even deflagrating back into this delivery chamber 8 as the impeller 4 rotates further and the liquid level of the ring liquid 14 decreases.
  • each pumping chamber behaves in isolation like an oscillating positive displacement pump (where the liquid ring 18 locally forms a liquid piston).
  • the respective outlet valve 50 is set up in such a way that it opens when the delivery pressure value present in the delivery chamber is sufficiently high, for example corresponds to the pressure value required on the output side of the liquid ring pump 1 .
  • the outlet opening 12 leads via the outlet valve 50 into an outlet chamber 54 which is arranged on the impeller body 28 and is specifically formed therein.
  • the outlet chamber 54 has at least one chamber surface 56 inclined to the axis of rotation 6 . Due to the centrifugal force acting on the ring liquid 14, the ring liquid 14 that is also ejected is separated from the gas at this chamber surface 56, in that the ring liquid 14 is deposited on this chamber surface 56 and flows along it to the (front) side 32 of the impeller 4.
  • the gas supply line which is not shown in detail
  • a liquid discharge line in the form of a pipeline (optionally integrated in the gas supply line) on this side 32, via which the ring liquid 14 separated from the gas is discharged during operation, fed to a cooling device and then returned to the pump chamber 3 becomes.
  • the chamber surface 56 runs parallel to the axis of rotation 6 and thus represents an inner surface of a circular cylinder.
  • means for supporting the gas-liquid separation are additionally arranged in the outlet chamber 54 . These are guide vanes that support the centrifugal force-related separation of the ring liquid 14 .
  • the inflow opening 36 is also formed in the bottom wall 24 of the pumping chamber 8.
  • inflow valve 58 a non-return valve which prevents the gas from flowing back and thus also deflagrating from the delivery chamber 8 in the suction area 20 prevents.
  • the use of the inflow valve 58 and the outlet valve 50 enables particularly precise control of the loading and unloading of the pumping chamber 8 with the gas to be pumped.
  • the development of noise as a result of dynamic pressure relief in or out of the respective delivery chamber and any associated foaming between the gas and the ring liquid 14 are effectively prevented.
  • the inflow valves 58 and the outlet valves 50 are each designed as membrane valves. Due to the arrangement in the bottom wall 24 described above, the sealing or closing effect of the outlet valves 50 is supported by the centrifugal force. Correspondingly, in this arrangement, the opening of the inflow valves 58 is also assisted by the centrifugal force.
  • a guide disk 60 is arranged in the (common) outlet chamber 54, which supports the centrifugal force-induced separation of the annular liquid 14.
  • the guide disk 60 is coupled to the pump base body 28 in a torque-proof manner.
  • the outlet opening 12 (in particular the channel formed by it) and/or the outlet valve 50 are aligned in such a way that the outflowing gas and the following annular liquid 14 impinge on the guide disk 60 rotating with the impeller 4 .
  • Passage openings 62 for the gas are arranged radially on the inside in guide disk 60 (distributed over its circumference). Due to the centrifugal force caused by the rotation of the guide disk 60 , the annular liquid 14 runs off radially outwards on the guide disk 60 . The ring liquid 14 then runs off to the side 32 on the (conically widening and rotating) chamber surface 56 . Across a gap 64 , which is sufficiently small to prevent at least excessive inflow of the ring liquid 14 into the gap 64 , the ring liquid 14 flows onto the stationary region of the liquid ring pump 1 , specifically onto the pump housing 2 .
  • An annular channel 66 is formed in the pump housing 2 , which is designed as a kind of drainage channel for the annular liquid 14 , which runs off the chamber surface 56 onto the pump housing 2 .
  • an outlet is formed in the ring channel 66, which represents the liquid discharge described above.
  • the drain is designed in such a way that the passage of gas is prevented.
  • the outlet is designed like a siphon or has such a small diameter that there is always a residual liquid level of the ring liquid 14 at the outlet and thus closes it against the passage of gas.

Description

Die Erfindung betrifft eine Flüssigkeitsringpumpe, die beispielsweise zur Förderung von Gasen oder der Erzeugung eines Vakuums dient.The invention relates to a liquid ring pump which is used, for example, to convey gases or to generate a vacuum.

Flüssigkeitsringpumpen dienen üblicherweise zur Förderung von gasförmigen Medien und umfassen dabei meist ein näherungsweise kreiszylindrisches Pumpengehäuse, in dem exzentrisch ein Pumpenrad rotierbar angeordnet ist. Bei dem Pumpenrad handelt es sich üblicherweise um ein im Querschnitt gesehen etwa sternförmiges Schaufelrad. In dem Pumpengehäuse ist außerdem eine Pumpenflüssigkeit (auch als "Ringflüssigkeit" bezeichnet) angeordnet. Diese wird durch Rotation des Pumpenrads in Umfangsrichtung des Pumpenrads innerhalb des Pumpengehäuses umgewälzt und bildet bei hinreichender Drehzahl des Pumpenrads fliehkraftbedingt einen Flüssigkeitsring entlang des Innenumfangs des Pumpengehäuses aus. Aufgrund der Exzentrizität des Pumpenrads tauchen dabei erkanntermaßen die einzelnen Schaufeln in Umgangsrichtung unterschiedlich tief in die Ringflüssigkeit, konkret den Flüssigkeitsring, ein. Das im Betrieb der Flüssigkeitsringpumpe zwischen den einzelnen Schaufeln stehende Gas wird somit bei Rotation des Pumpenrads wegen des immer tieferen Eintauchens der Schaufeln in den Flüssigkeitsring in den Zwischenräumen zwischen den Leitschaufeln komprimiert und/oder aus diesen verdrängt. Dieser Kompressions- bzw. Verdrängungseffekt wird durch eine geeignete Gestaltung des Pumpengehäuses genutzt, um das Gas durch eine zugeordnete Gehäuseöffnung aus dem jeweiligen Zwischenraum zu fördern.Liquid ring pumps are usually used to convey gaseous media and usually include an approximately circular-cylindrical pump housing in which a pump wheel is eccentrically rotatable. The impeller is usually an impeller that is approximately star-shaped when viewed in cross section. A pump liquid (also referred to as "ring liquid") is also arranged in the pump housing. This is circulated by rotation of the pump wheel in the circumferential direction of the pump wheel within the pump housing and forms a liquid ring along the inner circumference of the pump housing due to centrifugal force when the pump wheel rotates at a sufficient speed. Due to the eccentricity of the impeller, the individual blades in the circumferential direction are immersed to different depths in the ring liquid, specifically the liquid ring. The gas standing between the individual vanes during operation of the liquid ring pump is thus compressed and/or displaced from the interspaces between the guide vanes as the impeller rotates due to the ever deeper immersion of the vanes in the liquid ring. This compression or displacement effect is used by a suitable design of the pump housing in order to convey the gas out of the respective intermediate space through an associated housing opening.

Da das Pumpenrad gegenüber dem Pumpengehäuse mittels der Pumpenflüssigkeit abgedichtet ist und somit kaum oder keine aneinander abgleitenden Bauteile vorhanden sind, kann eine Funkenbildung im Betrieb der Flüssigkeitsringpumpe effektiv unterbunden und somit auch explosionsgefährdete Gase vergleichsweise sicher gefördert werden. Des Weiteren dient die Pumpenflüssigkeit auch als Kühlmedium und nimmt insbesondere die bei der Kompression der Gase anfallende Wärmeenergie auf. Auch dies ist wiederum vorteilhaft bei der Förderung von wärmeempfindlichen Gasen.Since the impeller is sealed off from the pump housing by means of the pump liquid and therefore there are hardly any components that slide against one another are present, sparking during operation of the liquid ring pump can be effectively prevented and thus explosive gases can be conveyed comparatively safely. Furthermore, the pump liquid also serves as a cooling medium and, in particular, absorbs the thermal energy that occurs during the compression of the gases. This, in turn, is advantageous when conveying heat-sensitive gases.

Nachteilig an Flüssigkeitsringpumpen ist allerdings, dass der Dampfdruck(-wert) der Ringflüssigkeit den erreichbaren Saugdruck (konkret dessen Wert) begrenzt. Zudem kommt es insbesondere aufgrund von dynamischen Strömungsvorgängen im Pumpengehäuse, insbesondere aufgrund stoßhafter Druckentlastungen, unter anderem zur Bildung eines Flüssigkeits-Gasgemisches, das aus dem jeweiligen Zwischenraum gefördert wird, was zusätzlich zur Begrenzung des erreichbaren Saugdruckwerts beiträgt, sowie je nach Druckunterschied zu Verpuffungen aus dem jeweiligen Zwischenraum heraus oder in den jeweiligen Zwischenraum hinein. Für Wasser als Ringflüssigkeit liegt der erreichbare Saugdruck(-wert) deshalb bei etwa 30 mbar. Die Verpuffungen führen außerdem zu einer vergleichsweise starken Geräuschentwicklung, die einen Betrieb der Flüssigkeitsringpumpen insbesondere in Labors unattraktiv macht.A disadvantage of liquid ring pumps, however, is that the vapor pressure (value) of the ring liquid limits the achievable suction pressure (specifically its value). In addition, due to dynamic flow processes in the pump housing, in particular due to sudden pressure relief, a liquid-gas mixture is formed, which is pumped out of the respective intermediate space, which also contributes to limiting the achievable suction pressure value, and depending on the pressure difference, deflagration from the respective gap out or into the respective gap. For water as the ring liquid, the achievable suction pressure (value) is therefore around 30 mbar. The deflagration also leads to a comparatively high level of noise, which makes operation of the liquid ring pumps unattractive, particularly in laboratories.

Der Erfindung liegt die Aufgabe zugrunde, eine verbesserte Flüssigkeitsringpumpe anzugeben.The invention is based on the object of specifying an improved liquid ring pump.

Diese Aufgabe wird erfindungsgemäß gelöst durch eine Flüssigkeitsringpumpe mit den Merkmalen des Anspruchs 1. Weitere vorteilhafte und teils für sich erfinderische Ausführungsformen und Weiterbildungen der Erfindung sind in den Unteransprüchen und der nachfolgenden Beschreibung dargelegt.This object is achieved according to the invention by a liquid ring pump having the features of claim 1. Further advantageous and partly inventive embodiments and developments of the invention are set out in the dependent claims and the following description.

