WO2017005559A1 - Circuit frigorifique, procédé de climatisation d'un véhicule et véhicule - Google Patents

Circuit frigorifique, procédé de climatisation d'un véhicule et véhicule Download PDF

Info

Publication number
WO2017005559A1
WO2017005559A1 PCT/EP2016/065069 EP2016065069W WO2017005559A1 WO 2017005559 A1 WO2017005559 A1 WO 2017005559A1 EP 2016065069 W EP2016065069 W EP 2016065069W WO 2017005559 A1 WO2017005559 A1 WO 2017005559A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
pressure control
expansion valve
control element
pressure
Prior art date
Application number
PCT/EP2016/065069
Other languages
German (de)
English (en)
Inventor
Markus Moser
Oliver Horn
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Publication of WO2017005559A1 publication Critical patent/WO2017005559A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/323Cooling devices using compression characterised by comprising auxiliary or multiple systems, e.g. plurality of evaporators, or by involving auxiliary cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow

Definitions

  • the invention relates to a refrigeration circuit for a vehicle, with two evaporator branches, which are connected in parallel, wherein in the first evaporator branch, a first expansion valve and a first evaporator are arranged for the air conditioning of a first component, and in the second evaporator branch, a second expansion valve and a second evaporator , For the air conditioning of a second component, Furthermore, the invention relates to a method for air conditioning of a vehicle and a vehicle.
  • a refrigeration cycle in a vehicle typically serves to cool a number of components which are thermally connected to the refrigeration circuit via suitable evaporators and typically act as a heat source.
  • the refrigerant circuit then circulates a refrigerant which receives heat in the respective evaporator and emits in a condenser of the refrigerant circuit again, for example, to a cooling circuit or directly to the environment.
  • the cooling circuit provides a certain cooling capacity.
  • the problem is to divide the available cooling capacity in a suitable manner to the multiple evaporators, more precisely, the components. Particularly problematic in this case are those cases in which Different evaporators also different and / or changing cooling requirements are present.
  • the refrigerant circuit described in DE 10 2013 211 259 A1 has a condenser and two evaporator branches, one of which serves for cooling a vehicle interior and the other for cooling a high-voltage accumulator.
  • the evaporator branches in each case an evaporator and an expansion valve upstream of this are arranged. Furthermore, the two evaporator branches are connected in parallel to each other.
  • the cooling circuit is designed in particular for use in a vehicle, in particular an electric or hybrid vehicle.
  • the refrigerant circuit circulates a refrigerant with a total mass flow, which is compressed by a compressor and downstream of the same one Condenser flows through, for heat dissipation, for example, to a Kühi Vietnamese or the environment of the vehicle.
  • a first branch is arranged, at which the total mass flow of the refrigerant is divided into two partial mass flows. Starting from the first branch then two evaporator branches are formed, which are connected in parallel.
  • a first expansion valve and a first evaporator are arranged for conditioning a first component
  • a second expansion valve and a second evaporator are arranged for conditioning a second component.
  • the two components are in particular vehicle components.
  • a respective expansion valve is arranged upstream of the respective evaporator. Downstream of the two evaporators, the two evaporator branches are brought together again at a second branch and also the two partial mass flows. A respective evaporator branch thus extends between the two branches.
  • a pressure control element is now arranged in the second evaporator branch downstream of the second evaporator for selective pressure control in the second evaporator branch.
  • a significant advantage of the invention is, in particular, that different pressures of the refrigerant are set in the two evaporators, specifically independently, ie selectively.
  • a pressure compensation takes place downstream of the two evaporators by merging the partial mass flows a pressure compensation, which has a coupling of the pressures in the two evaporator branches result and thus negative on the evaporator branches and there achieved Cooling capacity reacts. This is avoided by the additional pressure control element.
  • the invention is based on the idea of decoupling the two evaporator branches by means of the pressure control element as far as possible in terms of printing technology so that in each case an optimum partial mass flow of refrigerant and thus an optimum pressure can be set.
  • This decoupling is particularly advantageous in those cases in which more cooling power is required in both evaporator branches together than the cooling circuit can afford at most.
  • the pressure control element in the second evaporator branch in this case acts as a backup of the first evaporator branch against a possibly excessive increase in pressure in the first evaporator branch. Such a pressure increase would reduce the performance of the first evaporator branch to an undesirable extent.
