EP3658832B1 - Procede de gestion d'un circuit de climatisation de vehicule automobile - Google Patents

Procede de gestion d'un circuit de climatisation de vehicule automobile Download PDF

Info

Publication number
EP3658832B1
EP3658832B1 EP18755870.5A EP18755870A EP3658832B1 EP 3658832 B1 EP3658832 B1 EP 3658832B1 EP 18755870 A EP18755870 A EP 18755870A EP 3658832 B1 EP3658832 B1 EP 3658832B1
Authority
EP
European Patent Office
Prior art keywords
shcomp
pcomp
expansion device
text
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18755870.5A
Other languages
German (de)
English (en)
Other versions
EP3658832A1 (fr
Inventor
Régis BEAUVIS
Jin-ming LIU
Jugurtha Benouali
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59811650&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3658832(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Publication of EP3658832A1 publication Critical patent/EP3658832A1/fr
Application granted granted Critical
Publication of EP3658832B1 publication Critical patent/EP3658832B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/06Superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet

Definitions

  • the invention relates to the field of motor vehicles and more particularly to a motor vehicle air conditioning circuit and its cooling mode management method.
  • a refrigerant fluid passes successively through a compressor, a first heat exchanger, called a condenser, placed in contact with an air flow outside the motor vehicle to release heat, an expansion device and a second heat exchanger, called an evaporator, placed in contact with a flow of air inside the motor vehicle to cool it.
  • the expansion device is a thermostatic valve whose bulb is arranged downstream of the evaporator.
  • the expansion device can also be an electronic expansion valve controlled by a central control unit.
  • the document FR 2 928 445 A1 discloses a method for managing an air conditioning circuit inside which a refrigerant fluid circulates in a cooling mode, the refrigerant fluid circulating successively in a compressor, a condenser, an expansion device, and an evaporator intended to recover heat energy from a second heat transfer fluid and transferring it to the refrigerant fluid, said air conditioning circuit comprising a central control unit capable of controlling the opening of the expansion device, said method comprising: a step of calculating the opening of the expansion device from measurements of operating parameters of the air conditioning circuit and a step of opening the expansion device according to the calculated value.
  • One of the aims of the present invention is therefore to remedy, at least partially, the drawbacks of the prior art and to propose a method for managing an improved reversible air conditioning circuit, in particular in cooling mode.
  • SHcomp_in_sp_min is between 3 and 20°K and SHcomp_in_sp_max is between 8 and 25°K.
  • the air conditioning circuit comprises an internal heat exchanger capable of allowing the exchange of calorific energy between the refrigerant fluid at the outlet of the condenser and the refrigerant fluid at the outlet of the evaporator.
  • first element or second element as well as first parameter and second parameter or even first criterion and second criterion, etc.
  • it is a simple indexing to differentiate and name elements or parameters or criteria that are close but not identical.
  • This indexing does not imply a priority of one element, parameter or criterion with respect to another and it is easy to interchange such denominations without departing from the scope of the present description.
  • This indexation does not imply an order in time either, for example to assess such and such a criterion.
  • placed upstream means that one element is placed before another with respect to the direction of circulation of a fluid.
  • placed downstream means that one element is placed after another with respect to the direction of circulation of the fluid.
  • the condenser 5 is intended to release heat energy from the refrigerant fluid into a first heat transfer fluid 50.
  • This first heat transfer fluid 50 can for example be an external air flow when the first heat exchanger is for example placed on the front face of the motor vehicle.
  • the first heat transfer fluid 50 is a fluid circulating in another temperature management loop, for example when the first heat exchanger is a two-fluid exchanger, this is particularly the case in the context of a circuit indirect air conditioning.
  • the evaporator 9 is for its part intended to recover heat energy from a second heat transfer fluid 90 and to transfer it to the refrigerant fluid.
  • This second heat transfer fluid 90 can for example be an air flow going to the passenger compartment when the second heat exchanger is for example placed in a heating, ventilation and air conditioning device.
  • Another possibility can also be that the second heat transfer fluid 90 is a fluid circulating in another temperature management loop, for example when the second heat exchanger is a two-fluid exchanger.
  • the air conditioning circuit 1 also comprises a central control unit 10.
  • This central control unit 10 is in particular connected to the compressor 3 in order to control its speed and thus control the pressure of the refrigerant fluid.
  • Central unity control 10 is also connected to the expansion device 7 in order to control and command its opening and thus control the loss of pressure of the refrigerant fluid when it passes through it.
  • the central control unit 10 can also be connected to a first sensor 11 of the temperature Text of the first heat transfer fluid 50 before it passes through the condenser 5. More precisely, Text can correspond to the outside ambient temperature of the air.
  • the central control unit 10 can be connected to a second sensor 12 of the pressure Pcomp_out of the refrigerant fluid at the outlet of the compressor 3.
  • This second sensor 12 can in particular be arranged downstream of the compressor 3, between said compressor 3 and the condenser 5 .
  • the central control unit 10 can be connected to a third sensor 13 of the pressure Pcomp_in of the refrigerant fluid before it enters the compressor 3.
  • This third sensor 13 can in particular be arranged upstream of the compressor 3, between the evaporator 9 and said compressor 3.
  • the central control unit can be connected to a fourth sensor 14 of the temperature Tcomp_in of the refrigerant fluid before it enters the compressor 3.
  • This fourth sensor 14 can in particular be arranged upstream of the compressor 3, between the evaporator 9 and said compressor 3.
  • the third 13 and fourth 14 sensors can more particularly be only one pressure/temperature sensor arranged upstream of the compressor 3, between the evaporator 9 and the said compressor 3.
  • the central control unit can be connected to a fifth Tevapo temperature sensor 15 of the second heat transfer fluid 90 after it has passed through the evaporator 9.
  • the refrigerant fluid In operation, in cooling mode, as shown in the figure 1b , the refrigerant fluid is in the gaseous phase at low pressure before entering the compressor 3.
  • the refrigerant fluid undergoes an increase in its pressure and passes to high pressure as shown by the arrow 300.
  • the refrigerant fluid then passes through the condenser 5 and transfers enthalpy to the first heat transfer fluid 50 as shown by the arrow 500.
  • the refrigerant fluid first crosses its saturation curve X and passes into a two-phase state.
  • the refrigerant can also cross its saturation curve X a second time to pass into the liquid phase.
  • the difference between the temperature of the refrigerant at the outlet of the condenser 5 and its saturation temperature at this pressure is called sub-cooling SC.
  • the refrigerant fluid then passes through the expansion device 7 and undergoes a loss of pressure to pass to low pressure, as shown by the arrow 700.
  • the refrigerant fluid again crosses its saturation curve X and passes into a two-phase state.
  • the refrigerant fluid then passes through the evaporator 9 in which the refrigerant fluid absorbs calorific energy from the second heat transfer fluid 90, cooling the latter, as shown by the arrow 900.
  • the refrigerant fluid crosses its saturation curve X and then returns to gaseous phase before joining the compressor 3.
  • the air conditioning circuit 1 may also include an internal heat exchanger 20 capable of allowing the exchange of heat energy between the refrigerant fluid at the outlet of the condenser 5 and the refrigerant fluid at the outlet of the evaporator 9.
  • This internal heat exchanger 20 comprises in particular an inlet and an outlet of refrigerant fluid from the condenser 5, as well as an inlet and an outlet of refrigerant fluid from the evaporator 9.
  • the steps are similar to those of FIGS. 1a and 1b, except that the internal heat exchanger 20 absorbs enthalpy from the refrigerant fluid as shown by the arrow 200a and transfers it to the refrigerant fluid at the outlet of the evaporator 9 as shown by the arrow 200b.
