EP3658832B1 - Verfahren zur verwaltung einer klimaanlage für ein fahrzeug - Google Patents

Verfahren zur verwaltung einer klimaanlage für ein fahrzeug Download PDF

Info

Publication number
EP3658832B1
EP3658832B1 EP18755870.5A EP18755870A EP3658832B1 EP 3658832 B1 EP3658832 B1 EP 3658832B1 EP 18755870 A EP18755870 A EP 18755870A EP 3658832 B1 EP3658832 B1 EP 3658832B1
Authority
EP
European Patent Office
Prior art keywords
shcomp
pcomp
expansion device
text
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18755870.5A
Other languages
English (en)
French (fr)
Other versions
EP3658832A1 (de
Inventor
Régis BEAUVIS
Jin-ming LIU
Jugurtha Benouali
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59811650&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3658832(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Publication of EP3658832A1 publication Critical patent/EP3658832A1/de
Application granted granted Critical
Publication of EP3658832B1 publication Critical patent/EP3658832B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/06Superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet

Definitions

  • the invention relates to the field of motor vehicles and more particularly to a motor vehicle air conditioning circuit and its cooling mode management method.
  • a refrigerant fluid passes successively through a compressor, a first heat exchanger, called a condenser, placed in contact with an air flow outside the motor vehicle to release heat, an expansion device and a second heat exchanger, called an evaporator, placed in contact with a flow of air inside the motor vehicle to cool it.
  • the expansion device is a thermostatic valve whose bulb is arranged downstream of the evaporator.
  • the expansion device can also be an electronic expansion valve controlled by a central control unit.
  • the document FR 2 928 445 A1 discloses a method for managing an air conditioning circuit inside which a refrigerant fluid circulates in a cooling mode, the refrigerant fluid circulating successively in a compressor, a condenser, an expansion device, and an evaporator intended to recover heat energy from a second heat transfer fluid and transferring it to the refrigerant fluid, said air conditioning circuit comprising a central control unit capable of controlling the opening of the expansion device, said method comprising: a step of calculating the opening of the expansion device from measurements of operating parameters of the air conditioning circuit and a step of opening the expansion device according to the calculated value.
  • One of the aims of the present invention is therefore to remedy, at least partially, the drawbacks of the prior art and to propose a method for managing an improved reversible air conditioning circuit, in particular in cooling mode.
  • SHcomp_in_sp_min is between 3 and 20°K and SHcomp_in_sp_max is between 8 and 25°K.
  • the air conditioning circuit comprises an internal heat exchanger capable of allowing the exchange of calorific energy between the refrigerant fluid at the outlet of the condenser and the refrigerant fluid at the outlet of the evaporator.
  • first element or second element as well as first parameter and second parameter or even first criterion and second criterion, etc.
  • it is a simple indexing to differentiate and name elements or parameters or criteria that are close but not identical.
  • This indexing does not imply a priority of one element, parameter or criterion with respect to another and it is easy to interchange such denominations without departing from the scope of the present description.
  • This indexation does not imply an order in time either, for example to assess such and such a criterion.
  • placed upstream means that one element is placed before another with respect to the direction of circulation of a fluid.
  • placed downstream means that one element is placed after another with respect to the direction of circulation of the fluid.
  • the condenser 5 is intended to release heat energy from the refrigerant fluid into a first heat transfer fluid 50.
  • This first heat transfer fluid 50 can for example be an external air flow when the first heat exchanger is for example placed on the front face of the motor vehicle.
  • the first heat transfer fluid 50 is a fluid circulating in another temperature management loop, for example when the first heat exchanger is a two-fluid exchanger, this is particularly the case in the context of a circuit indirect air conditioning.
  • the evaporator 9 is for its part intended to recover heat energy from a second heat transfer fluid 90 and to transfer it to the refrigerant fluid.
