WO2020165526A1 - Dispositif de gestion thermique d'un vehicule automobile avec vanne a pression constante - Google Patents

Dispositif de gestion thermique d'un vehicule automobile avec vanne a pression constante Download PDF

Info

Publication number
WO2020165526A1
WO2020165526A1 PCT/FR2020/050204 FR2020050204W WO2020165526A1 WO 2020165526 A1 WO2020165526 A1 WO 2020165526A1 FR 2020050204 W FR2020050204 W FR 2020050204W WO 2020165526 A1 WO2020165526 A1 WO 2020165526A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal management
management device
constant pressure
evaporator
pressure valve
Prior art date
Application number
PCT/FR2020/050204
Other languages
English (en)
Inventor
Jugurtha Benouali
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Publication of WO2020165526A1 publication Critical patent/WO2020165526A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00949Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising additional heating/cooling sources, e.g. second evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means

Definitions

  • the invention relates to the field of thermal management devices for a motor vehicle and more particularly to a thermal management device configured to manage the comfort of the occupants in the passenger compartment.
  • This air conditioning circuit thus comprises a heat exchanger, also called an evaporator, arranged in an internal air flow to the passenger compartment in order to cool the latter.
  • a constant pressure valve downstream of the evaporator in the air conditioning circuit. This constant pressure valve makes it possible to maintain a minimum pressure of the refrigerant fluid passing through the evaporator. This makes it possible to limit the temperature of the refrigerant fluid leaving the G evaporator and thus reduces the risk of causing icing of the G evaporator and damaging the compressor in the air conditioning circuit.
  • One of the aims of the present invention is to at least partially overcome the drawbacks of the prior art and to provide an improved thermal management device allowing greater cooling power at the evaporator.
  • the present invention therefore relates to a thermal management device of a motor vehicle, said thermal management device comprising a refrigerant circuit in which a refrigerant fluid is intended to circulate, said refrigerant circuit comprising an evaporator intended to be passed through by an internal air flow and a constant pressure valve arranged downstream of said evaporator,
  • the refrigerant circuit comprising a bypass line for the constant pressure valve, said first bypass line comprising a shut-off valve.
  • the constant pressure valve and the shut-off valve are grouped together within a common block.
  • the constant pressure valve has a diameter greater than or equal to 10 mm.
  • the thermal management device is configured according to a first mode of operation in which the refrigerant fluid leaving the evaporator circulates only in the valve at constant pressure.
  • the thermal management device being configured according to a second mode of operation in which the refrigerant fluid leaving the evaporator circulates both in the valve at constant pressure and in the bypass line.
  • the thermal management device comprises an air conditioning circuit.
  • the thermal management device comprises an invertible air conditioning circuit.
  • the reversible air conditioning circuit is direct.
  • the reversible air conditioning circuit is indirect.
  • Figure 1 shows a schematic representation of a thermal management device according to a first embodiment
  • Figure 2 shows a schematic representation of a thermal management device according to a second embodiment
  • Figure 3 shows a schematic representation of a thermal management device according to a third embodiment.
  • first element or second element as well as first parameter and second parameter or even first criterion and second criterion, etc.
  • indexing to differentiate and name elements or parameters or criteria that are similar, but not identical. This indexing does not imply a priority of an element, parameter or criterion with respect to another and it is easily possible to interchange such names without departing from the scope of the present description. This indexation does not imply an order in time, for example, in order to assess this or that criterion.
  • placed upstream is meant that one element is placed before another with respect to the direction of flow of a fluid.
  • placed downstream is meant that one element is placed after another relative to the direction of flow of the fluid.
  • FIG. 1 shows a representation of a thermal management device 1.
  • the thermal management device 1 illustrated in FIG. 1 is the simplest possible device and comprises the elements necessary for operation within the framework of an air conditioning circuit in order to to cool an internal air flow 100 intended for the passenger compartment.
  • the thermal management device 1 thus comprises a refrigerant fluid circuit comprising a main loop A in which a refrigerant fluid is able to circulate.
  • This main loop A comprises, in the direction of circulation of the refrigerant fluid:
  • an evaporator 9 here an internal evaporator intended to be crossed by the internal air flow 100.
  • internal air flow 100 is meant an air flow passing through a heat exchanger (here
  • the heating, ventilation and / or air conditioning device may in particular include a fan (not shown).
  • external air flow 200 is meant an air flow external to the motor vehicle passing through the first heat exchanger 5, in particular placed on the front face of the motor vehicle.
  • the main loop A can also include a phase separation device 50, such as for example a drying accumulator, arranged upstream of the compressor 3, between the evaporator 9 and said compressor 3.
  • the main loop A also comprises, downstream of the evaporator 9, a constant pressure valve 15. More precisely, this constant pressure valve 15 is arranged on the main loop A between the evaporator 9 and the compressor 3.
  • This constant pressure valve 15 regulates the pressure of the refrigerant fluid to a value greater than or equal to a predetermined pressure. This constant pressure valve 15 thus makes it possible to maintain a minimum pressure according to its setting within the evaporator 9.
  • Controlling the pressure of the refrigerant fluid at a heat exchanger makes it possible to control the evaporation temperature of the refrigerant fluid at this heat exchanger.
  • This pressure the higher the evaporation temperature of the refrigerant and the less heat energy it will be able to recover.
  • the pressure of the refrigerant fluid has a minimum, this makes it possible to limit the temperature of the refrigerant fluid at the outlet of the evaporator 9 and therefore for example to protect said evaporator 9 by preventing the latter from icing due to a temperature. too low of the refrigerant.
