EP3658266B1 - Mixer with compensation channel and/or accumulation chamber - Google Patents

Mixer with compensation channel and/or accumulation chamber Download PDF

Info

Publication number
EP3658266B1
EP3658266B1 EP18746917.6A EP18746917A EP3658266B1 EP 3658266 B1 EP3658266 B1 EP 3658266B1 EP 18746917 A EP18746917 A EP 18746917A EP 3658266 B1 EP3658266 B1 EP 3658266B1
Authority
EP
European Patent Office
Prior art keywords
flow
mixer
mixing
components
mixer according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18746917.6A
Other languages
German (de)
French (fr)
Other versions
EP3658266A1 (en
Inventor
Alexander Bublewitz
Jens-Peter Reber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3lmed GmbH
Original Assignee
3lmed GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102017117198.3A external-priority patent/DE102017117198A1/en
Priority claimed from DE102017117199.1A external-priority patent/DE102017117199A1/en
Application filed by 3lmed GmbH filed Critical 3lmed GmbH
Publication of EP3658266A1 publication Critical patent/EP3658266A1/en
Application granted granted Critical
Publication of EP3658266B1 publication Critical patent/EP3658266B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/716Feed mechanisms characterised by the relative arrangement of the containers for feeding or mixing the components
    • B01F35/7164Feed mechanisms characterised by the relative arrangement of the containers for feeding or mixing the components the containers being placed in parallel before contacting the contents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/47Mixing liquids with liquids; Emulsifying involving high-viscosity liquids, e.g. asphalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/421Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path
    • B01F25/423Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path by means of elements placed in the receptacle for moving or guiding the components
    • B01F25/4231Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path by means of elements placed in the receptacle for moving or guiding the components using baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4314Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor with helical baffles
    • B01F25/43141Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor with helical baffles composed of consecutive sections of helical formed elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4316Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod
    • B01F25/43161Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod composed of consecutive sections of flat pieces of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/432Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa
    • B01F25/4321Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa the subflows consisting of at least two flat layers which are recombined, e.g. using means having restriction or expansion zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/55Baffles; Flow breakers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/19Mixing dentistry compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/2305Mixers of the two-component package type, i.e. where at least two components are separately stored, and are mixed in the moment of application
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0418Geometrical information
    • B01F2215/0431Numerical size values, e.g. diameter of a hole or conduit, area, volume, length, width, or ratios thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4314Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor with helical baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4316Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod
    • B01F25/43162Assembled flat elements

Definitions

  • the present invention relates to a mixer with a mixer housing that encloses a mixing space, an input part that can be connected to the mixer housing and that has at least two input openings for the components to be mixed, and a mixing element that extends at least in sections into the mixing space, with each of the input openings is in flow communication with the mixing chamber via at least one inlet channel.
  • Generic static and dynamic mixers are used, for example, in the dental field or for construction materials and adhesives.
  • the mixing element of the mixer is used for the homogeneous mixing of several, usually two, viscous or pasty components, which are stored separately in a cartridge or a similar container so that they can be discharged.
  • Typical consistencies/viscosities for dental impression materials are described in the DIN EN ISO 4823 standard.
  • the mixing process often starts a reaction between the individual components, with the actual substance to be processed, for example a dental material or a building material or adhesive, being formed.
  • Typical mixing ratios include 1:10, 1:5, 1:4, 1:2 and 1:1.
  • compositions and concentrations of the viscous/pasty components (hereinafter also referred to as simply: components) and their mixing ratio are coordinated with one another, it is crucial that the ratio of the components to one another is maintained not only during the filling process into the cartridge, but also during the mixing process itself .
  • the filling of the components into the cartridges is associated with certain filling level fluctuations, typically in the range of 5%, with greater technical effort also 1%, of the filled volume.
  • the arrangement of the respective dispensing pistons is associated with certain tolerances. As a result, one of the pistons is located further forward in the discharge direction. Both the technical fluctuations in the filling height and the slightly different arrangement of the dispensing pistons mean that one of the components enters the mixing chamber before the other component.
  • the breakaway torque of the dispensing piston i.e.
  • the initial impulse of the dispensing piston when releasing from the storage position in the dispensing direction can vary, in particular due to manufacturing fluctuations, so that even for perfect filling, one of the components will enter the mixing chamber before the other component.
  • the components to be mixed generally have a different composition, the components also differ in their rheology and thus in their application behavior. Since the different composition inherently underlies a multi-component system, it is therefore not possible, even by optimizing the known constructions and the filling process, to rule out that even with 1:1 cartridges, one of the components enters the mixing chamber before the other component.
  • one component forms a so-called pre-flow, which enters the mixing space before the other component, so that at least the initial ratio of the components to one another deviates from the ideal mixing ratio.
  • Such a forerun often leads to it being discharged from the mixer unmixed.
  • the unmixed leading component must be discarded since it does not have the properties of the processing stock.
  • EP 2 599 540 B1 describes a mixing element for a static mixer that reduces the overflow of a component by introducing that component through an inlet port separate from the other component to the mixing element. By guiding the components separately, a previously known lead can be compensated.
  • EP 2 527 029 A2 discloses a mixer having a star-like baffle plate having a central pin or spike extending upstream into the flow of material and diverging in the direction of flow into an axis-perpendicular plate.
  • the WO 2012 116 873 A1 also relates to the compensation of a lead.
  • two deceleration chambers and a deflection element are provided, with the deflection element deflecting the component flows radially inwards.
  • US 2012/0 199 607 A1 discloses a dispensing device with a two-component cartridge and a mixer that can be attached to it.
  • the mixer should be able to be easily brought to and removed from the cartridge.
  • a mixer is known with a foreshots-collecting combining chamber provided within a mixer inlet area.
  • the component inlet openings are divided by a separating rib and the path of the excess component is extended.
  • the WO 2012/116863 A1 and the DE 20 2012 013429 U1 each describe a mixer with a mixer housing that encloses a mixing chamber, an inlet part that can be connected to the mixer housing and has at least two inlet openings for the components to be mixed, and a mixing element that extends at least in sections into the mixing chamber extends, wherein each of the inlet openings is in flow communication with the mixing chamber via an inlet channel.
  • a flowable reservoir chamber is also provided, which receives a flow.
  • the WO 2012/116863 A1 discloses a channel which accommodates the mixing components, however, the components are already mixed in this with the aid of arms, and thus any forerun is not only accommodated but also used during mixing. This can falsify the mixing ratio.
  • a bottling-related fluctuation of a component that is present in excess has a greater effect than with a component that is present in deficit. Therefore, there is only a lead of the component present in excess, while a bottling-related fluctuation in the component present in deficit does not form a lead.
  • the component present in excess also occurs in advance because the container holding this component and the associated dispensing piston are significantly larger than the respective components of the component present in deficit.
  • the known solutions it is essential to know before filling the components which component is in excess and will therefore form forerun. Therefore, the known solutions can only be used with unequal mixing ratios.
  • the mixer has a mixer housing with a mixing chamber, an inlet part that can be connected to the mixer housing and has at least two inlet openings for the components to be mixed, and a mixing element, the mixing element extending at least in sections into the mixing chamber.
  • Each of the entrance openings is standing in flow communication with the mixing chamber via at least one inlet channel.
  • at least one compensation channel is formed in the inlet part, which connects the inlet openings to one another.
  • at least one storage chamber for receiving the flow is provided in the mixing element.
  • the inlet openings By connecting the inlet openings to a compensation channel, flow emerging from the inlet openings can enter the compensation channel and be collected there as flow. Because the inlet ports are interconnected, forerun is collected independently of the component making up the forerun. In other words, the connection between the inlet openings ensures that the components reach the compensation channel through these inlet openings without having to make a preselection with regard to the components forming the flow.
  • the compensation channel allows for self-regulation with regard to the flow, since the compensation channel is first filled by the preceding component until the further component flows into the compensation channel and further filling of the compensation channel by the preceding component is prevented. Both can then enter the mixing chamber separately or together via the inlet channels.
  • the invention can be seen in the fact that a radially open compensation channel is provided.
  • the compensation channel is formed by an outer closed ring and by an inner ring with symmetrically arranged openings.
  • the leading component spreads out in the compensation channel until it is countered by the trailing component.
  • a variable component front is created.
  • the Components form a contact surface on this front.
  • the component front remains in its position in the compensation channel, which means that the component mass that continues to flow in flows the shortest way out of the inlet openings through the corresponding openings in the inlet to the mixing chamber and then axially in the discharge direction.
  • the arrangement of at least one storage chamber in the mixing element also allows the intake of the feed regardless of which of the components forms the feed, since the storage chamber or the storage space is provided in the mixing element and is therefore filled by the preceding component.
  • the storage chamber according to the invention is designed in such a way that the flow is received and remains in the storage chamber.
  • the storage chamber is preferably arranged in the first third of the mixing space in the direction of flow of the components.
  • the storage chamber is designed in such a way that it has closed side walls and only one opening, which is formed as an inlet opening in a transverse wall. Since the storage chamber has only one inlet opening but is otherwise not flow-connected to the other chambers, the flow entering the storage chamber is held there so that it essentially no longer participates in the further mixing process.
  • the mixer according to the invention can be a static or a dynamic mixer.
  • the compensation channel is provided in the input part. Therefore, the compensation channel can be implemented with any type of mixer and works independently of the concrete design of the mixer.
  • the internal volume of the compensation channel and/or the storage chamber is adapted to the filling-related fluctuations in such a way that the fluctuations in the volume of the components are smaller than the internal volume of the compensation channel and/or the storage chamber.
  • the internal volume of the compensation channel and/or the storage chamber corresponds to 1% to 10%, in particular 1% to 8%, particularly preferably 1% to 5%, of the volume of a component when the mixing ratio is 1:1. If the mixing ratio deviates from 1:1, the volume of the component present in larger proportions is decisive.
  • the internal volume of the compensation channel and/or the storage chamber corresponds to 1% to 10%, in particular 1% to 8%, particularly preferably 1% to 5%, of the volume of the component present in excess relative to the volume of the component present in deficit Component or the volume of the component present in excess based on the volume of the component present in excess.
  • two compensation channels are formed in the input part, each of which connects the input openings to one another. This prevents any blockage of the flow connection from the inlet opening to the mixing space.
  • the inlet channels are designed in such a way that the components to be mixed are fed into the mixing chamber separately from one another. This prevents the components from reacting prematurely and preventing the intake ports from becoming clogged. In addition, the separate feeding of the components into the mixing space allows better mixing of the components with one another.
  • the two inlet openings are arranged diametrically opposite one another in the inlet part, the inlet channels extending along a diagonal connecting the inlet openings and being separated from one another by a partition running transversely to the diagonal.
  • the partition wall prevents any mixing of the components at the inlet openings, which could cause them to become clogged.
  • the partitions are formed along part of the periphery of an entry port.
  • the partition walls are in particular along less than 50%, preferably less than 40%, very particularly preferably between 20% and 30% of the entire circumference of the corresponding Input opening are arranged.
  • the partitions along less than 80%, preferably less than 70%, very particularly preferably between 40% and 60% of the circumference of the corresponding inlet opening available for inflow are arranged.
  • the inlet ducts are designed in such a way that the components to be mixed are guided into the mixing chamber, at least partially enveloping one another. This supports the subsequent mixing process in the mixing room.
  • the inlet channels can be in flow connection with one another, so that the components to be mixed are guided together into the mixing space.
  • the at least one compensation channel extends essentially in the shape of a circular arc between the inlet openings. Such an arrangement ensures that the components can flow into the compensation channel from each of the inlet openings.
  • the at least one compensation channel runs radially outside of the inlet channels.
  • the flow is routed outwards from the inlet openings or inlet channels into the compensation channel, which is particularly preferred when the inlet into the mixing chamber is arranged centrally, viewed radially.
  • the flow initially fills the external compensation channel and the components can then enter the mixing chamber together. This prevents the inlet channels from being interrupted by the compensation channel and also ensures a relatively short path from the inlet openings into the mixing chamber, since this path leads centrally along the inlet channels into the mixing chamber. This also reduces the discharge pressure, since the components have to be discharged over a short distance with less effort.
  • the at least one compensation channel and the inlet channels are designed as depressions or grooves in the inlet part, which are closed at least in regions by the mixer housing or the mixing element. Since the inlet part is manufactured separately from the mixer housing, further material can be saved during manufacture in this variant. It is particularly preferred if the mixer housing or the mixing element covers the compensation channel by a disk-shaped or funnel-shaped collar in the inlet area of the mixing space.
  • the compensation channel has a mirror plane running through the centers of the input openings.
  • the compensation channel can have a multiple rotating mirror axis.
  • the number of rotation axes corresponds to the number of inlet openings. So if there are two input ports, a two-fold rotating mirror axis is preferred, if there are three input openings, a three-fold rotating mirror axis is preferred, etc. This symmetry ensures that with mixing ratios of 1:2 to 1:1 or 1:1:2 to 1: 1:1 compensation of the lead is ensured for more than two components, regardless of the respective leading component.
  • the inlet part and the mixer housing are designed and adapted to one another in such a way that the components to be mixed, which emerge from the inlet openings and are to be mixed, flow through 90° from a flow direction extending parallel to the longitudinal axis of the mixer housing into a flow direction transverse to the longitudinal axis of the Mixer housing are deflected. The deflection prevents the components from penetrating directly into the mixing chamber past the compensation channel.
  • a flow wall is provided along the circumference of at least one inlet opening and is concave or convex in shape when viewed from the corresponding inlet opening.
  • the flow wall in particular is arranged along less than 50%, preferably less than 40%, most preferably between 20% and 30% of the total perimeter of the corresponding entrance opening.
  • the flow wall along less than 80%, preferably less than 70%, most preferably between 40% and 60% of the circumference of the corresponding inlet opening available for inflow.
  • the at least one flow wall closes off in a sealing manner with a disk-shaped or funnel-shaped collar of the mixer housing or of the mixing element.
  • the axial length of the flow wall corresponds to the axial length of the compensation channel.
  • flow walls it is preferable to arrange them at a distance from one another, so that the components can flow centrally through the gaps formed between the flow walls in the direction of the mixing element.
  • the extent of the distance between two adjacent flow walls defines the pressure drop in the center toward the mixing element.
  • the distance is preferably selected in such a way that the pressure drop between the walls is greater than the pressure drop in the compensation channel, so that the material flowing ahead flows into the compensation channel before it enters the mixing chamber centrally.
  • the inlet part has a storage space that runs radially outside the compensation channel and/or the inlet channels.
  • the Storage space is closed off in the material discharge direction of the components, so that the components cannot flow from the storage space into the mixing element. This separates the storage space from the intake ports.
  • a storage space is particularly advantageous if a large-volume flow is to be expected. Storage space is therefore advantageous, in particular for mixing ratios that deviate from 1:1, in particular 1:10.
  • the inlet openings is assigned an optional deflection plate and/or a flow clamp, which at least partially covers and/or laterally delimits the corresponding inlet opening.
  • the deflection plate is preferably provided above the corresponding inlet opening and is therefore located directly in the material discharge direction, so that the component flowing through the corresponding inlet opening hits the deflection plate when exiting the inlet opening and is deflected, in particular in the direction of the mixing chamber.
  • the flow clip preferably delimits the corresponding inlet opening laterally in such a way that the component which flows through the corresponding inlet opening is directed in the direction of the mixing space when it exits the inlet opening.
  • Both the deflection plate and the flow clamp therefore allow a flow direction to be specified for the component flowing out of the corresponding inlet opening. This is particularly advantageous when the proportion of the corresponding component is low, so that this component can flow almost completely into the mixing space and any residues in the input part are minimized.
  • the advantages of the deflection plate described above can also be achieved by a collar provided on the mixing element if this, comparable to the deflection plate, covers at least one of the inlet openings when the inlet part and the mixing element are mounted in the mixer.
  • the mixing element has a flow chamber adjacent to the storage chamber, which is in flow communication with the mixing space via a through-opening.
  • the flow chamber is delimited by a transverse wall in the material discharge direction and that the transverse wall comprises a transverse wall opening, so that the components can at least partially flow through the transverse wall opening. This reduces the discharge pressure when discharging the components through the mixer, resulting in greater ease of use when discharging.
  • the cross section of the mixing element perpendicular to the material discharge direction in the section of the storage chamber and/or flow chamber is 105% to 150%, preferably 105% to 120%, particularly preferably 110% ⁇ 5% of the cross section perpendicular to the material discharge direction
  • Mixing element viewed in material discharge direction is subsequent section of the mixing element.
  • the mixing element is enlarged in an area of the storage chamber and/or flow chamber.
  • a higher flow cross section can be achieved in this area with the stability of the mixing element remaining the same, which is advantageous for reducing the discharge pressures, particularly in the case of highly viscous components.
  • the capacity of the storage chamber is improved, so that a large-volume flow can be accommodated.
  • the storage chamber and/or flow chamber are preferably provided in the section that overlaps with the inlet section of the mixing sleeve, which has the advantage that a widening of the mixing element can be accommodated in this section by appropriately adapting the inner contour of the inlet section of the mixing sleeve. Otherwise can Of course, the mixing sleeve itself can be adjusted accordingly to the widened contour of the mixing element.
  • the Figures 1a to 1d show a first embodiment of the input part 1 with input openings 2 for the components to be mixed.
  • the first input part 1 has a guide projection 3 whose function in the WO 2013/026716 is explained and to which reference is made in this respect.
  • At least one compensation channel 4 is formed between the inlet openings 2 ( Figures 1c and 1d ), which connects the inlet openings 2 with each other. Flow entering through the inlet openings 2 is taken up by the compensation channel 4 .
  • the inlet openings 2 are diametrically opposed to one another.
  • a flow wall 5 which is formed along a part of the circumference of each inlet opening 2, respectively. Viewed from the respective inlet opening 2 on which the corresponding flow wall 5 is formed, the flow wall 5 is formed along the circumference and is therefore concave. In which case shown here, the components cannot flow into the compensation channel 4 over the entire circumference of the inlet openings 2, as can be seen from FIG 1c clearly results.
  • the functioning of the compensation channel 4 is based on the Figures 2a to 2c explained.
  • component B forms a lead. This exits through an opening and flows along the flow direction 6B past a flow wall 5 into the compensation channel 4. The flow of component B flows along the compensation channel 4 until component A along the flow direction 6A also enters the compensation channel 4 and the flow component B stops. Then both components A and B flow centrally through a further inlet opening into the mixing space (not shown).
  • component A forms the flow, which flows along flow direction 6A into compensation channel 4 until component B also flows into compensation channel 4 .
  • FIGs 3a and 3b show in perspective view ( Figure 3a ) and in top view ( Figure 3b ) A modification of the first input part as a second embodiment, wherein between the input openings 2 at least one in the compensation channel 4 protruding indentation 8 is provided.
  • two opposing indentations 8 are provided, which direct the flow directions 6A and 6B of components A and B more towards the central opening 7 of the mixing space (not shown).
  • FIG. 4a to 4e a third embodiment of the input part 1 is shown.
  • two further flow walls called deflection walls 9 here, are provided which, together with the flow walls 5, which are arranged at the inlet openings 2, form a circular structure 10.
  • the flow walls 5 are designed convex from the respective inlet opening 2 in such a way that the center point of the circular structure 10 coincides with the center point of the inlet part 1 .
  • the Figure 4c shows the flow direction 6A and 6B in the case that none of the components forms a forerun, while in in the Figure 4d illustrated case, the component B forms a lead and in the Figure 4e component A forms a lead.
  • the flow walls 5 and the deflection walls 9 are arranged at a distance from one another, so that openings are formed between each deflection wall 9 and the adjacent flow walls 5, or between each flow wall 5 and the adjacent deflection walls 9.
  • Components A and B can flow through the openings into the centrally arranged entrance to the mixing chamber (not shown). Due to the arrangement of the flow walls 5 and the deflection walls 9, the components A and B first fill the compensation channel 4 and then flow through at least one inlet channel 7a centrally into the mixing chamber.
  • a fourth embodiment of the input part 1 is shown, which is based on the first embodiment of the input part 1, but was supplemented by a partition 11.
  • the partition wall 11 lies between the inlet openings 2 and below the central inlet area to the mixing chamber (not shown). Furthermore, two inlet channels of the components into the mixing chamber are separated from one another by the partition wall 11 .
  • the in the Figures 6a to 6c The fifth embodiment of an entry part 1 shown has an enveloping element 12 arranged centrally in the entry part 1 .
  • a circumferential compensation channel 4 is provided radially around the enveloping element 12 and receives the flow of the components A and/or B.
  • the enveloping element 12 is essentially circular and has a central opening 12a, which opens in the direction of an inlet opening of a component and guides it centrally in the direction of the mixing space.
  • a further opening is arranged opposite the central opening 12a in the direction of the other component, which guides it in a substantially semi-circular channel 12b around the central opening 12a.
  • FIGS. 7a to 7e show a sixth embodiment of the input part 1 with a further variant of an enclosing element 12 with flow walls 5.
  • the flow walls 5 prevent components A and B from flowing directly into the enclosing element 12. This reduces the flow resistance increased to flow into the enveloping element 12, so that this embodiment is preferred for thin-viscous components.
  • a mixing element 13 with storage chambers 14 is shown, which are arranged in the entrance area of the mixing chamber and can absorb the flow that occurs.
  • the storage chambers 14 are closed at their end in the direction of flow of the components, so that the flow does not enter the further mixing chamber and does not falsify the mixing ratio.
  • the mixing element 13 has a disk-shaped or funnel-shaped collar 15 on the inlet side, which is designed in such a way that it covers the inlet part 1 and partially or completely closes the compensation channel 4 .
  • Figure 9a shows a helical mixer 16 with known mixer connection 17 and known input part 18 according to the prior art.
  • Figure 9b shows the first web 19 of the helical mixer and the inlet openings 2 through which the components flow into the inlet part 18 .
  • FIG 11 shows an exploded view of a mixer according to the invention with a mixing element according to FIG Figures 8a to 8c , a mixer housing 13a and an input part 1.
  • Figures 12a and 12b show another mixing element 13 with an input part 1.
  • the disk-shaped or funnel-shaped collar 15 covers the compensation channel 4 in the inlet part 1 in the discharge direction of the components, so that the components from the inlet part 1 enter the mixing element 13 centrally through a central inlet opening 13b (see Fig. Fig. 13 a) stream.
  • figure 14 shows several top views of the second input part 1 according to FIG Figures 3a and 3b , the mixer and the components A and B at different times t1, t2 and t3 which increase in this order.
  • the advance of component A is compensated for by the compensation channel 4 according to the invention, so that both components A and B enter the mixing chamber almost simultaneously (bottom right).
  • FIG 15 a plan view of the third input part is shown above with (top right) and without (top left) inlet channel 7a into the mixing chamber (mixer inlet).
  • the flow of component A is shown on the left (time t1) and on the right the position of components A and B shortly before they flow into the central inlet channel 7a (time t2) in the mixing chamber.
  • the flow of component A is stopped by the inflow of component B, so that the present invention allows self-regulation with regard to the volume of the flow and also a Compensation achieved regardless of whether component A forms the lead (as shown) or component B (not shown).
  • time t3 When entering the mixer (below in figure 15 ) (time t3) the components A and B are present in the intended mixing ratio of 1:1.
  • FIGS 16a and 16b illustrate the storage chambers 14 in the mixing element 13. As shown in particular in the detailed view ( Figure 16b ) to see, the storage chambers 14 lie on a line lying through the center point of the mixing element 13, or diametrically opposite.
  • the input parts 1 according to a seventh embodiment ( Figures 17a to 17c ) and an eighth embodiment ( Figures 18a to 18c ) are optimized for a mixing ratio of the components that deviates from 1:1.
  • the mixing ratio is preferably 1:10.
  • FIGS 17a to 17c show a seventh input part 1, in which case the component present in excess can flow into the input part 1 through the input opening 2a, while the component present in excess can flow into the input part 1 through the input opening 2b.
  • the seventh input part 1 comprises a deflection plate 20 located in the material discharge direction, which at least partially covers the input opening 2a in its radially outer area in such a way that the component flowing in through the input opening 2a is deflected in the direction of the central opening to the mixing chamber 7 (not shown). ( Figure 17c ).
  • the deflection plate 20 prevents a loss of the component present in the deficiency in the area of the input part 1.
  • the advantages associated with the deflection plate 20 can also be achieved by the collar 15 of the mixing element 13.
  • FIG. 18a to 18c an eighth embodiment of the input part 1 is shown.
  • the flow wall 5 is connected here continuously and centrally to a web 19 which lies along a connecting axis between the inlet openings 2a and 2b.
  • the inlet opening 2a is bordered by a flow direction indicator 22, so that the inlet channel 7a points in the direction of the central opening to the mixing chamber 7 (not shown).
  • the compensation channel 4 is provided radially on the outside and can accommodate the flow.
  • This embodiment has a high inner prelumen of the compensation channel 4, so that this embodiment is particularly suitable for large-volume pre-runs.
  • FIGS. 19a to 24c show further embodiments of a mixing element 13 with a storage chamber 14.
  • the components to be mixed can flow in through the inlet opening 13b provided centrally in the collar 15 from the inlet part 1 (not shown).
  • Figures 19a to 19c show a mixing element 13 according to a third embodiment. From the longitudinal view of Figure 19b the arrangement of the storage chamber 14 in the first part of the mixing element 13, viewed in the material discharge direction, can be seen. In addition, the section plane AA is shown, while the corresponding longitudinal section in the Figure 19c is shown.
  • the components When the components flow in through the inlet opening 13b, they are divided at a central wall 23 and flow partly into a storage chamber 14 and partly into a flow chamber 24. From the flow chamber 24, the components flow through a passage opening 25 to the chambers of the mixing element 13, the length of which is in Material discharge direction is defined by the transverse walls 26.
  • the cross section of the passage opening 25 is smaller than the cross section of the flow chamber 24.
  • the smaller cross section is decisive for the pressure drop when the components are discharged, in this case the cross section of the passage opening 25. This can result in relatively high discharge pressures ,
  • the discharge pressure also being influenced by the specific design of the mixing element 13 and the specific viscosity of the components.
  • a fourth mixing element 13 is shown in a perspective view, a side view and as a longitudinal section along the section plane BB. Compared to that in the Figures 20a to 20c In the example shown, the mixing element 13 was shortened at its end lying in the material discharge direction. This reduces the discharge pressure, making this embodiment suitable for higher viscosity components.
  • the Figures 21a to 21c show a mixing element 13 in a fifth embodiment.
  • the draft angles on open sides of the mixing element were increased here.
  • the draft angles have in particular an angular range of 0.1° to 2°, preferably 0.1° to 1° and particularly preferably 0.5° ⁇ 0.1°.
  • a seventh mixing element 13 is in the Figures 23a to 23c shown.
  • the storage chamber 14 is reduced here in such a way that the passage opening 25 has been enlarged.
  • the flow cross section of the flow chamber 24 and the passage opening 25 is the same size. This in turn results in the discharge pressure being reduced compared to other embodiments.
  • this embodiment is particularly suitable in combination with an inlet part 1 which has a relatively large compensation channel 4 or a storage space 21 .
  • FIGS. 24a to 24c show an eighth mixing element.
  • a transverse wall opening 27 was added in a transverse wall closing off the flow chamber 24 in the material discharge direction. This allows some of the components to flow through the transverse wall opening 27 directly into the adjoining mixing space without having to pass through the through-opening 25 . This reduces the discharge pressure of the components, as part of these does not have to change its direction of flow in order to flow through the passage opening 25 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Accessories For Mixers (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