Die Flüssigkeitsringpumpe umfasst ein eine Pumpenkammer umgebendes Pumpengehäuse, wobei in die Pumpenkammer im bestimmungsgemäßen Betriebszustand eine Pumpenflüssigkeit, im Folgenden auch als Ringflüssigkeit bezeichnet, gefüllt ist. Des Weiteren umfasst die Flüssigkeitsringpumpe ein Pumpenrad, das innerhalb der Pumpenkammer angeordnet und um eine Drehachse rotierbar ist. Das Pumpenrad dient dabei zur Förderung eines gasförmigen Arbeitsmediums. Das Pumpenrad weist dabei an seinem Außenumfang eine Anzahl von zumindest in Umfangsrichtung voneinander separierten Förderkammern auf. Vorzugsweise sind die Förderkammern dabei von insbesondere radial zur Drehachse oder in Umfangsrichtung geneigt verlaufenden Zwischenwänden voneinander getrennt. Das Pumpenrad weist ferner jeweils eine einer jeden Förderkammer zugeordnete und lokal in eine die jeweilige Förderkammer radial innenseitig begrenzende Bodenwand des Pumpenrads eingebrachte Austrittsöffnung zur fluidischen Verbindung der jeweiligen Förderkammer mit einem Druckbereich (auch: "Hochdruckbereich") der Pumpenkammer auf. Die Bodenwand ist dabei in jeder Förderkammer entlang der Drehachse (d. h. in Achsrichtung gesehen) beidseitig zur Austrittsöffnung zumindest abschnittsweise zur Drehachse (und vorzugsweise auch zur Radialrichtung) geneigt und verläuft (von beiden Seiten) in Richtung auf die Austrittsöffnung. Die Austrittsöffnung ist hierbei jeweils an einer Stelle der jeweiligen Förderkammer angeordnet, die den kleinsten radialen Abstand zur Drehachse aufweist.The liquid ring pump comprises a pump housing surrounding a pump chamber, with a pump liquid, also referred to below as ring liquid, being filled into the pump chamber in the intended operating state. Furthermore, the liquid ring pump includes an impeller, which is arranged within the pump chamber and around a Axis of rotation is rotatable. The impeller serves to convey a gaseous working medium. The impeller has on its outer circumference a number of pumping chambers that are separated from one another at least in the circumferential direction. The conveying chambers are preferably separated from one another by partition walls that run radially to the axis of rotation or are inclined in the circumferential direction. The impeller also has an outlet opening assigned to each delivery chamber and made locally in a bottom wall of the impeller that delimits the respective delivery chamber radially on the inside for fluidic connection of the respective delivery chamber to a pressure area (also: "high-pressure area") of the pump chamber. The bottom wall in each delivery chamber is inclined along the axis of rotation (ie viewed in the axial direction) on both sides of the outlet opening, at least in sections to the axis of rotation (and preferably also to the radial direction) and runs (from both sides) in the direction of the outlet opening. In this case, the outlet opening is in each case arranged at a point in the respective delivery chamber which has the smallest radial distance from the axis of rotation.

Unter dem Begriff "lokal" wird hier und im Folgenden insbesondere verstanden, dass die Austrittsöffnung klein im Vergleich zur flächigen Erstreckung (beispielsweise entlang der Achsrichtung) der Bodenwand und somit auch der Förderkammer ist. Mit anderen Worten beschreibt der Begriff "lokal", dass sich die Austrittsöffnung insbesondere nicht über die gesamte entlang der Achsrichtung verlaufende Fläche der jeweiligen Förderkammer erstreckt.The term “local” is understood here and in the following in particular to mean that the outlet opening is small compared to the areal extension (for example along the axial direction) of the bottom wall and thus also of the delivery chamber. In other words, the term “local” describes that the outlet opening does not extend over the entire surface of the respective delivery chamber running along the axial direction.

Bevorzugt ist die Austrittsöffnung außerdem in Achsrichtung gesehen mittig in der Bodenwand der Förderkammer angeordnet.In addition, the outlet opening is preferably arranged centrally in the bottom wall of the conveying chamber, viewed in the axial direction.

Unter dem Begriff "geneigt" wird hier und im Folgenden insbesondere verstanden, dass die Bodenwand (zumindest abschnittsweise) schräg zur Drehachse angestellt oder - in einem Schnitt entlang der Drehachse gesehen - einen gebogenen Verlauf aufweist (und somit lokal schräg angestellt ist).The term “inclined” is understood here and in the following in particular to mean that the bottom wall (at least in sections) is set at an angle to the axis of rotation or - viewed in a section along the axis of rotation - has a curved course (and is therefore locally inclined).

Die Austrittsöffnung ist erfindungsgemäß also derart in der jeweiligen Förderkammer angeordnet, dass - bei Rotation des Pumpenrads, das exzentrisch zum Pumpengehäuse positioniert ist, und somit bei zunehmendem Eintauchen der entsprechenden Förderkammer in die Ringflüssigkeit, insbesondere in einen durch die Ringflüssigkeit gebildeten Flüssigkeitsring - zunächst das zu fördernde Arbeitsmedium (insbesondere ein Gas) und danach eine vorzugsweise geringfügige, insbesondere einstellbare Menge Ringflüssigkeit in die Austrittsöffnung eintritt. Somit kann vorteilhafterweise ermöglicht werden, dass das zu fördernde Arbeitsmedium möglichst vollständig von der nachströmenden Ringflüssigkeit aus der jeweiligen Förderkammer ausgetrieben wird. Durch die beidseitig zur Austrittsöffnung geneigt auf diese zulaufende Bodenwand der jeweiligen Förderkammer wird außerdem eine strömungsgünstige Kammerform ermöglicht, die ein zur Gemischbildung (insbesondere zur Schaumbildung) beitragendes (wellenartiges) Anschlagen der Ringflüssigkeit an der Bodenwand verhindert oder zumindest abmindert, und vielmehr eine gerichtete Strömung in Richtung auf die Austrittsöffnung unterstützt. Insbesondere wird durch die geneigt auf die Austrittsöffnung zulaufende Bodenwand auch erreicht, dass die Ringflüssigkeit das zu fördernde Arbeitsmedium vor sich her in Richtung auf die Austrittsöffnung "schiebt" und das Risiko einer Durchmischung der Ringflüssigkeit und des Arbeitsmediums verringert wird.According to the invention, the outlet opening is therefore arranged in the respective pumping chamber in such a way that - when the impeller rotates, which is positioned eccentrically to the pump housing, and thus when the corresponding pumping chamber is increasingly immersed in the ring liquid, in particular in a liquid ring formed by the ring liquid - first the to conveying working medium (in particular a gas) and then a preferably small, in particular adjustable amount of ring liquid enters the outlet opening. It can thus advantageously be made possible for the working medium to be conveyed to be expelled as completely as possible from the respective conveying chamber by the following ring liquid. Due to the bottom wall of the respective pumping chamber, which is inclined on both sides towards the outlet opening, a streamlined chamber shape is made possible, which prevents or at least reduces a (wave-like) impact of the ring liquid on the bottom wall that contributes to the formation of the mixture (in particular to the formation of foam), and rather a directed flow in Supported towards the outlet opening. In particular, the bottom wall tapering towards the outlet opening also ensures that the ring liquid "pushes" the working medium to be conveyed in front of it in the direction of the outlet opening and the risk of mixing of the ring liquid and the working medium is reduced.

Aufgrund der vorstehend beschriebenen Strömungsführung der Ringflüssigkeit und der dadurch erreichten Verringerung einer Gemischbildung können Saugdrücke erreicht werden, die besonders nahe an den Wertebereich des jeweiligen Dampfdrucks der Ringflüssigkeit heranreichen.Due to the above-described flow control of the ring liquid and the resulting reduction in mixture formation, suction pressures can be achieved which come particularly close to the value range of the respective vapor pressure of the ring liquid.

In einer besonders zweckmäßigen Ausführung ist das Pumpenrad derart exzentrisch in der Pumpenkammer angeordnet (sowie diese vorzugsweise auch derart mit Ringflüssigkeit befüllt), dass ein sich im bestimmungsgemäßen Betrieb durch die Pumpenflüssigkeit bildender Flüssigkeitsring insbesondere im Druckbereich der Pumpenkammer zumindest eine der Förderkammern (insbesondere die "letzte" oder auch die das Arbeitsmedium ausstoßende) in Radialrichtung (innenseitig) vollständig überdeckt. Das heißt, dass das Pumpenrad im Bereich dieser Förderkammer (d. h. im Druckbereich) insbesondere derart tief in den Flüssigkeitsring eintaucht, das vorzugsweise die Bodenwand dieser Förderkammer ebenfalls in den Flüssigkeitsring eintaucht. Besonders bevorzugt steht dabei auch die jeweilige Austrittsöffnung zumindest abschnittsweise unterhalb des "Pegels" des Flüssigkeitsrings. Dadurch wird auf besonders einfache Weise erreicht, dass das in dieser Förderkammer stehende und komprimierte Arbeitsmedium vollständig aus dieser Förderkammer ausgeschoben wird.In a particularly expedient embodiment, the impeller is arranged eccentrically in the pump chamber (and this is preferably also filled with ring liquid) such that a liquid ring formed by the pump liquid during normal operation, particularly in the pressure area the pump chamber completely covers at least one of the pumping chambers (in particular the "last" one or also the one ejecting the working medium) in the radial direction (on the inside). This means that the impeller in the region of this delivery chamber (ie in the pressure region) dips so deeply into the liquid ring that preferably the bottom wall of this delivery chamber also dips into the liquid ring. Particularly preferably, the respective outlet opening is at least partially below the "level" of the liquid ring. As a result, it is achieved in a particularly simple manner that the working medium that is standing and compressed in this delivery chamber is completely pushed out of this delivery chamber.

Vorzugsweise ist die jeweilige Austrittsöffnung dabei derart angeordnet und ausgebildet, dass (vorzugsweise in Kombination mit der vorstehend beschrieben gewählten Exzentrizität und dem Füllstand der Ringflüssigkeit) im bestimmungsgemäßen Betrieb nach dem Ausstoßen des Arbeitsmediums auch ein zumindest geringfügiger Anteil der durch die Förderkammer strömenden Ringflüssigkeit ebenfalls ausgestoßen wird. Somit wird auf einfache Weise eine "restlose" Förderung des Arbeitsmediums aus der jeweiligen Förderkammer ermöglicht.The respective outlet opening is preferably arranged and designed in such a way that (preferably in combination with the eccentricity selected above and the fill level of the ring liquid) in normal operation after the working medium has been ejected, at least a small proportion of the ring liquid flowing through the pumping chamber is also ejected . This enables the working medium to be conveyed “completely” out of the respective conveying chamber in a simple manner.

In einer bevorzugten Ausführung ist jede Förderkammer symmetrisch zu einer Radialebene des Pumpenrads, die in diesem Fall zumindest abschnittsweise eine Spiegelfläche darstellt, ausgebildet. Die Austrittsöffnung ist in diesem Fall vorteilhafterweise in der Spiegelfläche, zumindest diese Spiegelfläche touchierend angeordnet. Durch eine derartige, symmetrische Ausbildung der Förderkammer kann die Ringflüssigkeit ebenso symmetrisch und damit vergleichsweise geordnet in der jeweiligen Förderkammer strömen. Aufgrund der symmetrischen Ausbildung der Förderkammer wird in Verbindung mit dem geneigten Verlauf der Bodenwand insbesondere ermöglicht, dass - bei Rotation des Pumpenrads - die Geschwindigkeit der radial nach innen strömenden Ringflüssigkeit näherungsweise linear zunimmt. Dadurch kann die Ringflüssigkeit besonders geordnet und unter möglichst vollständiger Vermeidung von Gemischbildung in Richtung auf die Austrittsöffnung fließen. Die Austrittsöffnung liegt dabei am ("geodätisch") tiefsten Punkt - d. h. an dem Punkt mit dem geringsten radialen Abstand zur Drehachse - der Förderkammer.In a preferred embodiment, each delivery chamber is formed symmetrically to a radial plane of the impeller, which in this case at least partially represents a mirror surface. In this case, the exit opening is advantageously arranged in the mirror surface, touching at least this mirror surface. With such a symmetrical design of the delivery chamber, the annular liquid can also flow symmetrically and thus in a comparatively ordered manner in the respective delivery chamber. Due to the symmetrical design of the pumping chamber, in conjunction with the inclined course of the bottom wall, it is possible in particular that--when the impeller rotates--the speed of the annular liquid flowing radially inward increases approximately linearly. As a result, the ring liquid can flow in the direction of the outlet opening in a particularly orderly manner and while avoiding the formation of mixtures as completely as possible. The outlet opening is at the ("geodesically") lowest point - ie at the point with the smallest radial distance to the axis of rotation - the pumping chamber.