  • the refrigerant fluid circuit further comprises a bypass line B of the constant pressure valve 15.
  • This bypass line B comprises a shut-off valve 51. More precisely, the bypass line B connects a first connection point 31 to a second connection point 32.
  • the first connection point 31 is arranged downstream of G evaporator 9, between said evaporator 9 and the constant pressure valve 15.
  • the second connection point 33 is itself arranged downstream of the valve at constant pressure 15, between said constant pressure valve 15 and the compressor 3.
  • the stop valve 51 of the bypass line B must allow the passage of the refrigerant fluid in the said bypass line B with much lower pressure drops than through the constant pressure valve 15.
  • the valve d 'stop 15 may in particular have a diameter greater than or equal to 10 mm.
  • bypass pipe B in particular in the second mode of
  • the thermal management device 1 can include an invertible air conditioning circuit, that is to say that it is configured to operate according to different operating modes such as a cooling mode in order to cool the internal air flow 100 or a heat pump mode in order to heat the internal air flow 100.
  • an invertible air conditioning circuit that is to say that it is configured to operate according to different operating modes such as a cooling mode in order to cool the internal air flow 100 or a heat pump mode in order to heat the internal air flow 100.
  • FIG. 2 shows an example of a direct reversible air conditioning circuit. This circuit of
  • Direct reversible air conditioning is a derivative of the air conditioning circuit of FIG. 1. It therefore uses the same elements and components.
  • the first heat exchanger 5 is no longer here a simple external condenser as illustrated in the example of Figure 1 but an external evapo / condenser.
  • the direct reversible air conditioning circuit also comprises a second heat exchanger 23 which is here arranged in the heating, ventilation and / or air conditioning device so as to be traversed by the internal air flow 100. Within the heating device, ventilation and / or
  • this second heat exchanger 23 is more precisely arranged downstream of the evaporator 9 in the direction of circulation of the internal air flow 100.
  • this second heat exchanger 23 is arranged downstream of the compressor 3, between said compressor 3 and the first heat exchanger 5.
  • This second heat exchanger 23 here acts as an internal condenser in order in particular to heat the internal air flow 100.
  • the direct reversible air conditioning circuit also comprises a second expansion device 25 arranged upstream of the first heat exchanger 5, between the second heat exchanger 23 and said first heat exchanger 5.
  • This second expansion device 25 can in particular be opened. completely so as to allow the refrigerant to pass without loss of pressure.
  • An alternative solution (not shown) is that this second expansion device 25 can be bypassed.
  • the direct reversible air conditioning circuit further comprises a branch branch C of the first expansion device 7 and the evaporator 9.
  • This branch branch C connects a third connection point 33 to a fourth connection point 34.
  • the third point connection 33 is arranged upstream of the first expansion device 7, between the first heat exchanger 5 and said first expansion device 7.
  • the fourth connection point 34 is for its part arranged downstream of the constant pressure valve 15, between said pressure valve constant 15, more precisely downstream of the second connection point 32 of the bypass pipe C, and the compressor 3.
  • This bypass branch C comprises a means of redirection of the refrigerant fluid such as, for example, a stop valve 52.
  • FIG. 3 shows an example of an indirect reversible air conditioning circuit.
  • This indirect reversible air conditioning circuit is identical to that of the thermal management device 1 of FIG. 2 with the difference that the second heat exchanger 23 is not an internal condenser intended to be crossed by the internal air flow 100 but a bifluid heat exchanger configured to exchange with a heat transfer fluid circulating within a secondary loop F.
  • This secondary loop F comprises a pump 28 and a third heat exchanger 27.
  • This third heat exchanger 27 acts as a internal condenser and is arranged in the heating, ventilation and / or air conditioning device so as to be traversed by the internal air flow 100. Within the heating, ventilation and / or air conditioning device, this third heat exchanger 27 is more precisely arranged downstream of the evaporator 9 in the direction of circulation of the internal air flow 100.
  • thermal management devices illustrated in Figures 1 to 3 are examples and other more complex or simpler architectures can also be considered without departing from the scope of the invention.
  • the thermal management device 1 can thus be configured according to a first mode of
  • the stop valve 51 of the bypass pipe B is configured so as to prevent the refrigerant fluid from passing through said pipe. bypass B. Thus, the stop valve 51 is closed.
  • This first mode of operation is particularly useful so that the pressure of the refrigerant fluid within the evaporator does not drop below a pressure limit determined by the setting of the constant pressure valve 15. This thus makes it possible to avoid the risk of icing on the evaporator 9.
  • the thermal management device 1 can also be configured according to a second operating mode in which the refrigerant fluid leaving the evaporator 9 circulates both in the constant pressure valve 15 and in the bypass line B.
  • the stop valve 51 is open so as to allow the refrigerant fluid to pass through said bypass B.
  • This second mode of operation is particularly useful for example when a high cooling power is required at the level of the evaporator 9 to cool the internal air flow 100. Because the refrigerant fluid passes through the first bypass pipe C, the pressure drops are much less and the pressure of the refrigerant fluid within the evaporator 9 is lower than for the first operating mode. The cooling power of the internal air flow 100 via the evaporator 9 is therefore greater and allows it to be cooled more strongly.
  • the thermal management device 1 makes it possible, by the presence of the bypass line B and of the stop valve 51, to occasionally increase the cooling power at the level of the evaporator 9 by bypassing the constant pressure valve 15 and allowing a lower refrigerant pressure within said evaporator 9.
  • the bypass pipe thus makes it possible to obtain cooling power and an evaporation temperature close to that available in thermal management devices not using a constant pressure valve downstream of the evaporator.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Safety Valves (AREA)