  • This too rapid evaporation of the refrigerant is particularly important for large components of importance, which are then only locally cooled, namely where the component is in thermal communication with the inlet portion of the evaporator. This is critical in particular for those components in which an excessive temperature spread is to be avoided, ie in which a spatially homogeneous as possible cooling is to be achieved.
  • An example of this is a High-voltage storage, to power a drive of an electric or hybrid vehicle, in which a temperature spread should be avoided to cool all high-voltage storage cells alike, and thus in particular to ensure the most uniform thermal stress on all high-voltage storage cells.
  • downstream pressure control element By means of the downstream pressure control element, however, it is possible in combination with the upstream second expansion valve to increase the pressure in the second evaporator such that the cooling capacity of the second evaporator is reduced and a more uniform evaporation of the refrigerant is achieved over the entire evaporator, ie over its entire Length, in particular independent of the pressure in the first evaporator. Overall, therefore, by the selective pressure control in the second evaporator branch, a particularly homogeneous air conditioning of the associated second component.
  • the advantage of the invention is, in particular, that the proportion of the total cooling capacity used for cooling the second component is adjustable and reduced cooling takes place, so that either a maximum of cooling capacity is still available for the first component or an optimal compromise is achieved to split the cooling capacity on both components, at the same time particularly homogeneous cooling, in particular the second component.
  • the expansion valves act primarily as a pressure reducer for the refrigerant and to have an opening to reduce the amount of refrigerant flowing through, ie for setting a certain mass flow. In this way, an expansion and in particular cooling of the refrigerant downstream of the expansion valve is achieved.
  • a modified opening leads to a changed Teiimassenstrom
  • the extent of the pressure reduction is therefore predeterminable over the size of the opening, which is often appropriately adjustable and / or closed for this purpose.
  • TXV thermal expansion valves
  • EXV electrical expansion valves
  • a particular advantage of an EXV is also that, if necessary and regardless of the prevailing temperature conditions, starting from a maximum opening is infinitely variable until complete closure and thus completely shut off, whereby the corresponding evaporator branch is then no longer traversed by refrigerant and quasi shut down.
  • a so-called electrical thermal expansion valve, short ETXV is a TXV which is additionally electrically isolable.
  • pressure-controlled valves are also known which function similarly to a TXV, but the pressure of the refrigerant is used directly to control the opening. On a separate working medium is then omitted.
  • only a fixed opening which is also referred to as an orifice, is used as the expansion valve. Such a fixed opening is not adjustable.
  • the first and the second expansion valve are basically all of the aforementioned valves and openings suitable, but particularly preferred are TXV, EXV and / or ETXV.
  • the pressure control element is a third expansion valve.
  • An advantage of this embodiment is in particular that by such a pressure control element in particular an adjustment of the pressure in the second evaporator branch is effected by a pressure drop is realized at the pressure control element to the first evaporator branch back, i. virtually a pressure adjustment to the pressure of the refrigerant downstream of the first evaporator.
  • an intermediate pressure is then advantageously set on the second evaporator branch which corresponds at most to the pressure of the refrigerant upstream of the second expansion valve and at least the pressure downstream of the pressure control element, d. H. in particular a suction pressure of the compressor.
  • the pressure-reducing effect of an expansion valve can be used advantageously.
  • an evaporation of the refrigerant in this case does not take place, in particular, since already the second expansion valve is expediently set in such a way that the refrigerant has completely evaporated before reaching the pressure control element.
  • the pressure control element then acts primarily as a throttle for reducing the pressure of the gaseous refrigerant and less as an expansion valve for the evaporation of liquid refrigerant.
  • all the above-mentioned embodiments of expansion valves are suitable as a pressure control element.
  • the intermediate pressure is then adjusted as needed by adjusting the second expansion valve and the pressure control element.
  • the second expansion valve is adjusted such that at the outlet of the second evaporator, the refrigerant is completely evaporated.
  • the downstream pressure control then serves primarily to reduce the pressure of the already completely evaporated refrigerant.
  • the second expansion valve or the pressure control element is a shut-off expansion valve.
  • shut-off is understood to mean, in particular, that the expansion valve can be shut off as required and completely, ie that the partial mass flow of refrigerant in the second evaporator branch can be switched on or off as desired independently of the prevailing temperature conditions.