  • the subcooling SR of the refrigerant fluid before it passes through the expansion device 7 and the superheat SHcomp_in of the refrigerant fluid before it enters the compressor 3 are both increased under the effect of the heat exchanger internal 20. This allows in particular an increase in the coefficient of performance of the air conditioning circuit 1.
  • the air conditioning circuit 1 can for example be an indirect reversible air conditioning circuit 1 as illustrated in the picture 3 .
  • This indirect reversible air conditioning circuit 1 can operate in different operating modes including a cooling mode.
  • the bypass pipe 30 can connect more specifically a first connection point 31 and a second connection point 32.
  • the first connection point 31 is preferably arranged, in the direction of circulation of the refrigerant fluid, downstream of the evaporator 9, between the said evaporator 9 and the evapo-condenser 13. More particularly, and as illustrated in the picture 3 , the first connection point 31 is arranged between the evaporator 9 and the second expansion device 21. It is however quite possible to imagine that the first connection point 31 is arranged between the second expansion device 21 and the evapo-condenser 13 as long as the refrigerant fluid has the possibility of bypassing the second expansion device 21 or of passing through it without suffering a loss of pressure.
  • the second connection point 32 is for its part preferably disposed downstream of the evapo-condenser 13, between said evapo-condenser 13 and the compressor 3.
  • the indirect reversible air conditioning circuit 1 also comprises a device for redirecting the refrigerant fluid coming from the evaporator 9 to the evapo-condenser 13 or to the bypass line 30.
  • Another alternative can also be to arrange a three-way valve at the level of the first connection point 31.
  • stop valve non-return valve, three-way valve or expansion device with stop function
  • stop function mechanical or electromechanical elements that can be controlled by the central control unit 10.
  • the first refrigerant loop A may comprise, in addition to the internal heat exchanger 20, a second internal heat exchanger 20' allowing heat exchange between the high-pressure refrigerant at the outlet of the heat exchanger internal 20 and the low-pressure refrigerant fluid flowing in the bypass line 30, that is to say coming from the first connection point 31.
  • high-pressure refrigerant fluid is meant a refrigerant fluid having undergone an increase of pressure at the level of the compressor 3 and that it has not yet suffered a loss of pressure due to the electronic expansion valve 7 or the tube orifice 11.
  • This second internal heat exchanger 20 'in comprises a inlet and an outlet of refrigerant fluid from the first connection point 31, as well as an inlet and an outlet of high pressure refrigerant fluid from the internal heat exchanger 20.
  • At least one of the two internal heat exchangers 20, 20′ can be a coaxial heat exchanger, that is to say comprising two coaxial tubes and between which heat exchanges take place.
  • the internal heat exchanger 20 can be a coaxial internal heat exchanger with a length of between 50 and 120mm while the second internal heat exchanger 20' can be a coaxial internal heat exchanger with a length between 200 and 700mm.
  • the first refrigerant fluid loop A may comprise a dehydrating bottle 18 disposed downstream of the bifluid heat exchanger 5, more precisely between said bifluid heat exchanger 5 and the internal heat exchanger 20.
  • a dehydrating bottle 18 disposed on the high pressure side of the air conditioning circuit that is to say downstream of the compressor 3 and upstream of an expansion device, has a smaller footprint as well as a reduced cost compared to other phase separation solutions such as an accumulator which would be placed on the low pressure side of the air conditioning circuit, that is to say upstream of the compressor 3, in particular upstream of the internal heat exchanger 20.
  • the indirect reversible air conditioning circuit 1 comprises within the second heat transfer fluid loop B a device for redirecting the heat transfer fluid coming from the two-fluid heat exchanger 5 to the first circulation pipe 70 and/or to the second heat transfer pipe. circulation 60.
  • the device for redirecting the heat transfer fluid coming from the two-fluid heat exchanger 5 may in particular comprise a fourth shut-off valve 63 arranged on the second circulation pipe 60 in order to block or not the first heat transfer fluid and prevent it from circulate in said second circulation pipe 60.
  • the indirect reversible air conditioning circuit 1 may also include a shutter 310 for obstructing the interior air flow 100 passing through the third heat exchanger 54.
  • This embodiment makes it possible in particular to limit the number of valves on the second heat transfer fluid loop B and thus makes it possible to limit production costs.
  • the device for redirecting the heat transfer fluid coming from the two-fluid heat exchanger 5 may in particular comprise a fourth shut-off valve 63 arranged on the second circulation pipe 60 in order to block or not block the fluid coolant and to prevent it from flowing in said second circulation pipe 60, and a fifth shut-off valve arranged on the first circulation pipe 70 in order to block or not the heat transfer fluid and to prevent it from flowing in said first pipe traffic 70.
  • the second loop of heat transfer fluid B may also include an electric heating element 55 of the heat transfer fluid.
  • Said electrical heating element 55 is in particular arranged, in the direction of circulation of the heat transfer fluid, downstream of the bifluid heat exchanger 5, between said bifluid heat exchanger 5 and the first junction point 61.
  • the refrigerant fluid does not pass through the evapo-condenser 13 but passes through the bypass line 30.
  • the first refrigerant fluid 50 passes for its part into the external radiator 64 in order to evacuate heat energy in the external airflow 200.
  • the refrigerant fluid passes successively through a compressor 3, a condenser 5, an expansion device 7 and an evaporator 9.
  • the present invention relates to a method for managing the air conditioning circuit 1 in cooling mode and more precisely for managing the control of the opening of the expansion device 7 and therefore of the loss of pressure of the refrigerant fluid when it passes through said device. relaxation 7.
  • SHcomp_in_sp_min can be between 3 and 20°K and SHcomp_in_sp_max between 8 and 25°K.
  • SHcomp_in_sp_min and SHcomp_in_sp_max are variable depending on the nature of the refrigerant fluid and the architecture of the air conditioning circuit 1.
  • the value of Shcomp_in_sp allows an optimization of the coefficient of performance of the air conditioning circuit 1 and allows the refrigerant fluid to be in a gaseous state at at least minus 90% as it enters compressor 3.
  • the value of SHcomp_in_sp always between SHcomp_in_sp_min and SHcomp_in_sp_max , allows the refrigerant to be at a temperature below the operating limit temperature of compressor 3 and thus prevents the latter from does not stop by getting to safety.
  • SHcomp_in_sp For a value of Text between T1 and T2, the value of SHcomp_in_sp , always between SHcomp_in_sp_min and SHcomp_in_sp_max , allows an optimization of the coefficient of performance of the air conditioning circuit 1 and of the cooling power of the second heat transfer fluid 90.
  • the control unit 10 During the second step of controlling the overheating Shcomp_in , if SHcomp_in is less than SHcomp_in_sp_min then the control unit 10 will decrease the opening of the expansion device 7 in order to increase the overheating SHcomp_in. Whether SHcomp_in is greater than SHcomp_in_sp_max then the control unit 10 will increase the opening of the expansion device 7 in order to reduce the overheating SHcomp_in.
  • the increase or decrease in the opening of the expansion device 7 is preferably carried out by a proportional integral controller.
  • SHcomp_in is between SHcomp_in_sp_min and SHcomp_in_sp_max, the increase or decrease in the opening of the expansion device 7 is preferably carried out by a proportional controller.
  • the chosen refrigerant is R134a and the temperature Text is 45°C.
  • the management method according to the invention allows an increase in the overheating SHcom_in 102b with respect to the overheating SHcom_in 102a.
  • This overheating SHcom_in 102b is greater because the opening 103b according to the invention is smaller than the opening 103a according to the prior art. Due to this higher SHcom_in 102b overheating, the Tevapo 101b temperature according to the invention is lower than the temperature Tevapo 101a according to the prior art. The coefficient of performance is then increased compared to the prior art, because the compressor 3 is at an identical speed whether for the prior art or for the management method according to the invention.
  • the management method according to the invention allows good management and good control of the opening of the expansion device 7 allowing a good coefficient of performance of the air conditioning circuit 1 in cooling mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