Abstract

La présente invention concerne un dispositif de gestion thermique (1) d'un véhicule automobile, ledit dispositif de gestion thermique (1) comportant un circuit de fluide réfrigérant dans lequel est destiné à circuler un fluide réfrigérant, ledit circuit de fluide réfrigérant comportant un évaporateur (9) destiné à être traversé par un flux d'air interne (100) et une vanne à pression constante (15) disposée en aval dudit évaporateur (9), le circuit de fluide réfrigérant comportant une conduite de contournement (B) de la vanne à pression constante (15), ladite première conduite de contournement (B) comprenant une vanne d'arrêt (51).

Description

DISPOSITIF DE GESTION THERMIQUE D’UN VÉHICULÉ AUTOMOBILE AVEC VANNE A PRESSION
CONSTANTE
L’invention se rapporte au domaine des dispositifs de gestion thermique pour un véhicule automobile et plus particulièrement à un dispositif de gestion thermique configuré pour gérer le confort des occupants dans l’habitacle.
Dans le domaine automobile il est connu de gérer le confort des occupants au moyen d’un circuit de climatisation à l’intérieur duquel circule un fluide réfrigérant. Ce circuit de climatisation comporte ainsi un échangeur de chaleur, également appelé évaporateur, disposé dans un flux d’air interne à destination de l’habitacle afin de refroidir ce dernier. Il est également connu de disposer dans le circuit de climatisation, une vanne à pression constante en aval de G évaporateur. Cette vanne à pression constante permet de conserver une pression minimum du fluide réfrigérant traversant G évaporateur. Cela permet de limiter la température du fluide réfrigérant en sortie de G évaporateur et ainsi cela diminue les risques d’entraîner le givrage de G évaporateur et d’endommager le compresseur du circuit de climatisation.
Cependant, le fait de limiter la température du fluide réfrigérant en sortie de G évaporateur limite également la puissance de refroidissement disponible et donc limite la capacité de refroidissement du circuit de climatisation au niveau de G évaporateur.
Un des buts de la présente invention est de remédier au moins partiellement aux inconvénients de l’art antérieur et de proposer un dispositif de gestion thermique amélioré permettant une plus grande puissance de refroidissement au niveau de G évaporateur.
La présente invention concerne donc un dispositif de gestion thermique d’un véhicule automobile, ledit dispositif de gestion thermique comportant un circuit de fluide réfrigérant dans lequel est destiné à circuler un fluide réfrigérant, ledit circuit de fluide réfrigérant comportant un évaporateur destiné à être traversé par un flux d’air interne et une vanne à pression constante disposée en aval dudit évaporateur,
le circuit de fluide réfrigérant comportant une conduite de contournement de la vanne à pression constante, ladite première conduite de contournement comprenant une vanne d’arrêt.
Selon un aspect de l’invention, la vanne à pression constante et la vanne d’arrêt sont regroupées au sein d’un bloc commun. Selon un autre aspect de l’invention, la vanne à pression constante a un diamètre supérieur ou égal à 10 mm.
Selon un autre aspect de l’invention, le dispositif de gestion thermique est configuré selon un premier mode de fonctionnement dans lequel le fluide réfrigérant en sortie de l’évaporateur circule uniquement dans la vanne à pression constante.
Selon un autre aspect de l’invention, le dispositif de gestion thermique étant configuré selon un deuxième mode de fonctionnement dans lequel le fluide réfrigérant en sortie de l’évaporateur circule à la fois dans la vanne à pression constante et dans la conduite de contournement.
Selon un autre aspect de l’invention, le dispositif de gestion thermique comporte un circuit de climatisation.
Selon un autre aspect de l’invention, le dispositif de gestion thermique comporte un circuit de climatisation inversible.
Selon un autre aspect de l’invention, le circuit de climatisation inversible est direct.
Selon un autre aspect de l’invention, le circuit de climatisation inversible est indirect.
La figure 1 montre une représentation schématique d’un dispositif de gestion thermique selon un premier mode de réalisation,
La figure 2 montre une représentation schématique d’un dispositif de gestion thermique selon un deuxième mode de réalisation,