  • This second heat transfer fluid 90 can for example be an air flow going to the passenger compartment when the second heat exchanger is for example placed in a heating, ventilation and air conditioning device.
  • Another possibility can also be that the second heat transfer fluid 90 is a fluid circulating in another temperature management loop, for example when the second heat exchanger is a two-fluid exchanger.
  • the air conditioning circuit 1 also comprises a central control unit 10.
  • This central control unit 10 is in particular connected to the compressor 3 in order to control its speed and thus control the pressure of the refrigerant fluid.
  • Central unity control 10 is also connected to the expansion device 7 in order to control and command its opening and thus control the loss of pressure of the refrigerant fluid when it passes through it.
  • the central control unit 10 can also be connected to a first sensor 11 of the temperature Text of the first heat transfer fluid 50 before it passes through the condenser 5. More precisely, Text can correspond to the outside ambient temperature of the air.
  • the central control unit 10 can be connected to a second sensor 12 of the pressure Pcomp_out of the refrigerant fluid at the outlet of the compressor 3.
  • This second sensor 12 can in particular be arranged downstream of the compressor 3, between said compressor 3 and the condenser 5 .
  • the central control unit 10 can be connected to a third sensor 13 of the pressure Pcomp_in of the refrigerant fluid before it enters the compressor 3.
  • This third sensor 13 can in particular be arranged upstream of the compressor 3, between the evaporator 9 and said compressor 3.
  • the central control unit can be connected to a fourth sensor 14 of the temperature Tcomp_in of the refrigerant fluid before it enters the compressor 3.
  • This fourth sensor 14 can in particular be arranged upstream of the compressor 3, between the evaporator 9 and said compressor 3.
  • the third 13 and fourth 14 sensors can more particularly be only one pressure/temperature sensor arranged upstream of the compressor 3, between the evaporator 9 and the said compressor 3.
  • the central control unit can be connected to a fifth Tevapo temperature sensor 15 of the second heat transfer fluid 90 after it has passed through the evaporator 9.
  • the refrigerant fluid In operation, in cooling mode, as shown in the figure 1b , the refrigerant fluid is in the gaseous phase at low pressure before entering the compressor 3.
  • the refrigerant fluid undergoes an increase in its pressure and passes to high pressure as shown by the arrow 300.
  • the refrigerant fluid then passes through the condenser 5 and transfers enthalpy to the first heat transfer fluid 50 as shown by the arrow 500.
  • the refrigerant fluid first crosses its saturation curve X and passes into a two-phase state.
  • the refrigerant can also cross its saturation curve X a second time to pass into the liquid phase.
  • the difference between the temperature of the refrigerant at the outlet of the condenser 5 and its saturation temperature at this pressure is called sub-cooling SC.
  • the refrigerant fluid then passes through the expansion device 7 and undergoes a loss of pressure to pass to low pressure, as shown by the arrow 700.
  • the refrigerant fluid again crosses its saturation curve X and passes into a two-phase state.
  • the refrigerant fluid then passes through the evaporator 9 in which the refrigerant fluid absorbs calorific energy from the second heat transfer fluid 90, cooling the latter, as shown by the arrow 900.
  • the refrigerant fluid crosses its saturation curve X and then returns to gaseous phase before joining the compressor 3.
  • the air conditioning circuit 1 may also include an internal heat exchanger 20 capable of allowing the exchange of heat energy between the refrigerant fluid at the outlet of the condenser 5 and the refrigerant fluid at the outlet of the evaporator 9.
  • This internal heat exchanger 20 comprises in particular an inlet and an outlet of refrigerant fluid from the condenser 5, as well as an inlet and an outlet of refrigerant fluid from the evaporator 9.
  • the steps are similar to those of FIGS. 1a and 1b, except that the internal heat exchanger 20 absorbs enthalpy from the refrigerant fluid as shown by the arrow 200a and transfers it to the refrigerant fluid at the outlet of the evaporator 9 as shown by the arrow 200b.