In einer weiteren bevorzugten Ausführung, insbesondere in Kombination mit der vorstehend beschriebenen, symmetrischen Ausbildung der Förderkammer, ist die geneigt verlaufende Bodenwand entlang der Drehachse im Wesentlichen (d. h. exakt oder näherungsweise) U- oder V-artig ausgebildet. Wie bereits vorstehend beschrieben ist die Austrittsöffnung dabei insbesondere am tiefsten Punkt des U's oder des V's angeordnet. Die Bodenwand verläuft somit beidseitig zur Spiegelfläche gewölbt (im Falle des U's) oder geradlinig schräg ("trichterartig"; im Falle des V's) auf die Austrittsöffnung zu.In a further preferred embodiment, in particular in combination with the above-described symmetrical design of the delivery chamber, the inclined bottom wall along the axis of rotation is essentially (i.e. exactly or approximately) U-shaped or V-shaped. As already described above, the outlet opening is arranged in particular at the lowest point of the U or the V. The bottom wall thus runs curved on both sides to the mirror surface (in the case of the U's) or in a straight line at an angle ("funnel-like"; in the case of the V's) towards the outlet opening.

In einer zweckmäßigen Ausführung ist jede Förderkammer stirnseitig (d. h. in Achsrichtung) durch wenigstens eine Seitenwand (auch als Front- oder Stirnwand bezeichnet), vorzugsweise durch jeweils eine Seitenwand begrenzt. Die oder die jeweilige Seitenwand schließt dabei vorzugsweise an die Bodenwand an. In Umfangsrichtung sind die einzelnen Förderkammern durch die vorstehend beschriebenen Zwischenwände voneinander abgegrenzt. Die Seitenwände verlaufen vorzugsweise in Radialrichtung. Die Seitenwände dienen dabei zur Abgrenzung der jeweiligen Förderkammer gegenüber der Pumpenkammer. Optional sind beide Seitenwände oder wenigstens eine der beiden Seitenwände integral (d. h. monolithisch) aus einem zumindest die Bodenwand der Förderkammern bildenden Pumpenradkörper ausgeformt. Die andere Seitenwand oder alternativ auch beide Seitenwände sind optional als "Seitenschilde" oder "Deckplatten" ausgebildet und auf den Pumpenradkörper aufgesetzt.In an expedient embodiment, each delivery chamber is delimited at the front (i.e. in the axial direction) by at least one side wall (also referred to as front or end wall), preferably by one side wall each. The or the respective side wall preferably connects to the bottom wall. The individual delivery chambers are delimited from one another in the circumferential direction by the partition walls described above. The side walls preferably run in a radial direction. The side walls serve to delimit the respective delivery chamber from the pump chamber. Optionally, both side walls or at least one of the two side walls are formed integrally (i.e. monolithically) from an impeller body forming at least the bottom wall of the pumping chambers. The other side wall or alternatively both side walls are optionally designed as "side shields" or "cover plates" and placed on the impeller body.

Erfindungsgemäß weist das Pumpenrad für jede Förderkammer jeweils eine lokal in eine der die Förderkammer begrenzenden Wände, insbesondere in die Bodenwand oder die Seitenwand bzw. eine der Seitenwände eingebrachte Einströmöffnung zur fluidischen Verbindung der jeweiligen Förderkammer mit einem Saugbereich (oder "Niederdruckbereich") der Pumpenkammer auf. D. h. im Betrieb der Flüssigkeitsringpumpe strömt durch diese Einströmöffnung das zu fördernde Arbeitsmedium in die jeweilige Förderkammer ein.According to the invention, the impeller has, for each delivery chamber, an inflow opening locally in one of the walls delimiting the delivery chamber, in particular in the bottom wall or the side wall or one of the side walls, for the fluidic connection of the respective delivery chamber with a suction area (or "low-pressure area") of the pump chamber . i.e. When the liquid ring pump is in operation, the working medium to be pumped flows through this inflow opening into the respective pumping chamber.

Bei weiterem Drehen des Pumpenrads wird diese Förderkammer, insbesondere diese Einströmöffnung beispielsweise durch die Ringflüssigkeit verdeckt, sodass ein Ausströmen des Arbeitsmediums aus der entsprechenden Förderkammer durch eben diese Einströmöffnung verhindert ist. Alternativ kann insbesondere für den Fall, dass das Pumpenrad an zumindest einer Stelle seines Umfangs nicht in den Flüssigkeitsring eintaucht, das zu fördernde Arbeitsmedium auch über die vorzugsweise am (Außen-)Umfang des Pumpenrads offen stehende Förderkammer in diese einströmen. Alternativ oder zusätzlich kann das zu fördernde Arbeitsmedium auch bei Fehlen einer oder beider Seitenwände und/oder entsprechend verkürzter radialer Erstreckung wenigstens einer der Seitenwände auch ohne spezifisch ausgebildete Einströmöffnung in die jeweilige Förderkammer einströmen.As the impeller rotates further, this delivery chamber, in particular this inflow opening, is covered, for example, by the ring liquid, so that the working medium is prevented from flowing out of the corresponding delivery chamber through this very inflow opening. Alternatively, particularly if the impeller does not dip into the liquid ring at at least one point on its circumference, the working medium to be conveyed can also flow into the impeller via the conveying chamber, which is preferably open on the (outer) circumference of the impeller. Alternatively or additionally, the working medium to be conveyed can flow into the respective conveying chamber even if one or both side walls are missing and/or if at least one of the side walls has a correspondingly shortened radial extent, even without a specifically designed inflow opening.

Insbesondere um zu verhindern, dass aus dem Hochdruckbereich der Pumpenkammer Arbeitsmedium und/oder Ringflüssigkeit (insbesondere durch die Austrittsöffnung) in die jeweilige Förderkammer zurückströmt, ist in einer vorteilhaften Ausführung innerhalb der jeweiligen Austrittsöffnung ein vorzugsweise die Förderkammer (insbesondere austrittsseitig) begrenzendes Rückschlagventil angeordnet. Dieses Rückschlagventil ist dabei in Austrittsrichtung aus der jeweiligen Förderkammer öffnend und entgegen der Austrittsrichtung dichtend ausgeführt. Vorteilhafterweise ist das in der Austrittsöffnung angeordnete Rückschlagventil (auch als "Austritts-Ventil" bezeichnet) außerdem auch dazu eingerichtet, erst ab einem vorgegebenen Wert eines Förderdrucks (oder: Kompressionsdrucks) innerhalb der Förderkammer zu öffnen. Dadurch ist es möglich, eine Druckdifferenz zwischen Saugbereich und Druckbereich in der Pumpenkammer gezielt vorzugeben (einzustellen). Außerdem können durch ein solches Rückschlagventil Verpuffungseffekte aus der Förderkammer heraus oder in diese zurück vermieden oder zumindest signifikant verringert werden. Dadurch kann vorteilhafterweise die Geräuschentwicklung der Flüssigkeitsringpumpe im Betrieb verringert werden. Um einen besonders hohen Wirkungsgrad der Flüssigkeitsringpumpe im Betrieb (beispielsweise bei der Nutzung der Flüssigkeitsringpumpe zur Förderung des Arbeitsmediums in einen unter einem gegenüber Atmosphärendruck erhöhtem Druckwert stehenden Raum) zu ermöglichen, ist das in der jeweiligen Austrittsöffnung verbaute Austritts-Ventil auf einen möglichst niedrigen Druckverlust(-wert) ausgelegt. Des Weiteren weist das Austritts-Ventil vorzugsweise auch eine hohe Dichtwirkung auf. Vorzugsweise ist das jeweilige Austritts-Ventil derart in dem Pumpenrad montiert, dass dessen Schließfunktion im Betrieb der Flüssigkeitsringpumpe durch die (aufgrund der Drehung des Pumpenrads auftretende) Fliehkraft bewirkt, zumindest aber unterstützt wird. Optional entfallen in diesem Fall Ventilfedern oder vergleichbare Mittel zum Schließen des jeweiligen Austritts-Ventils.In particular to prevent working medium and/or ring liquid from the high-pressure area of the pump chamber (in particular through the outlet opening) from flowing back into the respective delivery chamber, in an advantageous embodiment a non-return valve, which preferably limits the delivery chamber (in particular on the outlet side), is arranged inside the respective outlet opening. This check valve is designed to open in the exit direction from the respective delivery chamber and to seal against the exit direction. Advantageously, the check valve arranged in the outlet opening (also referred to as "outlet valve") is also set up to only open above a predetermined value of a delivery pressure (or: compression pressure) within the delivery chamber. This makes it possible to specify (adjust) a pressure difference between the suction area and the pressure area in the pump chamber in a targeted manner. In addition, such a non-return valve can prevent or at least significantly reduce deflagration effects out of the delivery chamber or back into it. As a result, the noise generated by the liquid ring pump during operation can advantageously be reduced. In order to enable a particularly high degree of efficiency of the liquid ring pump during operation (e.g. when using the liquid ring pump to convey the working medium into a space which is under a pressure value that is higher than atmospheric pressure), this is in the respective outlet opening The built-in outlet valve is designed for the lowest possible pressure loss (value). Furthermore, the outlet valve preferably also has a high sealing effect. The respective outlet valve is preferably mounted in the impeller in such a way that its closing function is brought about, or at least supported, by the centrifugal force (occurring due to the rotation of the impeller) during operation of the liquid ring pump. In this case, valve springs or comparable means for closing the respective outlet valve are optionally omitted.

In einer weiteren zweckmäßigen Ausführung ist - vorzugsweise zusätzlich zu dem in der Austrittsöffnung angeordneten Rückschlagventil - innerhalb der Einströmöffnung ein vorzugsweise die Förderkammer (insbesondere einströmseitig) begrenzendes Rückschlagventil angeordnet. Dieses ist derart ausgeführt, dass ein Rückströmen des Arbeitsmediums (sowie gegebenenfalls auch der Ringflüssigkeit) aus der Förderkammer in den Saugbereich der Pumpenkammer unterbunden wird. Mittels dieses "Einström-Ventils" kann somit vorteilhafterweise die "Beladung" (d. h. das Befüllen) der Förderkammer mit Arbeitsmedium gesteuert werden. Insbesondere bei Kombination des Einström-Ventils und des Austritts-Ventils ist somit eine besonders präzise Steuerung der Be- und Entladung der jeweiligen Förderkammer vorzugsweise rein druckabhängig möglich. Zudem werden Verpuffungen entgegen der jeweiligen Wirkrichtung der Ventile effektiv unterbunden. Die Geräuschentwicklung der Flüssigkeitsringpumpe im Betrieb wird somit weiter gesenkt. Zudem kann eine speziell geformte Steuerscheibe, über die das Ein- und/oder Ausströmen aus der jeweiligen Förderkammer mittels einer speziell geformten Öffnung gesteuert wird, entfallen. Des Weiteren ist, insbesondere da bei der Kombination von beiden Rückschlagventilen getrennte Strömungsräume und somit auch voneinander getrennte Druckbereiche innerhalb der Pumpenkammer vorliegen, die Nutzung der Flüssigkeitsringpumpe als Kompressor möglich. Auch das jeweilige Einström-Ventil ist zur Erhöhung des Wirkungsgrades vorteilhafterweise auf einen möglichst niedrigen Druckverlust(-wert) ausgelegt. Ferner ist das jeweilige Einström-Ventil in einer optionalen Variante (vergleichbar zu dem Austritts-Ventil) derart in dem Pumpenrad montiert, dass dessen Funktion durch die Fliehkraft unterstützt wird. Insbesondere ist das jeweilige Einström-Ventil hierbei derart verbaut, dass ein Öffnen des Einström-Ventils in Einströmrichtung durch die Fliehkraft unterstützt wird.In a further expedient embodiment--preferably in addition to the check valve arranged in the outlet opening--a check valve which preferably delimits the delivery chamber (in particular on the inflow side) is arranged inside the inflow opening. This is designed in such a way that a backflow of the working medium (and possibly also the ring liquid) from the delivery chamber into the suction area of the pump chamber is prevented. The “loading” (ie the filling) of the delivery chamber with working medium can thus advantageously be controlled by means of this “inflow valve”. Especially with a combination of the inflow valve and the outlet valve, a particularly precise control of the loading and unloading of the respective delivery chamber is possible, preferably purely as a function of the pressure. In addition, deflagration is effectively prevented against the direction of action of the valves. The noise development of the liquid ring pump during operation is thus further reduced. In addition, a specially shaped control disc, via which the inflow and/or outflow from the respective delivery chamber is controlled by means of a specially shaped opening, can be omitted. Furthermore, it is possible to use the liquid ring pump as a compressor, in particular because there are separate flow spaces and therefore separate pressure areas within the pump chamber when the two check valves are combined. The respective inflow valve is also advantageously designed for the lowest possible pressure loss (value) in order to increase the efficiency. Furthermore, in an optional variant (comparable to the outlet valve), the respective inflow valve is mounted in the impeller in such a way that its function is supported by the centrifugal force. In particular, the respective inflow valve is here installed in such a way that opening of the inflow valve in the inflow direction is supported by centrifugal force.