La figure 3 montre une représentation schématique d’un dispositif de gestion thermique selon un troisième mode de réalisation.
Sur les différentes figures, les éléments identiques portent les mêmes numéros de référence.
Les réalisations suivantes sont des exemples. Bien que la description se réfère à un ou plusieurs modes de réalisation, ceci ne signifie pas nécessairement que chaque référence concerne le même mode de réalisation, ou que les caractéristiques s'appliquent seulement à un seul mode de réalisation. De simples caractéristiques de différents modes de réalisation peuvent également être combinées et/ou interchangées pour fournir d'autres réalisations. Dans la présente description, on peut indexer certains éléments ou paramètres, comme par exemple premier élément ou deuxième élément ainsi que premier paramètre et second paramètre ou encore premier critère et deuxième critère, etc. Dans ce cas, il s’agit d’un simple indexage pour différencier et dénommer des éléments ou paramètres ou critères proches, mais non identiques. Cette indexation n’implique pas une priorité d’un élément, paramètre ou critère par rapport à un autre et on peut aisément interchanger de telles dénominations sans sortir du cadre de la présente description. Cette indexation n’implique pas non plus un ordre dans le temps par exemple pour apprécier tel ou tel critère.
Dans la présente description, on entend par « placé en amont » qu’un élément est placé avant un autre par rapport au sens de circulation d'un fluide. A contrario, on entend par « placé en aval » qu’un élément est placé après un autre par rapport au sens de circulation du fluide.
La figure 1 montre une représentation d’un dispositif de gestion thermique 1. Le dispositif de gestion thermique 1 illustré à la figure 1 est le dispositif le plus simple possible et comporte les éléments nécessaires au fonctionnement dans le cadre d’un circuit de climatisation afin de refroidir un flux d’air interne 100 à destination de l’habitacle. Le dispositif de gestion thermique 1 comprend ainsi un circuit de fluide réfrigérant comportant une boucle principale A dans laquelle un fluide réfrigérant est apte à circuler. Cette boucle principale A comporte, dans le sens de circulation du fluide réfrigérant :
- un compresseur 3,
- un premier échangeur de chaleur 5, ici un condenseur externe destiné à être traversé par un flux d’air externe 200,
- un premier dispositif de détente 7, et
- un évaporateur 9, ici un évaporateur interne destiné à être traversé par le flux d’air interne 100.
Par flux d’air interne 100, on entend un flux d’air traversant un échangeur de chaleur (ici
G évaporateur 9) disposé au sein d’un dispositif de chauffage, ventilation et/ou climatisation (non représenté) et à destination de l’habitacle du véhicule automobile. Afin de créer le flux d’air intérieur 100, le dispositif de chauffage, ventilation et/ou climatisation peut notamment comporter un ventilateur (non représenté). Par flux d’air externe 200, on entend un flux d’air externe au véhicule automobile traversant le premier échangeur de chaleur 5, notamment disposé en face avant du véhicule automobile. La boucle principale A peut également comporter un dispositif de séparation de phase 50, comme par exemple un accumulateur déshydratant, disposé en amont du compresseur 3, entre l’évaporateur 9 et ledit compresseur 3.
La boucle principale A comporte également, en aval de l’évaporateur 9, une vanne à pression constante 15. Plus précisément, cette vanne à pression constante 15 est disposée sur la boucle principale A entre l’évaporateur 9 et le compresseur 3.
Cette vanne à pression constante 15 régule la pression du fluide réfrigérant à une valeur supérieure ou égale à une pression prédéterminée. Cette vanne à pression constante 15 permet ainsi de maintenir une pression minimale selon son réglage au sein de l’évaporateur 9.
Le contrôle de la pression du fluide réfrigérant au niveau d’un échangeur de chaleur permet de contrôler la température d’évaporation du fluide réfrigérant au niveau de cet échangeur de chaleur. Plus cette pression est haute, plus la température d’évaporation du fluide réfrigérant est élevée et moins il pourra récupérer d’énergie calorifique. Ainsi, si la pression du fluide réfrigérant comporte un minimum, cela permet de limiter la température du fluide réfrigérant en sortie de l’évaporateur 9 et donc par exemple de protéger ledit évaporateur 9 en évitant un givrage de ce dernier du fait d’une température trop basse du fluide réfrigérant.