  • the lockable expansion valve is in particular electrically shut off and an EXV or ETXV.
  • the second expansion element or the pressure control element is in particular electrically shut off, so that the pressure increase in the second evaporator then the second expansion element or the pressure control element is shut off.
  • the partial mass flow is stopped by the second evaporator and a reduced heat exchange with the second component is achieved, ie a reduced and thus particularly needs-based cooling.
  • the remaining for cooling the first component cooling capacity is increased accordingly.
  • opening the Pressure control element is then released the partial mass flow again. This process is expediently carried out periodically by suitable clocking of the print control element.
  • a central opening cross-section is effectively set by rapid timing of the opening and closing time, thereby setting or setting the intermediate pressure and thus the extent of cooling.
  • the shut-off embodiment is also particularly suitable for complete shutdown of the second evaporator branch, if, for example, no cooling should take place.
  • the cooling circuit has a control unit which is designed to control the pressure control element and thereby set different pressures in the two evaporator branches.
  • an intermediate pressure is set, in particular in the second evaporator branch, which is greater than the pressure in the first evaporator branch.
  • the control unit is suitably designed for measuring a respective instantaneous temperature of the components and determines at predetermined time intervals or continuously a respective cooling demand, on the basis of which the pressure control element and in particular the intermediate pressure are set, so that the available cooling capacity is optimally divided between the two evaporators becomes.
  • a temperature sensor is connected to the control unit, which is mounted for measuring the instantaneous temperature at a suitable location of the respective components.
  • the control unit is designed to regulate the pressure control element as a function of the air conditioning requirement of at least the two components.
  • the regulation of the air conditioning requirement of the second component takes place in particular directly via the pressure control element and the regulation of the air conditioning requirement of the first component corresponding to indirectly due to the change in the cooling capacity at the second component.
  • the first and second expansion valves and the pressure control element are each a thermal expansion valve, i. designed here as TXV, as a pressure-controlled valve or as a fixed opening.
  • TXV thermal expansion valve
  • This embodiment is particularly inexpensive.
  • Particularly preferred is an embodiment in which the first and the second expansion valve and the pressure control element are each a TXV or a pressure-controlled valve and thus each adjustable.
  • the first and the second expansion valve and the pressure control element in a particularly advantageous embodiment, a passive, self-regulating system.
  • the expansion valves each have probes which are placed at suitable temperature and / or pressure measuring points of the refrigeration circuit and / or components in order to respond to corresponding temperature and / or pressure changes at these measuring points. The placement is done in such a way that an optimally tuned system is created in which the expansion valves automatically depending on the requirement and situation each take a suitable setting and thus ensure optimum air conditioning of the components.
  • the respective probes are mounted in such a way that the first and the second expansion valve adjust the overheating at the outlet of the respective evaporator and the pressure control element adjusts the pressure in the second evaporator branch.
  • a passive, self-regulating system using a combination of TXV, EXV, ETXV, pressure-controlled valves and fixed openings is conceivable in which an electrical control of the corresponding electrically controllable valves only in exceptional cases or in a special active mode and for example by means a control unit, whereas the system then self-regulates in a passive mode.
  • the passive functionality of the valves is used to implement the control, so that in principle only passive valves, i. TXV, pressure-controlled valves and / or fixed openings are necessary.
  • at least one of the valves is additionally shut off to allow off the regulation shutdown or shutdown of the corresponding evaporator branch.
  • the first component is a vehicle interior, ie passenger compartment
  • the first evaporator is an air-conditioning evaporator, for the interior air conditioning of the vehicle.
  • the air conditioner is in particular a part of an air conditioner, for cooling the vehicle interior.
  • This is largely air-conditioned by the selective pressure control in the second evaporator circuit advantageously largely independent of the second component, so that maximum comfort is ensured.
  • the above-described refrigeration cycle is particularly suitable for use in a vehicle which is an electric or hybrid vehicle and has a high-voltage storage. This then serves in particular the power supply of a drive of the vehicle.
  • High-voltage accumulators are also typically large-area components, with an area to be cooled in the range of about 0.2 to 2 m 2 .