Die Einström-Ventile und optional auch die Austritts-Ventile sind vorzugsweise als Membranventile ausgebildet. In einer weiteren optionalen Ausgestaltung sind die Einström-Ventile und/oder die Austritts-Ventile durch Klappen, druckgesteuerte Ventile (bspw. durch ein Druckverfahren hergestellte Ventile) oder dergleichen ausgebildet.The inflow valves and optionally also the outlet valves are preferably designed as diaphragm valves. In a further optional embodiment, the inflow valves and/or the outlet valves are formed by flaps, pressure-controlled valves (for example valves produced by a printing process) or the like.

Erfindungsgemäß münden die Austrittsöffnungen der Förderkammern in eine (vorzugsweise gemeinsame) an dem Pumpenrad (insbesondere austrittsseitig) angeordnete Austrittskammer. Diese Austrittskammer ist dabei vorzugsweise zur fliehkraftbedingten Trennung des Arbeitsmediums von der Ringflüssigkeit ausgebildet. Das heißt, dass die Austrittskammer zur Trennung ("Separation") von Gasen und Flüssigkeiten eingerichtet ist. Insbesondere weist die Austrittskammer hierzu eine parallel oder vorzugsweise schräg zur Drehachse verlaufende Außenwand und somit in letzterem Fall näherungsweise eine hohlkonische Form auf. Diese Außenwand rotiert im bestimmungsgemäßen Betrieb der Flüssigkeitsringpumpe mit dem Pumpenrad mit, sodass aufgrund der Zentrifugalwirkung die Ringflüssigkeit sich an der Außenwand niederschlagen und entlang dieser, insbesondere deren schrägen Verlaufs abfließen kann. Die hierbei abgetrennte Ringflüssigkeit wird vorzugsweise (unmittelbar oder mittelbar über ein Reservoir) wieder dem Flüssigkeitsring zugeführt, sodass dieser im bestimmungsgemäßen Betrieb zumindest nicht kontinuierlich verkleinert wird. Im Rahmen der vorstehend beschriebenen eigenständigen Erfindung kann die oder die jeweilige Austrittskammer aber auch entfallen.According to the invention, the outlet openings of the pumping chambers open into a (preferably common) outlet chamber arranged on the impeller (in particular on the outlet side). This outlet chamber is preferably designed for the centrifugal force-related separation of the working medium from the ring liquid. This means that the outlet chamber is set up for the separation ("separation") of gases and liquids. In particular, for this purpose the outlet chamber has an outer wall running parallel or preferably obliquely to the axis of rotation and thus in the latter case approximately a hollow conical shape. During normal operation of the liquid ring pump, this outer wall rotates with the impeller, so that due to the centrifugal effect, the ring liquid is deposited on the outer wall and can flow off along it, in particular along its sloping course. The ring liquid separated off in this way is preferably (directly or indirectly via a reservoir) fed back to the liquid ring, so that it is at least not continuously reduced in size during normal operation. However, within the framework of the independent invention described above, the respective outlet chamber can also be omitted.

In einer zweckmäßigen Ausgestaltung weist das vorstehend beschriebene Reservoir auch eine Kühleinrichtung auf, mittels derer im bestimmungsgemäßen Betrieb die abgetrennte Ringflüssigkeit vor der Rückführung zum Flüssigkeitsring abgekühlt wird.In an expedient embodiment, the reservoir described above also has a cooling device, by means of which the separated ring liquid is cooled before it is returned to the liquid ring during normal operation.

In einer optional zusätzlichen Ausführung sind in der Austrittskammer Mittel zur Unterstützung der Trennung des Arbeitsmediums von der Ringflüssigkeit angeordnet. Bei diesen Mitteln handelt es sich bspw. um Leitschaufeln oder um insbesondere radial ausgerichtete Leitscheiben, die die fliehkraftbedingte Trennung bspw. durch gezielte Lenkung insbesondere der Ringflüssigkeit fördern. Dadurch ist es auf besonders einfache Weise möglich, für eine möglichst vollständige Entleerung des Arbeitsmediums aus der jeweiligen Förderkammer eine hinreichend große Menge an Ringflüssigkeit mit durch die Austrittsöffnung zu fördern, aber einen Verlust von Ringflüssigkeit aufgrund von Vermischung mit dem ausgestoßenen Arbeitsmedium auf ein hinreichend geringes Maß zu verringern. Vorteilhafterweise kann dadurch außerdem eine der Flüssigkeitsringpumpe (druckseitig) nachgeschaltete Vorrichtung zur Trennung des Arbeitsmediums von der Ringflüssigkeit entfallen oder zumindest vereinfacht werden. Vorzugsweise ist die vorstehend beschrieben Außenwand der Austrittskammer und eine optional zur Abführung der abgeschiedenen Ringflüssigkeit dienende Abflussvorrichtung (oder: "Flüssigkeitsableitung") derart angeordnet, dass die Ringflüssigkeit im Betrieb über einen Spalt zwischen dem Pumpenrad und dem Pumpengehäuse geführt wird und dadurch als eine Gassperre eine Abdichtung des Spaltes bewirkt.In an optional additional embodiment, means for supporting the separation of the working medium from the ring liquid are arranged in the outlet chamber. These means are, for example, guide vanes or, in particular, radially aligned guide disks, which promote the separation caused by centrifugal force, for example, by means of targeted guidance in particular of the ring liquid. This makes it possible in a particularly simple manner to convey a sufficiently large quantity of ring liquid through the outlet opening for the most complete possible emptying of the working medium from the respective delivery chamber, but to keep the loss of ring liquid due to mixing with the ejected working medium to a sufficiently low level to reduce. Advantageously, a device downstream of the liquid ring pump (on the pressure side) for separating the working medium from the ring liquid can be dispensed with or at least simplified. Preferably, the above-described outer wall of the outlet chamber and a drain device (or: "liquid drain") optionally used to drain the separated ring liquid are arranged in such a way that the ring liquid is guided over a gap between the impeller and the pump housing during operation and thereby acts as a gas barrier Sealing of the gap causes.

In einer insbesondere zur den vorstehend beschriebenen Ausstritts-Ventilen alternativen Ausführung umfasst die Flüssigkeitsringpumpe einen Steuerring, der gegenüber dem Pumpenrad verdrehbar ist und im bestimmungsgemäßen Betrieb vorzugsweise grundsätzlich stationär gegenüber dem Pumpenrad angeordnet ist. Dieser Steuerring verschließt eine Großzahl der Austrittsöffnungen des Pumpenrads ausgangsseitig abschnittsweise gegen das Pumpenrad. Insbesondere ist zumindest eine der Austrittsöffnungen - nämlich vorzugsweise die ausstoßende Austrittsöffnung oder zusätzlich auch eine Anzahl der der ausstoßenden Austrittsöffnung in Rotationsrichtung des Pumpenrads nacheilenden Austrittsöffnungen - zum Ausströmen des Arbeitsmediums geöffnet. Zur Einstellung des Druckverhältnisses zwischen Saug- und Druckbereich der Pumpenkammer kann der Steuerring verstellt werden, so dass dieser eine unterschiedliche Anzahl an Austrittsöffnungen frei gibt. Je größer die Anzahl an geöffneten Austrittsöffnungen ist, desto geringer ist dabei das Druckverhältnis. Vorzugsweise umfasst die Flüssigkeitsringpumpe in diesem Fall auch eine Stellvorrichtung zur Verstellung dieses Steuerrings. Beispielsweise umfasst der Steuerring zur Verstellung der freigegebenen Anzahl der Austrittsöffnungen zwei gegeneinander verdrehbare und übereinander liegende Teilringe mit Bohrungen, die eine (durch Verdrehen der Teilringe gegeneinander) größenverstellbare Durchgangsöffnung bilden. Alternativ kann der (insbesondere Bohrungen tragende) Steuerring (oder auch nur Ringsektoren dessen) auch radial oder axial verschoben werden, um eine unterschiedliche Anzahl von Austrittsöffnungen freizugeben. Beispielsweise weist der Steuerring dabei auch unterschiedlich große Bohrungen auf.In an alternative embodiment, in particular to the outlet valves described above, the liquid ring pump comprises a control ring which can be rotated relative to the impeller and is preferably arranged in a stationary manner relative to the impeller during normal operation. This control ring closes a large number of the outlet openings of the impeller in sections against the impeller on the output side. In particular, at least one of the outlet openings—namely preferably the ejecting outlet opening or additionally also a number of the outlet openings trailing behind the ejecting outlet opening in the direction of rotation of the impeller—is open for the outflow of the working medium. To set the pressure ratio between the suction and pressure areas of the pump chamber, the control ring can be adjusted so that it releases a different number of outlet openings. The larger the number of open outlet openings, the lower the pressure ratio. Preferably, the liquid ring pump comprises in this case also an adjusting device for adjusting this control ring. For example, the control ring for adjusting the released number of outlet openings comprises two partial rings that can be rotated in relation to one another and lie one above the other with bores that form a through-opening that can be adjusted in size (by rotating the partial rings in relation to one another). Alternatively, the control ring (which in particular carries bores) (or only ring sectors thereof) can also be displaced radially or axially in order to release a different number of outlet openings. For example, the control ring also has bores of different sizes.

In einer optionalen Weiterbildung zu dem vorstehend beschriebenen Steuerring umfasst die Flüssigkeitsringpumpe zusätzlich zu diesem Steuerring Mittel zur Drosselung des Saugstroms. Bspw. ist dazu eingangsseitig zur Pumpenkammer eine Drossel, insbesondere ein Drosselventil zur Verringerung des im Saugbereich der Pumpenkammer vorliegenden Druckwerts angeordnet. Damit kann auch der in der Förderkammer im Druckbereich der Pumpenkammer erreichbare Förderdruckwert eingestellt, insbesondere gesenkt werden, wodurch vorteilhafterweise Verpuffungseffekte aus der jeweiligen Förderkammer heraus verringert oder vermieden werden können.In an optional development of the control ring described above, the liquid ring pump includes means for throttling the suction flow in addition to this control ring. For example, a throttle, in particular a throttle valve, is arranged on the inlet side of the pump chamber to reduce the pressure value present in the suction area of the pump chamber. In this way, the delivery pressure value that can be achieved in the delivery chamber in the pressure region of the pump chamber can also be set, in particular lowered, as a result of which deflagration effects from the respective delivery chamber can advantageously be reduced or avoided.