Le circuit de fluide réfrigérant comporte en outre une conduite de contournement B de la vanne à pression constante 15. Cette conduite de contournement B comporte une vanne d’arrêt 51. Plus précisément, la conduite de contournement B relie un premier point de raccordement 31 à un deuxième point de raccordement 32. Le premier point de raccordement 31 est disposé en aval de G évaporateur 9, entre ledit évaporateur 9 et la vanne à pression constante 15. Le deuxième point de raccordement 33 est quant à lui disposé en aval de la vanne à pression constante 15, entre ladite vanne à pression constante 15 et le compresseur 3.
La vanne d’arrêt 51 de la conduite de contournement B doit permettre le passage du fluide réfrigérant dans ladite conduite de contournement B avec des pertes de charges bien moins importantes qu’en passant par la vanne à pression constante 15. Ainsi, la vanne d’arrêt 15 peut notamment avoir un diamètre supérieur ou égal à 10 mm.
L’utilisation de la conduite de contournement B notamment dans le deuxième mode de
fonctionnement décrit plus loin dans la présente description, permet d’augmenter sensiblement la puissance frigorifique produite par le dispositif de gestion thermique 1 et disponible au niveau de G évaporateur 9.
Dans un souci de limitation de la place du dispositif de gestion thermique 1 au sein du véhicule et également afin de faciliter le montage, il est tout à fait possible d’imaginer que la vanne à pression constante 15 et la vanne d’arrêt 51 soient regroupées au sein d’un bloc commun. Cette intégration au sein d’un bloc commun permet de plus d’optimiser l’écoulement du fluide réfrigérant, en particulier de réduire les pertes de charge.
Comme illustré aux figures 2 et 3, le dispositif de gestion thermique 1 peut comprendre un circuit de climatisation inversible, c’est à dire qu’il est configuré pour fonctionner selon différents modes de fonctionnement tels qu’un mode de refroidissement afin de refroidir le flux d’air interne 100 ou un mode pompe à chaleur afin de réchauffer le flux d’air interne 100.
La figure 2 montre un exemple de circuit de climatisation inversible direct. Ce circuit de
climatisation inversible direct est un dérivé du circuit de climatisation de la figure 1. Il en reprend donc les même éléments et composants. Le premier échangeur de chaleur 5 n’est plus ici un simple condenseur externe comme illustré dans l’exemple de la figure 1 mais un évapo/condenseur externe. Le circuit de climatisation inversible direct comporte également un deuxième échangeur de chaleur 23 qui est ici disposé dans le dispositif de chauffage, ventilation et/ou climatisation de sorte à être traversé par le flux d’air interne 100. Au sein du dispositif de chauffage, ventilation et/ou
climatisation, ce deuxième échangeur de chaleur 23 est plus précisément disposé en aval de l’évaporateur 9 dans le sens de circulation du flux d’air interne 100. Au sein de la boucle principale A, ce deuxième échangeur de chaleur 23 est disposé en aval du compresseur 3, entre ledit compresseur 3 et le premier échangeur de chaleur 5. Ce deuxième échangeur de chaleur 23 joue ici le rôle d’un condenseur interne afin de réchauffer notamment le flux d’air interne 100.
Le circuit de climatisation inversible direct comporte également un deuxième dispositif de détente 25 disposé en amont du premier échangeur de chaleur 5, entre le deuxième échangeur de chaleur 23 et ledit premier échangeur de chaleur 5. Ce deuxième dispositif de détente 25 peut notamment s’ouvrir complètement de sorte à laisser passer le fluide réfrigérant sans perte de pression. Une solution alternative (non représentée) est que ce deuxième dispositif de détente 25 puisse être contourné.
Le circuit de climatisation inversible direct comporte en outre une branche de dérivation C du premier dispositif de détente 7 et de l’évaporateur 9. Cette branche de dérivation C relie un troisième point de raccordement 33 à un quatrième point de raccordement 34. Le troisième point de raccordement 33 est disposé en amont du premier dispositif de détente 7, entre le premier échangeur de chaleur 5 et ledit premier dispositif de détente 7. Le quatrième point de raccordement 34 est quant à lui disposé en aval de la vanne à pression constante 15, entre ladite vanne à pression constante 15, plus précisément en aval du deuxième point de raccordement 32 de la conduite de contournement C, et le compresseur 3.