Die vorliegende Erfindung betrifft einen Mischer mit einem Mischergehäuse, das einen Mischraum einschließt, einem mit dem Mischergehäuse verbindbaren Eingangsteil, das wenigstens zwei Eingangsöffnungen für die zu mischenden Komponenten aufweist, und einem Mischelement, das sich wenigstens abschnittsweise in den Mischraum erstreckt, wobei jede der Eingangsöffnungen über wenigstens einen Einlasskanal mit dem Mischraum in Strömungsverbindung steht.The present invention relates to a mixer with a mixer housing that encloses a mixing space, an input part that can be connected to the mixer housing and that has at least two input openings for the components to be mixed, and a mixing element that extends at least in sections into the mixing space, with each of the input openings is in flow communication with the mixing chamber via at least one inlet channel.

Gattungsgemäße statische und dynamische Mischer werden bspw. im Dentalbereich oder für Bau- und Klebstoffe verwendet. Das Mischelement des Mischers dient der homogenen Mischung mehrerer, üblicherweise zweier, viskoser oder pastöser Komponenten, welche separat in einer Kartusche oder einem ähnlichen Behälter austragbar gelagert werden. Typische Konsistenzen/ Viskositäten für Dentale Abformmaterialien sind in der Norm DIN EN ISO 4823 beschrieben. Durch den Mischvorgang wird oft eine Reaktion der einzelnen Komponenten miteinander gestartet, wobei der eigentliche zu verarbeitete Stoff, bspw. ein Dentalmaterial oder ein Bau- oder Klebstoff gebildet wird. Je nach Zusammensetzung der Komponenten zueinander und Anwendungsgebiet, werden diese in unterschiedlichen Verhältnissen vermischt. Typische Mischungsverhältnisse umfassen 1:10, 1 :5, 1:4, 1:2 und 1:1.Generic static and dynamic mixers are used, for example, in the dental field or for construction materials and adhesives. The mixing element of the mixer is used for the homogeneous mixing of several, usually two, viscous or pasty components, which are stored separately in a cartridge or a similar container so that they can be discharged. Typical consistencies/viscosities for dental impression materials are described in the DIN EN ISO 4823 standard. The mixing process often starts a reaction between the individual components, with the actual substance to be processed, for example a dental material or a building material or adhesive, being formed. Depending on the composition of the components and the area of application, they are mixed in different ratios. Typical mixing ratios include 1:10, 1:5, 1:4, 1:2 and 1:1.

Da die Zusammensetzungen und Konzentrationen der viskosen/pastösen Komponenten (im Folgenden auch nur: Komponenten) und deren Mischungsverhältnis aufeinander abgestimmt sind, ist es entscheidend, dass das Verhältnis der Komponenten zueinander nicht nur im Abfüllprozess in die Kartusche, sondern auch im Mischvorgang selbst erhalten bleibt.Since the compositions and concentrations of the viscous/pasty components (hereinafter also referred to as simply: components) and their mixing ratio are coordinated with one another, it is crucial that the ratio of the components to one another is maintained not only during the filling process into the cartridge, but also during the mixing process itself .

Die Abfüllung der Komponenten in die Kartuschen ist technisch bedingt mit gewissen Füllhöhenschwankungen typischerweise im Bereich von 5%, mit höherem technischen Aufwand auch 1%, des abgefüllten Volumens verbunden. Außerdem ist die Anordnung der jeweiligen Ausbringkolben mit gewissen Toleranzen verbunden. Daher kommt es dazu, dass einer der Kolben weiter vorne in Ausbringrichtung angeordnet ist. Sowohl die technischen Schwankungen in der Abfüllhöhe als auch die leicht unterschiedliche Anordnung der Ausbringkolben führt dazu, dass eine der Komponenten vor der anderen Komponente in den Mischraum eintritt. Weiterhin kann auch das Losbrechmoment der Ausbringkolben, d.h. der Initialimpuls der Ausbringkolben beim Lösen aus der Lagerposition in Ausbringrichtung, insbesondere wegen Fertigungsschwankungen unterschiedlich ausfallen, sodass selbst für eine perfekte Abfüllung eine der Komponenten vor der anderen Komponente in den Mischraum eintreten wird. Da die zu mischenden Komponenten generell eine unterschiedliche Zusammensetzung aufweisen, unterscheiden sich die Komponenten ferner in ihrer Rheologie und damit in ihrem Ausbringverhalten. Da die unterschiedliche Zusammensetzung einem Mehrkomponentensystem inhärent zugrunde liegt, ist daher auch durch Optimierung der bekannten Konstruktionen und dem Abfüllverfahren es nicht möglich, auszuschließen, dass selbst bei 1:1 Kartuschen eine der Komponenten vor der anderen Komponente in den Mischraum eintritt.For technical reasons, the filling of the components into the cartridges is associated with certain filling level fluctuations, typically in the range of 5%, with greater technical effort also 1%, of the filled volume. In addition, the arrangement of the respective dispensing pistons is associated with certain tolerances. As a result, one of the pistons is located further forward in the discharge direction. Both the technical fluctuations in the filling height and the slightly different arrangement of the dispensing pistons mean that one of the components enters the mixing chamber before the other component. Furthermore, the breakaway torque of the dispensing piston, i.e. the initial impulse of the dispensing piston when releasing from the storage position in the dispensing direction, can vary, in particular due to manufacturing fluctuations, so that even for perfect filling, one of the components will enter the mixing chamber before the other component. Since the components to be mixed generally have a different composition, the components also differ in their rheology and thus in their application behavior. Since the different composition inherently underlies a multi-component system, it is therefore not possible, even by optimizing the known constructions and the filling process, to rule out that even with 1:1 cartridges, one of the components enters the mixing chamber before the other component.