  • L'invention se rapporte au domaine des véhicules automobiles et plus particulièrement à un circuit de climatisation de véhicule automobile et son procédé de gestion en mode de refroidissement.
  • Les véhicules automobiles actuels comportent de plus en plus souvent un circuit de climatisation. Dans un circuit de climatisation « classique », lors d'un mode de refroidissement, un fluide réfrigérant passe successivement dans un compresseur, un premier échangeur de chaleur, appelé condenseur, placé en contact avec un flux d'air extérieur au véhicule automobile pour libérer de la chaleur, un dispositif de détente et un deuxième échangeur de chaleur, appelé évaporateur, placé en contact avec un flux d'air intérieur du véhicule automobile pour le refroidir.
  • Généralement, le dispositif de détente est une vanne thermostatique dont le bulbe est disposé en aval de l'évaporateur. Le dispositif de détente peut également être une vanne électronique d'expansion contrôlée par une unité centrale de contrôle.
  • Par exemple, le document FR 2 928 445 A1 divulgue un procédé de gestion d'un circuit de climatisation à l'intérieur duquel circule un fluide réfrigérant dans un mode de refroidissement, le fluide réfrigérant circulant successivement dans un compresseur, un condenseur, un dispositif de détente, et un évaporateur destiné à récupérer de l'énergie calorifique d'un deuxième fluide caloporteur et de la transférer au fluide réfrigérant, ledit circuit de climatisation comportant une unité centrale de contrôle apte à contrôler l'ouverture du dispositif de détente, ledit procédé comportant: une étape de calcul de l'ouverture du dispositif de détente à partir de mesures de paramètres de fonctionnement du circuit de climatisation et une étape d'ouverture du dispositif de détente selon la valeur calculée. Dans ce genre de cas, il est nécessaire d'avoir une stratégie de contrôle du circuit de climatisation afin de déterminer et contrôler l'ouverture de la vanne électronique d'expansion notamment afin d'obtenir une surchauffe du fluide réfrigérant en sortie de l'évaporateur. Cette surchauffe est notamment utile pour améliorer le coefficient de performance du circuit de climatisation, mais également pour diminuer les risques que du fluide réfrigérant à l'état liquide ne passe dans le compresseur.
  • Un des buts de la présente invention est donc de remédier au moins partiellement aux inconvénients de l'art antérieur et de proposer un procédé de gestion d'un circuit de climatisation inversible amélioré notamment en mode refroidissement.
  • La présente invention concerne donc un procédé, tel que défini dans la revendication indépendante 1, le procédé étant un procédé de gestion d'un circuit de climatisation à l'intérieur duquel circule un fluide réfrigérant dans un mode de refroidissement, le fluide réfrigérant circulant successivement dans :
    • un compresseur,
    • un condenseur destiné à relâcher de l'énergie calorifique du fluide réfrigérant dans un premier fluide caloporteur,
    • un dispositif de détente, et
    • un évaporateur destiné à récupérer de l'énergie calorifique d'un deuxième fluide caloporteur et de la transférer au fluide réfrigérant,
      • ledit circuit de climatisation comportant une unité centrale de contrôle apte à contrôler l'ouverture du dispositif de détente,
      • ledit procédé comportant :
        • une étape de :
          • ∘ calcul de l'ouverture Cestim du dispositif de détente à partir de mesures de paramètres de fonctionnement du circuit de climatisation, et de
          • ∘ détermination d'une surchauffe consigne SHcomp_in_sp en fonction de l'état du fluide réfrigérant en sortie de l'évaporateur et de la température Text du premier fluide caloporteur avant sa traversée du condenseur, SHcomp_in_sp étant comprise entre une surchauffe minimale SHcomp_in_sp_min et une surchauffe maximale SHcomp_in_sp_max, SHcomp_in_sp_min et SHcomp_in_sp_max étant déterminées en fonction de la température Text du premier fluide caloporteur avant sa traversée du condenseur, du débit du deuxième fluide caloporteur traversant l'évaporateur et de la température du deuxième fluide caloporteur avant sa traversée de l'évaporateur,
        • une étape d'ouverture du dispositif de détente selon Cestim et de contrôle de la surchauffe SHcomp_in en faisant varier l'ouverture du dispositif de détente de sorte à atteindre la surchauffe consigne SHcomp_in_sp et maintenir SHcomp_in entre SHcomp_in_sp_min et SHcomp_in_sp_max.
  • Selon l'invention SHcomp_in est calculé selon la formule suivante SHcomp _ in = Tcomp _ in Tsat Pcomp _ in
    Figure imgb0001
    dans laquelle,
    • Tcomp_in est la température du fluide réfrigérant en entrée du compresseur, et
    • Tsat(Pcomp_in) est la température de saturation du fluide réfrigérant à la pression Pcomp_in en entrée du compresseur.
  • Selon l'invention le calcul de l'ouverture Cestim du dispositif de détente est réalisé selon l'une des formules suivantes : Cestim = K1 * Tevapo Tevapo _ sp + K 2 * Tsat Pcomp _ out Text
    Figure imgb0002
    ou Cestim = K1 * Pcomp _ in Psat Tevapo _ sp + K 2 * Tsat Pcomp _ out Text
    Figure imgb0003
    dans lesquelles,
    • Tevapo est la température du second fluide caloporteur en sortie de l'évaporateur,
    • Tevapo_sp est une température consigne du second fluide caloporteur en sortie de l'évaporateur,
    • Tsat(Pcomp_out) est la température de saturation du fluide réfrigérant à la pression Pcomp_out du fluide réfrigérant en sortie du compresseur,
    • Text est la température du premier fluide caloporteur avant sa traversée du condenseur,
    • Pcomp_in est la pression du fluide réfrigérant en entrée du compresseur,
    • Psat(Tevapo_sp) est la pression de saturation du fluide réfrigérant à la température consigne Tevapo du second fluide caloporteur en sortie de l'évaporateur,
    • K1 étant la pente moyenne ΔC/ΔTevapo avec ΔC étant la variation de l'ouverture du dispositif de détente et de ΔTevapo la variation de Tevapo mesurées lors d'expérimentation où l'on fait varier l'ouverture du dispositif de détente pour un régime du compresseur donné, un débit donné du premier fluide caloporteur traversant le condenseur et selon la valeur de Text,
    • K1'étant la pente moyenne ΔCPcomp_in avec ΔC étant la variation de l'ouverture du dispositif de détente et de ΔPcomp_in la variation de Pcomp_in mesurées lors d'expérimentation où l'on fait varier l'ouverture du dispositif de détente pour un régime du compresseur donné et un débit donné de premier fluide caloporteur traversant le condenseur et selon la valeur de Text. et
    • K2 étant la pente moyenne ΔC/Δ(Tsat(Pcomp_out) - Text) avec ΔC étant la variation de l'ouverture du dispositif de détente et de Δ(Tsat(Pcomp_out) - Text) la variation de (Tsat(Pcomp_out) - Text) mesurées et calculées lors d'expérimentation où l'on fait varier l'ouverture du dispositif de détente pour un régime du compresseur donné et un débit donné de premier fluide caloporteur traversant le condenseur et selon la valeur de Text.
  • Selon un autre aspect du procédé de gestion, la détermination de la surchauffe consigne SHcomp_in_sp est telle que :
    • pour une valeur de Text inférieure à une valeur définie T1, la valeur de SHcomp_in_sp permet une optimisation du coefficient de performance du circuit de climatisation et permet au fluide réfrigérant d'être dans un état gazeux à au moins 90 % à son entrée dans le compresseur,
    • pour une valeur de Text supérieure à une valeur définie T2, la valeur de SHcomp_in_sp permet au fluide réfrigérant d'être à une température inférieure à la température limite de fonctionnement du compresseur,
    • pour une valeur de Text comprise entre T1 et T2, la valeur de SHcomp_in_sp permet une optimisation du coefficient de performance du circuit de climatisation et de la puissance de refroidissement du deuxième fluide caloporteur.
  • Selon un autre aspect du procédé de gestion, SHcomp_in_sp_min est comprise entre 3 et 20 °K et SHcomp_in_sp_max est comprise ente 8 et 25 °K.
  • Selon un autre aspect du procédé de gestion, lors de l'étape de contrôle de la surchauffe SHcomp_in :
    • si SHcomp_in est inférieure à SHcomp_in_sp_min ou supérieure à SHcomp_in_sp_max, l'augmentation ou la diminution de l'ouverture du dispositif de détente est réalisée par un contrôleur proportionnel intégral,
    • si SHcomp_in est compris entre SHcomp_in_sp_min et SHcomp_in_sp_max, l'augmentation ou la diminution de l'ouverture du dispositif de détente est réalisée par un contrôleur proportionnel.
  • Selon un autre aspect du procédé de gestion, le circuit de climatisation comporte un échangeur de chaleur interne apte à permettre les échanges d'énergie calorifique entre le fluide réfrigérant en sortie du condenseur et le fluide réfrigérant en sortie de l'évaporateur.
  • D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante, donnée à titre d'exemple illustratif et non limitatif, et des dessins annexés parmi lesquels :
    • la figure la montre une représentation schématique d'un circuit de climatisation selon un premier mode de réalisation,
    • la figure 1b montre un diagramme pression/enthalpie du circuit de climatisation de la figure 1a,
    • la figure 2a montre une représentation schématique d'un circuit de climatisation selon un deuxième mode de réalisation,