Cette branche de dérivation C comporte un moyen de redirection du fluide réfrigérant comme par exemple une vanne d’arrêt 52.
La figure 3 montre un exemple de circuit de climatisation inversible indirect. Ce circuit de climatisation inversible indirect est identique à celui du dispositif de gestion thermique 1 de la figure 2 à la différence que le deuxième échangeur de chaleur 23 n’est pas un condenseur interne destiné à être traversé par le flux d’air interne 100 mais un échangeur de chaleur bifluide configuré pour échanger avec un fluide caloporteur circulant au sein d’une boucle secondaire F. Cette boucle secondaire F comporte une pompe 28 et un troisième échangeur de chaleur 27. Ce troisième échangeur de chaleur 27 joue le rôle d’un condenseur interne et est disposé dans le dispositif de chauffage, ventilation et/ou climatisation de sorte à être traversé par le flux d’air interne 100. Au sein du dispositif de chauffage, ventilation et/ou climatisation, ce troisième échangeur de chaleur 27 est plus précisément disposé en aval de l’évaporateur 9 dans le de sens circulation du flux d’air interne 100.
Ces dispositifs de gestion thermique illustrés aux figures 1 à 3 sont des exemples et d’autres architectures plus complexes ou plus simples peuvent également être envisagées sans sortie du cadre de l’invention.
Le dispositif de gestion thermique 1 peut ainsi être configuré selon un premier mode de
fonctionnement dans lequel le fluide réfrigérant en sortie de l’évaporateur 9 circule uniquement dans la vanne à pression constante 15. La vanne d’arrêt 51 de la conduite de contournement B est configurée de sorte à empêcher le fluide réfrigérant de passer par ladite conduite de contournement B. Ainsi, la vanne d’arrêt 51 est fermée.
Ce premier mode de fonctionnement est particulièrement utile afin que la pression du fluide réfrigérant au sein de l’évaporateur ne passe pas au-dessous d’une limite de pression déterminée par le réglage de la vanne à pression constante 15. Cela permet ainsi d’éviter les risques de givrage au niveau de l’évaporateur 9.
Le dispositif de gestion thermique 1 peut être également configuré selon un deuxième mode de fonctionnement dans lequel le fluide réfrigérant en sortie de l’évaporateur 9 circule à la fois dans la vanne à pression constante 15 et dans la conduite de contournement B. Pour cela, la vanne d’arrêt 51 est ouverte de sorte à permettre au fluide réfrigérant de passer par ladite conduite de contournement B.
Ce deuxième mode de fonctionnement est particulièrement utile par exemple lorsque qu’une forte puissance de refroidissement est nécessaire au niveau de l’évaporateur 9 pour refroidir le flux d’air interne 100. Du fait que le fluide réfrigérant passe par la première conduite de contournement C, les pertes de charges sont bien moins importantes et la pression du fluide réfrigérant au sein de l’évaporateur 9 est plus basse que pour le premier mode de fonctionnement. La puissance de refroidissement du flux d’air interne 100 via l’évaporateur 9 est donc plus importante et permet de le refroidir plus fortement.
Dans ce deuxième mode de fonctionnement, la majeure partie du fluide réfrigérant passe par la conduite de contournement B du fait que les perte de charges sont moins importantes dans cette conduite de contournement B. Une petite partie du fluide réfrigérant passe néanmoins également par la vanne à pression constante 15.
Ainsi, on voit bien que le dispositif de gestion thermique 1 selon l’invention permet, de par la présence de la conduite de contournement B et de la vanne d’arrêt 51, d’augmenter ponctuellement la puissance de refroidissement au niveau de l’évaporateur 9 en contournant la vanne à pression constante 15 et en permettant une pression du fluide réfrigérant plus basse au sein dudit évaporateur 9. La conduite de contournement permet ainsi d’obtenir une puissance de refroidissement et une température d’évaporation proche de celle disponible dans les dispositifs de gestion thermique ne faisant pas appel à une vanne à pression constante en aval de G évaporateur.