Mit anderen Worten wird zwangsläufig zu beobachten sein, dass die eine Komponente einen s.g. Vorlauf bildet, welcher vor der anderen Komponente in den Mischraum eintritt, sodass zumindest das anfängliche Verhältnis der Komponenten zueinander von dem idealen Mischungsverhältnis abweicht. Ein solcher Vorlauf führt oft dazu, dass dieser unvermischt aus dem Mischer ausgetragen wird. Die unvermischte den Vorlauf bildende Komponente muss verworfen werden, da sie nicht die Eigenschaften des verarbeitenden Stoffs aufweist.In other words, it will inevitably be observed that one component forms a so-called pre-flow, which enters the mixing space before the other component, so that at least the initial ratio of the components to one another deviates from the ideal mixing ratio. Such a forerun often leads to it being discharged from the mixer unmixed. The unmixed leading component must be discarded since it does not have the properties of the processing stock.

Obwohl die abfüllbedingten Schwankungen und Ungleichmäßigkeiten der Kolbenpositionierung bei allen viskosen oder pastösen Komponenten auftreten, werden diese, insbesondere bei großvolumigen und preisgünstigen Komponenten, bspw. Abdichtmaterialien oder Klebstoffen, oftmals toleriert. Für kleinvolumige und hochpreisige Komponenten, bspw. Dentalmaterialien, sind diese Schwankungen jedoch nicht akzeptabel, da ein größerer Anteil des teuren Materials verworfen werden muss.Although the filling-related fluctuations and irregularities in piston positioning occur with all viscous or pasty components, these are often tolerated, especially with large-volume and inexpensive components, e.g. sealing materials or adhesives. However, these fluctuations are unacceptable for small-volume and high-priced components, for example dental materials, since a larger proportion of the expensive material has to be discarded.

Außerdem ist das Verwerfen des Vorlaufs für einen Anwender umständlich und mit einem Sicherheitsrisiko bei der Anwendung verbunden, da der Vorlauf nicht die Haft-, Schlagzähigkeits- und/oder Festigkeitseigenschaften aufweist, die für die Mischung erhalten werden. Auch unter optischen Gesichtspunkten kann eine unbeabsichtigte Verwendung des Vorlaufs zu unerwünschten Ergebnissen führen.In addition, discarding the forerun is inconvenient for a user and creates a safety hazard in use because the forerun does not have the adhesive, impact and/or strength properties obtained for the blend. Also from a visual point of view, unintentional use of the pre-run can lead to undesired results.

EP 2 599 540 B1 beschreibt ein Mischelement für einen statischen Mischer, das den Vorlauf einer Komponente verringert, indem diese Komponente durch einen von der anderen Komponente getrennten Einlasskanal dem Mischelement zugeführt wird. Durch die getrennte Führung der Komponenten kann ein vorher bekannter Vorlauf kompensiert werden. EP 2 599 540 B1 describes a mixing element for a static mixer that reduces the overflow of a component by introducing that component through an inlet port separate from the other component to the mixing element. By guiding the components separately, a previously known lead can be compensated.

EP 2 527 029 A2 offenbart einen Mischer mit einer sternartigen Prallplatte, die einen zentrischen, sich stromauf in den Materialstrom erstreckenden Zapfen oder Dorn aufweist, der in Strömungsrichtung divergierend in eine achssenkrechte Platte übergeht. EP 2 527 029 A2 discloses a mixer having a star-like baffle plate having a central pin or spike extending upstream into the flow of material and diverging in the direction of flow into an axis-perpendicular plate.

Die WO 2012 116 873 A1 betrifft ebenfalls die Kompensation eines Vorlaufs. Dazu werden zwei Verzögerungskammern und ein Umlenkelement vorgesehen, wobei das Umlenkelement die Komponentenströme radial nach innen umleitet.The WO 2012 116 873 A1 also relates to the compensation of a lead. For this purpose, two deceleration chambers and a deflection element are provided, with the deflection element deflecting the component flows radially inwards.

Ferner beschreiben die EP 0 664 153 A1 , die EP 0 584 428 A1 , die DE 29 902 666 U1 und die DE 3 606 001 A1 gattungsgemäße statische Mischer, welche die oben geschilderte Problematik betreffen.Furthermore, describe the EP 0 664 153 A1 , the EP 0 584 428 A1 , the DE 29 902 666 U1 and the DE 3 606 001 A1 generic static mixers, which relate to the problems described above.

US 2012/0 199 607 A1 offenbart eine Austragsvorrichtung mit einer Zweikomponentenkartusche und einem an diese anbringbaren Mischer. Der Mischer soll leicht an die Kartusche herangeführt und von dieser abgenommen werden können. US 2012/0 199 607 A1 discloses a dispensing device with a two-component cartridge and a mixer that can be attached to it. The mixer should be able to be easily brought to and removed from the cartridge.

DE 36 06 001 A1 beschreibt eine Dosier -und Mischpistole für Mehrkomponentenkunststoffe. Jede Komponente wird über jeweils einen mit einer Drosseleinrichtung versehenen Zuleitungskanal in den statischen Mischraum geführt. DE 36 06 001 A1 describes a metering and mixing gun for multi-component plastics. Each component is routed into the static mixing chamber via a supply duct provided with a throttle device.

In den Dokumenten WO 2013 0 26 722 A1 , EP 1 943 012 B1 , DE 10 112 904 A1 , DE 10 2004 008 748 A1 , DE 299 02 666 U1 , EP 2 190 563 B1 , EP 1 458 467 B1 und EP 1 892 033 A1 werden dynamische Mischer beschrieben, welche einen Vorlauf kompensieren sollen.In the documents WO 2013 0 26 722 A1 , EP 1 943 012 B1 , DE 10 112 904 A1 , DE 10 2004 008 748 A1 , DE 299 02 666 U1 , EP 2 190 563 B1 , EP 1 458 467 B1 and EP 1 892 033 A1 describes dynamic mixers which are intended to compensate for a lead.

Aus der EP 0 885 651 B1 ist ein Mischer mit einer einen Vorlauf auffangenden Vereinigungskammer bekannt, welche innerhalb eines Mischereinlassbereichs vorgesehen ist. Dabei werden die Komponenteneinlassöffnungen durch eine Trennrippe unterteilt und die Wegstrecke der im Überschuss vorliegenden Komponente verlängert.From the EP 0 885 651 B1 a mixer is known with a foreshots-collecting combining chamber provided within a mixer inlet area. The component inlet openings are divided by a separating rib and the path of the excess component is extended.

Die WO 2012/116863 A1 und die DE 20 2012 013429 U1 beschreiben jeweils einen Mischer mit einem Mischergehäuse, das einen Mischraum einschließt, einem mit dem Mischergehäuse verbindbaren Eingangsteil, das wenigstens zwei Eingangsöffnungen für die zu mischenden Komponenten aufweist, und einem Mischelement, das sich wenigstens abschnittsweise in den Mischraum erstreckt, wobei jede der Eingangsöffnungen über einen Einlasskanal mit dem Mischraum in Strömungsverbindung steht.The WO 2012/116863 A1 and the DE 20 2012 013429 U1 each describe a mixer with a mixer housing that encloses a mixing chamber, an inlet part that can be connected to the mixer housing and has at least two inlet openings for the components to be mixed, and a mixing element that extends at least in sections into the mixing chamber extends, wherein each of the inlet openings is in flow communication with the mixing chamber via an inlet channel.

In der DE 20 2012 013429 U1 ist zudem eine durchfließbare Reservoir-Kammer vorgesehen, welche einen Vorlauf aufnimmt. Die WO 2012/116863 A1 offenbart einen Kanal, welcher die Mischkomponenten aufnimmt, allerdings werden in diesem bereits mit Hilfe von Armen die Komponenten gemischt, und somit wird ein etwaiger Vorlauf nicht nur aufgenommen, sondern beim Mischen mitverwendet. Das kann das Mischungsverhältnis verfälschen.In the DE 20 2012 013429 U1 a flowable reservoir chamber is also provided, which receives a flow. The WO 2012/116863 A1 discloses a channel which accommodates the mixing components, however, the components are already mixed in this with the aid of arms, and thus any forerun is not only accommodated but also used during mixing. This can falsify the mixing ratio.

Für die oben beschriebenen Lösungen wird im Wesentlichen die Tatsache ausgenutzt, dass eine abfüllbedingte Schwankung einer im Überschuss vorliegenden Komponente sich stärker auswirkt als bei einer im Unterschuss vorliegenden Komponente. Daher kommt es nur zu einem Vorlauf der im Überschuss vorliegenden Komponente, während eine abfüllbedingte Schwankung bei der im Unterschuss vorliegenden Komponente keinen Vorlauf bildet. Insbesondere bei höhen Überschüssen einer Komponente, bspw. bei gängigen 1:10 Mischverhältnissen, kommt es auch deshalb zu einem Vorlauf der im Überschuss vorliegenden Komponente, da der diese Komponente aufnehmende Behälter und der zugehörige Ausbringkolben wesentlich größer sind als die jeweiligen Bauteile der im Unterschuss vorliegenden Komponente. Mit anderen Worten ist es bei den bekannten Lösungen unumgänglich vor der Abfüllung der Komponenten zu wissen, welche Komponente im Überschuss vorliegt und daher Vorlauf bilden wird. Daher sind die bekannten Lösungen nur bei ungleichen Mischverhältnissen anwendbar.For the solutions described above, the fact is essentially exploited that a bottling-related fluctuation of a component that is present in excess has a greater effect than with a component that is present in deficit. Therefore, there is only a lead of the component present in excess, while a bottling-related fluctuation in the component present in deficit does not form a lead. Especially at If there is a large excess of one component, e.g. with the usual 1:10 mixing ratio, the component present in excess also occurs in advance because the container holding this component and the associated dispensing piston are significantly larger than the respective components of the component present in deficit. In other words, with the known solutions it is essential to know before filling the components which component is in excess and will therefore form forerun. Therefore, the known solutions can only be used with unequal mixing ratios.

Bei Mischverhältnissen von 1:1 und teils bereits bei ähnlichen Mischverhältnissen mit geringen Volumenunterschieden, bspw. 1:1,25 oder 1:2, ist es jedoch nicht sicher möglich vorherzusehen, welche der Komponenten in zu hohen Anteilen vorliegt und daher einen Vorlauf ausbilden wird. Dieses Problem tritt bei allen bekannten Mehrkomponentenkartuschen auf, insbesondere unabhängig davon, ob ein statischer oder ein dynamischer Mischer verwendet wird.However, with mixing ratios of 1:1 and sometimes already with similar mixing ratios with small volume differences, e.g. 1:1.25 or 1:2, it is not possible to predict with certainty which of the components is present in too high a proportion and will therefore form a lead . This problem occurs in all known multi-component cartridges, particularly regardless of whether a static or dynamic mixer is used.

Es ist daher Aufgabe der vorliegenden Erfindung, einen Mischer bereitzustellen, der für jedwede Mischverhältnisse, insbesondere mit geringen Volumenunterschieden, wie 1:1 bis 1:2, den Vorlauf aufnimmt, der insbesondere sowohl aus der ersten Komponente als auch von der zweiten Komponente gebildet werden kann.It is therefore the object of the present invention to provide a mixer which, for any mixing ratio, in particular with small volume differences, such as 1:1 to 1:2, takes up the forerun, which in particular is formed both from the first component and from the second component can.

Diese Aufgabe wird mit einem Mischer gemäß dem Anspruch 1 gelöst.This object is achieved with a mixer according to claim 1.

Erfindungsgemäß ist vorgesehen, dass der Mischer ein Mischergehäuse mit einem Mischraum, einem mit dem Mischergehäuse verbindbaren Eingangsteil, das wenigstens zwei Eingangsöffnungen für die zu mischenden Komponenten aufweist, und ein Mischelement aufweist, wobei sich das Mischelement wenigstens abschnittsweise in den Mischraum erstreckt. Dabei steht jede der Eingangsöffnungen über wenigstens einen Einlasskanal mit dem Mischraum in Strömungsverbindung. Zusätzlich ist vorgesehen, dass in dem Eingangsteil wenigstens ein Kompensationskanal ausgebildet ist, der die Eingangsöffnungen miteinander verbindet. Ergänzend oder als Alternative dazu ist im Mischelement wenigstens eine Staukammer zur Aufnahme des Vorlaufs vorgesehen.According to the invention, the mixer has a mixer housing with a mixing chamber, an inlet part that can be connected to the mixer housing and has at least two inlet openings for the components to be mixed, and a mixing element, the mixing element extending at least in sections into the mixing chamber. Each of the entrance openings is standing in flow communication with the mixing chamber via at least one inlet channel. In addition, it is provided that at least one compensation channel is formed in the inlet part, which connects the inlet openings to one another. In addition or as an alternative to this, at least one storage chamber for receiving the flow is provided in the mixing element.

Durch die Verbindung der Eingangsöffnungen mit einem Kompensationskanal kann an den Eingangsöffnungen austretender Vorlauf in den Kompensationskanal eintreten und dort als Vorlauf aufgefangen werden. Da die Eingangsöffnungen miteinander verbunden sind, wird Vorlauf unabhängig von der Komponente aufgefangen, die den Vorlauf bildet. Mit anderen Worten stellt die Verbindung zwischen den Eingangsöffnungen sicher, dass durch diese Eingangsöffnungen die Komponenten in den Kompensationskanal gelangen, ohne dass eine Vorauswahl hinsichtlich der Vorlauf bildenden Komponente getroffen werden muss.By connecting the inlet openings to a compensation channel, flow emerging from the inlet openings can enter the compensation channel and be collected there as flow. Because the inlet ports are interconnected, forerun is collected independently of the component making up the forerun. In other words, the connection between the inlet openings ensures that the components reach the compensation channel through these inlet openings without having to make a preselection with regard to the components forming the flow.

Der Kompensationskanal erlaubt eine Selbstregulierung hinsichtlich des Vorlaufs, da zunächst der Kompensationskanal von der vorlaufenden Komponente gefüllt wird bis die weitere Komponente in den Kompensationskanal strömt und eine weitere Befüllung des Kompensationskanals durch die vorlaufende Komponente verhindert. Anschließend können beide getrennt oder zusammen über die Einlasskanäle in den Mischraum eintreten.The compensation channel allows for self-regulation with regard to the flow, since the compensation channel is first filled by the preceding component until the further component flows into the compensation channel and further filling of the compensation channel by the preceding component is prevented. Both can then enter the mixing chamber separately or together via the inlet channels.

Mit anderen Worten kann die Erfindung darin gesehen werden, dass ein radial offener, Kompensationskanal vorgesehen ist. Der Kompensationskanal ist dabei durch einen äußeren geschlossenen Ring und durch einen inneren Ring mit symmetrisch angeordneten Durchbrüchen gebildet.In other words, the invention can be seen in the fact that a radially open compensation channel is provided. The compensation channel is formed by an outer closed ring and by an inner ring with symmetrically arranged openings.

Beim Austragen breitet sich die vorlaufende Komponente solange im Kompensationskanal aus bis die die nachlaufende Komponente ihr entgegentritt. Dabei entsteht abhängig von dem Vorlaufweg eine variable Komponentenfront. Die Komponenten bilden an dieser Front eine Kontaktfläche. Nachdem der Kompensationskanal befüllt ist, verbleibt die Komponentenfront an ihrer Position im Kompensationskanal, was dazu führt, dass die weiter einströmende Komponentenmasse auf kürzestem Weg aus den Eingangsöffnungen durch die entsprechenden Durchbrüche in den Einlass zum Mischraum und dann axial in Austragsrichtung fließt.During discharge, the leading component spreads out in the compensation channel until it is countered by the trailing component. Depending on the pre-travel, a variable component front is created. The Components form a contact surface on this front. After the compensation channel is filled, the component front remains in its position in the compensation channel, which means that the component mass that continues to flow in flows the shortest way out of the inlet openings through the corresponding openings in the inlet to the mixing chamber and then axially in the discharge direction.

Ebenso erlaubt die Anordnung wenigstens einer Staukammer im Mischelement die Aufnahme des Vorlaufs unabhängig davon, welche der Komponenten den Vorlauf bildet, da die Staukammer, oder der Stauraum, im Mischelement vorgesehen ist und daher von der vorlaufenden Komponente befüllt wird. Die erfindungsgemäße Staukammer ist dabei so ausgestaltet, dass der Vorlauf aufgenommen wird und in der Staukammer verbleibt. Die Staukammer ist dabei vorzugsweise in dem in Strömungsrichtung der Komponenten ersten Drittel des Mischraums angeordnet.The arrangement of at least one storage chamber in the mixing element also allows the intake of the feed regardless of which of the components forms the feed, since the storage chamber or the storage space is provided in the mixing element and is therefore filled by the preceding component. The storage chamber according to the invention is designed in such a way that the flow is received and remains in the storage chamber. The storage chamber is preferably arranged in the first third of the mixing space in the direction of flow of the components.