In einer besonders zweckmäßigen Ausführung kommt als Ringflüssigkeit ein Poly-Alpha-Olefin zum Einsatz. Ein Poly-Alpha-Olefin weist als (Ring-)Flüssigkeit vorteilhafterweise einen gegenüber Wasser deutlich (insbesondere um ein Vielfaches, bspw. wenigstens das Zehnfache) geringeren Dampfdruckwert auf, sodass Saugdruckwerte auch im Bereich unter 1 mbar ermöglicht werden. Somit ist es vorteilhafterweise möglich, die vorstehend beschriebene Flüssigkeitsringpumpe auch für den sogenannten Feinvakuumbereich einzusetzen. Außerdem kann das Poly-Alpha-Olefin auch schmierend wirken und/oder aufgrund seiner vergleichsweise hohen Viskosität zu einer Abdichtung von Spalten zwischen Bauteilen beitragen.In a particularly expedient embodiment, a poly-alpha-olefin is used as the ring liquid. As a (ring) liquid, a poly-alpha-olefin advantageously has a vapor pressure value that is significantly lower (in particular by a multiple, for example at least ten times) compared to water, so that suction pressure values in the range below 1 mbar are also possible. It is thus advantageously possible to also use the liquid ring pump described above for the so-called fine vacuum range. In addition, the poly-alpha-olefin can also have a lubricating effect and/or contribute to sealing gaps between components due to its comparatively high viscosity.

Die Konjunktion "und/oder" ist hier und im Folgenden derart zu verstehen, dass die mittels dieser Konjunktion verknüpften Merkmale sowohl gemeinsam als auch als Alternativen zueinander ausgebildet sein können.The conjunction “and/or” is to be understood here and in the following in such a way that the features linked by means of this conjunction can be designed both together and as alternatives to one another.

Die Erfindung wird nachfolgend anhand mehrerer Ausführungsbeispiele in einer Zeichnung näher erläutert. Darin zeigen:

Fig. 1
in einer schematischen Darstellung eine Flüssigkeitsringpumpe mit Blick auf eine Stirnseite eines Pumpenrads bei geöffnetem Pumpengehäuse,
Fig. 2 und 3
in einer schematischen Schnittdarstellung II-II gemäß Fig. 1 jeweils ein alternatives Ausführungsbeispiel des Pumpenrads,
Fig. 4
in Ansicht gemäß Fig. 1 ein weiteres Ausführungsbeispiel der Flüssigkeitsringpumpe, und
Fig. 5 bis 7
in Ansicht gemäß Fig. 2 jeweils wiederum ein alternatives Ausführungsbeispiel des Pumpenrads.
The invention is explained in more detail below using several exemplary embodiments in a drawing. Show in it:
1
in a schematic representation of a liquid ring pump with a view of a front side of an impeller with the pump housing open,
Figures 2 and 3
in a schematic sectional view according to II-II 1 each an alternative embodiment of the impeller,
4
in view according to 1 another embodiment of the liquid ring pump, and
Figures 5 to 7
in view according to 2 each in turn an alternative embodiment of the impeller.

Einander entsprechende Teile und Größen sind in allen Figuren stets mit gleichen Bezugszeichen versehen.Corresponding parts and sizes are always provided with the same reference symbols in all figures.

In Fig. 1 ist eine Flüssigkeitsringpumpe 1 schematisch dargestellt. Die Flüssigkeitsringpumpe 1 umfasst ein Pumpengehäuse 2 (schematisch als Hohlzylinder dargestellt), das einen als Pumpenkammer 3 bezeichneten Innenraum umschließt. Die Flüssigkeitsringpumpe 1 umfasst des Weiteren ein Pumpenrad 4, das um eine Drehachse 6 rotierbar innerhalb der Pumpenkammer 3 angeordnet ist. Das Pumpenrad 4 ist dabei mit seiner Drehachse 6 exzentrisch zu dem Pumpengehäuse 2 angeordnet. Das Pumpenrad 4 dient zur Förderung eines gasförmigen Arbeitsmediums, konkret eines Gases. Dazu weist das Pumpenrad 4 an seinem Außenumfang eine Anzahl von in Umfangsrichtung voneinander separierten Förderkammern 8 auf. Die Förderkammern 8 sind dabei in Umfangsrichtung durch Zwischenwände 10 voneinander separiert. Jede Förderkammer 8 weist außerdem eine Austrittsöffnung 12 auf, die an einer Stelle der jeweiligen Förderkammer 8 mit dem kleinsten radialen Abstand zur Drehachse 6 angeordnet ist.In 1 a liquid ring pump 1 is shown schematically. The liquid ring pump 1 comprises a pump housing 2 (represented schematically as a hollow cylinder) which encloses an interior space referred to as the pump chamber 3 . The liquid ring pump 1 also includes a pump wheel 4 , which is arranged inside the pump chamber 3 such that it can rotate about an axis of rotation 6 . The pump wheel 4 is arranged eccentrically to the pump housing 2 with its axis of rotation 6 . The impeller 4 serves to convey a gaseous working medium, specifically a gas. For this purpose, the impeller 4 has on its outer circumference a number of delivery chambers 8 which are separated from one another in the circumferential direction. The delivery chambers 8 are separated from one another in the circumferential direction by intermediate walls 10 . Each delivery chamber 8 also has an outlet opening 12 which is arranged at a point in the respective delivery chamber 8 which is at the smallest radial distance from the axis of rotation 6 .

Für den Pumpenbetrieb ist in die Pumpenkammer 3 eine als Ringflüssigkeit 14 bezeichnete Pumpenflüssigkeit eingefüllt. Durch Rotation des Pumpenrads 4 in eine - in Fig. 1 mittels eines Pfeils beispielhaft angedeutete - Drehrichtung 16 wird die Ringflüssigkeit 14 ebenfalls in Rotation entlang der Innenwand des Pumpengehäuses 2 versetzt und bildet dort aufgrund der Zentrifugalkraft einen in Fig. 1 schematisch angedeuteten Flüssigkeitsring 18 aus. Aufgrund der Exzentrizität der Drehachse 6 gegenüber dem Pumpengehäuse 2 tauchen somit das Pumpenrad 4 und damit auch die einzelnen Förderkammern 12 entlang der Drehrichtung 16 unterschiedlich tief in den Flüssigkeitsring 18 ein. Der Flüssigkeitsring 18 dichtet dabei die am Außenumfang des Pumpenrads 4 offen stehenden Förderkammern 8 (vgl. Teilschnitt II-II in Fig. 2) ab und schiebt das in der Pumpenkammer 3 und der jeweiligen Förderkammer 8 befindliche Gas bei zunehmender Eintauchtiefe des Pumpenrads 6 in den Flüssigkeitsring 18 in Richtung auf die jeweilige Austrittsöffnung 12 vor sich her.For pump operation, a pump liquid called ring liquid 14 is filled into the pump chamber 3 . By rotating the impeller 4 in a - in 1 Direction of rotation 16, indicated by an arrow as an example, the ring liquid 14 is also set in rotation along the inner wall of the pump housing 2 and forms there due to the centrifugal force an in 1 schematically indicated liquid ring 18 from. Due to the eccentricity of the axis of rotation 6 in relation to the pump housing 2 , the impeller 4 and thus also the individual delivery chambers 12 dip into the liquid ring 18 at different depths along the direction of rotation 16 . The liquid ring 18 seals the delivery chambers 8 that are open on the outer circumference of the impeller 4 (cf. partial section II-II in 2 ) and pushes the gas in the pump chamber 3 and the respective pumping chamber 8 in front of it in the direction of the respective outlet opening 12 with increasing immersion depth of the impeller 6 in the liquid ring 18 .

Zur Förderung des Gases wird nun in einem Bereich in dem das Pumpenrad 4 nur geringfügig in den Flüssigkeitsring 18 eintaucht (in Fig. 1 die Position auf etwa 11:00 Uhr) über eine Zuführöffnung (nicht näher dargestellt) das Gas in die Pumpenkammer 3 eingeleitet. Dieser Bereich wird auch als Saugbereich 20 der Pumpenkammer 3 bezeichnet. In diesem Saugbereich 20 tritt das Gas in die jeweilige, zu diesem Zeitpunkt im Saugbereich 20 angeordnete Förderkammer 8 ein und wird bei Drehung des Pumpenrads 4 durch den in der jeweiligen Förderkammer 8 "ansteigenden" Flüssigkeitsstand der Ringflüssigkeit 14 - aufgrund des fortschreitenden Eintauchens des Pumpenrads 4 in den Flüssigkeitsring 18 strömt die Ringflüssigkeit 14 in radialer Richtung in die jeweilige Förderkammer 8 ein - in Richtung auf die Austrittsöffnung 12 gedrückt. Die Flüssigkeitsringpumpe 1 ist - wie im Folgenden näher beschrieben - dabei derart ausgebildet, dass die Austrittsöffnungen 12 des Pumpenrads 4 austrittsseitig zunächst verschlossen sind. Erst in einem dem Saugbereich 20 im Wesentlichen diametral gegenüberliegenden Druckbereich 22, in dem der Flüssigkeitsstand des Flüssigkeitsrings 18 bis an eine die jeweilige Förderkammer 8 radial innenseitig begrenzende Bodenwand 24 heranreicht (in Fig. 1 im Bereich von etwa 5:00 Uhr) oder diese sogar radial innenseitig übersteigt (oder: "überdeckt"; vgl. Fig. 2), ist die jeweilige Austrittsöffnung 12 geöffnet und das komprimierte Gas kann aus der jeweiligen Förderkammer 8 und über eine korrespondierende nicht näher dargestellte Gasführungsleitung aus dem Pumpengehäuse 2 ausströmen. Die Austrittsöffnung 12 dient somit zur fluidischen Verbindung der jeweiligen Förderkammer 8 mit dem Druckbereich 22 der Pumpenkammer 3.In order to convey the gas, in an area in which the impeller 4 only dips slightly into the liquid ring 18 (in 1 the position at about 11:00 a.m.) the gas is introduced into the pump chamber 3 via a supply opening (not shown in detail). This area is also referred to as the suction area 20 of the pump chamber 3 . In this suction area 20, the gas enters the respective pumping chamber 8, which is located in the suction area 20 at this point in time, and when the pump wheel 4 rotates due to the "rising" liquid level of the ring liquid 14 in the respective pumping chamber 8 - due to the progressive immersion of the pump wheel 4 the ring liquid 14 flows into the liquid ring 18 in a radial direction into the respective delivery chamber 8 -- pressed in the direction of the outlet opening 12 . As described in more detail below, the liquid ring pump 1 is designed in such a way that the outlet openings 12 of the impeller 4 are initially closed on the outlet side. Only in a pressure area 22 that is essentially diametrically opposite the suction area 20 and in which the liquid level of the liquid ring 18 reaches up to a bottom wall 24 that delimits the respective delivery chamber 8 radially on the inside (in 1 in the range of about 5:00 a.m.) or even radially inside exceeds (or: "covers"; cf. 2 ), the respective outlet opening 12 is open and the compressed gas can flow out of the respective pumping chamber 8 and out of the pump housing 2 via a corresponding gas guide line, not shown in detail. The outlet opening 12 thus serves to fluidically connect the respective delivery chamber 8 to the pressure area 22 of the pump chamber 3.