Claims

REVENDICATIONS
1. Dispositif de gestion thermique (1) d’un véhicule automobile, ledit dispositif de gestion thermique (1) comportant un circuit de fluide réfrigérant dans lequel est destiné à circuler un fluide réfrigérant, ledit circuit de fluide réfrigérant comportant un évaporateur (9) destiné à être traversé par un flux d’air interne (100) et une vanne à pression constante (15) disposée en aval dudit évaporateur (9),
caractérisé en ce que le circuit de fluide réfrigérant comporte une conduite de
contournement (B) de la vanne à pression constante (15), ladite première conduite de contournement (B) comprenant une vanne d’arrêt (51).
2. Dispositif de gestion thermique (1) selon la revendication 1, caractérisé en ce que la vanne à pression constante (15) et la vanne d’arrêt (51) sont regroupées au sein d’un bloc commun.
3. Dispositif de gestion thermique (1) selon l’une quelconque des revendications précédentes, caractérisé en ce que la vanne à pression constante (15) a un diamètre supérieur ou égal à 10 mm.
4. Dispositif de gestion thermique (1) selon l’une des revendications 1 à 3, ledit dispositif de gestion thermique étant configuré selon un premier mode de fonctionnement dans lequel le fluide réfrigérant en sortie de G évaporateur (9) circule uniquement dans la vanne à pression constante (15).
5. Dispositif de gestion thermique (1) selon l’une des revendications 1 à 3, ledit dispositif de gestion thermique étant configuré selon un deuxième mode de fonctionnement dans lequel le fluide réfrigérant en sortie de G évaporateur (9) circule à la fois dans la vanne à pression constante (15) et dans la conduite de contournement (B).
6. Dispositif de gestion thermique (1) selon l’une quelconque des revendications 1 à 5,
caractérisé en ce qu’il comporte un circuit de climatisation.
7. Dispositif de gestion thermique (1) selon l’une quelconque des revendications 1 à 5,
caractérisé en ce qu’il comporte un circuit de climatisation inversible.
8. Dispositif de gestion thermique (1) selon la revendication 7, caractérisé en ce que le circuit de climatisation inversible est direct.
9. Dispositif de gestion thermique (1) selon la revendication 7, caractérisé en ce que le circuit de climatisation inversible est indirect.
PCT/FR2020/050204 2019-02-12 2020-02-05 Dispositif de gestion thermique d'un vehicule automobile avec vanne a pression constante WO2020165526A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1901366 2019-02-12
FR1901366A FR3092523B1 (fr) 2019-02-12 2019-02-12 Dispositif de gestion thermique d’un véhicule automobile avec vanne à pression constante

Publications (1)

Publication Number Publication Date
WO2020165526A1 true WO2020165526A1 (fr) 2020-08-20

Family

ID=67514733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/050204 WO2020165526A1 (fr) 2019-02-12 2020-02-05 Dispositif de gestion thermique d'un vehicule automobile avec vanne a pression constante

Country Status (2)