Die Staukammer ist derart ausgestaltet, dass diese geschlossene Seitenwände und nur eine Öffnung, die als Eingangsöffnung in einer Querwand gebildet ist, aufweist. Da die Staukammer nur eine Eingangsöffnung aufweist, ansonsten aber mit den übrigen Kammern nicht strömungsverbunden ist, wird die in die Staukammer eintretender Vorlauf dort festgehalten, sodass dieser im Wesentlichen nicht mehr an dem weiteren Mischvorgang teilnehmen wird.The storage chamber is designed in such a way that it has closed side walls and only one opening, which is formed as an inlet opening in a transverse wall. Since the storage chamber has only one inlet opening but is otherwise not flow-connected to the other chambers, the flow entering the storage chamber is held there so that it essentially no longer participates in the further mixing process.

Der erfindungsgemäße Mischer kann ein statischer oder ein dynamischer Mischer sein.The mixer according to the invention can be a static or a dynamic mixer.

Insbesondere ist es gemäß der Erfindung, dass der Kompensationskanal im Eingangsteil vorgesehen ist. Daher kann der Kompensationskanal mit jeder Art von Mischer realisiert werden und funktioniert unabhängig von der konkreten Ausgestaltung des Mischers.In particular, it is according to the invention that the compensation channel is provided in the input part. Therefore, the compensation channel can be implemented with any type of mixer and works independently of the concrete design of the mixer.

In einer bevorzugten Variante ist das Innenvolumen des Kompensationskanals und/oder der Staukammer derart an die abfüllbedingten Schwankungen angepasst, dass die Schwankungen im Volumen der Komponenten kleiner als das Innenvolumen des Kompensationskanals und/oder der Staukammer sind. Mit anderen Worten entspricht das Innenvolumen des Kompensationskanals und/oder der Staukammer 1% bis 10%, insbesondere 1% bis 8%, besonders bevorzugt 1% bis 5%, des Volumens einer Komponente, wenn ein Mischungsverhältnis von 1:1 vorliegt. Bei von 1:1 abweichenden Mischungsverhältnissen ist das Volumen der in größeren Anteilen vorliegenden Komponente maßgeblich.In a preferred variant, the internal volume of the compensation channel and/or the storage chamber is adapted to the filling-related fluctuations in such a way that the fluctuations in the volume of the components are smaller than the internal volume of the compensation channel and/or the storage chamber. In other words, the internal volume of the compensation channel and/or the storage chamber corresponds to 1% to 10%, in particular 1% to 8%, particularly preferably 1% to 5%, of the volume of a component when the mixing ratio is 1:1. If the mixing ratio deviates from 1:1, the volume of the component present in larger proportions is decisive.

Alternativ oder ergänzend dazu entspricht das Innenvolumen des Kompensationskanals und/oder der Staukammer 1% bis 10%, insbesondere 1% bis 8%, besonders bevorzugt 1% bis 5%, des Volumens der im Überschuss vorliegenden Komponente bezogen auf das Volumen der im Unterschuss vorliegenden Komponente oder des Volumens der im Unterschuss vorliegenden Komponente bezogen auf das Volumen der im Überschuss vorliegenden Komponente.Alternatively or additionally, the internal volume of the compensation channel and/or the storage chamber corresponds to 1% to 10%, in particular 1% to 8%, particularly preferably 1% to 5%, of the volume of the component present in excess relative to the volume of the component present in deficit Component or the volume of the component present in excess based on the volume of the component present in excess.

In einer bevorzugten Ausgestaltung sind in dem Eingangsteil zwei Kompensationskanäle ausgebildet, die jeweils die Eingangsöffnungen miteinander verbinden. Dies verhindert eine etwaige Blockierung der Strömungsverbindung von der Eingangsöffnung zu dem Mischraum.In a preferred embodiment, two compensation channels are formed in the input part, each of which connects the input openings to one another. This prevents any blockage of the flow connection from the inlet opening to the mixing space.

In einer weiteren Ausgestaltung sind die Einlasskanäle derart gestaltet, dass die zu mischenden Komponenten getrennt voneinander in den Mischraum geführt werden. Dadurch wird ein vorzeitiges Reagieren der Komponenten und ein eventuelles Verstopfen der Einlasskanäle verhindert. Außerdem erlaubt die getrennte Zuführung der Komponenten in den Mischraum eine bessere Vermischung der Komponenten untereinander.In a further embodiment, the inlet channels are designed in such a way that the components to be mixed are fed into the mixing chamber separately from one another. This prevents the components from reacting prematurely and preventing the intake ports from becoming clogged. In addition, the separate feeding of the components into the mixing space allows better mixing of the components with one another.

Es ist weiter bevorzugt, wenn die zwei Eingangsöffnungen einander diametral gegenüberliegend in dem Eingangsteil angeordnet sind, wobei sich die Einlasskanäle entlang einer die Eingangsöffnungen verbindenden Diagonale erstreckenden und durch eine quer zu der Diagonalen verlaufende Trennwand voneinander getrennt sind. Die Trennwand verhindert ein eventuell auftretendes Vermischen der Komponenten an den Eingangsöffnungen, wodurch diese verstopft werden könnten. Vorzugsweise sind die Trennwände entlang eines Teils des Umfangs einer Eingangsöffnung ausgebildet.It is further preferred if the two inlet openings are arranged diametrically opposite one another in the inlet part, the inlet channels extending along a diagonal connecting the inlet openings and being separated from one another by a partition running transversely to the diagonal. The partition wall prevents any mixing of the components at the inlet openings, which could cause them to become clogged. Preferably, the partitions are formed along part of the periphery of an entry port.

Wenn der Gesamtumfang der Eingangsöffnung zum Einströmen der Komponenten in den wenigstens einen Kompensationskanal zur Verfügung steht, ist es bevorzugt wenn die Trennwände insbesondere entlang weniger als 50%, vorzugsweise weniger als 40%, ganz besonders bevorzugt zwischen 20% und 30% des Gesamtumfangs der entsprechenden Eingangsöffnung angeordnet sind.If the entire circumference of the inlet opening is available for the components to flow into the at least one compensation channel, it is preferred if the partition walls are in particular along less than 50%, preferably less than 40%, very particularly preferably between 20% and 30% of the entire circumference of the corresponding Input opening are arranged.

Wenn nicht der Gesamtumfang der Eingangsöffnung zum Einströmen der Komponenten zur Verfügung steht, bspw. weil das Einströmen der Komponenten durch die Eingangsöffnungen am radialen Rand des Einlasses teilweise blockiert ist, dann ist es bevorzugt wenn die Trennwände insbesondere entlang weniger als 80%, vorzugsweise weniger als 70%, ganz besonders bevorzugt zwischen 40% und 60% des zum Einströmen zur Verfügung stehenden Umfangs der entsprechenden Eingangsöffnung angeordnet sind.If the entire circumference of the inlet opening is not available for the inflow of the components, e.g. because the inflow of the components through the inlet openings at the radial edge of the inlet is partially blocked, then it is preferable if the partitions along less than 80%, preferably less than 70%, very particularly preferably between 40% and 60% of the circumference of the corresponding inlet opening available for inflow are arranged.

Nach einer weiteren bevorzugten Ausgestaltung werden die Einlasskanäle derart gestaltet, dass die zu mischenden Komponenten einander zumindest bereichsweise umhüllend in den Mischraum geführt werden. Dies unterstützt den anschließenden Mischvorgang im Mischraum.According to a further preferred embodiment, the inlet ducts are designed in such a way that the components to be mixed are guided into the mixing chamber, at least partially enveloping one another. This supports the subsequent mixing process in the mixing room.

Als Alternative dazu können die Einlasskanäle miteinander in Strömungsverbindung stehen, so dass die zu mischenden Komponenten gemeinsam in den Mischraum geführt werden.As an alternative to this, the inlet channels can be in flow connection with one another, so that the components to be mixed are guided together into the mixing space.

In einer bevorzugten Variante erstreckt sich der wenigstens eine Kompensationskanal im Wesentlichen kreisbogenförmig zwischen den Eingangsöffnungen. Eine solche Anordnung stellt sicher, dass von jeder der Eingangsöffnungen die Komponenten in den Kompensationskanal einströmen können.In a preferred variant, the at least one compensation channel extends essentially in the shape of a circular arc between the inlet openings. Such an arrangement ensures that the components can flow into the compensation channel from each of the inlet openings.

In einer weiteren Ausführungsform verläuft der wenigstens eine Kompensationskanal radial außerhalb der Einlasskanäle. Dadurch wird der Vorlauf von den Eingangsöffnungen bzw. Einlasskanälen in den Kompensationskanal nach außen geführt, was insbesondere dann bevorzugt ist, wenn der Einlass in den Mischraum radial gesehen zentral angeordnet ist. Dies führt dazu, dass der Vorlauf zunächst den außenliegenden Kompensationskanal füllt und die Komponenten anschließend zusammen in den Mischraum eintreten können. So wird ein Unterbrechen der Einlasskanäle durch den Kompensationskanal verhindert und ferner ein verhältnismäßig kurzer Weg von den Eingangsöffnungen in den Mischraum sichergestellt, da dieser Weg entlang der Einlasskanäle zentral in den Mischraum führt. Dies reduziert ferner den Austragsdruck, da die Komponenten über eine kurze Wegstrecke mit weniger Kraftaufwand ausgetragen werden müssen.In a further embodiment, the at least one compensation channel runs radially outside of the inlet channels. As a result, the flow is routed outwards from the inlet openings or inlet channels into the compensation channel, which is particularly preferred when the inlet into the mixing chamber is arranged centrally, viewed radially. As a result, the flow initially fills the external compensation channel and the components can then enter the mixing chamber together. This prevents the inlet channels from being interrupted by the compensation channel and also ensures a relatively short path from the inlet openings into the mixing chamber, since this path leads centrally along the inlet channels into the mixing chamber. This also reduces the discharge pressure, since the components have to be discharged over a short distance with less effort.

Ferner ist es bevorzugt, wenn der wenigstens eine Kompensationskanal und die Einlasskanäle als Vertiefungen oder Nuten in dem Eingangsteil ausgebildet sind, die zumindest bereichsweise von dem Mischergehäuse oder dem Mischelement verschlossen sind. Da das Eingangsteil von dem Mischergehäuse separat hergestellt wird, kann in dieser Variante weiteres Material bei der Herstellung eingespart werden. Es ist dabei besonderes bevorzugt, wenn das Mischergehäuse oder das Mischelement den Kompensationskanal durch einen scheiben- oder trichterförmiger Kragen im Einlassbereich des Mischraums abdeckt.Furthermore, it is preferred if the at least one compensation channel and the inlet channels are designed as depressions or grooves in the inlet part, which are closed at least in regions by the mixer housing or the mixing element. Since the inlet part is manufactured separately from the mixer housing, further material can be saved during manufacture in this variant. It is particularly preferred if the mixer housing or the mixing element covers the compensation channel by a disk-shaped or funnel-shaped collar in the inlet area of the mixing space.

Der Kompensationskanal weist eine durch die Mittelpunkte der Eingangsöffnungen laufende Spiegelebene auf. Ergänzend oder als Alternative dazu, kann der Kompensationskanal eine mehrzählige Drehspiegelachse aufweisen. Die Zähligkeit der Drehachse entspricht in einer bevorzugten Variante der Anzahl der Eingangsöffnungen. Wenn also zwei Eingangsöffnungen vorliegen, ist eine zweizählige Drehspiegelachse bevorzugt, wenn drei Eingangsöffnungen vorliegen, ist eine dreizählige Drehspiegelachse bevorzugt usw.. Diese Symmetrie stellt sicher, dass bei Mischverhältnissen von 1:2 bis 1:1 oder 1:1:2 bis 1:1:1 für mehr als zwei Komponenten unabhängig von der jeweilig vorlaufenden Komponente eine Kompensation des Vorlaufs sichergestellt ist.The compensation channel has a mirror plane running through the centers of the input openings. In addition or as an alternative to this, the compensation channel can have a multiple rotating mirror axis. In a preferred variant, the number of rotation axes corresponds to the number of inlet openings. So if there are two input ports, a two-fold rotating mirror axis is preferred, if there are three input openings, a three-fold rotating mirror axis is preferred, etc. This symmetry ensures that with mixing ratios of 1:2 to 1:1 or 1:1:2 to 1: 1:1 compensation of the lead is ensured for more than two components, regardless of the respective leading component.

Schließlich ist es bevorzugt, dass das Eingangsteil und das Mischergehäuse derart gestaltet und aneinander angepasst sind, dass die aus den Eingangsöffnungen austretenden und zu mischenden Komponenten aus einer sich parallel zu der Längsachse des Mischergehäuses erstreckenden Strömungsrichtung um 90° in eine Strömungsrichtung quer zu der Längsachse des Mischergehäuses umgelenkt werden. Die Umlenkung verhindert, dass die Komponenten am Kompensationskanal vorbei direkt in den Mischraum eindringen.Finally, it is preferred that the inlet part and the mixer housing are designed and adapted to one another in such a way that the components to be mixed, which emerge from the inlet openings and are to be mixed, flow through 90° from a flow direction extending parallel to the longitudinal axis of the mixer housing into a flow direction transverse to the longitudinal axis of the Mixer housing are deflected. The deflection prevents the components from penetrating directly into the mixing chamber past the compensation channel.

Entlang des Umfangs zumindest einer Eingangsöffnung ist eine Strömungswand vorgesehen, welche, von der entsprechenden Eingangsöffnung betrachtet, konkav oder konvex geformt ist.A flow wall is provided along the circumference of at least one inlet opening and is concave or convex in shape when viewed from the corresponding inlet opening.

Insbesondere für den Fall, dass der Gesamtumfang der Eingangsöffnung zum Einströmen der Komponenten in den wenigstens einen Kompensationskanal zur Verfügung steht, ist es bevorzugt, wenn die Strömungswand, insbesondere entlang weniger als 50%, vorzugsweise weniger als 40%, ganz besonders bevorzugt zwischen 20% und 30% des Gesamtumfangs der entsprechenden Eingangsöffnung angeordnet ist.Particularly in the event that the entire circumference of the inlet opening is available for the components to flow into the at least one compensation channel, it is preferred if the flow wall, in particular is arranged along less than 50%, preferably less than 40%, most preferably between 20% and 30% of the total perimeter of the corresponding entrance opening.

Wenn nicht der Gesamtumfang der Eingangsöffnung zum Einströmen der Komponenten zur Verfügung steht, bspw. weil das Einströmen der Komponenten durch die Eingangsöffnungen am radialen Rand des Einlasses teilweise blockiert ist, dann ist es bevorzugt, wenn die Strömungswand insbesondere entlang weniger als 80%, vorzugsweise weniger als 70%, ganz besonders bevorzugt zwischen 40% und 60% des zum Einströmen zur Verfügung stehenden Umfangs der entsprechenden Eingangsöffnung angeordnet ist.If the entire circumference of the inlet opening is not available for the inflow of the components, e.g. because the inflow of the components through the inlet openings at the radial edge of the inlet is partially blocked, then it is preferred if the flow wall along less than 80%, preferably less than 70%, most preferably between 40% and 60% of the circumference of the corresponding inlet opening available for inflow.

In Weiterführung dieses Gedankens, ist es bevorzugt, dass die wenigstens eine Strömungswand mit einem scheiben- oder trichterförmigen Kragen des Mischergehäuses oder des Mischelements abdichtend abschließt. Mit anderen Worten entspricht die axiale Länge der Strömungswand der axialen Länge des Kompensationskanals.In a continuation of this idea, it is preferred that the at least one flow wall closes off in a sealing manner with a disk-shaped or funnel-shaped collar of the mixer housing or of the mixing element. In other words, the axial length of the flow wall corresponds to the axial length of the compensation channel.

Werden mehrere Strömungswände vorgesehen, ist es bevorzugt diese voneinander beabstandet anzuordnen, sodass die Komponenten durch die dabei gebildeten Aussparungen zwischen den Strömungswänden zentral in Richtung des Mischelements strömen können. Dabei definiert das Ausmaß des Abstands zweier benachbarter Strömungswände zueinander den Druckabfall in das Zentrum zum Mischelement hin. Vorzugsweise ist der der Abstand derart gewählt, dass der Druckabfall zwischen den Wänden größer als der Druckabfall im Kompensationskanal ist, sodass vorlaufendes Material in den Kompensationskanal einfließt bevor es in den Mischraum zentral eintritt.If several flow walls are provided, it is preferable to arrange them at a distance from one another, so that the components can flow centrally through the gaps formed between the flow walls in the direction of the mixing element. The extent of the distance between two adjacent flow walls defines the pressure drop in the center toward the mixing element. The distance is preferably selected in such a way that the pressure drop between the walls is greater than the pressure drop in the compensation channel, so that the material flowing ahead flows into the compensation channel before it enters the mixing chamber centrally.