  • High-voltage accumulators continue to be particularly sensitive to an inhomogeneous temperature distribution along the surface, ie a temperature spread, in particular between different cells of the high-voltage accumulator.
  • the second component is a high-voltage accumulator of the vehicle and the second evaporator HVS evaporator, for heat exchange with the high-voltage accumulator. Its air conditioning can then be adjusted to meet specific needs or alternatively even regulate.
  • the high-voltage accumulator usually does not have to be cooled continuously, but for example only if its instantaneous temperature reaches a certain maximum value. For cooling, part of the cooling capacity of the refrigeration circuit is then used to cool the high-voltage storage.
  • the high-voltage storage is under certain circumstances, for example, when using an internal combustion engine to drive, not or only slightly claimed, so here only a need for cooling is particularly useful and the remaining cooling power is available for example for the vehicle interior. Loss of comfort in the interior air conditioning when cooling the high-voltage storage will then reduce efficiently.
  • a variant is also advantageous in which a second, second pressure control element is also arranged downstream of the first evaporator in the first evaporator branch.
  • Both evaporator branches are then each equipped with a pressure control element and the controller or Control of the refrigeration circuit and the division of the cooling capacity is correspondingly more flexible.
  • the compressor and the first and second expansion valves divide the refrigerant circuit into a high-pressure side downstream of the compressor and a low-pressure side upstream of the compressor.
  • To increase the efficiency of the refrigerant circuit then has in an expedient development in addition to an internal heat exchanger. for heat transfer between the low and the high pressure side.
  • the inner heat exchanger is connected in particular upstream of the compressor and downstream of the condenser to the refrigeration circuit.
  • FIG. 1 shows schematically a refrigerant circuit with two parallel evaporator branches.
  • a refrigeration circuit 2 for a vehicle not shown in detail.
  • the refrigeration circuit 2 has a compressor 4, for compressing a circulating in the refrigerant circuit 2 refrigerant.
  • the refrigeration circuit 2 has a condenser 6, for heat dissipation to, for example, a refrigeration cycle or the environment. Downstream of the condenser 6, the refrigeration circuit 2 has a first branch 8, at which the refrigerant is divided into two partial mass flows and flows into two parallel evaporator branches 10, 12, namely a first evaporator branch 10 and a second evaporator branch 12. These are finally at one second branch 14 upstream of the compressor 4 again merged.
  • first expansion valve 16 and a first evaporator 18 are arranged for conditioning a first component 20 of the vehicle.
  • second evaporator branch 12 are a second expansion valve 22 and a second evaporator 24 arranged for air conditioning a second component 26, the two expansion valves 16, 22 are respectively upstream of the respective evaporator 18, 24 are arranged.
  • the first component 20 is a vehicle interior, in particular passenger compartment of the vehicle.
  • the second component 26 is here a high-voltage storage of the vehicle, which is thus an electric or hybrid vehicle.
  • a pressure control element 28 arranged for selective pressure control. This is formed in the embodiment shown here as a third expansion valve.
  • the pressure control element 28 and the second expansion valve 22 are here further connected to a control unit 30, by means of which the pressure control element 28 and the second expansion valve 22 are adjusted as needed. In this case, between the pressure control element 28 and the second expansion valve 22, d. H. Above the second evaporator 24, an intermediate pressure is set, in a range between a high pressure of the refrigerant upstream of the first branch 12 and a low pressure downstream of the second branch 14.
  • a pressure change causes, in particular, a temperature change of the refrigerant and thus a control of the heat exchange between Refrigerant and second component 26 on the second evaporator 24.
  • the intermediate pressure is then adjusted according to the cooling requirement of the first and second components 26 as needed.
  • the two expansion valves 16, 22 and the pressure control element 28 are each designed either as TXV, EXV, ETXV, pressure-controlled valve or fixed opening, ie as a so-called orifice.
  • Particularly preferred is an embodiment in which the first expansion valve 16 is a TXV and the second expansion valve 22 and the Pressure control 28 are each an EXV. In one variant are both
  • a control unit 30 is then dispensed with, so that overall a passive, self-regulating system is formed.
  • the first evaporator 18, a pressure control element 28 is connected downstream.
  • the cooling circuit 2 then has two pressure control elements 28, one in each of the two evaporator branches 10, 12. Conveniently, then the first expansion valve 16 and the further pressure control element 28 are connected to the control unit 30 for the purpose of control or regulation when using a control unit 30.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