  • the subcooling SR of the refrigerant fluid before it passes through the expansion device 7 and the superheat SHcomp_in of the refrigerant fluid before it enters the compressor 3 are both increased under the effect of the heat exchanger internal 20. This allows in particular an increase in the coefficient of performance of the air conditioning circuit 1.
  • the air conditioning circuit 1 can for example be an indirect reversible air conditioning circuit 1 as illustrated in the picture 3 .
  • This indirect reversible air conditioning circuit 1 can operate in different operating modes including a cooling mode.
  • the bypass pipe 30 can connect more specifically a first connection point 31 and a second connection point 32.
  • the first connection point 31 is preferably arranged, in the direction of circulation of the refrigerant fluid, downstream of the evaporator 9, between the said evaporator 9 and the evapo-condenser 13. More particularly, and as illustrated in the picture 3 , the first connection point 31 is arranged between the evaporator 9 and the second expansion device 21. It is however quite possible to imagine that the first connection point 31 is arranged between the second expansion device 21 and the evapo-condenser 13 as long as the refrigerant fluid has the possibility of bypassing the second expansion device 21 or of passing through it without suffering a loss of pressure.
  • the second connection point 32 is for its part preferably disposed downstream of the evapo-condenser 13, between said evapo-condenser 13 and the compressor 3.
  • the indirect reversible air conditioning circuit 1 also comprises a device for redirecting the refrigerant fluid coming from the evaporator 9 to the evapo-condenser 13 or to the bypass line 30.
  • Another alternative can also be to arrange a three-way valve at the level of the first connection point 31.
  • stop valve non-return valve, three-way valve or expansion device with stop function
  • stop function mechanical or electromechanical elements that can be controlled by the central control unit 10.
  • the first refrigerant loop A may comprise, in addition to the internal heat exchanger 20, a second internal heat exchanger 20' allowing heat exchange between the high-pressure refrigerant at the outlet of the heat exchanger internal 20 and the low-pressure refrigerant fluid flowing in the bypass line 30, that is to say coming from the first connection point 31.
  • high-pressure refrigerant fluid is meant a refrigerant fluid having undergone an increase of pressure at the level of the compressor 3 and that it has not yet suffered a loss of pressure due to the electronic expansion valve 7 or the tube orifice 11.
  • This second internal heat exchanger 20 'in comprises a inlet and an outlet of refrigerant fluid from the first connection point 31, as well as an inlet and an outlet of high pressure refrigerant fluid from the internal heat exchanger 20.
  • At least one of the two internal heat exchangers 20, 20′ can be a coaxial heat exchanger, that is to say comprising two coaxial tubes and between which heat exchanges take place.
  • the internal heat exchanger 20 can be a coaxial internal heat exchanger with a length of between 50 and 120mm while the second internal heat exchanger 20' can be a coaxial internal heat exchanger with a length between 200 and 700mm.
  • the first refrigerant fluid loop A may comprise a dehydrating bottle 18 disposed downstream of the bifluid heat exchanger 5, more precisely between said bifluid heat exchanger 5 and the internal heat exchanger 20.
  • a dehydrating bottle 18 disposed on the high pressure side of the air conditioning circuit that is to say downstream of the compressor 3 and upstream of an expansion device, has a smaller footprint as well as a reduced cost compared to other phase separation solutions such as an accumulator which would be placed on the low pressure side of the air conditioning circuit, that is to say upstream of the compressor 3, in particular upstream of the internal heat exchanger 20.
  • the indirect reversible air conditioning circuit 1 comprises within the second heat transfer fluid loop B a device for redirecting the heat transfer fluid coming from the two-fluid heat exchanger 5 to the first circulation pipe 70 and/or to the second heat transfer pipe. circulation 60.
  • the device for redirecting the heat transfer fluid coming from the two-fluid heat exchanger 5 may in particular comprise a fourth shut-off valve 63 arranged on the second circulation pipe 60 in order to block or not the first heat transfer fluid and prevent it from circulate in said second circulation pipe 60.