    • la figure 2b montre un diagramme pression/enthalpie du circuit de climatisation de la figure 2a,
    • la figure 3 montre une représentation schématique d'un circuit de climatisation selon un mode de réalisation particulier,
    • la figure 4 montre un diagramme de l'évolution de la surchauffe en fonction de la température d'un premier fluide caloporteur,
    • la figure 5 montre un diagramme de l'évolution de différents paramètres en fonction du temps lors du fonctionnement du circuit de climatisation.
  • Sur les différentes figures, les éléments identiques portent les mêmes numéros de référence.
  • Les réalisations suivantes sont des exemples. Bien que la description se réfère à un ou plusieurs modes de réalisation, ceci ne signifie pas nécessairement que chaque référence concerne le même mode de réalisation, ou que les caractéristiques s'appliquent seulement à un seul mode de réalisation. De simples caractéristiques de différents modes de réalisation peuvent également être combinées et/ou interchangées pour fournir d'autres réalisations. L'étendu de l'invention est cependant limité par l'objet des revendications annexées.
  • Dans la présente description, on peut indexer certains éléments ou paramètres, comme par exemple premier élément ou deuxième élément ainsi que premier paramètre et second paramètre ou encore premier critère et deuxième critère etc. Dans ce cas, il s'agit d'un simple indexage pour différencier et dénommer des éléments ou paramètres ou critères proches mais non identiques. Cette indexation n'implique pas une priorité d'un élément, paramètre ou critère par rapport à un autre et on peut aisément interchanger de telles dénominations sans sortir du cadre de la présente description. Cette indexation n'implique pas non plus un ordre dans le temps par exemple pour apprécier tel ou tel critère.
  • Dans la présente description, on entend par « placé en amont » qu'un élément est placé avant un autre par rapport au sens de circulation d'un fluide. A contrario, on entend par « placé en aval » qu'un élément est placé après un autre par rapport au sens de circulation du fluide.
  • La figure la montre un circuit de climatisation 1 simple, notamment pour véhicule automobile, dans lequel circule un fluide réfrigérant. Ce circuit de climatisation 1 comporte dans le sens de circulation du fluide réfrigérant :
    • un compresseur 3,
    • un premier échangeur de chaleur jouant le rôle d'un condenseur 5,
    • un dispositif de détente 7, plus précisément dans le cas présent une vanne électronique d'expansion,
    • un deuxième échangeur de chaleur jouant le rôle d'un évaporateur 9.
  • Le condenseur 5 est destiné à relâcher de l'énergie calorifique du fluide réfrigérant dans un premier fluide caloporteur 50. Ce premier fluide caloporteur 50 peut par exemple être un flux d'air extérieur lorsque le premier échangeur de chaleur est par exemple disposé en face avant du véhicule automobile. Une autre possibilité peut également être que le premier fluide caloporteur 50 est un fluide circulant dans une autre boucle de gestion de température, par exemple lorsque le premier échangeur de chaleur est un échangeur bifluide, cela est notamment le cas dans le cadre d'un circuit de climatisation indirect.
  • L'évaporateur 9 est quant à lui destiné à récupérer de l'énergie calorifique d'un deuxième fluide caloporteur 90 et de la transférer au fluide réfrigérant. Ce deuxième fluide caloporteur 90 peut par exemple être un flux d'air allant vers l'habitacle lorsque le deuxième échangeur de chaleur est par exemple disposé dans un dispositif de chauffage, ventilation et climatisation. Une autre possibilité peut également être que le deuxième fluide caloporteur 90 est un fluide circulant dans une autre boucle de gestion de température, par exemple lorsque le deuxième échangeur de chaleur est un échangeur bifluide.
  • Le circuit de climatisation 1 comporte également une unité centrale de contrôle 10. Cette unité centrale de contrôle 10 est notamment reliée au compresseur 3 afin de contrôler son régime et ainsi contrôler la pression du fluide réfrigérant. L'unité centrale de contrôle 10 est également reliée au dispositif de détente 7 afin de contrôler et commander son ouverture et ainsi contrôler la perte de pression du fluide réfrigérant lorsqu'il la traverse.
  • L'unité centrale de contrôle 10 peut également être reliée à un premier capteur 11 de la température Text du premier fluide caloporteur 50 avant sa traversée du condenseur 5. Plus précisément, Text peut correspondre à la température ambiante extérieure de l'air.
  • L'unité centrale de contrôle 10 peut être reliée à un deuxième capteur 12 de la pression Pcomp_out du fluide réfrigérant en sortie du compresseur 3. Ce deuxième capteur 12 peut notamment être disposé en aval du compresseur 3, entre ledit compresseur 3 et le condenseur 5.
  • L'unité centrale de contrôle 10 peut être reliée à un troisième capteur 13 de la pression Pcomp_in du fluide réfrigérant avant son entrée dans le compresseur 3. Ce troisième capteur 13 peut notamment être disposé en amont du compresseur 3, entre l'évaporateur 9 et ledit compresseur 3.
  • L'unité centrale de contrôle peut être reliée à un quatrième capteur 14 de la température Tcomp_in du fluide réfrigérant avant son entrée dans le compresseur 3. Ce quatrième capteur 14 peut notamment être disposé en amont du compresseur 3, entre l'évaporateur 9 et ledit compresseur 3.
  • Le troisième 13 et quatrième 14 capteurs peuvent plus particulièrement n'être qu'un seul capteur pression/température disposé en amont du compresseur 3, entre l'évaporateur 9 et ledit compresseur 3.
  • L'unité centrale de contrôle peut être reliée à un cinquième capteur 15 de la température Tevapo du deuxième fluide caloporteur 90 après qu'il ait traversé l'évaporateur 9.
  • En fonctionnement, en mode de refroidissement, comme le montre la figure 1b, le fluide réfrigérant est en phase gazeuse à basse pression avant d'entrer dans le compresseur 3. En traversant le compresseur 3 le fluide réfrigérant subit une augmentation de sa pression et passe à haute pression comme le montre la flèche 300. Le fluide réfrigérant traverse ensuite le condenseur 5 et transfert de l'enthalpie au premier fluide caloporteur 50 comme le montre la flèche 500. le fluide réfrigérant franchit une première fois sa courbe de saturation X et passe dans un état biphasique. Le fluide réfrigérant peut également franchir une deuxième fois sa courbe de saturation X pour passer en phase liquide. La différence entre la température du fluide réfrigérant en sortie du condenseur 5 et sa température de saturation à cette pression est appelée sous-refroidissement SC.
  • Le fluide réfrigérant passe ensuite au travers du dispositif de détente 7 et subit une perte de pression pour passer à basse pression, comme le montre la flèche 700. Le fluide réfrigérant franchit de nouveau sa courbe de saturation X et passe dans un état diphasique. Le fluide réfrigérant traverse ensuite l'évaporateur 9 dans lequel le fluide réfrigérant absorbe de l'énergie calorifique du deuxième fluide caloporteur 90, refroidissant ce dernier, comme le montre la flèche 900. Le fluide réfrigérant traverse sa courbe de saturation X et repasse alors en phase gazeuse avant de rejoindre le compresseur 3. La différence entre la température Tcomp_in du fluide réfrigérant avant qu'il ne traverse le compresseur 3 (mesurée par le quatrième capteur 14) et sa température de saturation à cette pression Tsat(Pcomp_in), correspond à une surchauffe SHcomp_in du fluide réfrigérant. Ainsi , Shcomp _ in = Tcomp _ in Tsat Pcomp _ in .
    Figure imgb0004
  • Comme le montre la figure 2a, le circuit de climatisation 1 peut également comporter un échangeur de chaleur interne 20 apte à permettre les échanges d'énergie calorifique entre le fluide réfrigérant en sortie du condenseur 5 et le fluide réfrigérant en sortie de l'évaporateur 9. Cet échangeur de chaleur interne 20 comporte notamment une entrée et une sortie de fluide réfrigérant en provenance du condenseur 5, ainsi qu'une entrée et une sortie de fluide réfrigérant de l'évaporateur 9.
  • En fonctionnement, et comme le montre la figure 2b, les étapes sont similaires à celles des figures la et 1b, à la différence que l'échangeur de chaleur interne 20 absorbant de l'enthalpie au fluide réfrigérant comme le montre la flèche 200a et en la transférant au fluide réfrigérant en sortie de l'évaporateur 9 comme le montre la flèche 200b. Le sous-refroidissement SR du fluide réfrigérant avant qu'il ne traverse le dispositif de détente 7 et la surchauffe SHcomp_in du fluide réfrigérant avant qu'il ne rentre dans le compresseur 3 sont tous deux augmentés sous l'effet de l'échangeur de chaleur interne 20. Cela permet notamment une augmentation du coefficient de performance du circuit de climatisation 1.
  • Le circuit de climatisation 1 peut par exemple être un circuit de climatisation inversible indirect 1 comme illustré sur la figure 3. Ce circuit de climatisation inversible indirect 1 peut fonctionner dans différents modes de fonctionnement dont un mode de refroidissement.
  • Ce circuit de climatisation inversible indirect 1 comporte notamment :
    • une première boucle de fluide réfrigérant A dans laquelle circule le fluide réfrigérant,
    • une deuxième boucle de fluide caloporteur B dans laquelle circule le premier fluide caloporteur 50, et