L'invention concerne un circuit frigorifique (2), destiné en particulier à un véhicule, ce circuit comprenant deux branches d'évaporation (10, 12) montées en parallèle. Un premier détendeur (16) et un premier évaporateur (18) sont agencés dans la première branche d'évaporation (10) pour climatiser un premier composant (20), et un deuxième détendeur (22) et un deuxième évaporateur (24) sont agencés dans la deuxième branche d'évaporation (12) pour climatiser un deuxième composant (26). Ce circuit frigorifique (2) est caractérisé en ce qu'un élément régulateur de pression (28) est agencé dans la deuxième branche d'évaporation (12) en aval du deuxième évaporateur (24) pour réguler la pression de manière sélective dans cette deuxième branche d'évaporation (12). L'invention concerne en outre un procédé de climatisation d'un véhicule, ainsi qu'un véhicule.
PCT/EP2016/065069 2015-07-06 2016-06-28 Circuit frigorifique, procédé de climatisation d'un véhicule et véhicule WO2017005559A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015212550.5 2015-07-06
DE102015212550.5A DE102015212550A1 (de) 2015-07-06 2015-07-06 Kältekreis, Verfahren zur Klimatisierung eines Fahrzeugs und Fahrzeug

Publications (1)

Publication Number Publication Date
WO2017005559A1 true WO2017005559A1 (fr) 2017-01-12

Family

ID=56292711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/065069 WO2017005559A1 (fr) 2015-07-06 2016-06-28 Circuit frigorifique, procédé de climatisation d'un véhicule et véhicule

Country Status (2)

Country Link
DE (1) DE102015212550A1 (fr)
WO (1) WO2017005559A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3070316A1 (fr) * 2017-08-30 2019-03-01 Valeo Systemes Thermiques Circuit de climatisation inversible indirect de vehicule automobile et procede de gestion associe
CN109398031A (zh) * 2018-11-15 2019-03-01 三江瓦力特特种车辆有限公司 一种一拖二车载空调电路
FR3092654A1 (fr) * 2019-02-12 2020-08-14 Valeo Systemes Thermiques Dispositif de gestion thermique d’un véhicule automobile avec vanne à pression constante
FR3092523A1 (fr) * 2019-02-12 2020-08-14 Valeo Systemes Thermiques Dispositif de gestion thermique d’un véhicule automobile avec vanne à pression constante
EP4016700A1 (fr) * 2020-12-18 2022-06-22 Renault s.a.s Système de refroidissement et système de gestion thermique pour un véhicule automobile
US20220234423A1 (en) * 2019-06-14 2022-07-28 Valeo Systemes Thermiques Method for managing a thermal management device for a motor vehicle and associated thermal management device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017210052A1 (de) 2017-06-14 2018-12-20 Audi Ag Kälteanlage für ein Fahrzeug
CN109591541B (zh) * 2017-09-30 2021-04-20 比亚迪股份有限公司 车载电池的温度调节方法和温度调节系统
DE102018002096A1 (de) 2018-03-15 2018-08-09 Daimler Ag Verfahren zum Betreiben einer Klimatisierungsungseinrichtung für ein Kraftfahrzeug, insbesondere für einen Kraftwagen
CN110398083A (zh) * 2018-04-25 2019-11-01 杭州三花研究院有限公司 热管理系统及其控制方法
CN110398082B (zh) * 2018-04-25 2021-10-29 三花控股集团有限公司 热管理系统及其控制方法
CN110398043B (zh) * 2018-04-25 2022-06-14 三花控股集团有限公司 热管理系统及其控制方法
DE102019201427B4 (de) * 2019-02-05 2022-01-13 Audi Ag Verfahren zum Betreiben eines Kältemittelkreislaufs einer Kälteanlage eines Fahrzeugs
DE102019201428A1 (de) * 2019-02-05 2020-08-06 Audi Ag Verfahren zum Betreiben einer einen Kältemittelkreislauf aufweisenden Kälteanlage eines Fahrzeugs
DE102020200942A1 (de) 2020-01-27 2021-07-29 Zf Friedrichshafen Ag Kühlsystem für eine elektrische Baugruppe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4389855A (en) * 1980-08-08 1983-06-28 Hitachi, Ltd. Dual air-conditioner for motor-cars
EP2149466A1 (fr) * 2008-08-01 2010-02-03 Thermo King Corporation Système de contrôle de températures multiples
EP2154347A2 (fr) * 2008-08-12 2010-02-17 Behr GmbH & Co. KG Dispositif d'équilibrage des températures de l'air d'aspiration d'un moteur à combustion
EP2796810A1 (fr) * 2011-12-19 2014-10-29 Toyota Jidosha Kabushiki Kaisha Dispositif de refroidissement
DE102013211259A1 (de) 2013-06-17 2014-12-18 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Steuergerät zur Optimierung der Kühlung eines Hochvoltspeichers durch eine Klimaanlage