In Fig. 2 ist ein Ausführungsbeispiel des Pumpenrads 4 näher dargestellt. Das Pumpenrad 4 umfasst in diesem Fall zum stirnseitigen (oder: axial endseitigen) Abdecken der jeweiligen Förderkammer 8 zwei Seitenwände 26, die im dargestellten Ausführungsbeispiel einstückig (d. h. monolithisch), aus einem das Pumpenrad 4 bildenden Pumpenradkörper 28 ausgeformt sind. Radial innenseitig gehen die Seitenwände 26 in die Bodenwand 24 über, die U-artig ausgebildet ist. D. h. die Bodenwand 24 verläuft bogenartig gekrümmt entlang der Drehachse 6 von zwei Seiten in Richtung auf die "geodätisch tiefste" Stelle (d. h. die Stelle mit geringstem radialem Abstand zur Drehachse 6) der Förderkammer 8. An dieser (axial innenseitig zu dem Pumpenrad 4 liegenden) Stelle ist die Austrittsöffnung 12 angeordnet. Im dargestellten Ausführungsbeispiel gemäß Fig. 2 ist die jeweilige Förderkammer 8, konkret deren geometrische Struktur symmetrisch zu einer Spiegelfläche 30, die durch eine radial zur Drehachse 6 stehende Ebene gebildet ist. Dadurch wird eine gleichmäßige Strömung der Ringflüssigkeit 14 in Richtung auf die Austrittsöffnung 12 erreicht. Die Austrittsöffnung 12 ist im dargestellten Ausführungsbeispiel als rechtwinklig gewinkelte Bohrung ausgebildet und stellt somit einen Kanal dar, der zunächst in Radialrichtung aus der jeweiligen Förderkammer 8 führt und anschließend parallel zur Drehachse 6 auf einer Stirnseite 32 aus dem Pumpenrad 4 herausführt. Auf der gegenüberliegenden Stirnseite 34 ist in die dortige Seitenwand 26 eine Einströmöffnung 36 eingebracht, die im Saugbereich 20 ein Einströmen des Gases in die Förderkammer 8 ermöglicht. Diese Einströmöffnung 36 ist insbesondere dann zweckmäßig, wenn der Flüssigkeitsstand der Ringflüssigkeit 14 derart gewählt ist, dass das Pumpenrad 4 mit seinem Außenumfang ständig in den Flüssigkeitsring 18 eingetaucht ist.In 2 an embodiment of the impeller 4 is shown in more detail. In this case, the impeller 4 comprises two side walls 26 for covering the respective pumping chamber 8 at the front (or: axial end) and which in the exemplary embodiment shown are formed in one piece (ie monolithically) from an impeller body 28 forming the impeller 4 . Radially on the inside, the side walls 26 merge into the bottom wall 24, which is U-shaped. i.e. the bottom wall 24 runs in an arc along the axis of rotation 6 from two sides in the direction of the "geodetically lowest" point (ie the point with the smallest radial distance from the axis of rotation 6) of the pumping chamber 8. At this point (axially on the inside of the impeller 4). the outlet opening 12 is arranged. In the illustrated embodiment according to 2 is the respective pumping chamber 8, specifically its geometric structure symmetrical to a mirror surface 30, which is formed by a radial plane to the axis of rotation 6. A uniform flow of the ring liquid 14 in the direction of the outlet opening 12 is thereby achieved. In the exemplary embodiment shown, the outlet opening 12 is designed as a right-angled bore and thus represents a channel that first leads in the radial direction out of the respective pumping chamber 8 and then out of the impeller 4 parallel to the axis of rotation 6 on an end face 32 . On the opposite end face 34 , an inflow opening 36 is made in the side wall 26 there, which allows the gas to flow into the delivery chamber 8 in the suction area 20 . This inflow opening 36 is particularly expedient when the liquid level of the ring liquid 14 is selected in such a way that the outer circumference of the impeller 4 is constantly immersed in the liquid ring 18 .

Durch die in Fig. 2 dargestellte Form der Bodenwand 24 wird eine näherungsweise lineare Geschwindigkeitszunahme der in die Förderkammer 8 einströmenden Ringflüssigkeit 14 ermöglicht. Durch die gewölbte bzw. geneigt gegen die Drehachse 6 angestellte Bodenwand 24 wird außerdem ein schlagartiges Auftreffen der Ringflüssigkeit 14 auf die Bodenwand 24 und eine damit einhergehende Schaum- (d.h. Gemisch-) und Geräuschentwicklung unterbunden. Dadurch, dass die Austrittsöffnung 12 am tiefsten Punkt der Förderkammer 8 angeordnet ist, wird außerdem ermöglicht, dass die Ringflüssigkeit 14 das Gas vor sich her schiebt und im Druckbereich 22 der Pumpenkammer 3 zunächst das Gas über die Austrittsöffnung 12 ausströmen kann. Wie in Fig. 2 angedeutet, ist in einer Variante zum Betrieb der Flüssigkeitsringpumpe 1 die Füllmenge der Ringflüssigkeit 14 sowie die Exzentrizität der Drehachse 6 im Pumpengehäuse 2 derart gewählt, dass der Flüssigkeitsstand des Flüssigkeitsrings 18 im Druckbereich 22 die Austrittsöffnung 12 vollständig überdeckt. Dadurch wird ermöglicht, dass das in der Förderkammer 8 und der Austrittsöffnung 12 stehende Gas vollständig durch die Ringflüssigkeit 14 ausgestoßen und sogar ein Anteil der Ringflüssigkeit 14 ebenfalls aus der Förderkammer 8 gefördert werden. Durch die vorbeschriebenen Maßnahmen wird ermöglicht, das Gas bis auf vernachlässigbare Anteile aus der jeweiligen Förderkammer 8 zu fördern, sodass ein Saugdruckwert im Bereich des Dampfdrucks der Ringflüssigkeit erreicht werden kann.through the in 2 The illustrated shape of the bottom wall 24 enables an approximately linear increase in speed of the annular liquid 14 flowing into the conveying chamber 8 . The arched or inclined bottom wall 24 positioned against the axis of rotation 6 also prevents the annular liquid 14 from hitting the bottom wall 24 abruptly and the development of foam (ie mixture) and noise associated therewith. The fact that the outlet opening 12 is arranged at the lowest point of the pumping chamber 8 also makes it possible for the ring liquid 14 to push the gas in front of it and in the pressure region 22 of the pump chamber 3 the gas can initially flow out via the outlet opening 12 . As in 2 indicated, in a variant for operating the liquid ring pump 1, the filling quantity of the ring liquid 14 and the eccentricity of the axis of rotation 6 in the pump housing 2 are selected such that the liquid level of the liquid ring 18 in the pressure area 22 completely covers the outlet opening 12. This makes it possible for the gas standing in the conveying chamber 8 and the outlet opening 12 to be completely expelled through the ring liquid 14 and even for a portion of the ring liquid 14 to also be conveyed out of the conveying chamber 8 . The measures described above make it possible to pump the gas out of the respective pumping chamber 8 to a negligible proportion, so that a suction pressure value in the range of the vapor pressure of the ring liquid can be achieved.

In Fig. 3 ist ein alternatives Ausführungsbeispiel des Pumpenrads 4 dargestellt. Die Seitenwände 26 sind dabei durch beidseitig auf den Pumpenradkörper 28 aufgesetzte (und somit von diesem separat hergestellte) Platten oder Schilde gebildet. Die Bodenwand 24 ist V-artig ausgebildet und weist somit zwei geradlinig schräg zur Drehachse 6 verlaufende Abschnitte (d. h. zu jeder Seite der Spiegelfläche jeweils ein Abschnitt) auf. Mithin läuft die Bodenwand 24 im Schnitt gemäß Fig. 2 gesehen trichterartig auf die Austrittsöffnung 12 zu. Des Weiteren ist die Austrittsöffnung 12, konkret deren aus dem Pumpenradkörper 28 führender Kanalabschnitt, ebenfalls schräg zur Drehachse 6 angestellt. Dadurch wird ermöglicht, dass auch innerhalb der Austrittsöffnung 12 die Ringflüssigkeit 14 stets das Gas vor sich her schiebt. Das Risiko einer (turbulenten) Durchmischung der Ringflüssigkeit 14 mit dem Gas wird somit weiter verringert.In 3 an alternative embodiment of the impeller 4 is shown. The side walls 26 are formed by plates or shields placed on both sides of the impeller body 28 (and thus produced separately from it). The bottom wall 24 is V-shaped and thus has two straight sections running obliquely to the axis of rotation 6 (ie one section on each side of the mirror surface). Consequently, the bottom wall 24 runs in section according to FIG 2 viewed like a funnel towards the outlet opening 12 . Furthermore, the outlet opening 12 , specifically its channel section leading out of the impeller body 28 , is also set at an angle to the axis of rotation 6 . This makes it possible for the annular liquid 14 to always push the gas in front of it, even within the outlet opening 12 . The risk of (turbulent) mixing of the ring liquid 14 with the gas is thus further reduced.

In einem nicht näher dargestellten Ausführungsbeispiel können die Seitenwände 26 auch entfallen, insbesondere wenn das "V" der Bodenwand 24 seitlich höher gezogen ist.In an exemplary embodiment that is not shown in detail, the side walls 26 can also be omitted, in particular if the "V" of the bottom wall 24 is raised laterally.

In Fig. 4 ist ein Ausführungsbeispiel der Flüssigkeitsringpumpe 1 dargestellt, bei dem ein Steuerring 40 zur Freigabe der Austrittsöffnungen 12 in den Druckbereich 22 dient. Dazu deckt der Steuerring 40 mit seinem Ringkörper die Austrittsöffnungen 12 ausgangsseitig gegen das Pumpenrad 4 ab. Zur Freigabe der Austrittsöffnungen 12 im Druckbereich 22 weist der Steuerring 40 einen Ringspalt 42 auf, innerhalb dessen die Austrittsöffnungen 12 nicht überdeckt sind. Um eine Druckdifferenz zwischen dem Saugbereich 20 und dem Druckbereich 22 einstellen zu können, ist der Steuerring 40 gegenüber dem Pumpenrad 4 um die Drehachse 6 verdrehbar. Je mehr der Austrittsöffnungen 12 dabei im Druckbereich 22 geöffnet sind, desto geringer ist die Druckdifferenz. Optional kann dabei auch zwischen Steuerringen 40 mit unterschiedlich großen Ringspalten 42 gewählt werden.In 4 an exemplary embodiment of the liquid ring pump 1 is shown, in which a control ring 40 serves to release the outlet openings 12 into the pressure area 22 . For this purpose, the ring body of the control ring 40 covers the outlet openings 12 on the outlet side against the impeller 4 . To release the outlet openings 12 in the pressure area 22, the control ring 40 has an annular gap 42, within which the outlet openings 12 are not covered. In order to be able to set a pressure difference between the suction area 20 and the pressure area 22 , the control ring 40 can be rotated about the axis of rotation 6 with respect to the pump wheel 4 . The more the outlet openings 12 are open in the pressure area 22, the lower the pressure difference. Optionally, it is also possible to choose between control rings 40 with annular gaps 42 of different sizes.

