EP3658781A1 - Dispositif pouvant être parcouru par un flux - Google Patents

Dispositif pouvant être parcouru par un flux

Info

Publication number
EP3658781A1
EP3658781A1 EP18759898.2A EP18759898A EP3658781A1 EP 3658781 A1 EP3658781 A1 EP 3658781A1 EP 18759898 A EP18759898 A EP 18759898A EP 3658781 A1 EP3658781 A1 EP 3658781A1
Authority
EP
European Patent Office
Prior art keywords
diffuser
impeller
dff
axial
vne
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18759898.2A
Other languages
German (de)
English (en)
Other versions
EP3658781B1 (fr
Inventor
Uwe Martens
Nico Petry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3658781A1 publication Critical patent/EP3658781A1/fr
Application granted granted Critical
Publication of EP3658781B1 publication Critical patent/EP3658781B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers

Definitions

  • the invention relates to an arrangement which zessfluid of a product along a main direction of flow can flow, comprising sor a standing about an axis in a direction of rotation rotatable impeller and a downstream impeller be ⁇ -sensitive bladed with vanes diffu-, said impeller an inlet for a wesentli ⁇ chen axial inflow and an outlet for a wesent ⁇ union radial outflow, wherein between a wheel disc and a cover plate of the impeller radially and axially extending blades are arranged, the rad- radkanäle in a circumferential direction delimit each other wherein the diffuser extends substantially radially along a main flow direction, the diffuser having an axial shroud side and an axial wheel disk side defining therebetween an axial channel width of the diffuser, the diffuser entering a diffuser for a substantially radial inflow and a diffuser outlet, wherein between the Radusionnseite and the cover ⁇ disk side
  • EP 2 650 546 AI known.
  • the guide vanes in inclined form in a standing behind the impeller stationary diffuser (dihedral vanes).
  • the so-called “low solidity diffuser” (with guide vanes having a relatively large distance from one another in the circumferential direction in relation to their Radialerstre- suppression), to means of this aerodynamic measure a reduced pressure loss can be achieved. Since the Strö ⁇ mung image significantly in the diffuser, however, can depend on the flow conditions in and after the impeller the proposed measures, depending on the constellation of the impeller have positive or negative effects, so that the ge ⁇ wished effect of this measure only under certain other aerodynamic conditions or not will be matched one.
  • Radial compressor impeller known whose cover plate and wheel ⁇ disc are formed on the outer circumference as conical surfaces.
  • WO 2011/011335 A1 each show a three-dimensional diffuser vane design downstream of an open impeller.
  • the flow conditions on an open impeller are not comparable with those in a closed impeller because of the adhesive condition even on Strömungstre- rende stator relative to the wheel disc on the open impeller. Downstream of an open impeller therefore results in completely different flow patterns, in particular with regard to the differences on the part of the wheel disc and the cover plate.
  • EP 0,648,939 A2 shows a turbo machine with a ge ⁇ closed impeller.
  • EP 2650546 Al shows a Leitschaufeltreatment with a curved profile centroid line along the blade height ⁇ downstream of a closed impeller. So far, a three-dimensional design of impeller ⁇ blades and Diffusorschaufein hardly follows a traceable technical teaching that improves the aerodynamics of the arrangement reliably over conventional designs. It is therefore an object of the invention to improve the aerodynamics, in particular the guide vanes of the diffuser of such an arrangement, by means of the teaching according to the invention.
  • the invention proposes an arrangement of the type defined above, which is further formed by means of the characterizing part of the main claim.
  • the individual vanes can be defined as a stack of blade profiles along a blade height.
  • the blade profiles here are two-dimensional geometries that define the blade outer contour in a specific blade height position.
  • the invention understands a ("imaginary") straight connecting line between the profile leading edge (profile nose) and a profile chord of a blade profile
  • the angle of attack of a blade profile corresponds to the angle between the tangent to the chord and the tangent to the circular motion of the rotor. Accordingly, along the extension of the blade of the Anstellwin ⁇ angle is perpendicular to the blade height, that is substantially parallel to the main flow direction ⁇ constant and can be moved along the blade height variie ⁇ ren.
  • a skeleton line describes a profile ⁇ section or a profile of a blade in a certain height position in that the skeleton line (curvature line) is a line inscribed by the center points or the suction side and pressure side of the profile tangent circles defined line.
  • Expressions such as axial, radial, tangential or circumferential direction relate - unless otherwise indicated - to a rotational axis of the impeller of the assembly.