    • un échangeur de chaleur bifluide correspondant au condenseur 5 agencé conjointement sur la première boucle de fluide réfrigérant A et sur la deuxième boucle de fluide caloporteur B, de façon à permettre les échanges de chaleur entre ladite première boucle de fluide réfrigérant A et ladite deuxième boucle de fluide caloporteur B.
  • La première boucle de fluide réfrigérant A, représentée en trait plein sur la figure 3, comporte plus particulièrement dans le sens de circulation du fluide réfrigérant :
    • ∘ un compresseur 3,
    • ∘ l'échangeur de chaleur bifluide 5, disposé en aval dudit compresseur 3,
    • ∘ un premier dispositif de détente 7, plus précisément une vanne électronique d'expansion,
    • ∘ un évaporateur 9 étant destiné à être traversé par le deuxième fluide caloporteur 90 qui est ici un flux d'air intérieur au véhicule automobile allant vers l'habitacle,
    • ∘ un deuxième dispositif de détente 21, par exemple un orifice tube,
    • ∘ un évapo-condenseur 13 étant destiné à être traversé par un flux d'air extérieur 200 au véhicule automobile, et
    • ∘ une conduite de contournement 30 de l'évapo-condenseur 13.
  • La conduite de contournement 30 peut relier plus spécifiquement un premier point de raccordement 31 et un deuxième point de raccordement 32.
  • Le premier point de raccordement 31 est de préférence disposé, dans le sens de circulation du fluide réfrigérant, en aval de l'évaporateur 9, entre ledit évaporateur 9 et l'évapo-condenseur 13. Plus particulièrement, et comme illustré sur la figure 3, le premier point de raccordement 31 est disposé entre l'évaporateur 9 et le deuxième dispositif de détente 21. Il est cependant tout à fait possible d'imaginer que le premier point de raccordement 31 soit disposé entre le deuxième dispositif de détente 21 et l'évapo-condenseur 13 du moment que le fluide réfrigérant a la possibilité de contourner le deuxième dispositif de détente 21 ou de le traverser sans subir de perte de pression.
  • Le deuxième point de raccordement 32 est quant à lui de préférence disposé en aval de l'évapo-condenseur 13, entre ledit évapo-condenseur 13 et le compresseur 3.
  • Le circuit de climatisation inversible indirecte 1 comporte également un dispositif de redirection du fluide réfrigérant en provenance de l'évaporateur 9 vers l'évapo-condenseur 13 ou vers la conduite de contournement 30.
  • Ce dispositif de redirection du fluide réfrigérant en provenance de l'évaporateur 9 peut notamment comporter :
    • une première vanne d'arrêt 22 disposée en aval du premier point de raccordement 31, entre ledit premier point de raccordement 31 et le deuxième dispositif de détente 21,
    • une deuxième vanne d'arrêt 33 disposée sur la conduite de contournement 30, et
    • un clapet antiretour 23 disposé en aval du deuxième échangeur de chaleur 13, entre ledit évapo-condenseur 13 et le deuxième point de raccordement 32.
  • Une autre alternative (non représentée) peut également être de disposer une vanne trois-voies au niveau du premier point de raccordement 31.
  • Par vanne d'arrêt, clapet antiretour, vanne trois-voies ou dispositif de détente avec fonction d'arrêt, on entend ici des éléments mécaniques ou électromécaniques pouvant être pilotés par l'unité centrale de contrôle 10.
  • Comme illustré sur la figure 3, la première boucle de fluide réfrigérant A peut comporter, en supplément de l'échangeur de chaleur interne 20, un deuxième échangeur de chaleur interne 20' permettant un échange de chaleur entre le fluide réfrigérant à haute pression en sortie de l'échangeur de chaleur interne 20 et le fluide réfrigérant à basse pression circulant dans la conduite de contournement 30, c'est-à-dire en provenance du premier point de raccordement 31. Par fluide réfrigérant à haute pression on entend par là un fluide réfrigérant ayant subi une augmentation de pression au niveau du compresseur 3 et qu'il n'a pas encore subi de perte de pression du fait de la vanne électronique d'expansion 7 ou de l'orifice tube 11. Ce deuxième échangeur de chaleur interne 20' comporte notamment une entrée et une sortie de fluide réfrigérant en provenance du premier point de raccordement 31, ainsi qu'une entrée et une sortie de fluide réfrigérant à haute pression en provenance de l'échangeur de chaleur interne 20.
  • Au moins un des deux échangeurs de chaleur interne 20, 20'peut être un échangeur de chaleur coaxial, c'est à dire comportant deux tubes coaxiaux et entre lesquels s'effectuent les échanges de chaleur.
  • De préférence, l'échangeur de chaleur interne 20 peut être un échangeur de chaleur interne coaxial d'une longueur comprise entre 50 et 120mm alors que le deuxième échangeur de chaleur interne 20' peut être un échangeur de chaleur interne coaxial d'une longueur comprise entre 200 et 700mm.
  • La première boucle de fluide réfrigérant A peut comporter une bouteille déshydratante 18 disposée en aval de l'échangeur de chaleur bifluide 5, plus précisément entre ledit échangeur de chaleur bifluide 5 et l'échangeur de chaleur interne 20. Une telle bouteille déshydratante 18 disposée sur le côté haute pression du circuit de climatisation, c'est à dire en aval du compresseur 3 et en amont d'un dispositif de détente, a un encombrement moindre ainsi qu'un coût réduit par rapport à d'autres solutions de séparation de phase comme un accumulateur qui serait disposé du côté basse pression du circuit de climatisation, c'est à dire en amont du compresseur 3, notamment en amont de l'échangeur de chaleur interne 20.
  • La deuxième boucle de fluide caloporteur B, représentée en trait comprenant trois tirets et deux points sur la figure 3, peut comporter quant à elle :
    • ∘ l'échangeur de chaleur bifluide 5,
    • ∘ une première conduite de circulation 70 du premier fluide caloporteur 50 comportant un radiateur interne 54 destiné à être traversé par le flux d'air intérieur 90 au véhicule automobile, et reliant un premier point de jonction 61 disposé en aval de l'échangeur de chaleur bifluide 5 et un deuxième point de jonction 62 disposé en amont dudit échangeur de chaleur bifluide 5,
    • ∘ une deuxième conduite de circulation 60 de fluide caloporteur comportant un radiateur externe 64 destiné à être traversé par le flux d'air extérieur 200 au véhicule automobile, et reliant le premier point de jonction 61 disposé en aval de l'échangeur de chaleur bifluide 5 et le deuxième point de jonction 62 disposé en amont dudit échangeur de chaleur bifluide 5, et
    • ∘ une pompe 17 disposée en aval ou en amont de l'échangeur de chaleur bifluide 5, entre le premier point de jonction 61 et le deuxième point de jonction 62.
  • Le circuit de climatisation inversible indirecte 1 comporte au sein de la deuxième boucle de fluide caloporteur B un dispositif de redirection du fluide caloporteur en provenance de l'échangeur de chaleur bifluide 5 vers la première conduite de circulation 70 et/ou vers la deuxième conduite de circulation 60.
  • Comme illustré sur la figure 3, le dispositif de redirection du fluide caloporteur en provenance de l'échangeur de chaleur bifluide 5 peut notamment comporter une quatrième vanne d'arrêt 63 disposée sur la deuxième conduite de circulation 60 afin de bloquer ou non le premier fluide caloporteur et l'empêcher de circuler dans ladite deuxième conduite de circulation 60.
  • Le circuit de climatisation inversible indirect 1 peut également comporter un volet d'obstruction 310 du flux d'air intérieur 100 traversant le troisième échangeur de chaleur 54.
  • Ce mode de réalisation permet notamment de limiter le nombre de vannes sur la deuxième boucle de fluide caloporteur B et ainsi permet de limiter les coûts de production.
  • Selon un mode de réalisation alternatif non représenté le dispositif de redirection du fluide caloporteur en provenance de l'échangeur de chaleur bifluide 5 peut notamment comporter une quatrième vanne d'arrêt 63 disposée sur la deuxième conduite de circulation 60 afin de bloquer ou non le fluide caloporteur et de l'empêcher de circuler dans ladite deuxième conduite de circulation 60, et une cinquième vanne d'arrêt disposée sur la première conduite de circulation 70 afin de bloquer ou non le fluide caloporteur et de l'empêcher de circuler dans ladite première conduite de circulation 70.
  • La deuxième boucle de fluide caloporteur B peut également comporter un élément électrique chauffant 55 du fluide caloporteur. Ledit élément électrique chauffant 55 est notamment disposé, dans le sens de circulation du fluide caloporteur, en aval de l'échangeur de chaleur bifluide 5, entre ledit échangeur de chaleur bifluide 5 et le premier point de jonction 61.
  • En mode de refroidissement, le fluide réfrigérant ne passe pas par l'évapo-condenseur 13 mais passe par la conduite de contournement 30. Le premier fluide réfrigérant 50 passe quant à lui dans le radiateur externe 64 afin d'évacuer de l'énergie calorifique dans le flux d'air externe 200.
  • Il est tout à fait possible également d'imaginer une autre architecture du circuit de climatisation 1 sans pour autant sortir du cadre de l'invention du moment qu'en mode refroidissement, le fluide réfrigérant passe successivement par un compresseur 3, un condenseur 5, un dispositif de détente 7 et un évaporateur 9.