In Fig. 5 ist ein zu Fig. 4 alternatives Ausführungsbeispiel der Flüssigkeitsringpumpe 1, konkret des Pumpenrads 4, dargestellt. Zur Steuerung des Druckverhältnisses zwischen Saugbereich 20 und Druckbereich 22 sowie zur gezielten Entladung des in der Förderkammer 8 befindlichen und durch das Ansteigen der Ringflüssigkeit 14 komprimierten Gases ist in der jeweiligen Austrittsöffnung 12 einer jeden Förderkammer 8 ein Rückschlagventil, im Folgenden als Austritts-Ventil 50 bezeichnet, angeordnet. Der in Fig. 4 dargestellte Steuerring 40 kann somit entfallen. Durch das Austritts-Ventil 50 wird vorteilhafterweise auch verhindert, dass bereits ausgestoßenes Gas aus dem Druckbereich 22 bei weiterer Drehung des Pumpenrads 4 und somit abnehmendem Flüssigkeitsstand der Ringflüssigkeit 14 in die bereits entladene Förderkammer 8 zurückströmt oder gar in diese Förderkammer 8 zurück verpufft. Dadurch wird die Effizienz der Flüssigkeitsringpumpe 1 gesteigert und eine unerwünschte Geräuschentwicklung effektiv unterbunden. Aufgrund des Austritts-Ventils 50 verhält sich jede Förderkammer isoliert betrachtet wie eine oszillierende Verdrängerpumpe (wobei der Flüssigkeitsring 18 lokal einen Flüssigkeitskolben bildet). Das jeweilige Austritts-Ventil 50 ist derart eingerichtet, zu öffnen wenn der in der Förderkammer anstehende Förderdruckwert hinreichend hoch ist, bspw. mit dem ausgangsseitig zur Flüssigkeitsringpumpe 1 erforderlichen Druckwert übereinstimmt.In figure 5 is a to 4 alternative embodiment of the liquid ring pump 1, specifically the impeller 4, shown. To control the pressure ratio between the suction area 20 and the pressure area 22 and for the targeted discharge of the gas in the delivery chamber 8 and compressed by the rising ring liquid 14, there is a check valve in the respective outlet opening 12 of each delivery chamber 8, referred to below as the outlet valve 50 , arranged. the inside 4 illustrated control ring 40 can thus be omitted. The outlet valve 50 advantageously also prevents gas that has already been expelled from the pressure area 22 from flowing back into the already discharged delivery chamber 8 or even deflagrating back into this delivery chamber 8 as the impeller 4 rotates further and the liquid level of the ring liquid 14 decreases. This increases the efficiency of the liquid ring pump 1 and effectively prevents the development of unwanted noise. Due to the outlet valve 50, each pumping chamber behaves in isolation like an oscillating positive displacement pump (where the liquid ring 18 locally forms a liquid piston). The respective outlet valve 50 is set up in such a way that it opens when the delivery pressure value present in the delivery chamber is sufficiently high, for example corresponds to the pressure value required on the output side of the liquid ring pump 1 .

In Fig. 6 ist ein weiteres alternatives Ausführungsbeispiel des Pumpenrads 4 dargestellt. Die Austrittsöffnung 12 führt dabei über das Austritts-Ventil 50 in eine an dem Pumpenradkörper 28 angeordnete, konkret in diesen eingeformte Austrittskammer 54. Diese Austrittskammer 54 ist dabei geometrisch derart gestaltet, dass eine fliehkraftbedingte Trennung des Gases von der Ringflüssigkeit 14 ermöglicht wird. Dazu weist die Austrittskammer 54 zumindest eine schräg zur Drehachse 6 angestellte Kammerfläche 56 auf. Aufgrund der auf die Ringflüssigkeit 14 wirkenden Zentrifugalkraft erfolgt an dieser Kammerfläche 56 eine Trennung der mitausgestoßenen Ringflüssigkeit 14 von dem Gas, indem sich die Ringflüssigkeit 14 an dieser Kammerfläche 56 niederschlägt und entlang dieser zur (Stirn-)Seite 32 des Pumpenrads 4 hin abfließt. Neben der nicht näher dargestellten Gasführungsleitung ist an dieser Seite 32 auch eine Flüssigkeitsableitung in Form einer (optional in die Gasführungsleitung integrierten) Rohrleitung angeordnet, über die im Betrieb die vom Gas abgetrennte Ringflüssigkeit 14 abgeführt, einer Kühleinrichtung zu- und anschließend in die Pumpenkammer 3 zurückgeführt wird. In einer nicht näher dargestellten Variante verläuft die Kammerfläche 56 parallel zur Drehachse 6 und stellt somit eine Kreiszylinderinnenfläche dar.In 6 another alternative embodiment of the impeller 4 is shown. The outlet opening 12 leads via the outlet valve 50 into an outlet chamber 54 which is arranged on the impeller body 28 and is specifically formed therein. For this purpose, the outlet chamber 54 has at least one chamber surface 56 inclined to the axis of rotation 6 . Due to the centrifugal force acting on the ring liquid 14, the ring liquid 14 that is also ejected is separated from the gas at this chamber surface 56, in that the ring liquid 14 is deposited on this chamber surface 56 and flows along it to the (front) side 32 of the impeller 4. In addition to the gas supply line, which is not shown in detail, there is also a liquid discharge line in the form of a pipeline (optionally integrated in the gas supply line) on this side 32, via which the ring liquid 14 separated from the gas is discharged during operation, fed to a cooling device and then returned to the pump chamber 3 becomes. In a variant that is not shown in detail, the chamber surface 56 runs parallel to the axis of rotation 6 and thus represents an inner surface of a circular cylinder.

In einer weiteren nicht näher dargestellten Variante sind in der Austrittskammer 54 zusätzlich Mittel zur Unterstützung der Gas-Flüssigkeitstrennung angeordnet. Dabei handelt es sich um Leitschaufeln, die die fliehkraftbedingte Abscheidung der Ringflüssigkeit 14 unterstützen.In a further variant that is not shown in detail, means for supporting the gas-liquid separation are additionally arranged in the outlet chamber 54 . These are guide vanes that support the centrifugal force-related separation of the ring liquid 14 .

Auf der anderen Seite 34 des Pumpenrads 4 ist im in Fig. 6 dargestellten Ausführungsbeispiel die Einströmöffnung 36 ebenfalls in die Bodenwand 24 der Förderkammer 8 eingeformt. In der Einströmöffnung 36 ist außerdem ein Rückschlagventil (im Folgenden als Einström-Ventil 58 bezeichnet) angeordnet, das ein Rückströmen und damit auch eine Rückverpuffung des Gases aus der Förderkammer 8 in den Saugbereich 20 unterbindet. Durch den Einsatz des Einström-Ventils 58 und des Austritts-Ventils 50 ist eine besonders präzise Steuerung der Be- und Entladung der Förderkammer 8 mit dem zu fördernden Gas möglich. Außerdem wird effektiv eine Geräuschentwicklung durch dynamische Druckentlastungen in bzw. aus der jeweiligen Förderkammer sowie eine damit gegebenenfalls verbundene Schaumbildung zwischen dem Gas und der Ringflüssigkeit 14 unterbunden. In diesem Ausführungsbeispiel sind die Einström-Ventile 58 und die Austritts-Ventile 50 jeweils als Membranventile ausgebildet. Aufgrund der vorstehend beschriebenen Anordnung in der Bodenwand 24 wird die Dicht- oder Schließwirkung der Austritts-Ventile 50 dabei durch die Fliehkraft unterstützt. Entsprechend wird bei dieser Anordnung das Öffnen der Einström-Ventile 58 ebenfalls durch die Fliehkraft unterstützt.On the other side 34 of the impeller 4 is in 6 illustrated embodiment, the inflow opening 36 is also formed in the bottom wall 24 of the pumping chamber 8. In the inflow opening 36 there is also a non-return valve (hereinafter referred to as inflow valve 58) which prevents the gas from flowing back and thus also deflagrating from the delivery chamber 8 in the suction area 20 prevents. The use of the inflow valve 58 and the outlet valve 50 enables particularly precise control of the loading and unloading of the pumping chamber 8 with the gas to be pumped. In addition, the development of noise as a result of dynamic pressure relief in or out of the respective delivery chamber and any associated foaming between the gas and the ring liquid 14 are effectively prevented. In this exemplary embodiment, the inflow valves 58 and the outlet valves 50 are each designed as membrane valves. Due to the arrangement in the bottom wall 24 described above, the sealing or closing effect of the outlet valves 50 is supported by the centrifugal force. Correspondingly, in this arrangement, the opening of the inflow valves 58 is also assisted by the centrifugal force.

In Fig. 7 ist ein weiteres Ausführungsbeispiel des Pumpenrads 4 dargestellt. Die Schnittlinie dieser schematischen Schnittansicht verläuft hierbei insbesondere etwa vertikal. Als (zu den vorstehend genannten Leitschaufeln alternative) zusätzliche Mittel zur Unterstützung der Gas-Flüssigkeitstrennung ist in der (gemeinsamen) Austrittskammer 54 eine Leitscheibe 60 angeordnet, die die fliehkraftbedingte Abscheidung der Ringflüssigkeit 14 unterstützt. Konkret ist die Leitscheibe 60 mit dem Pumpengrundkörper 28 drehfest gekoppelt. Die Austrittsöffnung 12 (insbesondere der von dieser gebildete Kanal) und/oder das Austritts-Ventil 50 sind dabei derart ausgerichtet, dass das ausströmende Gas und die nachströmende Ringflüssigkeit 14 auf die mit dem Pumpenrad 4 mitdrehende Leitscheibe 60 auftreffen. Radial innenseitig sind in der Leitscheibe 60 (über deren Umfang verteilt) Durchtrittsöffnungen 62 für das Gas angeordnet. Die Ringflüssigkeit 14 läuft aufgrund der durch die Rotation der Leitscheibe 60 bedingten Fliehkraft radial nach außen an der Leitscheibe 60 ab. Anschließend läuft die Ringflüssigkeit 14 an der (sich konisch erweiternden und rotierenden) Kammerfläche 56 zur Seite 32 hin ab. Über einen Spalt 64 hinweg, der hinreichend klein ist, um ein zumindest übermäßiges Einfließen der Ringflüssigkeit 14 in den Spalt 64 zu unterbinden, fließt die Ringflüssigkeit 14 auf den stationären Bereich der Flüssigkeitsringpumpe 1, konkret auf das Pumpengehäuse 2 über.In 7 another exemplary embodiment of the impeller 4 is shown. The line of intersection of this schematic sectional view runs in particular approximately vertically. As an additional means (as an alternative to the guide vanes mentioned above) to support the gas-liquid separation, a guide disk 60 is arranged in the (common) outlet chamber 54, which supports the centrifugal force-induced separation of the annular liquid 14. Specifically, the guide disk 60 is coupled to the pump base body 28 in a torque-proof manner. The outlet opening 12 (in particular the channel formed by it) and/or the outlet valve 50 are aligned in such a way that the outflowing gas and the following annular liquid 14 impinge on the guide disk 60 rotating with the impeller 4 . Passage openings 62 for the gas are arranged radially on the inside in guide disk 60 (distributed over its circumference). Due to the centrifugal force caused by the rotation of the guide disk 60 , the annular liquid 14 runs off radially outwards on the guide disk 60 . The ring liquid 14 then runs off to the side 32 on the (conically widening and rotating) chamber surface 56 . Across a gap 64 , which is sufficiently small to prevent at least excessive inflow of the ring liquid 14 into the gap 64 , the ring liquid 14 flows onto the stationary region of the liquid ring pump 1 , specifically onto the pump housing 2 .