  • the terms "tangential”, “tangent” and related terms are often used in the description of this invention with respect to another curve.
  • a process fluid may in the present case be any gaseous, liquid or mixed-phase fluid.
  • the process fluid be ⁇ moved along a main flow direction through the purchase order, which is part of a turbomachine generally.
  • the outflow direction is understood to be the mean direction of travel of the process fluid in the region which is defined in the respective context of physical boundary walls.
  • the process fluid passes through individual of Leit ⁇ shovel limited axial and limited circumferential flow channels from a region of the inlet edges of the guide vanes radially outward in a range of trailing edges of the vanes into it. Since the guide vanes each have a curvature of the profile, it is only possible to speak of a substantially radial main flow direction.
  • the impeller of the assembly includes a wheel disc and a cover disc on a rule.
  • the wheel disc hereby limited flow channels of the impeller on the one hand radially (vorwie ⁇ quietly in the area of inflow) inside and, on the other hand, to the axial side (increasingly close to the impeller outlet) axially opposite the inflow side and through which a process fluid does not flow into the impeller
  • the cover disc represents the boundary of flow channels of the impeller opposite the wheel disc the Radusionnseite opposite axial shroud side flows the process fluid axially into the impeller and is deflected for the flow channels of the impeller radially outward.
  • the cover plate side could therefore be called the inflow side.
  • the blades connect the wheel disc and the cover plate together.
  • the wheel disc and the cover disc also define the wheel disc side and the cover disc side, respectively, to which reference will also be made in the description of the diffuser.
  • the inflow of the diffuser in the arrangement according to the invention always takes place radially from the inside to the outside.
  • the diffuser is preferably also provided with a substantially radially outward direction
  • the diffuser is also curved and optionally flows radially-axially, axially or radially inward flows.
  • a section of the diffuser always extends substantially radially. This section can be located in front of a deflection of the flow in an axial or in a radially inward flow direction.
  • a leading edge angle for each axial blade height is defined as Win ⁇ angle between a leading edge tangent to a skeleton ⁇ line to a leading edge of each vane and a circumferential tangent through the inlet edge, the
  • Admission edge angle cover plate side is smaller than the wheel side.
  • a circumferential tangent which extends through the inlet ridge occurs that this circumferential tangent perpendicular to a radial line through the leading edge point of the jewei ⁇ time profile section of the vane.
  • the A ⁇ occurs edge angle here is the mathematically positive over- dashed angles from the circumferential tangent to the entrance edge tangent to the skeleton line.
  • An advantageous development of the invention provides that the difference between the cover plate side and the wheel disc soapy entry edge angle is at least 5 °.
  • An inventive embodiment of the invention in this order of magnitude leads to a significant improvement in the aerodynamic properties of the arrangement.
  • Another advantageous development of the invention provides that the angle of attack of the guide vanes is smaller on the side of the cover disk than on the side of the wheel disk. This embodiment takes into account the difference in the flow pattern after exiting the impeller between the cover plate side and the wheel disc side in addition, so that the aerodynamics is further improved.
  • Another development of the invention provides that the flow is prepared particularly expedient after exiting the impeller before entering the diffuser when the quotient of the axial channel width of the bladed diffuser to the maximum impeller outlet diameter is greater than 0.04.
  • Another advantageous development of the invention provides that the ratio of the axial channel width of the diffuser contemplative feiten to the axial channel width of the impeller at the ma imum ⁇ rotor outlet diameter is smaller than 0.95. In this way, the flow with the entry into the diffusion accelerated, so that the vortex formation behind the Lauf ⁇ rad reduces.
  • dung the guide vanes are formed such that a win ⁇ angle between a tangent to the skeleton line in the entry ⁇ edge portion to a tangent to the skeleton line in the off ⁇ takes edge portion of the cover disk each small disk-side and wheel.
  • this feature can be characterized in that a deflecting function predetermined by the respective profile is less strong on the cover plate side than on the wheel disk side.
  • This refinement also relates advantageously to the particular flow situation of the process fluid after it leaves the impeller and before it enters the diffuser.