Es ist bevorzugt, wenn Eingangsteil einen Stauraum aufweist, der radial außerhalb zum Kompensationskanal und/oder zu den Einlasskanälen verläuft. Der Stauraum ist in Materialaustragsrichtung der Komponenten abgeschlossen, sodass die Komponenten vom Stauraum nicht in das Mischelement strömen können. Dies grenzt den Stauraum von den Einlasskanälen ab. Ein Stauraum ist insbesondere dann von Vorteil, wenn großvolumiger Vorlauf zu erwarten ist. Daher ist insbesondere für von 1:1 abweichende Mischverhältnisse, insbesondere 1:10, ein Stauraum von Vorteil.It is preferred if the inlet part has a storage space that runs radially outside the compensation channel and/or the inlet channels. The Storage space is closed off in the material discharge direction of the components, so that the components cannot flow from the storage space into the mixing element. This separates the storage space from the intake ports. A storage space is particularly advantageous if a large-volume flow is to be expected. Storage space is therefore advantageous, in particular for mixing ratios that deviate from 1:1, in particular 1:10.

Weiterhin ist es bevorzugt, wenn zumindest einer der Eingangsöffnungen eine optionale Umlenkplatte und/oder eine Strömungsklammer zugeordnet ist, welche die entsprechende Eingangsöffnung zumindest teilweise überdeckt und/oder seitlich begrenzt. Die Umlenkplatte ist vorzugsweise oberhalb der entsprechenden Eingangsöffnung vorgesehen und liegt daher direkt in Materialaustragsrichtung, sodass die Komponente, welche durch die entsprechende Eingangsöffnung strömt, beim Austritt aus der Eingangsöffnung auf die Umlenkplatte trifft und, insbesondere in Richtung des Mischraums, abgelenkt wird. Die Strömungsklammer begrenzt vorzugsweise die entsprechende Eingangsöffnung derart seitlich, dass die Komponente, welche durch die entsprechende Eingangsöffnung strömt, beim Austritt aus der Eingangsöffnung in Richtung des Mischraums gelenkt wird. Sowohl die Umlenkplatte als auch die Strömungsklammer erlauben daher eine Strömungsrichtung für die aus der entsprechenden Eingangsöffnung ausströmende Komponente vorzugeben. Dies ist insbesondere dann von Vorteil, wenn der Anteil der entsprechenden Komponente gering ist, sodass diese Komponente nahezu vollständig in den Mischraum strömen kann und etwaige Reste im Eingangsteil minimiert werden. Dabei können die oben beschriebenen Vorteile der Umlenkplatte auch durch einem am Mischelement vorgesehenen Kragen erreicht werden, wenn dieser, vergleichbar mit der Umlenkplatte, zumindest eine der Eingangsöffnungen abdeckt, wenn das Eingangsteil und das Mischelement im Mischer montiert sind.Furthermore, it is preferred if at least one of the inlet openings is assigned an optional deflection plate and/or a flow clamp, which at least partially covers and/or laterally delimits the corresponding inlet opening. The deflection plate is preferably provided above the corresponding inlet opening and is therefore located directly in the material discharge direction, so that the component flowing through the corresponding inlet opening hits the deflection plate when exiting the inlet opening and is deflected, in particular in the direction of the mixing chamber. The flow clip preferably delimits the corresponding inlet opening laterally in such a way that the component which flows through the corresponding inlet opening is directed in the direction of the mixing space when it exits the inlet opening. Both the deflection plate and the flow clamp therefore allow a flow direction to be specified for the component flowing out of the corresponding inlet opening. This is particularly advantageous when the proportion of the corresponding component is low, so that this component can flow almost completely into the mixing space and any residues in the input part are minimized. The advantages of the deflection plate described above can also be achieved by a collar provided on the mixing element if this, comparable to the deflection plate, covers at least one of the inlet openings when the inlet part and the mixing element are mounted in the mixer.

Es ist ferner bevorzugt, wenn das Mischelement eine der Staukammer benachbarte Durchflusskammer aufweist, welche mit dem Mischraum über eine Durchtrittöffnung in Strömungsverbindung steht.It is also preferred if the mixing element has a flow chamber adjacent to the storage chamber, which is in flow communication with the mixing space via a through-opening.

In Weiterführung dieses Gedankens kann vorgesehen sein, dass die Durchflusskammer in Materialaustragsrichtung von einer Querwand begrenzt wird und dass die Querwand eine Querwandöffnung umfasst, sodass die Komponenten zumindest teilweise durch die Querwandöffnung strömen können. Dies reduziert den Austragsdruck beim Austragen der Komponenten durch den Mischer, was zu einer höheren Benutzerfreundlichkeit beim Austragen führt.In a further development of this idea, it can be provided that the flow chamber is delimited by a transverse wall in the material discharge direction and that the transverse wall comprises a transverse wall opening, so that the components can at least partially flow through the transverse wall opening. This reduces the discharge pressure when discharging the components through the mixer, resulting in greater ease of use when discharging.

Es ist ferner bevorzugt, wenn der senkrecht zur Materialaustragsrichtung liegende Querschnitt des Mischelements im Abschnitt der Staukammer und/oder Durchflusskammer 105% bis 150%, vorzugsweise 105% bis 120%, besonders bevorzugt 110% ± 5%, des senkrecht zur Materialaustragsrichtung liegenden Querschnitts des Mischelements in Materialaustragsrichtung betrachtet nachfolgendem Abschnitts des Mischelements beträgt. Mit anderen Worten ist das Mischelement in einem Bereich der Staukammer und/oder Durchflusskammer vergrößert. Dies führt dazu, dass in diesem Bereich ein höherer Durchflussquerschnitt bei gleichbleibender Stabilität des Mischelements erreicht werden kann, was zur Reduktion der Austragsdrücke, insbesondere bei hochviskosen Komponenten vorteilhaft ist. Ferner wird die Aufnahmekapazität der Staukammer verbessert, sodass ein großvolumiger Vorlauf aufgenommen werden kann.It is also preferred if the cross section of the mixing element perpendicular to the material discharge direction in the section of the storage chamber and/or flow chamber is 105% to 150%, preferably 105% to 120%, particularly preferably 110% ± 5% of the cross section perpendicular to the material discharge direction Mixing element viewed in material discharge direction is subsequent section of the mixing element. In other words, the mixing element is enlarged in an area of the storage chamber and/or flow chamber. As a result, a higher flow cross section can be achieved in this area with the stability of the mixing element remaining the same, which is advantageous for reducing the discharge pressures, particularly in the case of highly viscous components. Furthermore, the capacity of the storage chamber is improved, so that a large-volume flow can be accommodated.

Die Staukammer und/oder Durchflusskammer sind vorzugsweise in dem Abschnitt vorgesehen, der sich mit dem Einlassabschnitt der Mischhülse überdeckt, was den Vorteil hat, dass in diesem Abschnitt eine Verbreiterung des Mischelements durch eine entsprechende Anpassung der Innenkontur des Einlassabschnitts der Mischhülse aufgenommen werden kann. Andernfalls kann natürlich die Mischhülse selbst entsprechend an die verbreiterte Kontur des Mischelements angepasst werden.The storage chamber and/or flow chamber are preferably provided in the section that overlaps with the inlet section of the mixing sleeve, which has the advantage that a widening of the mixing element can be accommodated in this section by appropriately adapting the inner contour of the inlet section of the mixing sleeve. Otherwise can Of course, the mixing sleeve itself can be adjusted accordingly to the widened contour of the mixing element.

Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen und unter Bezugnahme auf die Zeichnungen näher erläutert. Dabei bilden alle beschriebenen und/oder bildlich dargestellten Merkmale für sich oder in beliebiger Kombination den Gegenstand der Erfindung unabhängig von ihrer Zusammenfassung in den Ansprüchen oder deren Rückbeziehungen.The invention is explained in more detail below using exemplary embodiments and with reference to the drawings. All of the features described and/or illustrated form the subject matter of the invention, either alone or in any combination, regardless of how they are summarized in the claims or their dependencies.

Es zeigen schematisch:

Fig. 1a bis 1d
eine erste Seitenansicht (Fig. 1a), eine zweite Seitenansicht (Fig. 1b), eine Draufsicht (Fig. 1c) und eine Perspektivansicht (Fig. 1d) eines ersten Eingangsteils,
Fig. 2a bis 2e
mehrere Draufsichten (Fig. 2a bis 2c) des ersten Eingangsteils mit Illustration der Strömungsrichtungen der Komponenten,
Fig. 3a und 3b
eine Perspektivansicht (Fig. 3a) und eine Draufsicht (Fig. 3b) eines zweiten Eingangsteils,
Fig. 4a bis 4e
eine Draufsicht (Fig. 4a), eine Perspektivansicht (Fig. 4b) und weitere Draufsichten (Fig. 4c bis 4e) eines dritten Eingangsteils,
Fig. 5a und 5b
eine Draufsicht (Fig. 5a) und eine Perspektivansicht (Fig. 5b) eines vierten Eingangsteils,
Fig. 6a bis 6c
eine Draufsicht (Fig. 6a), eine Perspektivansicht (Fig. 6b) und eine Draufsicht (Fig. 6c) eines fünften Eingangsteils,
Fig. 7a bis 7e
eine Draufsicht (Fig. 7a), eine Perspektivansicht (Fig. 7b) und weitere Draufsichten (Fig. 7c bis 7e) eines sechsten Eingangsteils,
Fig. 8a bis 8c
eine Perspektivansicht (Fig. 8a), eine Seitenansicht (Fig. 8b) und eine Detailansicht B (Fig. 8c) eines ersten Mischelements,
Fig. 9a und 9b
eine Perspektivansicht (Fig. 9a) eines Helixmischers und eine Draufsicht des entsprechenden Mischeranschlusses (Fig. 9b) gemäß dem Stand der Technik,
Fig. 10
mehrere Draufsichten eines Eingangsteils und eines Mischers beim Austragen zweier Komponenten zu unterschiedlichen Zeitpunkten gemäß dem Stand der Technik,
Fig. 11
eine Explosionsansicht eines erfindungsgemäßen Mischers, mit Mischelement, Mischergehäuse und Eingangsteil,
Fig. 12a und 12b
eine erste Perspektivansicht (Fig. 12a) und eine zweite Perspektivansicht (Fig. 12b) eines zweiten Mischelements mit Eingangsteil,
Fig. 13a und 13b
eine erste Perspektivansicht (Fig. 13a) und eine Seitenansicht (Fig. 13b) des ersten Mischelements mit Eingangsteil gemäß der Fig. 12 und 12b,
Fig. 14
mehrere Draufsichten des zweiten Eingangsteils, des Mischers und die Komponenten 1 und 2 zu unterschiedlichen Zeitpunkten t1, t2 und t3,
Fig. 15
mehrere Draufsichten des dritten Eingangsteils mit (rechts oben) und ohne (links oben) Einlasskanal in den Mischraum (Mischereingang),
Fig. 16 a und 16b
eine Perspektivansicht (Fig. 16a) und eine Detailansicht (Fig. 16b) des ersten Mischelements mit Eingangsteil,
Fig. 17a bis 17c
eine Draufsicht (Fig. 17a), eine Perspektivansicht (Fig. 17b) und einen Längsschnitt (Fig. 17c) entlang der Schnittebene B-B eines siebten Eingangsteils,
Fig. 18a bis 18c
eine Draufsicht (Fig. 18a), eine Perspektivansicht (Fig. 18b) und einen Längsschnitt (Fig. 18c) entlang der Schnittebene E-E eines achten Eingangsteils,
Fig. 19a bis 19c
eine Perspektivansicht (Fig. 19a), eine Seitenansicht (Fig. 19b) und einen Längsschnitt (Fig. 19c) entlang der Schnittebene A-A eines dritten Mischelements,
Fig. 20a bis 20c
eine Perspektivansicht (Fig. 20a) und eine Seitenansicht (Fig. 20b) und einen Längsschnitt (Fig. 20c) entlang der Schnittebene B-B eines vierten Mischelements,
Fig. 21a bis 21c
eine Perspektivansicht (Fig. 21a) und eine Seitenansicht (Fig. 21b) und einen Längsschnitt (Fig. 21c) entlang der Schnittebene C-C eines fünften Mischelements,
Fig. 22a bis 22c
eine Perspektivansicht (Fig. 22a) und eine Seitenansicht (Fig. 22b) und einen Längsschnitt (Fig. 22c) entlang der Schnittebene D-D eines sechsten Mischelements,
Fig. 23a bis 23c
eine Perspektivansicht (Fig. 23a) und eine Seitenansicht (Fig. 23b) und einen Längsschnitt (Fig. 23c) entlang der Schnittebene E-E eines siebten Mischelements, und
Fig. 24a bis 24c
eine Perspektivansicht (Fig. 24a) und eine Seitenansicht (Fig. 24b) und einen Längsschnitt (Fig. 24c) entlang der Schnittebene F-F eines achten Mischelements.
They show schematically:
Figures 1a to 1d
a first side view ( Fig. 1a ), a second side view ( Fig. 1b ), a plan view ( 1c ) and a perspective view ( Fig. 1d ) of a first input part,
Figures 2a to 2e
multiple plan views ( Figures 2a to 2c ) of the first input part with illustration of the flow directions of the components,
Figures 3a and 3b
a perspective view ( Figure 3a ) and a top view ( Figure 3b ) of a second input part,
Figures 4a to 4e
a top view ( Figure 4a ), a perspective view ( Figure 4b ) and more plan views ( Figures 4c to 4e ) of a third input part,
Figures 5a and 5b
a top view ( Figure 5a ) and a perspective view ( Figure 5b ) of a fourth input part,
Figures 6a to 6c
a top view ( Figure 6a ), a perspective view ( Figure 6b ) and a top view ( Figure 6c ) of a fifth input part,
Figures 7a to 7e
a top view ( Figure 7a ), a perspective view ( Figure 7b ) and more plan views ( Figures 7c to 7e ) of a sixth input part,
Figures 8a to 8c
a perspective view ( Figure 8a ), a side view ( Figure 8b ) and a detail view B ( Figure 8c ) of a first mixing element,
Figures 9a and 9b
a perspective view ( Figure 9a ) of a helical mixer and a top view of the corresponding mixer port ( Figure 9b ) according to the state of the art,
10
several top views of an input part and a mixer when discharging two components at different times according to the prior art,
11
an exploded view of a mixer according to the invention, with mixing element, mixer housing and input part,
Figures 12a and 12b
a first perspective view ( 12a ) and a second perspective view ( Figure 12b ) a second mixing element with input part,
Figures 13a and 13b
a first perspective view ( 13a ) and a side view ( Figure 13b ) of the first mixing element with input part according to the Figures 12 and 12b ,
14
several top views of the second input part, the mixer and the components 1 and 2 at different times t1, t2 and t3,
15
several top views of the third input part with (top right) and without (top left) inlet channel into the mixing chamber (mixer inlet),
16a and 16b
a perspective view ( 16a ) and a detail view ( Figure 16b ) of the first mixing element with input part,
Figures 17a to 17c
a top view ( Figure 17a ), a perspective view ( Figure 17b ) and a longitudinal section ( Figure 17c ) along the cutting plane BB of a seventh input part,
Figures 18a to 18c
a top view ( 18a ), a perspective view ( Figure 18b ) and a longitudinal section ( 18c ) along the cutting plane EE of an eighth input part,
Figures 19a to 19c
a perspective view ( Figure 19a ), a side view ( Figure 19b ) and a longitudinal section ( Figure 19c ) along the cutting plane AA of a third mixing element,
Figures 20a to 20c
a perspective view ( Figure 20a ) and a side view ( Figure 20b ) and a longitudinal section ( Figure 20c ) along the cutting plane BB of a fourth mixing element,
Figures 21a to 21c
a perspective view ( Figure 21a ) and a side view ( Figure 21b ) and a longitudinal section ( Figure 21c ) along the cutting plane CC of a fifth mixing element,
Figures 22a to 22c
a perspective view ( 22a ) and a side view ( Figure 22b ) and a longitudinal section ( Figure 22c ) along the cutting plane DD of a sixth mixing element,
Figures 23a to 23c
a perspective view ( Figure 23a ) and a side view ( Figure 23b ) and a longitudinal section ( 23c ) along the cutting plane EE of a seventh mixing element, and
Figures 24a to 24c
a perspective view ( 24a ) and a side view ( Figure 24b ) and a longitudinal section ( Figure 24c ) along the cutting plane FF of an eighth mixing element.

Die Figuren 1a bis 1d zeigen eine erste Ausführungsform des Eingangsteils 1 mit Eingangsöffnungen 2 für die zu mischenden Komponenten. Das erste Eingangsteil 1 weist einen Führungsvorsprung 3 auf, dessen Funktion in der WO 2013/026716 erläutert wird und auf die insoweit Bezug genommen wird.The Figures 1a to 1d show a first embodiment of the input part 1 with input openings 2 for the components to be mixed. The first input part 1 has a guide projection 3 whose function in the WO 2013/026716 is explained and to which reference is made in this respect.