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0800940A3 (fr) * 1996-04-10 2001-06-06 Denso Corporation Système de conditionnement d'air pour véhicules électriques
DE102009010329A1 (de) * 2009-02-25 2010-08-26 Karlsruher Institut für Technologie Temperaturregelung für einen Mikrostrukturverdampfer zur Kühlung von Flüssigkeiten
DE102011109055A1 (de) * 2010-09-04 2012-03-08 Volkswagen Ag Klimaanlage für ein Fahrzeug sowie Verfahren zum Klimatisieren eines Fahrzeugs
DE102013214267A1 (de) * 2013-07-22 2015-01-22 Bayerische Motoren Werke Aktiengesellschaft Wärmepumpen-Anlage für ein Fahrzeug, insbesondere ein Elektro- oder Hybridfahrzeug, sowie Verfahren zum Betrieb einer solchen Wärmepumpen-Anlage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4389855A (en) * 1980-08-08 1983-06-28 Hitachi, Ltd. Dual air-conditioner for motor-cars
EP2149466A1 (fr) * 2008-08-01 2010-02-03 Thermo King Corporation Système de contrôle de températures multiples
EP2154347A2 (fr) * 2008-08-12 2010-02-17 Behr GmbH & Co. KG Dispositif d'équilibrage des températures de l'air d'aspiration d'un moteur à combustion
EP2796810A1 (fr) * 2011-12-19 2014-10-29 Toyota Jidosha Kabushiki Kaisha Dispositif de refroidissement
DE102013211259A1 (de) 2013-06-17 2014-12-18 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Steuergerät zur Optimierung der Kühlung eines Hochvoltspeichers durch eine Klimaanlage

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3070316A1 (fr) * 2017-08-30 2019-03-01 Valeo Systemes Thermiques Circuit de climatisation inversible indirect de vehicule automobile et procede de gestion associe
CN109398031A (zh) * 2018-11-15 2019-03-01 三江瓦力特特种车辆有限公司 一种一拖二车载空调电路
CN109398031B (zh) * 2018-11-15 2021-06-25 三江瓦力特特种车辆有限公司 一种一拖二车载空调电路
FR3092654A1 (fr) * 2019-02-12 2020-08-14 Valeo Systemes Thermiques Dispositif de gestion thermique d’un véhicule automobile avec vanne à pression constante
FR3092523A1 (fr) * 2019-02-12 2020-08-14 Valeo Systemes Thermiques Dispositif de gestion thermique d’un véhicule automobile avec vanne à pression constante
WO2020165526A1 (fr) * 2019-02-12 2020-08-20 Valeo Systemes Thermiques Dispositif de gestion thermique d'un vehicule automobile avec vanne a pression constante
WO2020165525A1 (fr) * 2019-02-12 2020-08-20 Valeo Systemes Thermiques Dispositif de gestion thermique d'un vehicule automobile avec vanne a pression constante
US20220234423A1 (en) * 2019-06-14 2022-07-28 Valeo Systemes Thermiques Method for managing a thermal management device for a motor vehicle and associated thermal management device
EP4016700A1 (fr) * 2020-12-18 2022-06-22 Renault s.a.s Système de refroidissement et système de gestion thermique pour un véhicule automobile
FR3117955A1 (fr) * 2020-12-18 2022-06-24 Renault S.A.S. Système de refroidissement et système de gestion thermique pour un véhicule automobile.