  • La présente invention concerne un procédé de gestion du circuit de climatisation 1 en mode refroidissement et plus précisément de la gestion du contrôle de l'ouverture du dispositif de détente 7 et donc de la perte de pression du fluide réfrigérant lorsqu'il traverse ledit dispositif de détente 7.
  • Le procédé de gestion comporte :
    • une première étape de :
      • ∘ calcul de l'ouverture Cestim du dispositif de détente 7 à partir de mesures de paramètres de fonctionnement du circuit de climatisation 1, et de
      • ∘ détermination d'une surchauffe consigne SHcomp_in_sp en fonction de l'état du fluide réfrigérant en sortie de l'évaporateur 9 et de la température Text du premier fluide caloporteur. Dans cette première étape, SHcomp_in_sp est comprise entre une surchauffe minimale SHcomp_in_sp_min et une surchauffe maximale Shcomp_in_sp_max,
    • une deuxième étape d'ouverture du dispositif de détente 7 selon Cestim et de contrôle de la surchauffe SHcomp_in en faisant varier l'ouverture du dispositif de détente 7 de sorte à atteindre la surchauffe consigne SHcomp_in_sp et maintenir SHcomp_in entre SHcomp_in_sp_min et SHcomp_in_sp_max.
  • Le calcul de l'ouverture Cestim du dispositif de détente 7 et la détermination de la surchauffe consigne Shcomp_in sont réalisés simultanément par l'unité centrale de contrôle 10.
  • Lors de la première étape, le calcul de l'ouverture Cestim du dispositif de détente 7 est réalisé selon l'une des formules suivantes : Cestim = K 1 * Tevapo Tevapo _ sp + K 2 * Tsat Pcomp _ out Text
    Figure imgb0005
    ou Cestim = K 1 * Pcomp _ in Psat Tevapo _ sp + K 2 * Tsat Pcomp _ out Text
    Figure imgb0006
    • Tevapo est la température du second fluide caloporteur 90 en sortie de l'évaporateur 9, mesurée par le cinquième capteur 15,
    • Tevapo_sp est une température consigne du second fluide caloporteur 90 en sortie de l'évaporateur 9. Cette température consigne Tevapo_sp est déterminée par l'unité centrale de contrôle 10 en fonction de la température demandée par l'utilisateur à l'intérieur de habitacle par exemple.
    • Tsat(Pcomp_out) est la température de saturation du fluide réfrigérant à la pression Pcomp_out du fluide réfrigérant en sortie du compresseur 3, la pression Pcomp_out étant mesurée par le deuxième capteur 12.
    • Text est la température du premier fluide caloporteur 50 avant sa traversée du condenseur 5, mesurée par le premier capteur 11.
    • Pcomp_in est la pression du fluide réfrigérant en entrée du compresseur 3, mesurée par le troisième capteur 13.
    • Psat(Tevapo_sp) est la pression de saturation du fluide réfrigérant à la température consigne Tevapo du second fluide caloporteur 90 en sortie de l'évaporateur 90.
    • K1 correspond à la pente moyenne ΔCTevapo avec ΔC étant la variation de l'ouverture du dispositif de détente 7 et de ΔTevapo la variation de Tevapo mesurées lors d'expérimentation où l'on fait varier l'ouverture du dispositif de détente 7 pour un régime du compresseur 3 donné, un débit donné du premier fluide caloporteur 50 traversant le condenseur 5 et selon la valeur de Text. Cette constante K1 est déterminée par expérimentation et par les données stockées dans l'unité centrale de commande 10. La variation de l'ouverture du dispositif de détente 7 ΔC s'effectue entre son ouverture maximum et son ouverture minimum.
    • K1' correspond à la pente moyenne ΔCPcomp_in avec ΔC étant la variation de l'ouverture du dispositif de détente 7 et de ΔPcomp_in la variation de Pcomp_in mesurées lors d'expérimentation où l'on fait varier l'ouverture du dispositif de détente 7 pour un régime du compresseur 3 donné et un débit donné de premier fluide caloporteur 50 traversant le condenseur 5 et selon la valeur de Text. Cette constante K1' est déterminée par expérimentation et par les données stockées dans l'unité centrale de commande 10. La variation de l'ouverture du dispositif de détente 7 ΔC s'effectue entre son ouverture maximum et son ouverture minimum.
    • K2 correspond à la pente moyenne ΔC/Δ(Tsat(Pcomp_out) - Text) avec ΔC étant la variation de l'ouverture du dispositif de détente 7 et de Δ(Tsat(Pcomp_out)-Text) la variation de (Tsat(Pcomp_out) - Text) mesurées et calculées lors d'expérimentation où l'on fait varier l'ouverture du dispositif de détente 7 pour un régime du compresseur 3 donné et un débit donné de premier fluide caloporteur 50 traversant le condenseur 5 et selon la valeur de Text. Cette constante K1' est déterminée par expérimentation et par les données stockées dans l'unité centrale de commande 10. La variation de l'ouverture du dispositif de détente 7 ΔC s'effectue entre son ouverture maximum et son ouverture minimum.
  • Les valeurs SHcomp_in_sp_min et SHcomp_in_sp_max sont obtenues par expérimentation et sont déterminées en fonction :
    • de la température Text du premier fluide caloporteur 50 avant sa traversée du condenseur 5,
    • du débit du deuxième fluide caloporteur 90 traversant l'évaporateur 9, et
    • de la température du deuxième fluide caloporteur 90 avant sa traversée de l'évaporateur 9.
    Les données concernant SHcomp_in_sp_min et Shcomp_in_sp_max sont stockées dans l'unité centrale de commande 10.
  • Par exemple, pour un fluide réfrigérant tel que le R134a, SHcomp_in_sp_min peut être comprise entre 3 et 20 °K et SHcomp_in_sp_max comprise ente 8 et 25 °K. SHcomp_in_sp_min et SHcomp_in_sp_max sont variables en fonction de la nature du fluide réfrigérant et de l'architecture du circuit de climatisation 1.
  • La détermination de la surchauffe consigne SHcomp_in_sp est notamment illustrée sur le diagramme de la figure 4.
  • Pour une valeur de Text inférieure à une valeur définie T1, la valeur de Shcomp_in_sp, toujours comprise entre SHcomp_in_sp_min et SHcomp_in_sp_max, permet une optimisation du coefficient de performance du circuit de climatisation 1 et permet au fluide réfrigérant d'être dans un état gazeux à au moins 90 % à son entrée dans le compresseur 3.
  • Pour une valeur de Text supérieure à une valeur définie T2, la valeur de SHcomp_in_sp, toujours comprise entre SHcomp_in_sp_min et SHcomp_in_sp_max, permet au fluide réfrigérant d'être à une température inférieure à la température limite de fonctionnement du compresseur 3 et ainsi évite que ce dernier ne s'arrête en se mettant en sécurité.
  • Pour une valeur de Text comprise entre T1 et T2, la valeur de SHcomp_in_sp, toujours comprise entre SHcomp_in_sp_min et SHcomp_in_sp_max, permet une optimisation du coefficient de performance du circuit de climatisation 1 et de la puissance de refroidissement du deuxième fluide caloporteur 90.
  • Lors de la deuxième étape de contrôle de la surchauffe Shcomp_in, si SHcomp_in est inférieure à SHcomp_in_sp_min alors l'unité de contrôle 10 va diminuer l'ouverture du dispositif de détente 7 afin d'augmenter la surchauffe SHcomp_in. Si SHcomp_in est supérieure à SHcomp_in_sp_max alors l'unité de contrôle 10 va augmenter l'ouverture du dispositif de détente 7 afin de réduire la surchauffe SHcomp_in. L'augmentation ou la diminution de l'ouverture du dispositif de détente 7 est préférentiellement réalisée par un contrôleur proportionnel intégral.
  • Si SHcomp_in est compris entre SHcomp_in_sp_min et SHcomp_in_sp_max, l'augmentation ou la diminution de l'ouverture du dispositif de détente 7 est préférentiellement réalisée par un contrôleur proportionnel.
  • Le fait d'avoir un contrôle mixte par un contrôleur proportionnel intégral et un contrôleur proportionnel permet d'arriver rapidement à la surchauffe consigne SHcomp_in_sp et de maintenir et de stabiliser efficacement SHcomp_in entre SHcomp_in_sp_min et SHcomp_in_sp_max.
  • La figure 5 montre un diagramme montrant en traits pleins l'évolution, en fonction du temps, exprimé en minutes, de :
    • la température Tevapo illustrée par la courbe 101a,
    • la surchauffe SHcomp_in illustrée par la courbe 102a, et
    • l'ouverture 103a du dispositif de détente 7, exprimé en impulsions / 100.
  • Ces courbes en traits pleins sont réalisées après démarrage pour un circuit de climatisation selon l'art antérieur.
  • En traits pointillés sont représentés l'évolution de la température Tevapo (courbe 101b), de la surchauffe SHcomp_in (courbe 102b) et de l'ouverture (courbe 103b) du dispositif de détente 7 après démarrage pour un circuit de climatisation utilisant un procédé de gestion selon l'invention.
  • Pour ce diagramme de la figure 5, le fluide réfrigérant choisi est le R134a et la température Text est de 45°C.
  • On remarque alors que le procédé de gestion selon l'invention permet une augmentation de la surchauffe SHcom_in 102b par rapport à la surchauffe SHcom_in 102a. Cette surchauffe SHcom_in 102b est plus importante du fait que l'ouverture 103b selon l'invention est plus faible que l'ouverture 103a selon l'art antérieur. Du fait de cette surchauffe SHcom_in 102b plus importante, la température Tevapo 101b selon l'invention est plus faible que la température Tevapo 101a selon l'art antérieur. Le coefficient de performance est alors augmenté par rapport à l'art antérieur, car le compresseur 3 est à un régime identique que ce soit pour l'art antérieur ou pour le procédé de gestion selon l'invention.
  • Ainsi, on voit bien que le procédé de gestion selon l'invention permet une bonne gestion et un bon contrôle de l'ouverture du dispositif de détente 7 permettant un bon coefficient de performance du circuit de climatisation 1 en mode de refroidissement.