Zwischen den Eingangsöffnungen 2 ist wenigstens ein Kompensationskanal 4 ausgebildet (Fig. 1c und 1d), der die Eingangsöffnungen 2 miteinander verbindet. Durch die Eingangsöffnungen 2 eintretender Vorlauf wird von dem Kompensationskanal 4 aufgenommen. Die Eingangsöffnungen 2 liegen einander diametral gegenüber. Ferner ist an jeder der Eingangsöffnungen 2 eine Strömungswand 5 vorgesehen, die jeweils entlang eines Teils des Umfangs jeder Eingangsöffnung 2 ausgebildet ist. Von der jeweiligen Eingangsöffnung 2 aus betrachtet, an der die entsprechende Strömungswand 5 ausgebildet ist, ist die Strömungswand 5 entlang des Umfangs und damit konkav ausgeformt. In dem hier dargestellten Fall, können die Komponenten nicht über den Gesamtumfang der Eingangsöffnungen 2 in den Kompensationskanal 4 einströmen, wie sich aus Fig. 1 c deutlich ergibt.At least one compensation channel 4 is formed between the inlet openings 2 ( Figures 1c and 1d ), which connects the inlet openings 2 with each other. Flow entering through the inlet openings 2 is taken up by the compensation channel 4 . The inlet openings 2 are diametrically opposed to one another. Furthermore, at each of the inlet openings 2 there is provided a flow wall 5 which is formed along a part of the circumference of each inlet opening 2, respectively. Viewed from the respective inlet opening 2 on which the corresponding flow wall 5 is formed, the flow wall 5 is formed along the circumference and is therefore concave. In which case shown here, the components cannot flow into the compensation channel 4 over the entire circumference of the inlet openings 2, as can be seen from FIG 1c clearly results.

Die Funktionsweise des Kompensationskanals 4 wird anhand der Figuren 2a bis 2c erläutert.The functioning of the compensation channel 4 is based on the Figures 2a to 2c explained.

In der Figur 2a bildet die Komponente B einen Vorlauf. Dieser tritt durch eine Öffnung aus und fließt entlang der Strömungsrichtung 6B an einer Strömungswand 5 vorbei in den Kompensationskanal 4. Der Vorlauf der Komponente B fließt solange entlang des Kompensationskanals 4 bis die Komponente A entlang der Strömungsrichtung 6A ebenfalls in den Kompensationskanal 4 eintritt und den Vorlauf der Komponente B stoppt. Anschließend fließen beide Komponenten A und B zentral durch eine weitere Einlassöffnung in den Mischraum (nicht dargestellt).In the Figure 2a component B forms a lead. This exits through an opening and flows along the flow direction 6B past a flow wall 5 into the compensation channel 4. The flow of component B flows along the compensation channel 4 until component A along the flow direction 6A also enters the compensation channel 4 and the flow component B stops. Then both components A and B flow centrally through a further inlet opening into the mixing space (not shown).

In dem in Figur 2b gezeigten Beispiel, bildet die Komponente A den Vorlauf, welcher entlang der Strömungsrichtung 6A in den Kompensationskanal 4 fließt, bis die Komponente B ebenfalls in den Kompensationskanal 4 strömt.in the in Figure 2b example shown, component A forms the flow, which flows along flow direction 6A into compensation channel 4 until component B also flows into compensation channel 4 .

In dem in Figur 2c gezeigten Beispiel bildet keine Komponente einen Vorlauf, sodass sich beide Komponenten im Kompensationskanal 4 nach halben Strömungsweg treffen und anschließend durch eine hier zentral illustrierte Öffnung 7 in den Mischraum (nicht dargestellt) eintreten. Der Einlasskanal 7a verbindet die Eingangsöffnungen 2 durch die Öffnung 7 mit dem Mischraum (nicht dargestellt).in the in Figure 2c In the example shown, no component forms a lead, so that both components meet in the compensation channel 4 halfway through the flow path and then enter the mixing chamber (not shown) through an opening 7 illustrated centrally here. The inlet channel 7a connects the inlet openings 2 through the opening 7 with the mixing space (not shown).

Die Figuren 3a und 3b zeigen in Perspektivansicht (Fig. 3a) und in Draufsicht (Fig. 3b) eine Abwandlung des ersten Eingangsteils als zweite Ausführungsform, wobei zwischen den Eingangsöffnungen 2 wenigstens eine in den Kompensationskanal 4 hineinragende Einbuchtung 8 vorgesehen ist. In dem hier dargestellten Fall sind zwei sich gegenüberliegende Einbuchtungen 8 vorgesehen, welche die Strömungsrichtungen 6A und 6B der Komponenten A und B stärker zur zentralen Öffnung 7 des Mischraums (nicht dargestellt) lenkt.The Figures 3a and 3b show in perspective view ( Figure 3a ) and in top view ( Figure 3b ) A modification of the first input part as a second embodiment, wherein between the input openings 2 at least one in the compensation channel 4 protruding indentation 8 is provided. In the case shown here, two opposing indentations 8 are provided, which direct the flow directions 6A and 6B of components A and B more towards the central opening 7 of the mixing space (not shown).

In den Figuren 4a bis 4e ist eine dritte Ausführungsform des Eingangsteils 1 dargestellt. Im Vergleich zum ersten Eingangsteil 1 sind zwei weitere Strömungswände, hier Ablenkwände 9 genannt, vorgesehen, die zusammen mit den Strömungswänden 5, welche an den Eingangsöffnungen 2 angeordnet sind, eine kreisförmige Struktur 10 bilden. Die Strömungswände 5 sind von der jeweiligen Eingangsöffnung 2 so konvex ausgestaltet, dass der Mittelpunkt der kreisförmigen Struktur 10 mit dem Mittelpunkt des Eingangsteils 1 zusammenfällt.In the Figures 4a to 4e a third embodiment of the input part 1 is shown. In comparison to the first inlet part 1, two further flow walls, called deflection walls 9 here, are provided which, together with the flow walls 5, which are arranged at the inlet openings 2, form a circular structure 10. The flow walls 5 are designed convex from the respective inlet opening 2 in such a way that the center point of the circular structure 10 coincides with the center point of the inlet part 1 .

Die Figur 4c zeigt die Strömungsrichtung 6A und 6B für den Fall, dass keine der Komponenten einen Vorlauf bildet, während im in der Figur 4d dargestellten Fall die Komponente B einen Vorlauf bildet und in der Figur 4e die Komponente A einen Vorlauf bildet.The Figure 4c shows the flow direction 6A and 6B in the case that none of the components forms a forerun, while in in the Figure 4d illustrated case, the component B forms a lead and in the Figure 4e component A forms a lead.

Die Strömungswände 5 und die Ablenkwände 9 sind voneinander beabstandet angeordnet, sodass sich Öffnungen zwischen jeder Ablenkwand 9 und den benachbarten Strömungswände 5, bzw. jeder Strömungswand 5 und den benachbarten Ablenkwänden 9 bilden. Durch die Öffnungen können die Komponenten A und B in den zentral angeordneten Eingang zum Mischraum (nicht dargestellt) einströmen. Aufgrund der Anordnung der Strömungswände 5 und der Ablenkwände 9 füllen die Komponenten A und B zunächst den Kompensationskanal 4 und strömen anschließend durch wenigstens einen Einlasskanal 7a zentral in den Mischraum.The flow walls 5 and the deflection walls 9 are arranged at a distance from one another, so that openings are formed between each deflection wall 9 and the adjacent flow walls 5, or between each flow wall 5 and the adjacent deflection walls 9. Components A and B can flow through the openings into the centrally arranged entrance to the mixing chamber (not shown). Due to the arrangement of the flow walls 5 and the deflection walls 9, the components A and B first fill the compensation channel 4 and then flow through at least one inlet channel 7a centrally into the mixing chamber.

In den Figuren 5a und 5b ist eine vierte Ausführungsform des Eingangsteils 1 dargestellt, welche auf der ersten Ausführungsform des Eingangsteils 1 basiert, aber um eine Trennwand 11 ergänzt wurde. Die Trennwand 11 liegt zwischen den Eingangsöffnungen 2 und unterhalb des zentralen Eingangsbereichs zum Mischraum (nicht dargestellt). Ferner werden zwei Einlasskanäle der Komponenten in den Mischraum von der Trennwand 11 voneinander getrennt.In the Figures 5a and 5b a fourth embodiment of the input part 1 is shown, which is based on the first embodiment of the input part 1, but was supplemented by a partition 11. The partition wall 11 lies between the inlet openings 2 and below the central inlet area to the mixing chamber (not shown). Furthermore, two inlet channels of the components into the mixing chamber are separated from one another by the partition wall 11 .

Die in den Figuren 6a bis 6c gezeigte fünfte Ausführungsform eines Eingangsteils 1 weist ein zentral in dem Eingangsteil 1 angeordnetes Umhüllungselement 12 auf. Radial um das Umhüllungselement 12 ist ein umlaufender Kompensationskanal 4 vorgesehen, der den Vorlauf der Komponenten A und/oder B aufnimmt.The in the Figures 6a to 6c The fifth embodiment of an entry part 1 shown has an enveloping element 12 arranged centrally in the entry part 1 . A circumferential compensation channel 4 is provided radially around the enveloping element 12 and receives the flow of the components A and/or B.

Das Umhüllungselement 12 ist im Wesentlichen kreisförmig ausgestaltet und weist eine zentrale Öffnung 12a auf, welche sich in Richtung einer Eingangsöffnung einer Komponente öffnet und diese zentral in Richtung des Mischraums führt. Gegenüber der zentralen Öffnung 12a ist eine weitere Öffnung in Richtung der anderen Komponente angeordnet, welche diese in einem im Wesentlichen halbkreisförmigen Kanal 12b um die zentrale Öffnung 12a leitet. Dies führt dazu, dass die Komponenten A und B annähernd koaxial ineinander in den Mischraum eingeführt werden, was die anschließende Vermischung beider Komponenten im Mischraum erleichtert.The enveloping element 12 is essentially circular and has a central opening 12a, which opens in the direction of an inlet opening of a component and guides it centrally in the direction of the mixing space. A further opening is arranged opposite the central opening 12a in the direction of the other component, which guides it in a substantially semi-circular channel 12b around the central opening 12a. As a result, components A and B are introduced into the mixing chamber approximately coaxially with one another, which facilitates the subsequent mixing of the two components in the mixing chamber.

In der Figur 6c sind die Strömungsrichtungen 6A und 6B der Komponenten A und B gezeigt. In dem hier gezeigten Fall wird kein Vorlauf der Komponenten A und B gebildet.In the Figure 6c the flow directions 6A and 6B of the components A and B are shown. In the case shown here, no lead of components A and B is formed.

Die Figuren 7a bis 7e zeigen eine sechste Ausführungsform des Eingangsteils 1 mit einer weiteren Variante eines Umhüllungselements 12 mit Strömungswänden 5. Die Strömungswände 5 verhindern ein direktes Einfließen der Komponenten A und B in das Umhüllungselement 12. Dadurch wird der Strömungswiderstand zum Einfließen in das Umhüllungselement 12 erhöht, sodass diese Ausführungsform für dünn-viskose Komponenten bevorzugt ist.The Figures 7a to 7e show a sixth embodiment of the input part 1 with a further variant of an enclosing element 12 with flow walls 5. The flow walls 5 prevent components A and B from flowing directly into the enclosing element 12. This reduces the flow resistance increased to flow into the enveloping element 12, so that this embodiment is preferred for thin-viscous components.

In den Figuren 8a bis 8c ist ein Mischelement 13 mit Staukammern 14 gezeigt, die im Eingangsbereich des Mischraums angeordnet sind und auftretenden Vorlauf aufnehmen können. Die Staukammern 14 sind an deren Ende in Strömungsrichtung der Komponenten verschlossen, sodass der Vorlauf nicht in den weiteren Mischraum eintritt und das Mischverhältnis nicht verfälscht.In the Figures 8a to 8c a mixing element 13 with storage chambers 14 is shown, which are arranged in the entrance area of the mixing chamber and can absorb the flow that occurs. The storage chambers 14 are closed at their end in the direction of flow of the components, so that the flow does not enter the further mixing chamber and does not falsify the mixing ratio.

Das Mischelement 13 weist eingangsseitig einen scheiben- oder trichterförmiger Kragen 15 auf, der so ausgestaltet ist, dass er das Eingangsteil 1 abdeckt und den Kompensationskanal 4 bereichsweise oder ganz verschließt.The mixing element 13 has a disk-shaped or funnel-shaped collar 15 on the inlet side, which is designed in such a way that it covers the inlet part 1 and partially or completely closes the compensation channel 4 .

Zum besseren Verständnis des erfindungsgemäßen Effekts wird in den Figuren 9a, 9b und 10 ein Helixmischer 16 mit bekannten Mischeranschluss 17 und bekannten Eingangsteil 18 nach dem Stand der Technik gezeigt. Figur 9b zeigt den ersten Steg 19 des Helixmischers sowie die Eingangsöffnungen 2 durch welche die Komponenten in das Eingangsteil 18 strömen.For a better understanding of the effect of the invention is in the Figures 9a, 9b and 10 a helical mixer 16 with known mixer connection 17 and known input part 18 according to the prior art is shown. Figure 9b shows the first web 19 of the helical mixer and the inlet openings 2 through which the components flow into the inlet part 18 .

Zur Illustration der der Erfindung zugrundeliegenden Problematik nach dem Stand der Technik zeigt die Figur 10 zu unterschiedlichen und in dieser Reihenfolge ansteigenden Zeitpunkten t1, t2, t3, t4 und t5 die Komponenten A und B und deren Grenzfläche im Eingangsteil 18. Zum Zeitpunkt t1 wird deutlich, dass die eine Komponente deutlich mehr Volumen im Eingangsteil 18 vereinnahmt als die zweite Komponente. Die erste Komponente bildet damit einen Vorlauf und ist zum Zeitpunkt t2 nahezu ausschließlich im Eingangsteil 18 vorhanden. Daher ist in den in Fig. 10 unten dargestellten Draufsichten auf den Mischer und durch das Mischerrohr auch zum Zeitpunkt t3 praktisch ausschließlich die vorlaufende Komponente im Mischelement vorhanden. Erst beim weiteren Austragen (Zeitpunkte t4 und t5) sinkt der Anteil der Komponente A.To illustrate the problem underlying the invention according to the prior art shows the figure 10 at different points in time t1, t2, t3, t4 and t5, which increase in this order, the components A and B and their interface in the input part 18. At point in time t1 it becomes clear that one component takes up significantly more volume in the input part 18 than the second component . The first component thus forms a lead and is present almost exclusively in input part 18 at point in time t2. Therefore in the in 10 Below shown top views of the mixer and through the mixer pipe at the time t3 practically exclusively the leading component present in the mixing element. The proportion of component A only decreases as the discharge continues (points in time t4 and t5).

Figur 11 zeigt als Explosionszeichnung einen erfindungsgemäßen Mischer mit einem Mischelement gemäß der Fig. 8a bis 8c, einem Mischergehäuse 13a und einem Eingangsteil 1. figure 11 shows an exploded view of a mixer according to the invention with a mixing element according to FIG Figures 8a to 8c , a mixer housing 13a and an input part 1.

Figuren 12a und 12b zeigen ein weiteres Mischelement 13 mit einem Eingangsteil 1. In der Fig. 12a ist deutlich zu erkennen, dass der scheiben- oder trichterförmige Kragen 15 den Kompensationskanal 4 im Eingangsteil 1 in Ausbringrichtung der Komponenten abdeckt, sodass die Komponenten vom Eingangsteil 1 zentral in das Mischelement 13 durch eine zentrale Einlassöffnung 13b (s. Fig. 13 a) strömen. Figures 12a and 12b show another mixing element 13 with an input part 1. In FIG 12a It can be clearly seen that the disk-shaped or funnel-shaped collar 15 covers the compensation channel 4 in the inlet part 1 in the discharge direction of the components, so that the components from the inlet part 1 enter the mixing element 13 centrally through a central inlet opening 13b (see Fig. Fig. 13 a) stream.

Der Übergang von Eingangsteil 1 zu dem Mischelement 13 wird auch aus den Figuren 13a und 13b deutlich.The transition from input part 1 to the mixing element 13 is also from the Figures 13a and 13b clearly.

Figur 14 zeigt mehrere Draufsichten des zweiten Eingangsteils 1 gemäß der Fig. 3a und 3b, des Mischers und die Komponenten A und B zu unterschiedlichen und in dieser Reihenfolge ansteigenden Zeitpunkten t1, t2 und t3. Durch den erfindungsgemäßen Kompensationskanal 4 wird der Vorlauf der Komponente A kompensiert, sodass beide Komponenten A und B nahezu zeitgleich in den Mischraum eintreten (rechts unten). figure 14 shows several top views of the second input part 1 according to FIG Figures 3a and 3b , the mixer and the components A and B at different times t1, t2 and t3 which increase in this order. The advance of component A is compensated for by the compensation channel 4 according to the invention, so that both components A and B enter the mixing chamber almost simultaneously (bottom right).