  • a similar effect has another advantageous Wide Erbil ⁇ dung of the inventive arrangement, in which the guide vanes are formed such that an angle between a tangent to the skeleton line in the leading edge region to the profile chord is cover plate side is smaller than wheel discs ⁇ other.
  • the angle between a tangent to the skeleton line in the leading edge region to the profile chord is de ⁇ finiert than the mathematically positive angle of the tangent to the skeleton line in the leading edge region to the profile chord.
  • the guide vanes have an inclination, such that the leading edge is offset on the cover disc side opposite the wheel-side leading edge opposite to the rotational direction of the impeller by at least 10% of the axial channel width of the diffuser.
  • this embodiment takes into account the differences between the shroud side and the wheel ⁇ disk side in the flow image after exiting the impeller additionally.
  • the trailing edge may also be inclined in the circumferential direction, and it is particularly expedient for an advantageous further development of the arrangement if the trailing edge is in the circumferential direction
  • Guide vanes are designed such that an offset ent ⁇ against the rotational direction of the impeller at the trailing edge of the cover plate side opposite the Radterionsei ⁇ te is lower than at the leading edge.
  • a harmonious, low-pressure flow control is achieved in particular when the axial course (course in the vertical direction) of the vanes of the diffuser from the cover plate side to the Radepticnseite is continuously ge ⁇ curved executed.
  • FIG. 1 shows a schematic longitudinal section through an arrangement according to the invention
  • FIG. 3 shows a schematic cross section through an arrangement according to the invention
  • FIG. 5 shows a schematic cross section through a diffuser of an arrangement according to the invention in the region of a single guide blade.
  • Figures 1 and 2 show a schematic representation
  • An inventive arrangement ARG is flowed through by a process fluid PFF along a main flow direction MFD from an inlet INL to an outlet EXT.
  • ARG comprises a rotatable about an axis X in Rotationsrich- tung RTD impeller IMP.
  • the IMP Downstream of the Laufra ⁇ the IMP is a bladed with vanes VNE stationary diffuser DFF.
  • the impeller IMP has an inlet INI for a substantially axial inflow and a outlet EXI for substantially radial outflow.
  • the suitability for the substantially axial inflow or the outflow of the substantially radial impeller is characterized by the course of itself through the impeller IMP réellere ⁇ -bridging the flow duct and the impeller channels ICH.
  • Zvi ⁇ rule HWI a wheel disc and a cover disc of the impeller SWI IMP are located radially and axially extending blades BLD.
  • the blade channels ICH are separated from each other by these blades in BLD in a circumferential direction CDR, as can be seen in FIGS. 3 and 4.
  • the diffuser DFF extends with
  • the diffuser DFF has an axial cover plate side SWS and an axi ⁇ alle wheel disc side HWS. This nomenclature is based on the arrangement of the cover disc SWI and the wheel disc HWI of the impeller IMP.
  • the axial shroud side SWS and the axial Radusionnseite HWS of the diffuser DFF limit Zvi ⁇ to rule an axial channel width of the diffuser IAC DFF.
  • the diffuser has a diffuser inlet DFF IND for the radial inflow We ⁇ sentlichen and a diffuser outlet EXD on.
  • the diffuser is subdivided into three sections extending along the main flow direction MFD, into a first diffuser third TS1, a second one
  • Zvi ⁇ rule Radularnseite the cervical spine and the cover plate side SWS extend axially along a blade height direction and radially extending along a flow direction Vanes VNE.
  • the vanes VNE delimit individual vane channels HCN from each other in a circumferential direction CDR.
  • Figures 3, 4 and 5 a cross section of he ⁇ inventive arrangement ARG or a section is respectively reproduced therefrom, so that it is also apparent how the Leitschaufelkanäle HCN tung each other in a the circumferential CDR are delimited by means of the guide vanes VNE. Since the vanes VNE by nature not a completely straight
  • the individual vanes VNE can be described as a stack of blade profiles PRL (for example, blade profile
  • the blade profiles PRL themselves are two-dimensional geometries that define the blade outer contour in a specific blade elevation position. The actual three-dimensional
  • the outer contour of the blade on the respective suction side SCS and pressure side PRS results as a surface interpolation between the linear boundary contours of the blade profiles PRL, which each indicate a linear specification in the respective blade height position (here also axial position).
  • FIG 3 shows in cross-section schematic fragmentary the arrangement according to the invention with an impeller ARG IMP and ei ⁇ nem downstream diffuser subsequent DFF, which is designed as a stator STA.
  • IMP between the impeller and the diffuser DFF is a radial clearance RCL a Radi ⁇ alspaltes.
  • the impeller IMP rotates in the illustration in a circumferential direction CDR.
  • the individual guide vanes VNE of the diffuser DFF are merely reproduced as schematic skeleton lines BWL.