Country Link
FR (1) FR3092523B1 (fr)
WO (1) WO2020165526A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3036784A1 (fr) * 2015-05-29 2016-12-02 Valeo Systemes Thermiques Boucle de climatisation reversible et installation de climatisation reversible integrant une telle boucle
WO2017005559A1 (fr) * 2015-07-06 2017-01-12 Bayerische Motoren Werke Aktiengesellschaft Circuit frigorifique, procédé de climatisation d'un véhicule et véhicule
FR3067796A1 (fr) * 2017-06-16 2018-12-21 Valeo Systemes Thermiques Circuit de chauffage a pompe a chaleur de vehicule automobile et procede de gestion associe
WO2019025705A1 (fr) * 2017-08-04 2019-02-07 Valeo Systemes Thermiques Procédé de gestion d'un circuit de climatisation inversible indirect de véhicule automobile

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3036784A1 (fr) * 2015-05-29 2016-12-02 Valeo Systemes Thermiques Boucle de climatisation reversible et installation de climatisation reversible integrant une telle boucle
WO2017005559A1 (fr) * 2015-07-06 2017-01-12 Bayerische Motoren Werke Aktiengesellschaft Circuit frigorifique, procédé de climatisation d'un véhicule et véhicule
FR3067796A1 (fr) * 2017-06-16 2018-12-21 Valeo Systemes Thermiques Circuit de chauffage a pompe a chaleur de vehicule automobile et procede de gestion associe
WO2019025705A1 (fr) * 2017-08-04 2019-02-07 Valeo Systemes Thermiques Procédé de gestion d'un circuit de climatisation inversible indirect de véhicule automobile

Also Published As

Publication number Publication date
FR3092523A1 (fr) 2020-08-14
FR3092523B1 (fr) 2021-04-30

Similar Documents

Publication Publication Date Title
EP3465025B1 (fr) Circuit de climatisation de véhicule automobile
FR3070316B1 (fr) Circuit de climatisation inversible indirect de vehicule automobile et procede de gestion associe
EP3606774B1 (fr) Circuit de climatisation inversible indirect de vehicule automobile et procede de fonctionnement correspondant
EP3496964B1 (fr) Circuit de climatisation inversible indirect de véhicule automobile et procédé de fonctionnement correspondant
EP3263374A1 (fr) Circuit de climatisation réversible de véhicule automobile et procédés de fonctionnement
WO2021116564A1 (fr) Dispositif de gestion thermique inversible
WO2018211200A1 (fr) Circuit de climatisation inversible indirect de vehicule automobile et procede de de gestion en mode pompe a chaleur
EP3914866A1 (fr) Circuit de climatisation de vehicule automobile et procede de gestion associe
EP3507114B1 (fr) Circuit de climatisation inversible indirect de véhicule automobile et procédé de fonctionnement correspondant
WO2020165526A1 (fr) Dispositif de gestion thermique d'un vehicule automobile avec vanne a pression constante
WO2020234057A1 (fr) Dispositif de gestion thermique avec vanne de régulation de pression d'évaporation
WO2021249934A1 (fr) Dispositif de gestion thermique d'un véhicule automobile électrique ou hybride comportant un circuit de fluide caloporteur
FR3122486A1 (fr) Procédé de contrôle d’un dispositif de gestion thermique
FR3067796A1 (fr) Circuit de chauffage a pompe a chaleur de vehicule automobile et procede de gestion associe
EP3658832B1 (fr) Procede de gestion d'un circuit de climatisation de vehicule automobile
EP4034394A1 (fr) Dispositif de gestion thermique d'un véhicule automobile électrique ou hybride comportant un circuit de fluide caloporteur
FR3069911B1 (fr) Procede de gestion d'un circuit de climatisation inversible indirect de vehicule automobile
WO2020165512A1 (fr) Dispositif de gestion thermique de véhicule automobile électrique ou hybride
EP3433550B1 (fr) Circuit de climatisation de véhicule automobile
FR3092654A1 (fr) Dispositif de gestion thermique d’un véhicule automobile avec vanne à pression constante
WO2018211199A1 (fr) Circuit de climatisation inversible indirect de vehicule automobile et procede de gestion en mode de pompe a chaleur
EP3658833B1 (fr) Procede de gestion d'un circuit de climatisation inversible de vehicule automobile
FR3069490A1 (fr) Procede de gestion d’un circuit de climatisation inversible indirect de vehicule automobile
FR3064944A1 (fr) Circuit de climatisation inversible indirect de vehicule automobile et procede de fonctionnement correspondant
WO2023083871A1 (fr) Procédé de degivrage d'un système de conditionnement thermique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20712005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20712005

Country of ref document: EP

Kind code of ref document: A1