  • the indirect reversible air conditioning circuit 1 may also include a shutter 310 for obstructing the interior air flow 100 passing through the third heat exchanger 54.
  • This embodiment makes it possible in particular to limit the number of valves on the second heat transfer fluid loop B and thus makes it possible to limit production costs.
  • the device for redirecting the heat transfer fluid coming from the two-fluid heat exchanger 5 may in particular comprise a fourth shut-off valve 63 arranged on the second circulation pipe 60 in order to block or not block the fluid coolant and to prevent it from flowing in said second circulation pipe 60, and a fifth shut-off valve arranged on the first circulation pipe 70 in order to block or not the heat transfer fluid and to prevent it from flowing in said first pipe traffic 70.
  • the second loop of heat transfer fluid B may also include an electric heating element 55 of the heat transfer fluid.
  • Said electrical heating element 55 is in particular arranged, in the direction of circulation of the heat transfer fluid, downstream of the bifluid heat exchanger 5, between said bifluid heat exchanger 5 and the first junction point 61.
  • the refrigerant fluid does not pass through the evapo-condenser 13 but passes through the bypass line 30.
  • the first refrigerant fluid 50 passes for its part into the external radiator 64 in order to evacuate heat energy in the external airflow 200.
  • the refrigerant fluid passes successively through a compressor 3, a condenser 5, an expansion device 7 and an evaporator 9.
  • the present invention relates to a method for managing the air conditioning circuit 1 in cooling mode and more precisely for managing the control of the opening of the expansion device 7 and therefore of the loss of pressure of the refrigerant fluid when it passes through said device. relaxation 7.
  • SHcomp_in_sp_min can be between 3 and 20°K and SHcomp_in_sp_max between 8 and 25°K.
  • SHcomp_in_sp_min and SHcomp_in_sp_max are variable depending on the nature of the refrigerant fluid and the architecture of the air conditioning circuit 1.
  • the value of Shcomp_in_sp allows an optimization of the coefficient of performance of the air conditioning circuit 1 and allows the refrigerant fluid to be in a gaseous state at at least minus 90% as it enters compressor 3.
  • the value of SHcomp_in_sp always between SHcomp_in_sp_min and SHcomp_in_sp_max , allows the refrigerant to be at a temperature below the operating limit temperature of compressor 3 and thus prevents the latter from does not stop by getting to safety.
  • SHcomp_in_sp For a value of Text between T1 and T2, the value of SHcomp_in_sp , always between SHcomp_in_sp_min and SHcomp_in_sp_max , allows an optimization of the coefficient of performance of the air conditioning circuit 1 and of the cooling power of the second heat transfer fluid 90.
  • the control unit 10 During the second step of controlling the overheating Shcomp_in , if SHcomp_in is less than SHcomp_in_sp_min then the control unit 10 will decrease the opening of the expansion device 7 in order to increase the overheating SHcomp_in. Whether SHcomp_in is greater than SHcomp_in_sp_max then the control unit 10 will increase the opening of the expansion device 7 in order to reduce the overheating SHcomp_in.
  • the increase or decrease in the opening of the expansion device 7 is preferably carried out by a proportional integral controller.
  • SHcomp_in is between SHcomp_in_sp_min and SHcomp_in_sp_max, the increase or decrease in the opening of the expansion device 7 is preferably carried out by a proportional controller.
  • the chosen refrigerant is R134a and the temperature Text is 45°C.
  • the management method according to the invention allows an increase in the overheating SHcom_in 102b with respect to the overheating SHcom_in 102a.
  • This overheating SHcom_in 102b is greater because the opening 103b according to the invention is smaller than the opening 103a according to the prior art. Due to this higher SHcom_in 102b overheating, the Tevapo 101b temperature according to the invention is lower than the temperature Tevapo 101a according to the prior art. The coefficient of performance is then increased compared to the prior art, because the compressor 3 is at an identical speed whether for the prior art or for the management method according to the invention.
  • the management method according to the invention allows good management and good control of the opening of the expansion device 7 allowing a good coefficient of performance of the air conditioning circuit 1 in cooling mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Claims (4)