  • a skeleton line BWL here describes a profile section or a profile of a blade in a certain height position in that the skeleton line BWL, also sometimes called curvature line, one of the Mit- is the center of a defined line or the suction side and the pressure side of the profile tangent circles.
  • FIG. 5 uses two circles CLC to show, by way of example, how pressure side PRF and suction side SCS of a vane VNE define the skeleton line BWL by means of the inscribed circles CLC.
  • Figure 5 shows only an axial section through the diffuser DFF in the region of a vane VNS, the figure has validity for both the cover plate side SWS, as well as for the wheel disc side HWS.
  • FIG. 4 shows similar relationships in conjunction with the impeller IMP.
  • the impeller IMP is divided into three along the main flow direction MFD successive Drittab ⁇ sections in approximately starting from a blade inlet edge ILE up to a blade outlet edge ITE.
  • the blade inlet edge ILE and the blade outlet edge ITE are not necessarily identical to the inlet INI of the impeller or outlet XEI of the impeller.
  • the main flow direction MFD also runs axially in the impeller IMP - ie also in the drawing plane in FIG. 4.
  • the in ⁇ formation over the axial goes naturally verlo- ren in the axial projection of the rotor blades BLD of Figure 4.
  • the impeller has a first impeller portion IS1, egg ⁇ NEN second impeller portion IS2 and a third Laufradab ⁇ section IS3 on.
  • the fi gure 4 in each dashed reproduction shows the cover disk side SWS and the wheel disk side HWS both for a running shoe BLD and for a guide blade VNE.
  • an ingress edge angle ⁇ LEA is defined for each axial blade as the angle between a leading edge tangent TLV of jewei- time vane VNE and a circumferential tangent CTG by the leading edge DLE.
  • the entry edge angle LEA is mathematically positively measured from the circumferential tangent CTG on the entrance edge tangent TLV.
  • the Peripheral tangent CTG is a tangent to the circumferential direction in the respective indicated position, here at the position of the leading edge DLE.
  • This circumferential tangent CTG can also be defined as being perpendicular to a radial ray RAD and the reference point, here including the leading edge DLE.
  • the profile chord VCH of the profile of the vane VNE is also drawn into the respective section, which extends from an entry edge DLE to a exit edge DTE as a straight line.
  • the pitch angle AOA is also defined as a mathematically positive measured angle from the circumferential tangent CTG to the chord VCH.
  • the arrangement ARG provides that the entry edge angle LEA cover plate side is smaller than the wheel disk side in the diffuser DFF.
  • the difference between the cover-disk-side and the wheel-disk-side entry edge angle LEA is preferably at least 5 degrees.
  • the quotient of the axial channel width SAC of the bladed diffuser DFF to the maximum impeller outlet diameter is more than 0.04. It can also be deduced from FIG. 2 that the quotient of an axial channel width SAC of the bladed diffuser DFF to the axial channel width IAC of the impeller IMP at the maximum impeller outlet diameter DIE is less than 0.95.
  • the routing ⁇ shovel VNE is formed such that an angle, here ge ⁇ Nannt profile camber angle VBA, between a tangent TLV to the skeleton line BWL in the leading edge region to a tangent TTV on the skeleton line BWL in Austrittskantenbe ⁇ rich TEA cover plate side is smaller than Radusionnsei ⁇ tig.
  • the angle of curvature VBA is here again mathematical measured positive from the tangent TLV on the skeleton line BWL in the entry edge area.
  • FIG. 5 fundamentally reproduces the relationships on the wheel disk side HWS or cover disk side SWS and accordingly represents both sides.
  • a leading edge of the vanes DLE VNE can ⁇ advantageous way, as shown in Figure 4, a piece of downstream passageway radially Windone be offset from the diffuser inlet DFF, wherein in figure 4, this radial offset is designated as CBS.
  • FIG. 4 Schematically represented in FIG. 4 is the relationship that the guide vanes VNE have a tendency such that the entry edge DLE covers the disk side opposite the wheel-disk-side leading edge DLE against the rotational direction RTD of the impeller IMP by at least 10% of the axial channel width SAC of the diffuser DFF is offset.
  • the vanes VNE are formed such that an offset against the rotational direction RTD of the impeller IMP at the trailing edge DTE of the cover plate side SWS against the Radusionnseite HWS is lower than at the leading edge DLE.
  • the axial course of the guide view of the diffuser DFF from the cover disk side SWS to the wheel disk side HWS is continuously curved.
  • FIG. 4 also shows schematically that at least in the most upstream third of the extension of the guide vanes VNE along the main flow direction MFD, an axial projection of a cover-side guide blade track DDS and a wheel-side guide rail DRS at least one projection of cover-side guide track DDS to the wheel-side guide track DRS of at least an area ratio> 5% the cover plate side vane track surface has.