Also Published As

Publication number Publication date
DE102015212550A1 (de) 2017-01-12

Similar Documents

Publication Publication Date Title
WO2017005559A1 (fr) Circuit frigorifique, procédé de climatisation d'un véhicule et véhicule
DE102012210221B4 (de) Verfahren zur Steuerung und/oder Regelung einer Kühleinrichtung für Fahrzeuge
EP3833562B1 (fr) Procédé de fonctionnement d'une installation de refroidissement pour un véhicule comportant un circuit d'agent réfrigérant comprenant une fonction de pompe à chaleur
DE102016005782B4 (de) Verfahren zum Betreiben einer Fahrzeugklimaanlage mit einem Kältemittelkreislauf
DE102013021360B4 (de) Thermomanagementsystem eines Kraftfahrzeugs und korrespondierendes Verfahren zum Betreiben eines Thermomanagementsystems eines Kraftfahrzeugs
DE102018201165B3 (de) Verfahren zum Betreiben einer einen Kältemittelkreislauf aufweisenden Kälteanlage eines Fahrzeugs im Kältebetrieb
DE102018209769B4 (de) Verfahren zum Betreiben einer einen Kältemittelkreislauf aufweisenden Kälteanlage eines Fahrzeugs
DE102020117471B4 (de) Wärmepumpenanordnung mit indirekter Batterieerwärmung für batteriebetriebene Kraftfahrzeuge und Verfahren zum Betreiben einer Wärmepumpenanordnung
DE102019201427B4 (de) Verfahren zum Betreiben eines Kältemittelkreislaufs einer Kälteanlage eines Fahrzeugs
DE102018113687B4 (de) Vorrichtung und Verfahren zur Kühlung von Batteriezellenmodulen
DE102016201835A1 (de) Klimatisierungsvorrichtung für ein Kraftfahrzeug
EP1625957B1 (fr) Système de refroidissement d'un véhicule
WO2020160817A1 (fr) Procédé permettant de faire fonctionner un circuit de refroidissement d'un véhicule présentant un circuit frigorifique
DE102013219146A1 (de) Fahrzeug-wärmepumpensystem und -steuerverfahren
DE102017213973B4 (de) Verfahren zum Betreiben einer Kälteanlage eines Fahrzeugs mit einem eine Kühl- und Heizfunktion aufweisenden Kältemittelkreislauf
EP4017742A1 (fr) Procédé pour faire fonctionner un circuit frigorifique d'une installation frigorifique d'un véhicule
DE102017208231B4 (de) Kälteanlage für ein Fahrzeug mit einem Kältemittelkreislauf
WO2004055454A1 (fr) Circuit de refrigerant pour une installation de climatisation de vehicule automobile
DE102009030041A1 (de) Fahrzeug-Klimasystem
EP1603762A1 (fr) Climatisation de vehicule et mode d'exploitation associe
EP4072875A1 (fr) Procédé de réchauffage permettant de faire fonctionner un système de réfrigération pour un véhicule à moteur, système de réfrigération et véhicule à moteur équipé d'un système de réfrigération de ce type
DE102018210477A1 (de) Verfahren zum Betreiben eines Kältemittelkreislaufs einer Kälteanlage eines Fahrzeugs
DE102019203295A1 (de) Verfahren zum Betreiben einer Kälteanlage für ein Fahrzeug mit einem eine Wärmepumpenfunktion aufweisenden Kältemittelkreislauf
DE102017218415A1 (de) Kältemittelkreislauf zum Kühlen eines Innenraums eines Fahrzeugs mit elektrifiziertem Antriebsstrang und Verfahren zum Steuern einer Vorrichtung zur Temperierung eines Innenraums eines Fahrzeugs
EP1955881B1 (fr) Procédé d'opération d'un circuit frigorifique d'un climatisateur pour l'intérieur d'un véhicule

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16733496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16733496

Country of ref document: EP

Kind code of ref document: A1