  1. Verfahren zur Verwaltung einer Klimaanlage (1), in der ein Kältemittel in einer Kühlbetriebsart zirkuliert, wobei das Kältemittel nacheinander zirkuliert in:
    • einem Kompressor (3),
    • einem Kondensator (5), der dazu bestimmt ist, Wärmeenergie des Kältemittels in ein erstes Wärmeträgerfluid (50) abzugeben,
    • einer Entspannungsvorrichtung (7) und
    • einem Verdampfer (9), der dazu bestimmt ist, Wärmeenergie eines zweiten Wärmeträgerfluids (90) zurückzugewinnen und sie an das Kältemittel weiterzuleiten,
    wobei die Klimaanlage (1) eine zentrale Regelungseinheit (10) umfasst, die geeignet ist, die Öffnung der Entspannungsvorrichtung (7) zu regeln,
    wobei das Verfahren umfasst:
    • einen Schritt des:
    o Berechnens der Öffnung Cestim der Entspannungsvorrichtung (7) anhand von Messungen von Betriebsparametern der Klimaanlage (1) und des
    o Bestimmens einer Soll-Überhitzung SHcomp_in_sp in Abhängigkeit vom Zustand des Kältemittels im Ausgang des Verdampfers (9) und von der Temperatur Text des ersten Wärmeträgerfluids (50) vor seinem Durchströmen des Kondensators (5), wobei SHcomp_in_sp zwischen einer minimalen Überhitzung SHcomp_in_sp_min und einer maximalen Überhitzung SHcomp_in_sp_max beträgt, wobei SHcomp_in_sp_min und SHcomp_in_sp_max in Abhängigkeit von der Temperatur Text des ersten Wärmeträgerfluids (50) vor seinem Durchströmen des Kondensators (5), vom Volumenstrom des zweiten Wärmeträgerfluids (90), das den Verdampfer (9) durchströmt, und von der Temperatur des zweiten Wärmeträgerfluids (90) vor seinem Durchströmen des Verdampfers (9) bestimmt werden, wobei die Werte SHcomp_in_sp_min und SHcomp_in_sp_max durch Versuche erhalten werden und in Abhängigkeit von der Art des Kältemittels und vom Aufbau der Klimaanlage (1) veränderlich sind,
    • einen Schritt des Öffnens der Entspannungsvorrichtung (7) gemäß Cestim und des Regelns der Überhitzung SHcomp_in, indem die Öffnung der Entspannungsvorrichtung (7) so geändert wird, dass die Soll-Überhitzung SHcomp_in_sp erreicht wird und SHcomp_in zwischen SHcomp_in_sp_min und Shcomp_in_sp_max gehalten wird, wobei bei dem Verfahren SHcomp_in nach der folgenden Formel berechnet wird: SHcomp_in = Tcomp_in - Tsat(Pcomp_in), in der Tcomp_in die Temperatur des Kältemittels im Eingang des Kompressors (3) ist und Tsat(Pcomp_in) die Sättigungstemperatur des Kältemittels beim Druck Pcomp_in im Eingang des Kompressors (3) ist,
    wobei bei dem Verfahren das Berechnen der Öffnung Cestim der Entspannungsvorrichtung (7) nach einer der folgenden Formeln ausgeführt wird: Cestim = K 1 * Tevapo Tevapo _ sp + K 2 * Tsat Pcomp _ out Text
    Figure imgb0009
    oder Cestim = K 1 * Pcomp _ in Psat Tevapo _ sp + K 2 * Tsat Pcomp _ out Text
    Figure imgb0010
    in denen
    Tevapo die Temperatur des zweiten Wärmeträgerfluids (90) im Ausgang des Verdampfers (9) ist,
    Tevapo_sp eine Soll-Temperatur des zweiten Wärmeträgerfluids (90) im Ausgang des Verdampfers (9) ist,
    Tsat(Pcomp_out) die Sättigungstemperatur des Kältemittels beim Druck Pcomp_out des Kältemittels im Ausgang des Kompressors (3) ist,
    Text die Temperatur des ersten Wärmeträgerfluids (50) vor seinem Durchströmen des Kondensators (5) ist,