Claims (4)

  1. Procédé de gestion d'un circuit de climatisation (1) à l'intérieur duquel circule un fluide réfrigérant dans un mode de refroidissement, le fluide réfrigérant circulant successivement dans :
    • un compresseur (3),
    • un condenseur (5) destiné à relâcher de l'énergie calorifique du fluide réfrigérant dans un premier fluide caloporteur (50),
    • un dispositif de détente (7), et
    • un évaporateur (9) destiné à récupérer de l'énergie calorifique d'un deuxième fluide caloporteur (90) et de la transférer au fluide réfrigérant,
    ledit circuit de climatisation (1) comportant une unité centrale de contrôle (10) apte à contrôler l'ouverture du dispositif de détente (7),
    ledit procédé comportant :
    • une étape de :
    ∘ calcul de l'ouverture Cestim du dispositif de détente (7) à partir de mesures de paramètres de fonctionnement du circuit de climatisation (1), et de
    ∘ détermination d'une surchauffe consigne SHcomp_in_sp en fonction de l'état du fluide réfrigérant en sortie de l'évaporateur (9) et de la température Text du premier fluide caloporteur (50) avant sa traversée du condenseur (5), SHcomp_in_sp étant comprise entre une surchauffe minimale SHcomp_in_sp_min et une surchauffe maximale SHcomp_in_sp_max, SHcomp_in_sp_min et SHcomp_in_sp_max étant déterminées en fonction de la température Text du premier fluide caloporteur (50) avant sa traversée du condenseur (5), du débit du deuxième fluide caloporteur (90) traversant l'évaporateur (9) et de la température du deuxième fluide caloporteur (90) avant sa traversée de l'évaporateur (9), les valeurs SHcomp_in_sp_min et SHcomp_in_sp_max étant obtenues par expérimentation et étant variables en fonction de la nature du fluide réfrigérant et de l'architecture du circuit de climatisation (1),
    • une étape d'ouverture du dispositif de détente (7) selon Cestim et de contrôle de la surchauffe SHcomp_in en faisant varier l'ouverture du dispositif de détente (7) de sorte à atteindre la surchauffe consigne SHcomp_in_sp et maintenir SHcomp_in entre SHcomp_in_sp_min et SHcomp_in_sp_max, procédé dans lequel SHcomp_in est calculé selon la formule suivante : SHcomp_in = Tcomp_in - Tsat(Pcomp_in) dans laquelle, Tcomp_in est la température du fluide réfrigérant en entrée du compresseur (3), et Tsat(Pcomp_in) est la température de saturation du fluide réfrigérant à la pression Pcomp_in en entrée du compresseur (3),
    procédé dans lequel le calcul de l'ouverture Cestim du dispositif de détente (7) est réalisé selon l'une des formules suivantes : Cestim = K 1 * Tevapo Tevapo _ sp + K 2 * Tsat Pcomp _ out Text
    Figure imgb0007
    ou Cestim = K 1 * Pcomp _ in Psat Tevapo _ sp + K 2 * Tsat Pcomp _ out Text
    Figure imgb0008
    dans lesquelles,
    Tevapo est la température du second fluide caloporteur (90) en sortie de l'évaporateur (9),
    Tevapo_sp est une température consigne du second fluide caloporteur (90) en sortie de l'évaporateur (9),
    Tsat(Pcomp_out) est la température de saturation du fluide réfrigérant à la pression Pcomp_out du fluide réfrigérant en sortie du compresseur (3),
    Text est la température du premier fluide caloporteur (50) avant sa traversée du condenseur (5),
    Pcomp_in est la pression du fluide réfrigérant en entrée du compresseur (3), Psat(Tevapo_sp) est la pression de saturation du fluide réfrigérant à la température consigne Tevapo du second fluide caloporteur (90) en sortie de l'évaporateur (90),
    K1 étant la pente moyenne ΔCTevapo avec ΔC étant la variation de l'ouverture du dispositif de détente (7) et de ΔTevapo la variation de Tevapo mesurées lors d'expérimentation où l'on fait varier l'ouverture du dispositif de détente (7) pour un régime du compresseur (3) donné, un débit donné du premier fluide caloporteur (50) traversant le condenseur (5) et selon la valeur de Text,
    Kl'étant la pente moyenne ΔCPcomp_in avec ΔC étant la variation de l'ouverture du dispositif de détente (7) et de ΔPcomp_in la variation de Pcomp_in mesurées lors d'expérimentation où l'on fait varier l'ouverture du dispositif de détente (7) pour un régime du compresseur (3) donné et un débit donné de premier fluide caloporteur (50) traversant le condenseur (5) et selon la valeur de Text. et
    K2 étant la pente moyenne ΔC/Δ(Tsat(Pcomp_out) - Text) avec ΔC étant la variation de l'ouverture du dispositif de détente (7) et de Δ(Tsat(Pcomp_out) - Text) la variation de (Tsat(Pcomp_out) - Text) mesurées et calculées lors d'expérimentation où l'on fait varier l'ouverture du dispositif de détente (7) pour un régime du compresseur (3) donné et un débit donné de premier fluide caloporteur (50) traversant le condenseur (5) et selon la valeur de Text.
  2. Procédé de gestion d'un circuit de climatisation (1) selon la revendication 1, caractérisé en ce que SHcomp_in_sp_min est comprise entre 3 et 20 °K et SHcomp_in_sp_max est comprise ente 8 et 25 °K.
  3. Procédé de gestion d'un circuit de climatisation (1) selon l'une des revendications précédentes, caractérisé en ce que lors de l'étape de contrôle de la surchauffe SHcomp_in :
    • si SHcomp_in est inférieure à SHcomp_in_sp_min ou supérieure à SHcomp_in_sp_max, l'augmentation ou la diminution de l'ouverture du dispositif de détente (7) est réalisée par un contrôleur proportionnel intégral,
    • si SHcomp_in est compris entre SHcomp_in_sp_min et SHcomp_in_sp_max, l'augmentation ou la diminution de l'ouverture du dispositif de détente (7) est réalisée par un contrôleur proportionnel.
  4. Procédé de gestion d'un circuit de climatisation (1) selon l'une des revendications précédentes, caractérisé en ce qu'il comporte un échangeur de chaleur interne (20) apte à permettre les échanges d'énergie calorifique entre le fluide réfrigérant en sortie du condenseur (5) et le fluide réfrigérant en sortie de l'évaporateur (9).
EP18755870.5A 2017-07-28 2018-07-26 Procede de gestion d'un circuit de climatisation de vehicule automobile Active EP3658832B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1757227A FR3069626B1 (fr) 2017-07-28 2017-07-28 Procede de gestion d'un circuit de climatisation de vehicule automobile
PCT/FR2018/051922 WO2019020952A1 (fr) 2017-07-28 2018-07-26 Procede de gestion d'un circuit de climatisation de vehicule automobile