Abstract

L'invention concerne un dispositif (ARG) qui peut être parcouru par un flux de fluide de processus (PFF) le long d'une direction de circulation principale (MFD), et comprend une roue à aubes (IMP) pouvant tourner sur un axe (X) dans un sens de rotation (RTD) et un diffuseur (DFF) fixe disposé en aval de la roue à aubes (IMP) et doté d'aubes directrices (VNE). La roue à aubes (IMP) présente une entrée (ILI) permettant une entrée de flux sensiblement axiale et une sortie (EXI) permettant une sortie de flux sensiblement radiale. Des aubes directrices (BLD) qui s'étendent radialement et axialement sont disposées entre un disque de roue (HWI) et un disque de recouvrement (SWI) de la roue à aubes (IMP) et délimitent les uns par rapport aux autres des canaux de roue à aubes (ICH) dans une direction circonférentielle (CDR). Le diffuseur (DFF) s'étend dans la direction de circulation principale (MFD) sensiblement radialement. Le diffuseur (DFF) présente un côté disque de recouvrement axial (SWS) et un côté disque de roue axial (HWS) qui délimitent entre eux une largeur de canal axiale (SAC) du diffuseur (DFF). Le diffuseur (DFF) présente une entrée de diffuseur (ILD) permettant une entrée de flux sensiblement radiale et une sortie de diffuseur (EXD). Entre le côté disque de roue (HWI) et le côté disque de recouvrement (SWI) du diffuseur (DFF) se trouvent des aubes directrices (VNE) qui s'étendent axialement dans une direction de hauteur d'aube et radialement dans une direction de circulation, lesdites aubes directrices délimitant entre eux des canaux d'aube directrice (DCH) dans une direction circonférentiellement (CDR). Selon l'invention, un angle d'arête d'entrée (LEA) est défini pour chaque hauteur d'aube axiale en tant qu'angle entre une tangente (TLV) à l'arête d'entrée au niveau d'une ligne moyenne (BWL) au niveau d'une arête d'entrée (DLE) des aubes directrices (VNE) respectives et une tangente périphérique (CTG) à travers l'arête d'entrée, l'angle d'arête d'entrée (LEA) étant plus petit côté disque de recouvrement que côté disque de roue.
EP18759898.2A 2017-09-20 2018-08-20 Dispositif pouvant être traversé Active EP3658781B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17192109.1A EP3460256A1 (fr) 2017-09-20 2017-09-20 Dispositif pouvant être traversé
PCT/EP2018/072379 WO2019057413A1 (fr) 2017-09-20 2018-08-20 Dispositif pouvant être parcouru par un flux