In dem Pumpengehäuse 2 ist dabei ein Ringkanal 66 ausgebildet, der als eine Art Ablaufrinne für die Ringflüssigkeit 14, die von der Kammerfläche 56 auf das Pumpengehäuse 2 abläuft, ausgebildet ist. Auf einer Unterseite des Pumpengehäuses 2 ist in dem Ringkanal 66 ein Ablauf ausgebildet, der die vorstehend beschriebene Flüssigkeitsableitung darstellt. Der Ablauf ist dabei derart gestaltet, dass ein Durchtritt von Gas verhindert ist. Beispielsweise ist der Ablauf dabei nach Art eines Siphons gestaltet oder weist einen derart geringen Durchmesser auf, dass stets eine Restflüssigkeitsspiegel der Ringflüssigkeit 14 an dem Ablauf ansteht und diesen somit gegen den Durchtritt von Gas verschließt.An annular channel 66 is formed in the pump housing 2 , which is designed as a kind of drainage channel for the annular liquid 14 , which runs off the chamber surface 56 onto the pump housing 2 . On an underside of the pump housing 2, an outlet is formed in the ring channel 66, which represents the liquid discharge described above. The drain is designed in such a way that the passage of gas is prevented. For example, the outlet is designed like a siphon or has such a small diameter that there is always a residual liquid level of the ring liquid 14 at the outlet and thus closes it against the passage of gas.

Der Gegenstand der Erfindung ist nicht auf die vorstehend beschriebenen Ausführungsbeispiele beschränkt, sondern wird lediglich in den Ansprüchen definiert. Vielmehr können weitere Ausführungsformen von dem Fachmann aus der vorstehenden Beschreibung abgeleitet werden. Insbesondere können die anhand der verschiedenen Ausführungsbeispiele beschriebenen Einzelmerkmale und deren Ausgestaltungsvarianten (beispielsweise die Anordnung und Ausgestaltung der Austritts- und Einström-Ventile 50 bzw. 58 sowie der Seitenwände 26) auch in anderer Weise miteinander kombiniert werden.The subject of the invention is not limited to the embodiments described above, but is only defined in the claims. Rather, further embodiments can be derived from the above description by a person skilled in the art. In particular, the individual features described with reference to the various exemplary embodiments and their design variants (for example the arrangement and design of the outlet and inflow valves 50 and 58 and the side walls 26) can also be combined with one another in other ways.

BezugszeichenlisteReference List

11
Flüssigkeitsringpumpeliquid ring pump
22
Pumpengehäusepump housing
33
Pumpenkammerpump chamber
44
Pumpenradimpeller
66
Drehachseaxis of rotation
88th
Förderkammerconveyor chamber
1010
Zwischenwandpartition
1212
Austrittsöffnungexit port
1414
Ringflüssigkeitring liquid
1616
Drehrichtungdirection of rotation
1818
Flüssigkeitsringliquid ring
2020
Saugbereichsuction area
2222
Druckbereichprint area
2424
Bodenwandbottom wall
2626
SeitenwandSide wall
2828
Pumpengrundkörperpump body
3030
Symmetrieflächeplane of symmetry
3232
Seiteside
3434
Seiteside
3636
Einströmöffnunginflow opening
4040
Steuerringcontrol ring
4242
Ringspaltannular gap
5050
Austritts-Ventilexit valve
5454
Austrittskammerexit chamber
5656
Kammerflächechamber area
5858
Einström-Ventilinflow valve
6060
Leitscheibeidler disk
6262
Durchtrittsöffnungpassage opening
6464
Spaltgap
6666
Ringkanalring canal

Claims (11)

  1. Liquid ring pump (1), having a pump housing (2) which surrounds a pump chamber (3) into which a pump liquid (14) is filled in the intended operating state, and having an pump wheel (4) which is arranged inside the pump chamber (3) and is rotatable about an axis of rotation (6) for conveying a gaseous working medium,
    - the pump wheel (4) having on its outer circumference a number of delivery chambers (8) separated from one another at least in the circumferential direction,
    - the pump wheel (4) having in each case an outlet opening (12), which is assigned to each delivery chamber (8) and is introduced locally into a bottom wall (24) of the pump wheel (4), which delimits the respective delivery chamber (8) radially on the inside, for the fluidic connection of the respective delivery chamber (8) to a pressure region (20) of the pump chamber (3),
    - wherein the bottom wall (24) runs along the axis of rotation (6) on both sides of the outlet opening (12) at least in sections inclined to the axis of rotation (6) in the direction of the outlet opening (12),
    - wherein the respective outlet opening (12) is arranged at a point of the respective conveying chamber (8) with the smallest radial distance to the axis of rotation (6),
    characterized in that
    the pump wheel (4) has for each delivery chamber (8) in each case an inflow opening (36) made locally in one of the walls bounding the delivery chamber (8) for fluidic connection of the respective delivery chamber (8) with a suction region (20) of the pump chamber (3).
  2. Liquid ring pump (1) according to claim 1,
    wherein the pump wheel (4) is arranged eccentrically in the pump chamber (3) in such a way that a liquid ring (18) of the pump liquid (14) in the pressure region (20) of the pump chamber (3), which ring forms in the intended operation, completely covers at least one delivery chamber (8) in the radial direction.
  3. Liquid ring pump (1) according to claim 1 or 2,
    wherein each delivery chamber (8) is formed symmetrically with respect to a radial plane of the pump wheel (4) forming a mirror surface (30), and wherein the outlet opening (12) is arranged in the mirror surface (30).
  4. Liquid ring pump (1) according to one of claims 1 to 3,
    wherein the respective bottom wall (24) delimiting the delivery chamber (8) radially on the inside is substantially U-shaped or V-shaped along the axis of rotation (6).
  5. Liquid ring pump (1) according to one of the preceding claims,
    wherein the inflow opening (36) is provided in the bottom wall (24) or a side wall (26) bounding the respective delivery chamber (8) on the end side.
  6. Liquid ring pump (1) according to one of the preceding claims,
    wherein a check valve (50) is arranged within the outlet opening (12).
  7. Liquid ring pump (1) according to any one of the preceding claims,
    wherein a check valve (58) is arranged within the inflow opening (36).
  8. Liquid ring pump (1) according to one of the preceding claims,
    wherein the respective outlet opening (12) opens into an outlet chamber (54) arranged on the pump wheel (4), which is designed for centrifugal separation of the working medium from the pump liquid (14).
  9. Liquid ring pump (1) according to claim 8,
    wherein means, in particular guide vanes or guide discs, are arranged in the outlet chamber (54) for assisting the separation of the working medium from the pump liquid (14).
  10. Liquid ring pump (1) according to any one of claims 1 to 5,
    having a control ring (40) which is rotatable relative to the pump wheel (4) and closes the outlet openings (12) of the pump wheel (4) in sections on the outlet side against the pump wheel (4).
  11. Liquid ring pump (1) according to any one of the preceding claims, wherein a poly-alpha-olefin is used as pump liquid (14).
EP18772737.5A 2017-08-29 2018-08-29 Liquid ring pump Active EP3676496B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017215080.7A DE102017215080A1 (en) 2017-08-29 2017-08-29 Liquid ring pump
PCT/EP2018/073206 WO2019043044A1 (en) 2017-08-29 2018-08-29 Liquid ring pump

Publications (2)

Publication Number Publication Date
EP3676496A1 EP3676496A1 (en) 2020-07-08
EP3676496B1 true EP3676496B1 (en) 2022-10-05

Family

ID=63637851

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18772737.5A Active EP3676496B1 (en) 2017-08-29 2018-08-29 Liquid ring pump

Country Status (3)

Country Link
EP (1) EP3676496B1 (en)
DE (1) DE102017215080A1 (en)
WO (1) WO2019043044A1 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE648731C (en) * 1935-02-08 1937-08-07 Voith Gmbh J M Rotating compressor with auxiliary fluid
US2201575A (en) * 1938-03-04 1940-05-21 Ernest R Corneil Machine for transferring fluids
DE890256C (en) * 1943-05-07 1953-09-17 Siemens Ag Liquid ring compressor
DE1015691B (en) * 1955-02-05 1957-09-12 Siemens Ag Liquid ring pump with rotating housing
GB1081898A (en) * 1963-08-29 1967-09-06 John Llewellyn Lewis Improved rotary pump
JPS4964910A (en) * 1972-09-05 1974-06-24
DE3207507C2 (en) * 1982-03-02 1984-12-20 Siemens AG, 1000 Berlin und 8000 München Liquid ring compressor
US4521161A (en) * 1983-12-23 1985-06-04 The Nash Engineering Company Noise control for conically ported liquid ring pumps
IT1292483B1 (en) * 1997-07-04 1999-02-08 Garo Roberto Gabbioneta S P A HIGH PERFORMANCE LIQUID RING COMPRESSOR
DE20015709U1 (en) * 2000-09-11 2002-01-31 Speck Pumpenfabrik Walter Spec Liquid ring pump with hub control
NO316638B1 (en) * 2002-04-19 2004-03-15 Compressor Systems As Vaeskeringkompressor
EP1794458A1 (en) * 2004-09-17 2007-06-13 Basf Aktiengesellschaft Method for operating a liquid ring compressor

Also Published As

Publication number Publication date
EP3676496A1 (en) 2020-07-08
WO2019043044A1 (en) 2019-03-07
DE102017215080A1 (en) 2019-02-28

Similar Documents

Publication Publication Date Title
EP2511531B1 (en) Spiral compressor for coolant
EP0934466B1 (en) Feed pump
EP1899608B1 (en) Rotary vacuum pump
EP1766239B1 (en) Single-winged vacuum pump
DE2130474B2 (en) centrifugal pump
DE102004058458B3 (en) Pump with axial impeller e.g. for pump, has screw-shaped wings for sucking in liquid by inlet port arranged at lower surface of axial impeller with wings at lower surface have cutting edge
DE102007032228A1 (en) Self-priming pump aggregation
EP2429677B1 (en) Filter
EP3199815B1 (en) Centrifugal pump
EP3676496B1 (en) Liquid ring pump
DE112006002564B4 (en) pump
EP2245312B1 (en) Degassing device for liquid-filled chambers with rotating components
EP2362101B1 (en) Dosing pump
DE102008056106B4 (en) Side channel blower, in particular secondary air blower for an internal combustion engine
DE102015007100A1 (en) Self-priming pump aggregation
CH700016B1 (en) Mechanical seal.
DE1528895C3 (en) centrifugal pump
DE19918393B4 (en) Hydraulic conveyor
WO2021156120A1 (en) Pump assembly
WO2019120633A1 (en) Side channel blower, in particular secondary air blower for an internal combustion engine
DE102023117639A1 (en) Control flow counterpressure nozzle for scroll compressors and a method for removing particles from refrigerant-oil mixtures in a control flow counterpressure nozzle of scroll compressors
DE2312022A1 (en) DEVICE ON PUMPS, IN PARTICULAR CENTRIFUGAL PUMPS, FOR FOAMING LIQUIDS
DE102012104405A1 (en) Rotary pump for use in hydrodynamic systems for supplying water, has suction chamber and pressure chamber, which lies behind suction chamber in flow direction and is separated from suction chamber in axial direction by separating element
DE3246375A1 (en) Side channel pump
DE4132209A1 (en) Sliding vane oil pump - has separator to separate air from oil installed in container mounted on pump body

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F04C 29/12 20060101ALI20220408BHEP

Ipc: F01C 21/08 20060101ALI20220408BHEP

Ipc: F04C 19/00 20060101AFI20220408BHEP

INTG Intention to grant announced

Effective date: 20220513

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1522901

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018010793

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230206

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230105

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230205

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230106

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018010793

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

26N No opposition filed

Effective date: 20230706

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230824

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502018010793

Country of ref document: DE

Representative=s name: KANDLBINDER, MARKUS, DIPL.-PHYS., DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230821

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231023

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230829