In Figur 15 ist oben eine Draufsicht des dritten Eingangsteils mit (rechts oben) und ohne (links oben) Einlasskanal 7a in den Mischraum (Mischereingang) dargestellt. In der Mitte der Figur 15 ist links der Vorlauf der Komponente A gezeigt (Zeitpunkt t1) und rechts die Position der Komponenten A und B kurz vor dem Einströmen in den zentralen Einlasskanal 7a (Zeitpunkt t2) in den Mischraum. Wie zu erkennen, wird der Vorlauf der Komponente A durch Einströmen der Komponente B gestoppt, sodass die vorliegende Erfindung eine Selbstregulierung hinsichtlich des Volumen des Vorlaufs erlaubt und ferner eine Kompensation unabhängig davon erreicht, ob die Komponente A den Vorlauf bildet (wie dargestellt) oder die Komponente B (nicht dargestellt). Beim Einlauf in den Mischer (unten in Figur 15) (Zeitpunkt t3) liegen die Komponenten A und B im hier beabsichtigten Mischverhältnis von 1:1 vor.In figure 15 a plan view of the third input part is shown above with (top right) and without (top left) inlet channel 7a into the mixing chamber (mixer inlet). In the middle of figure 15 the flow of component A is shown on the left (time t1) and on the right the position of components A and B shortly before they flow into the central inlet channel 7a (time t2) in the mixing chamber. As can be seen, the flow of component A is stopped by the inflow of component B, so that the present invention allows self-regulation with regard to the volume of the flow and also a Compensation achieved regardless of whether component A forms the lead (as shown) or component B (not shown). When entering the mixer (below in figure 15 ) (time t3) the components A and B are present in the intended mixing ratio of 1:1.

Die Figuren 16a und 16b illustrieren die Staukammern 14 im Mischelement 13. Wie insbesondere in der Detailansicht (Figur 16b) zu sehen, liegen sich die Staukammern 14 auf einer durch den Mittelpunkt des Mischelements 13 liegenden Linie, bzw. diametral, gegenüber.The Figures 16a and 16b illustrate the storage chambers 14 in the mixing element 13. As shown in particular in the detailed view ( Figure 16b ) to see, the storage chambers 14 lie on a line lying through the center point of the mixing element 13, or diametrically opposite.

Die Eingangsteile 1 gemäß einer siebten Ausführungsform (Figuren 17a bis 17c) und einer achten Ausführungsform (Figuren 18a bis 18c) sind für ein von 1:1 abweichendes Mischverhältnis der Komponenten optimiert. Vorzugsweise ist das Mischverhältnis 1:10.The input parts 1 according to a seventh embodiment ( Figures 17a to 17c ) and an eighth embodiment ( Figures 18a to 18c ) are optimized for a mixing ratio of the components that deviates from 1:1. The mixing ratio is preferably 1:10.

In diesem Fall ist regelmäßig ein Vorlauf der im 10fachen Überschuss vorliegenden Komponente zu erwarten, da diese im Vergleich zur im Unterschuss vorliegenden Komponente ein entsprechend höheres Volumen aufweist, sodass sich anteilige Schwankungen, beispielsweise beim Abfüllprozess, und damit ein zu kompensierender Vorlauf praktisch ausschließlich für die im Überschuss vorliegende Komponente relevant werden.In this case, a pre-run of the component present in a 10-fold excess is to be expected, since this has a correspondingly higher volume compared to the component present in the deficit, so that proportional fluctuations, for example during the filling process, and thus a pre-run to be compensated for, practically exclusively for the component present in excess become relevant.

Die Figuren 17a bis 17c zeigen ein siebtes Eingangsteil 1, wobei die im Unterschuss vorliegende Komponente durch die Eingangsöffnung 2a in das Eingangsteil 1 einströmen kann, während die im Überschuss vorliegende Komponente durch die Eingangsöffnung 2b in das Eingangsteil 1 einströmen kann.The Figures 17a to 17c show a seventh input part 1, in which case the component present in excess can flow into the input part 1 through the input opening 2a, while the component present in excess can flow into the input part 1 through the input opening 2b.

Die Ausgestaltung der Kompensationskanäle 4, der Strömungswände 5 und der Ablenkwände 9 des siebten Eingangsteils 1 ist vergleichbar zu dem in den Figuren 4a bis 4e gezeigten dritten Eingangsteil 1, sodass dahingehend auf die entsprechenden obigen Ausführungen verwiesen wird.The design of the compensation channels 4, the flow walls 5 and the deflection walls 9 of the seventh input part 1 is comparable to that in FIGS Figures 4a to 4e shown third input part 1, so that reference is made to the corresponding statements above.

Ferner umfasst das siebte Eingangsteil 1 eine in Materialaustragsrichtung liegende Umlenkplatte 20, welche die Eingangsöffnung 2a in deren radial außenliegenden Bereich zumindest teilweise derart abdeckt, sodass die durch die Eingangsöffnung 2a einströmende Komponente in Richtung der zentral liegenden Öffnung zum Mischraum 7 (nicht dargestellt) umgelenkt wird (Figur 17c). Dies verhindert, dass die im Unterschuss vorliegende und durch die Eingangsöffnung 2a einströmende Komponente in einen Bereich des Eingangsteils 1 einströmt, der im weiteren Austragsverlauf nicht mehr durch eine der Komponenten durchströmt wird und daher nicht mehr in den Mischraum gelangt. Im Ergebnis verhindert die Umlenkplatte 20 einen Verlust der im Unterschuss vorliegenden Komponente im Bereich des Eingangsteils 1. Wie oben beschrieben können die mit der Umlenkplatte 20 verbundenen Vorteile auch durch den Kragen 15 des Mischelements 13 erreicht werden.Furthermore, the seventh input part 1 comprises a deflection plate 20 located in the material discharge direction, which at least partially covers the input opening 2a in its radially outer area in such a way that the component flowing in through the input opening 2a is deflected in the direction of the central opening to the mixing chamber 7 (not shown). ( Figure 17c ). This prevents the component present in the deficit and flowing in through the inlet opening 2a from flowing into an area of the inlet part 1 through which one of the components no longer flows in the further course of the discharge and therefore no longer reaches the mixing chamber. As a result, the deflection plate 20 prevents a loss of the component present in the deficiency in the area of the input part 1. As described above, the advantages associated with the deflection plate 20 can also be achieved by the collar 15 of the mixing element 13.

In den Figuren 18a bis 18c ist eine achte Ausführungsform des Eingangsteils 1 dargestellt. Die Strömungswand 5 ist hier durchgänig und mittig mit einem Steg 19 verbunden, der entlang eine Verbindungsachse zwischen den Eingangsöffnungen 2a und 2b liegt. Die Eingangsöffnung 2a ist durch einen Strömungsrichtungsgeber 22 eingefasst, sodass der Einlasskanal 7a in Richtung der zentralen Öffnung zum Mischraum 7 (nicht dargestellt) zeigt. Radial außenliegend ist der Kompensationskanal 4 vorgesehen, der den Vorlauf aufnehmen kann. Diese Ausführungsform weist ein hohes Innenvorlumen des Kompensationskanals 4 auf, sodass diese Ausführungsform insbesondere für großvolumige Vorläufe geeignet ist.In the Figures 18a to 18c an eighth embodiment of the input part 1 is shown. The flow wall 5 is connected here continuously and centrally to a web 19 which lies along a connecting axis between the inlet openings 2a and 2b. The inlet opening 2a is bordered by a flow direction indicator 22, so that the inlet channel 7a points in the direction of the central opening to the mixing chamber 7 (not shown). The compensation channel 4 is provided radially on the outside and can accommodate the flow. This embodiment has a high inner prelumen of the compensation channel 4, so that this embodiment is particularly suitable for large-volume pre-runs.

Die Figuren 19a bis 24c zeigen weitere Ausführungsformen eines Mischelements 13 mit einer Staukammer 14. Die zu mischenden Komponenten können durch die zentral im Kragen 15 vorgesehene Einlassöffnung 13b aus dem Einlassteil 1 (nicht dargestellt) einströmen.The Figures 19a to 24c show further embodiments of a mixing element 13 with a storage chamber 14. The components to be mixed can flow in through the inlet opening 13b provided centrally in the collar 15 from the inlet part 1 (not shown).

Figuren 19a bis 19c zeigen ein Mischelement 13 nach einer dritten Ausführungsform. Aus der Längsansicht der Figur 19b ist die Anordnung der Staukammer 14 im, in Materialaustragsrichtung betrachtet, ersten Teil des Mischelements 13 zu erkennen. Außerdem ist die Schnittebene A-A dargestellt, während der entsprechende Längsschnitt in der Figur 19c gezeigt ist. Figures 19a to 19c show a mixing element 13 according to a third embodiment. From the longitudinal view of Figure 19b the arrangement of the storage chamber 14 in the first part of the mixing element 13, viewed in the material discharge direction, can be seen. In addition, the section plane AA is shown, while the corresponding longitudinal section in the Figure 19c is shown.

Beim Einströmen der Komponenten durch die Einlassöffnung 13b werden diese an einer Mittelwand 23 aufgeteilt und strömen teilweise in eine Staukammer 14 und teilweise in eine Durchflusskammer 24. Von der Durchflusskammer 24 strömen die Komponenten durch eine Durchtrittöffnung 25 zu den Kammern des Mischelements 13, deren Länge in Materialaustragsrichtung durch die Querwände 26 definiert wird.When the components flow in through the inlet opening 13b, they are divided at a central wall 23 and flow partly into a storage chamber 14 and partly into a flow chamber 24. From the flow chamber 24, the components flow through a passage opening 25 to the chambers of the mixing element 13, the length of which is in Material discharge direction is defined by the transverse walls 26.

In der hier gezeigten dritten Ausführungsform ist der Querschnitt der Durchtrittöffnung 25 kleiner als der Querschnitt der Durchflusskammer 24. Maßgeblich für den Druckabfall beim Austragen der Komponenten ist dabei der kleinere Querschnitt, hier also der Querschnitt der Durchtrittöffnung 25. Hierbei kann es zu relativ hohen Austragsdrucken kommen, wobei der Austragsdruck auch von der konkreten Ausgestaltung des Mischelements 13 und der konkreten Viskosität der Komponenten beeinflusst wird.In the third embodiment shown here, the cross section of the passage opening 25 is smaller than the cross section of the flow chamber 24. The smaller cross section is decisive for the pressure drop when the components are discharged, in this case the cross section of the passage opening 25. This can result in relatively high discharge pressures , The discharge pressure also being influenced by the specific design of the mixing element 13 and the specific viscosity of the components.

In den Figuren 20a bis 20c ist ein viertes Mischelement 13 in einer Perspektivansicht, einer Seitenansicht und als ein Längsschnitt entlang der Schnittebene B-B dargestellt. Im Vergleich zu dem in den Figuren 20a bis 20c dargestelltem Beispiel wurde das Mischelement 13 an seinem in Materialaustragsrichtung liegenden Ende verkürzt. Dies reduziert den Austragsdruck, sodass diese Ausführungsform für Komponenten mir höherer Viskosität geeignet ist.In the Figures 20a to 20c a fourth mixing element 13 is shown in a perspective view, a side view and as a longitudinal section along the section plane BB. Compared to that in the Figures 20a to 20c In the example shown, the mixing element 13 was shortened at its end lying in the material discharge direction. This reduces the discharge pressure, making this embodiment suitable for higher viscosity components.

Die Figuren 21a bis 21c zeigen ein Mischelement 13 in einer fünften Ausführungsform. Im Vergleich zu der dritten Ausführungsform nach den Figuren 20a bis 20c wurden hier die Entformungsschrägen an offenen Seiten des Mischelements vergrößert. Die Entformungsschrägen weisen insbesondere einen Winkelbereich von 0,1° bis 2°, vorzugsweise 0,1° bis 1°und besonders bevorzugt 0,5° ± 0,1° auf.The Figures 21a to 21c show a mixing element 13 in a fifth embodiment. Compared to the third embodiment according to Figures 20a to 20c the draft angles on open sides of the mixing element were increased here. The draft angles have in particular an angular range of 0.1° to 2°, preferably 0.1° to 1° and particularly preferably 0.5°±0.1°.

In den Figuren 22a bis 22c ist ein sechstes Mischelement gezeigt, dass im Bereich der Staukammer 14 und der Durchflusskammer 24 verbreitert wurde. Dadurch wird der Druck beim Austragen der Komponenten reduziert, da der Durchflussquerschnitt insgesamt in diesem Bereich erhöht wird. Daher ist diese Ausführungsform insbesondere für hochviskose Komponenten vorteilhaft.In the Figures 22a to 22c a sixth mixing element is shown that has been widened in the area of the storage chamber 14 and the flow chamber 24 . This reduces the pressure when the components are discharged, since the flow cross-section is increased overall in this area. This embodiment is therefore particularly advantageous for highly viscous components.

Ein siebtes Mischelement 13 ist in den Figuren 23a bis 23c dargestellt. Hier ist im Vergleich zu den vorherigen Ausführungsformen die Staukammer 14 derart verkleinert, dass die Durchtrittöffnung 25 vergrößert wurde. Hier ist der Durchflussquerschnitt der Durchflusskammer 24 und der Durchtrittöffnung 25 gleich groß. Dies führt wiederum dazu, dass der Austragsdruck im Vergleich zu andren Ausführungsformen reduziert wird. Da jedoch die Staukammer 14 verkleinert wurde, eignet sich diese Ausführungsform insbesondere in Kombination mit einem Eingangsteil 1, das einen relativ großen Kompensationskanal 4 oder einen Stauraum 21 aufweist.A seventh mixing element 13 is in the Figures 23a to 23c shown. In comparison to the previous embodiments, the storage chamber 14 is reduced here in such a way that the passage opening 25 has been enlarged. Here the flow cross section of the flow chamber 24 and the passage opening 25 is the same size. This in turn results in the discharge pressure being reduced compared to other embodiments. However, since the storage chamber 14 has been reduced in size, this embodiment is particularly suitable in combination with an inlet part 1 which has a relatively large compensation channel 4 or a storage space 21 .

Die Figuren 24a bis 24c zeigen ein achtes Mischelement. Hier wurde in einer die Durchflusskammer 24 in Materialaustragsrichtung abschließenden Querwand eine Querwandöffnung 27 hinzugefügt. Dies erlaubt einem Teil der Komponenten durch die Querwandöffnung 27 direkt in den angrenzenden Mischraum zu fließen, ohne dass die Durchtrittöffnung 25 passiert werden muss. Dadurch wird der Austragsdruck der Komponenten reduziert, da ein Teil dieser seine Strömungsrichtung nicht ändern muss, um durch die Durchtrittöffnung 25 zu fließen.The Figures 24a to 24c show an eighth mixing element. Here, a transverse wall opening 27 was added in a transverse wall closing off the flow chamber 24 in the material discharge direction. This allows some of the components to flow through the transverse wall opening 27 directly into the adjoining mixing space without having to pass through the through-opening 25 . This reduces the discharge pressure of the components, as part of these does not have to change its direction of flow in order to flow through the passage opening 25 .