Publications (2)

Publication Number Publication Date
EP3658832A1 EP3658832A1 (fr) 2020-06-03
EP3658832B1 true EP3658832B1 (fr) 2022-11-02

Family

ID=59811650

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18755870.5A Active EP3658832B1 (fr) 2017-07-28 2018-07-26 Procede de gestion d'un circuit de climatisation de vehicule automobile

Country Status (4)

Country Link
EP (1) EP3658832B1 (fr)
CN (1) CN111133262B (fr)
FR (1) FR3069626B1 (fr)
WO (1) WO2019020952A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT522875B1 (de) * 2019-10-30 2021-03-15 Lambda Waermepumpen Gmbh Verfahren zur Regelung eines Expansionsventils

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2913102B1 (fr) * 2007-02-28 2012-11-16 Valeo Systemes Thermiques Installation de climatisation equipee d'une vanne de detente electrique
FR2928445B1 (fr) * 2008-03-06 2014-01-03 Valeo Systemes Thermiques Branche Thermique Habitacle Methode de commande d'un organe de detente que comprend une boucle de climatisation d'une installation de ventilation, de chauffage et/ou de climatisation d'un vehicule
EP3222449A1 (fr) * 2012-02-28 2017-09-27 Japan Climate Systems Corporation Climatiseur d'air pour véhicule
JP6189098B2 (ja) * 2013-06-14 2017-08-30 三菱重工オートモーティブサーマルシステムズ株式会社 ヒートポンプ式車両用空調システム
US20150059373A1 (en) * 2013-09-05 2015-03-05 Beckett Performance Products, Llc Superheat and sub-cooling control of refrigeration system
US9874384B2 (en) * 2016-01-13 2018-01-23 Bergstrom, Inc. Refrigeration system with superheating, sub-cooling and refrigerant charge level control
CN106595141B (zh) * 2016-12-12 2019-12-27 重庆美的通用制冷设备有限公司 一种电子膨胀阀的控制方法和装置以及制冷系统

Also Published As

Publication number Publication date
FR3069626A1 (fr) 2019-02-01
CN111133262B (zh) 2022-04-05
EP3658832A1 (fr) 2020-06-03
FR3069626B1 (fr) 2019-12-27
CN111133262A (zh) 2020-05-08
WO2019020952A1 (fr) 2019-01-31

Similar Documents

Publication Publication Date Title
FR3070316B1 (fr) Circuit de climatisation inversible indirect de vehicule automobile et procede de gestion associe
EP3496964B1 (fr) Circuit de climatisation inversible indirect de véhicule automobile et procédé de fonctionnement correspondant
EP3606774B1 (fr) Circuit de climatisation inversible indirect de vehicule automobile et procede de fonctionnement correspondant
EP3924673A1 (fr) Dispositif de gestion thermique de vehicule automobile electrique ou hybride
EP3606776B1 (fr) Circuit de climatisation inversible indirect de véhicule automobile et procédé de gestion en mode dégivrage
EP3658832B1 (fr) Procede de gestion d'un circuit de climatisation de vehicule automobile
EP3507114B1 (fr) Circuit de climatisation inversible indirect de véhicule automobile et procédé de fonctionnement correspondant
WO2018211200A1 (fr) Circuit de climatisation inversible indirect de vehicule automobile et procede de de gestion en mode pompe a chaleur
FR3058783A1 (fr) Circuit de climatisation inversible indirect de vehicule automobile et procede de fonctionnement correspondant
EP3658394B1 (fr) Procede de gestion d'un circuit de climatisation inversible indirect de vehicule automobile
WO2021116564A1 (fr) Dispositif de gestion thermique inversible
EP3630512B1 (fr) Procede de gestion d'un circuit de climatisation inversible de vehicule automobile
WO2020234057A1 (fr) Dispositif de gestion thermique avec vanne de régulation de pression d'évaporation
EP3661776B1 (fr) Procédé de gestion d'un circuit de climatisation inversible indirect de véhicule automobile
FR3122486A1 (fr) Procédé de contrôle d’un dispositif de gestion thermique
WO2020152420A1 (fr) Circuit de climatisation de vehicule automobile et procede de gestion associe
WO2018211199A1 (fr) Circuit de climatisation inversible indirect de vehicule automobile et procede de gestion en mode de pompe a chaleur
FR3069625A1 (fr) Procede de gestion d’un circuit de climatisation inversible de vehicule automobile
FR3064944A1 (fr) Circuit de climatisation inversible indirect de vehicule automobile et procede de fonctionnement correspondant
WO2020165526A1 (fr) Dispositif de gestion thermique d'un vehicule automobile avec vanne a pression constante
FR3122467A1 (fr) Procédé de calibrage d’une vanne d’expansion électronique au sein d’un dispositif de gestion thermique d’un véhicule automobile
FR3056453A1 (fr) Circuit de climatisation inversible indirect de vehicule automobile et procede de fonctionnement correspondant

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201111

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220524

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1529012

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018042566

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221102

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1529012

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230302

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230202

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230302

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018042566

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230727

Year of fee payment: 6

Ref country code: DE

Payment date: 20230712

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230726

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230726

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230726