    Pcomp-in der Druck des Kältemittels im Eingang des Kompressors (3) ist,
    Psat(Tevapo_sp) der Sättigungsdruck des Kältemittels bei der Soll-Temperatur Tevapo des zweiten Wärmeträgerfluids (90) im Ausgang des Verdampfers (90) ist,
    K1 die mittlere Neigung ΔC/ΔTevapo ist, wobei ΔC die Änderung der Öffnung der Entspannungsvorrichtung (7) ist und ΔTevapo die Änderung von Tevapo ist, die bei Versuchen gemessen wurden, bei denen man die Öffnung der Entspannungsvorrichtung (7) bei einem gegebenen Betriebszustand des Kompressors (3), einem gegebenen Volumenstrom des ersten Wärmeträgerfluids (50), der den Kondensator (5) durchströmt, und gemäß dem Wert von Text ändert,
    K1' die mittlere Neigung ΔC/ΔPcomp_in ist, wobei ΔC die Änderung der Öffnung der Entspannungsvorrichtung (7) ist und ΔPcomp_in die Änderung von Pcomp_in ist, die bei Versuchen gemessen wurden, bei denen man die Öffnung der Entspannungsvorrichtung (7) bei einem gegebenen Betriebszustand des Kompressors (3) und einem gegebenen Volumenstrom des ersten Wärmeträgerfluids (50), das Kondensator (5) durchströmt, und gemäß dem Wert von Text ändert, und
    K2 die mittlere Neigung ΔC/Δ(Tsat(Pcomp_out) - Text) ist, wobei ΔC die Änderung der Öffnung der Entspannungsvorrichtung (7) ist und Δ(Tsat(Pcomp_out)-Text) die Änderung von (Tsat(Pcomp_out) - Text) ist, die bei Versuchen gemessen und berechnet wurden, bei denen man die Öffnung der Entspannungsvorrichtung (7) bei einem gegebenen Betriebszustand des Kompressors (3) und einem gegebenen Volumenstrom des ersten Wärmeträgerfluids (50), das den Kondensator (5) durchströmt, und gemäß dem Wert von Text ändert.
  2. Verfahren zur Verwaltung einer Klimaanlage (1) nach Anspruch 1, dadurch gekennzeichnet, dass SHcomp_in_sp_min zwischen 3 und 20 °K beträgt und SHcomp_in_sp_max zwischen 8 und 25 °K beträgt.
  3. Verfahren zur Verwaltung einer Klimaanlage (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass beim Schritt des Regelns der Überhitzung SHcomp_in:
    • wenn SHcomp_in kleiner als SHcomp_in_sp_min oder größer als Shcomp_in_sp_max ist, die Vergrößerung oder die Verkleinerung der Öffnung der Entspannungsvorrichtung (7) von einem Proportional-Integral-Regler ausgeführt wird,
    • wenn SHcomp_in zwischen SHcomp_in_sp_min und Shcomp_in_sp_max beträgt, die Vergrößerung oder die Verkleinerung der Öffnung der Entspannungsvorrichtung (7) von einem Proportionalregler ausgeführt wird.
  4. Verfahren zur Verwaltung einer Klimaanlage (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie einen inneren Wärmetauscher (20) umfasst, der geeignet ist, Wärmeenergieaustausche zwischen dem Kältemittel im Ausgang des Kondensators (5) und dem Kältemittel im Ausgang des Verdampfers (9) zu ermöglichen.
EP18755870.5A 2017-07-28 2018-07-26 Verfahren zur verwaltung einer klimaanlage für ein fahrzeug Active EP3658832B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1757227A FR3069626B1 (fr) 2017-07-28 2017-07-28 Procede de gestion d'un circuit de climatisation de vehicule automobile
PCT/FR2018/051922 WO2019020952A1 (fr) 2017-07-28 2018-07-26 Procede de gestion d'un circuit de climatisation de vehicule automobile