Publications (2)

Publication Number Publication Date
EP3658781A1 true EP3658781A1 (fr) 2020-06-03
EP3658781B1 EP3658781B1 (fr) 2023-01-11

Family

ID=59923318

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17192109.1A Withdrawn EP3460256A1 (fr) 2017-09-20 2017-09-20 Dispositif pouvant être traversé
EP18759898.2A Active EP3658781B1 (fr) 2017-09-20 2018-08-20 Dispositif pouvant être traversé

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP17192109.1A Withdrawn EP3460256A1 (fr) 2017-09-20 2017-09-20 Dispositif pouvant être traversé

Country Status (5)

Country Link
US (1) US11225977B2 (fr)
EP (2) EP3460256A1 (fr)
JP (1) JP7074957B2 (fr)
CN (1) CN111133203B (fr)
WO (1) WO2019057413A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3760871A1 (fr) 2019-07-04 2021-01-06 Siemens Aktiengesellschaft Diffuseur pour une turbomachine
EP3760876A1 (fr) 2019-07-04 2021-01-06 Siemens Aktiengesellschaft Diffuseur pour une turbomachine
EP3805572A1 (fr) 2019-10-07 2021-04-14 Siemens Aktiengesellschaft Diffuseur, turbocompresseur radial

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2372880A (en) * 1944-01-11 1945-04-03 Wright Aeronautical Corp Centrifugal compressor diffuser vanes
US3460748A (en) * 1967-11-01 1969-08-12 Gen Electric Radial flow machine
JPS5469811A (en) * 1977-11-14 1979-06-05 Hitachi Ltd Diffuser for centrifugal compressor
CN2045433U (zh) 1988-09-26 1989-10-04 上海机械学院 混流式风机
JP3482668B2 (ja) * 1993-10-18 2003-12-22 株式会社日立製作所 遠心形流体機械
CA2166249A1 (fr) * 1994-12-28 1996-06-29 Hideomi Harada Turbomachine munie d'un dispositif de guidage de l'ecoulement fluide a angle variable
US8016557B2 (en) 2005-08-09 2011-09-13 Praxair Technology, Inc. Airfoil diffuser for a centrifugal compressor
RU2505711C2 (ru) * 2009-07-19 2014-01-27 Камерон Интернэшнл Корпорэйшн Диффузор центробежного компрессора
DE102010020379A1 (de) 2010-05-12 2011-11-17 Siemens Aktiengesellschaft Einstellbarer Radialverdichterdiffusor
US8616836B2 (en) * 2010-07-19 2013-12-31 Cameron International Corporation Diffuser using detachable vanes
JP5608062B2 (ja) 2010-12-10 2014-10-15 株式会社日立製作所 遠心型ターボ機械
US9581170B2 (en) * 2013-03-15 2017-02-28 Honeywell International Inc. Methods of designing and making diffuser vanes in a centrifugal compressor
WO2015019901A1 (fr) * 2013-08-06 2015-02-12 株式会社Ihi Compresseur centrifuge et compresseur d'alimentation
DE102013114609A1 (de) * 2013-12-20 2015-06-25 Ebm-Papst Mulfingen Gmbh & Co. Kg Radial-Laufrad für einen Trommellüfter und Lüftereinheit mit einem derartigen Radial-Laufrad
JP6242775B2 (ja) * 2014-09-18 2017-12-06 三菱重工業株式会社 遠心圧縮機
DE102014219107A1 (de) 2014-09-23 2016-03-24 Siemens Aktiengesellschaft Radialverdichterlaufrad und zugehöriger Radialverdichter
DE102014222877A1 (de) * 2014-11-10 2016-05-12 Siemens Aktiengesellschaft Laufrad einer Radialturbofluidenergiemaschine, Stufe
DE102016201256A1 (de) 2016-01-28 2017-08-03 Siemens Aktiengesellschaft Strömungsmaschine mit beschaufeltem Diffusor
GB2555567A (en) * 2016-09-21 2018-05-09 Cummins Ltd Turbine wheel for a turbo-machine