Publications (2)

Publication Number Publication Date
EP3658832A1 EP3658832A1 (de) 2020-06-03
EP3658832B1 true EP3658832B1 (de) 2022-11-02

Family

ID=59811650

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18755870.5A Active EP3658832B1 (de) 2017-07-28 2018-07-26 Verfahren zur verwaltung einer klimaanlage für ein fahrzeug

Country Status (4)

Country Link
EP (1) EP3658832B1 (de)
CN (1) CN111133262B (de)
FR (1) FR3069626B1 (de)
WO (1) WO2019020952A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT522875B1 (de) * 2019-10-30 2021-03-15 Lambda Waermepumpen Gmbh Verfahren zur Regelung eines Expansionsventils

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2913102B1 (fr) * 2007-02-28 2012-11-16 Valeo Systemes Thermiques Installation de climatisation equipee d'une vanne de detente electrique
FR2928445B1 (fr) * 2008-03-06 2014-01-03 Valeo Systemes Thermiques Branche Thermique Habitacle Methode de commande d'un organe de detente que comprend une boucle de climatisation d'une installation de ventilation, de chauffage et/ou de climatisation d'un vehicule
CN104271373B (zh) * 2012-02-28 2016-10-05 日本空调系统股份有限公司 车辆用空调装置
JP6189098B2 (ja) * 2013-06-14 2017-08-30 三菱重工オートモーティブサーマルシステムズ株式会社 ヒートポンプ式車両用空調システム
US20150059373A1 (en) * 2013-09-05 2015-03-05 Beckett Performance Products, Llc Superheat and sub-cooling control of refrigeration system
US9874384B2 (en) * 2016-01-13 2018-01-23 Bergstrom, Inc. Refrigeration system with superheating, sub-cooling and refrigerant charge level control
CN106595141B (zh) * 2016-12-12 2019-12-27 重庆美的通用制冷设备有限公司 一种电子膨胀阀的控制方法和装置以及制冷系统

Also Published As

Publication number Publication date
CN111133262B (zh) 2022-04-05
CN111133262A (zh) 2020-05-08
FR3069626B1 (fr) 2019-12-27
EP3658832A1 (de) 2020-06-03
WO2019020952A1 (fr) 2019-01-31
FR3069626A1 (fr) 2019-02-01

Similar Documents

Publication Publication Date Title
FR3070316B1 (fr) Circuit de climatisation inversible indirect de vehicule automobile et procede de gestion associe
EP3496964B1 (de) Indirekter reversibler klimaanlagenkreislauf für ein kraftfahrzeug und zugehöriges betriebsverfahren
EP3606774B1 (de) Indirekter reversibler klimatisierungskreislauf für ein kraftfahrzeug und zugehöriges betriebsverfahren
EP3924673A1 (de) Vorrichtung zur thermischen verwaltung eines elektrischen oder hybriden kraftfahrzeugs
EP3606776B1 (de) Indirekter reversibler klimakreislauf für ein kraftfahrzeug und verfahren zum betrieb im abtaumodus
EP3658832B1 (de) Verfahren zur verwaltung einer klimaanlage für ein fahrzeug
EP3507114B1 (de) Indirekter reversibler klimatisierungskreislauf für ein kraftfahrzeug und zugehöriges betriebsverfahren
WO2018211200A1 (fr) Circuit de climatisation inversible indirect de vehicule automobile et procede de de gestion en mode pompe a chaleur
FR3058783A1 (fr) Circuit de climatisation inversible indirect de vehicule automobile et procede de fonctionnement correspondant
EP3658394B1 (de) Verfahren zur verwaltung eines indirekten reversiblen klimaanlagenkreislaufs für ein kraftfahrzeug
WO2021116564A1 (fr) Dispositif de gestion thermique inversible
EP3630512B1 (de) Verfahren zur verwaltung eines reversiblen klimaanlagenkreislaufs eines kraftfahrzeugs
WO2020234057A1 (fr) Dispositif de gestion thermique avec vanne de régulation de pression d'évaporation
EP3661776B1 (de) Indirekter umkehrbarer klimaanlagenkreislauf für ein kraftfahrzeug
FR3122486A1 (fr) Procédé de contrôle d’un dispositif de gestion thermique
WO2020152420A1 (fr) Circuit de climatisation de vehicule automobile et procede de gestion associe
WO2018211199A1 (fr) Circuit de climatisation inversible indirect de vehicule automobile et procede de gestion en mode de pompe a chaleur
FR3069625A1 (fr) Procede de gestion d’un circuit de climatisation inversible de vehicule automobile
FR3064944A1 (fr) Circuit de climatisation inversible indirect de vehicule automobile et procede de fonctionnement correspondant
WO2020165526A1 (fr) Dispositif de gestion thermique d'un vehicule automobile avec vanne a pression constante
FR3122467A1 (fr) Procédé de calibrage d’une vanne d’expansion électronique au sein d’un dispositif de gestion thermique d’un véhicule automobile
FR3056453A1 (fr) Circuit de climatisation inversible indirect de vehicule automobile et procede de fonctionnement correspondant

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201111

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220524

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1529012

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018042566

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221102

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1529012

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230302

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230202

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230302

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018042566

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230727

Year of fee payment: 6

Ref country code: DE

Payment date: 20230712

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221102

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230726

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230726

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230726