Also Published As

Publication number Publication date
CN111133203B (zh) 2021-03-09
WO2019057413A1 (fr) 2019-03-28
EP3658781B1 (fr) 2023-01-11
US11225977B2 (en) 2022-01-18
JP2020534477A (ja) 2020-11-26
EP3460256A1 (fr) 2019-03-27
US20200284269A1 (en) 2020-09-10
CN111133203A (zh) 2020-05-08
JP7074957B2 (ja) 2022-05-25

Similar Documents

Publication Publication Date Title
WO2019057412A1 (fr) Dispositif pouvant être parcouru par un flux
EP2806102B1 (fr) Aubage statorique de turbomachine et turbomachine associée
EP2096316B1 (fr) Structuration de boîtier pour compresseur axial dans la zone du moyeu
EP2696029B1 (fr) Grille d'aube avec définition de contour de la paroi latérale et turbomachine
EP3658781A1 (fr) Dispositif pouvant être parcouru par un flux
WO2019057414A1 (fr) Dispositif pouvant être parcouru par un flux
DE10053361C1 (de) Schaufelgitteranordnung für Turbomaschinen
EP2913478B1 (fr) Aubes en tandem d'une turbomachine
DE102008055824A1 (de) Dampfturbine
EP3225781B1 (fr) Canal d'aube, grille d'aube et turbomachine
EP2746533B1 (fr) Grille d'aube et turbomachine
EP1918529A2 (fr) Turbomachine avec aubes statoriques ajustables
EP2881548B1 (fr) Compresseur de turbine à gaz
EP2103811B1 (fr) Buse d'injection de fluide
EP0798447B1 (fr) Aube pour une turbomachine
DE19722353A1 (de) Kreiselpumpe mit einer Einlaufleiteinrichtung
EP2607625B1 (fr) Turbomachine et étage de turbomachine
EP3358135B1 (fr) Contournage d'une plate-forme de grille d'aube
EP0943784A1 (fr) Veine profilée pour une turbomachine axiale
DE102008052981A1 (de) Leitschaufel eines Axialverdichters
EP1122444B1 (fr) Ventilateur radial et buse pour ventilateur radial
EP2304183A2 (fr) Procédé et dispositif permettant d'influencer des flux secondaires dans une turbomachine
DE102019109023B3 (de) Verdichterlaufrad mit wechselnder Beschaufelung
EP3375977A1 (fr) Contournage d'une plate-forme de grille d'aube
DE19612394C2 (de) Schaufelblatt für Strömungsmaschinen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200226

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220822

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018011420

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1543584

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230215

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230511

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230411

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230511

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018011420

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230822

Year of fee payment: 6

Ref country code: CH

Payment date: 20230902

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230824

Year of fee payment: 6

Ref country code: DE

Payment date: 20230828

Year of fee payment: 6

26N No opposition filed

Effective date: 20231012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230820

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230820