BezugszeichenlisteReference List

11
Eingangsteilinput part
2, 2a, 2b2, 2a, 2b
Eingangsöffnungenentrance openings
33
FührungsvorsprungLeadership Advantage
44
Kompensationskanalcompensation channel
55
Strömungswandflow wall
6A6A
Strömungsrichtung einer Komponente AFlow direction of a component A
6B6B
Strömungsrichtung einer Komponente BFlow direction of a component B
77
Öffnung zum MischraumOpening to the mixing room
7a7a
Einlasskanalinlet channel
88th
Einbuchtungindentation
99
Ablenkwandbaffle
1010
kreisförmige Strukturcircular structure
1111
Trennwandpartition wall
1212
Umhüllungselementenclosing element
12a12a
zentrale Öffnungcentral opening
12b12b
halbkreisförmiger Kanalsemicircular canal
1313
Mischelementmixing element
13a13a
Mischergehäusemixer body
13b13b
Einlassöffnungintake port
1414
Staukammerstorage chamber
1515
scheiben- oder trichterförmiger Kragendisc or funnel shaped collar
1616
Helixmischerhelix mixer
1717
Mischeranschlussmixer connection
1818
bekanntes Eingangsteilknown entrance
1919
Stegweb
2020
Umlenkplattebaffle plate
2121
Stauraumstorage space
2222
Strömungsrichtungsgeberflow director
2323
Mittelwandcenter wall
2424
Durchflusskammerflow chamber
2525
Durchtrittöffnungpassage opening
2626
Querwandbulkhead
2727
Querwandöffnungbulkhead opening

Claims (17)

  1. A mixer with a mixer housing (13a), which encloses a mixing space, an input part (1) that can be connected with the mixer housing (13a) and has at least two input openings (2, 2a, 2b) for the components (A, B) to be mixed, and a mixing element (13) that at least sectionally extends into the mixing space, wherein each of the input openings (2, 2a, 2b) is flow connected with the mixing space via at least one inlet channel (7a), characterized in that at least one radially open compensation channel (4) is additionally formed in the input part (1), which connects the input openings (2, 2a, 2b) with each other, and is formed by an outer closed ring and by an inner ring with symmetrically arranged perforations, wherein the compensation channel (4) has a mirror plane that runs through the center points of the input openings (2, 2a, 2b), and wherein a flow wall (5) with a concave or convex shape is provided along the periphery of the input openings (2, 2a, 2b), and/or that at least one stowage chamber (14) is provided in the mixing element (13), and has only one input opening, while otherwise not being flow connected with the remaining chambers of the mixing element (13).
  2. The mixer according to claim 1, characterized in that two compensation channels (4) are formed in the input part (1), which each connect the input openings (2, 2a, 2b) with each other.
  3. The mixer according to claim 1 or 2, characterized in that the inlet channels are formed in such a way that the components to be mixed are guided into the mixing space separately from each other.
  4. The mixer according to claim 3, characterized in that two input openings (2, 2a, 2b) are arranged diametrically opposite each other in the input part (1), wherein the inlet channels (7a) extend along a diagonal that connects the input openings (2, 2a, 2b) and are separated from each other by a partition wall (11) that runs transverse to the diagonal.
  5. The mixer according to claim 3, characterized in that the inlet channels (7a) are formed in such a way that the components to be mixed at least sectionally envelop each other while being guided into the mixing space.
  6. The mixer according to claim 1 or 2, characterized in that the inlet channels (7a) are flow connected with each other, so that the components to be mixed are guided into the mixing space together.
  7. The mixer according to one of the preceding claims, characterized in that the at least one compensation channel (4) extends essentially like a circular arc between the input openings (2, 2a, 2b).
  8. The mixer according to one of the preceding claims, characterized in that the at least one compensation channel (4) runs radially outside of the inlet channels (7a) .
  9. The mixer according to one of the preceding claims, characterized in that the at least one compensation channel (4) and the inlet channels (7a) are formed as depressions or grooves in the input part (1), which are at least sectionally sealed by the mixer housing (13a).
  10. The mixer according to one of the preceding claims, characterized in that the input part and the mixer housing (13a) are formed and adjusted to each other in such a way that the components to be mixed are deflected out of the input openings (2, 2a, 2b) from a flow direction extending parallel to the longitudinal axis of the mixer housing by 90° into a flow direction transverse to the longitudinal axis of the mixer housing (13a) .
  11. The mixer according to one of the preceding claims, characterized in that the at least one flow wall (5) forms a seal with a disk- or funnel-shaped collar (15) of the mixer housing (13a) or the mixing element (13).
  12. The mixer according to one of the preceding claims, characterized in that the input part (1) has a stowage space (21) that runs radially outside of the compensation channel (4) and/or of the inlet channels (7a) .
  13. The mixer according to one of the preceding claims, characterized in that at least one of the input openings (2a, 2b) has allocated to it a deflection plate (20) and/or a flow direction sensor (22), which at least partially covers and/or laterally borders the corresponding input opening (2, 2a, 2b).
  14. The mixer according to one of the preceding claims, characterized in that the mixing element (13) has at least one flow chamber (25), which is adjacent to the stowage chamber (14) and flow connected with the mixing space via a passage opening (25).
  15. The mixer according to claim 14, characterized in that the cross section of the at least one flow chamber (25) lying perpendicular to the material discharge direction measures 80% to 120% of the cross section of the passage opening (25) lying perpendicular to the material discharge direction.
  16. The mixer according to one of claims 14 or 15, characterized in that the at least one flow chamber (25) is bordered in the material discharge direction by a transverse wall (26), and that the transverse wall (26) has a transverse wall opening (27).
  17. The mixer according to one of the preceding claims, characterized in that the cross section of the mixing element (13) lying perpendicular to the material discharge direction in the section of the stowage chamber (14) and/or flow chamber (24) measures 105% to 150% of the cross section of the mixing element (13) lying perpendicular to the material discharge direction in the following section.
EP18746917.6A 2017-07-28 2018-07-26 Mixer with compensation channel and/or accumulation chamber Active EP3658266B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102017117198.3A DE102017117198A1 (en) 2017-07-28 2017-07-28 mixer
DE102017117199.1A DE102017117199A1 (en) 2017-07-28 2017-07-28 Mixer with compensation channel and / or stowage chamber
PCT/EP2018/070344 WO2019020768A1 (en) 2017-07-28 2018-07-26 Mixer having compensation duct and/or holding chamber

Publications (2)

Publication Number Publication Date
EP3658266A1 EP3658266A1 (en) 2020-06-03
EP3658266B1 true EP3658266B1 (en) 2023-02-22

Family

ID=63047367

Family Applications (2)

Application Number Title Priority Date Filing Date
EP18746917.6A Active EP3658266B1 (en) 2017-07-28 2018-07-26 Mixer with compensation channel and/or accumulation chamber
EP18746915.0A Pending EP3658265A1 (en) 2017-07-28 2018-07-26 Mixer

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP18746915.0A Pending EP3658265A1 (en) 2017-07-28 2018-07-26 Mixer

Country Status (8)

Country Link
US (2) US11986785B2 (en)
EP (2) EP3658266B1 (en)
JP (2) JP6994112B2 (en)
KR (2) KR102513669B1 (en)
CN (2) CN111050894A (en)
BR (2) BR112019024617A2 (en)
CA (2) CA3070150C (en)
WO (2) WO2019020764A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019101644B4 (en) 2019-01-23 2021-02-18 3lmed GmbH Mixer and method for mixing two components

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4207009A (en) * 1978-12-26 1980-06-10 Glocker Edwin M Gravity flow continuous mixer
US4382684A (en) 1980-03-06 1983-05-10 Sanjo Seiki Co., Ltd. Apparatus for mixing and dispensing liquid resins
DE3606001A1 (en) 1986-02-25 1987-08-27 Detec Kunststofftechnik Gmbh DOSING AND MIXING GUN FOR MULTI-COMPONENT PLASTICS
DE59205705D1 (en) 1992-08-24 1996-04-18 Wilhelm A Keller Mixer for double discharge cartridges
DE59407962D1 (en) 1994-01-19 1999-04-22 Wilhelm A Keller mixer
ATE195889T1 (en) 1996-07-05 2000-09-15 Sulzer Chemtech Ag STATIC MIXER
ES2185893T3 (en) * 1997-06-18 2003-05-01 Wilhelm A Keller MIXER.
JP2000126569A (en) * 1998-09-18 2000-05-09 Sulzer Chemtech Ag Device for mixing and distributing a plurality of flowing components
DE29818499U1 (en) * 1998-10-16 2000-03-02 Espe Dental Ag Mixer for multi-component pastes
DE29902666U1 (en) 1999-02-15 2000-06-29 Muehlbauer Ernst Kg Device for dispensing mixed multicomponent materials, in particular for dental purposes
EP1125626B1 (en) 2000-02-17 2005-11-02 Sulzer Chemtech AG Static mixer
ATE308375T1 (en) 2000-02-17 2005-11-15 Sulzer Chemtech Ag STATIC MIXER
DE10112904C5 (en) 2001-03-15 2010-04-22 3M Espe Ag Dynamic mixer and method for mixing at least two paste components
DE10164385C1 (en) 2001-12-28 2003-03-06 Kettenbach Gmbh & Co Kg Device for mixing two paste-like substances for dental work includes first channel extending through coupling section and having first and second parts with adjoining deflection section inbetween to ensure constant mixing ratio at outlet
EP1312409B1 (en) 2002-03-22 2003-06-04 Sulzer Chemtech AG Mixing tube with a longitudinal element
US6773156B2 (en) * 2002-07-10 2004-08-10 Tah Industries, Inc. Method and apparatus for reducing fluid streaking in a motionless mixer
ATE372824T1 (en) 2002-12-06 2007-09-15 Mixpac Systems Ag STATIC MIXER AND METHOD
DE20302987U1 (en) 2003-02-24 2003-04-24 Muehlbauer Ernst Gmbh & Co Kg Dynamic mixer, used for mixing components of dentistry compositions, comprises mixing tube, rotor delimiting annular mixing channel, and wall with inlet openings for components
TWI354577B (en) 2004-04-22 2011-12-21 Sulzer Chemtech Ag A static mixer for a curing mixed product
ES2337833T3 (en) 2005-10-07 2010-04-29 Sulzer Mixpac Ag DYNAMIC MIXER.
US7748567B2 (en) * 2006-03-29 2010-07-06 Nordson Corporation Single dose dual fluid cartridge for use with hand-held applicators
KR100808591B1 (en) 2006-06-30 2008-02-29 주식회사 하이닉스반도체 Clock tree circuit and duty correction test method using the same and semiconductor memory device comprising same
ATE395129T1 (en) 2006-08-21 2008-05-15 Zhermack Spa DEVICE AND METHOD FOR MIXING A MULTI-COMPONENT MASS FOR DENTAL CAST WORKPIECES
DE102006047811A1 (en) * 2006-10-06 2008-05-15 Sulzer Chemtech Ag Multicomponent cartridge
US8554234B2 (en) 2007-06-26 2013-10-08 Telcordia Technologies, Inc. Method and procedures for automatic calibration of a wireless communications system simulation
EP2190563B1 (en) 2007-09-10 2011-09-28 Sulzer Mixpac AG Dynamic mixer
KR100894889B1 (en) * 2007-12-17 2009-04-30 삼성전기주식회사 Distribution device having mixing function
US8083397B2 (en) 2008-06-13 2011-12-27 Nordson Corporation Static mixer
US7762715B2 (en) * 2008-10-27 2010-07-27 Cavitation Technologies, Inc. Cavitation generator
US8295330B2 (en) 2008-07-22 2012-10-23 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for communication signal processing based on mixed parametric and non-parametric estimation of impairment correlations
WO2010145889A1 (en) * 2009-06-16 2010-12-23 Sulzer Mixpac Ag Multicomponent cartridge for single use
US7985020B2 (en) 2009-09-25 2011-07-26 Nordson Corporation Cross flow inversion baffle for static mixer
US9010578B2 (en) 2009-10-06 2015-04-21 Medix Systems AG Discharge arrangement having a connecting device between a multi-component cartridge and an accessory part
WO2011119820A1 (en) 2010-03-25 2011-09-29 Nordson Corporation Inline static mixer
JP4929384B2 (en) 2010-07-23 2012-05-09 株式会社東芝 Magnetic recording medium
JP6019036B2 (en) * 2011-01-12 2016-11-02 テトラ・ラヴァル・ホールディングス・アンド・ファイナンス・ソシエテ・アノニムTetra Laval Holdings & Finance S.A. Multi-layering device for fluids with high viscosity
BR112013015378B1 (en) * 2011-02-28 2020-12-08 Sulzer Mixpac Ag dynamic mixer for a variety of fluid components
WO2012116873A1 (en) 2011-03-03 2012-09-07 Sulzer Mixpac Ag Static mixer for a multicomponent dispensing appliance
DE202011101066U1 (en) 2011-05-25 2011-09-15 Ritter Gmbh Static mixer
US8712991B2 (en) 2011-07-07 2014-04-29 Microsoft Corporation Document-related representative information
EP2747898B1 (en) * 2011-08-24 2020-10-07 3lmed GmbH System composed of cartridges and mixers
WO2013026717A1 (en) * 2011-08-24 2013-02-28 Kettenbach Gmbh & Co. Kg Cartridge system and static mixer therefor
EP2618921B1 (en) 2011-08-24 2014-06-18 Kettenbach GmbH & CO. KG Mixer
CA2789725C (en) * 2011-11-29 2019-08-06 Sulzer Mixpac Ag Mixing element for a static mixer
EP2614883B1 (en) 2012-01-11 2015-04-15 Sulzer Mixpac AG mixing element and static mixer
US8960501B2 (en) * 2012-10-23 2015-02-24 Nordson Corporation Dispensing assembly and method for dispensing a mixed fluid
DE102013222111A1 (en) * 2013-10-30 2015-04-30 Henkel Ag & Co. Kgaa Dynamic mixing device
EP3096782A4 (en) 2014-01-21 2017-07-26 Medlmmune, LLC Compositions and methods for modulating and redirecting immune responses
RU2585024C1 (en) 2015-05-12 2016-05-27 Федеральное государственное бюджетное учреждение науки Институт прикладной механики Российской академии наук (ИПРИМ РАН) Mixer-reactor for mixing different-viscosity components of liquid media
DE102015110442B4 (en) * 2015-06-29 2018-10-18 Kettenbach Gmbh & Co. Kg Application container with applicator and held by him closure, and method
US10363526B2 (en) 2015-08-07 2019-07-30 Nordson Corporation Entry mixing elements and related static mixers and methods of mixing
ES2934154T3 (en) * 2015-10-30 2023-02-17 Medmix Switzerland Ag static mixer
EP3374070B1 (en) * 2015-11-13 2023-08-09 Re Mixers, Inc. Static mixer
US20170144187A1 (en) * 2015-11-25 2017-05-25 Nordson Corporation Integrated multicomponent dispensing system and associated methods
CN105642145B (en) * 2016-01-06 2018-12-28 广州市八通混合器有限公司 A kind of large size static mixer
CN106902663A (en) * 2017-04-01 2017-06-30 四川群青新材料科技有限公司 Fluidizing type efficiently mixes static mixer

Also Published As

Publication number Publication date
EP3658265A1 (en) 2020-06-03
BR112019024617A2 (en) 2020-06-16
JP2020529317A (en) 2020-10-08
WO2019020768A1 (en) 2019-01-31
US20200171448A1 (en) 2020-06-04
CN111050893A (en) 2020-04-21
KR20200032731A (en) 2020-03-26
KR102431025B1 (en) 2022-08-11
US11986785B2 (en) 2024-05-21
CA3070174A1 (en) 2019-01-31
WO2019020764A1 (en) 2019-01-31
EP3658266A1 (en) 2020-06-03
KR102513669B1 (en) 2023-03-24
BR112019024621A2 (en) 2020-06-16
CN111050894A (en) 2020-04-21
KR20200035096A (en) 2020-04-01
US11717794B2 (en) 2023-08-08
CA3070174C (en) 2022-03-22
JP7100127B2 (en) 2022-07-12
CA3070150C (en) 2022-07-19
US20210154628A1 (en) 2021-05-27
CA3070150A1 (en) 2019-01-31
JP2020530390A (en) 2020-10-22
JP6994112B2 (en) 2022-01-14

Similar Documents

Publication Publication Date Title
EP2599540B1 (en) Mixing element for a static mixer and its use
EP1099470B1 (en) Device for mixing two pasty materials, especially for mixing a dental impression material with a catalyst material
EP2848320B1 (en) Connector for connecting a storage container to a static mixer
EP0294672B1 (en) Double cartridge for a two-component compound
EP2548634B1 (en) Mixing element for static mixer
EP2428282B1 (en) Cartridge piston
DE202005001203U1 (en) Multicomponent foil container
EP2618921B1 (en) Mixer
EP1524204B1 (en) Multi-compartment tubular bag with a head piece
EP3658266B1 (en) Mixer with compensation channel and/or accumulation chamber
EP2258468B1 (en) Mixing system for dual component cartridges
DE102017117199A1 (en) Mixer with compensation channel and / or stowage chamber
DE10194907B4 (en) thread design
DE102008013083B4 (en) Integrally produced multicomponent cartridge
EP2258466A1 (en) Mixing system for dual component cartridges
EP3774007B1 (en) Mixer and method for mixing two components
EP3199248A1 (en) Bundle and separating element
DE102019009116B4 (en) Mixer and method for mixing two components
DE102021105414B9 (en) Static mixer for impression materials
EP3582884A1 (en) Medicine container for storing and providing at least two medicine substances that can be mixed with one another, and method for operating a medicine container of this type
DE102017117198A1 (en) mixer
DE102012003390A1 (en) Double cartridge and mixer combination for use in dental field, has rib provided at inlet end of mixer and extending to axes of inlet nozzles, where widths of channel and rib are adjusted to each other for guiding mixer into cartridge
DE202011050465U1 (en) Static mixer for mixing at least two flowable components
DE202023106686U1 (en) Static mixer
EP4108596A1 (en) Set of coaxial cartridges for storing and pressing a two-component mass with different mixing ratios

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: 3LMED GMBH

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: B01F 3/10 20060101AFI20210305BHEP

Ipc: B01F 15/02 20060101ALI20210305BHEP

Ipc: B01F 5/06 20060101ALI20210305BHEP

17Q First examination report despatched

Effective date: 20210413

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: 3LMED GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502018011640

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B01F0005060000

Ipc: B01F0023470000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221027

RIC1 Information provided on ipc code assigned before grant

Ipc: B01F 101/00 20220101ALI20221014BHEP

Ipc: B01F 35/71 20220101ALI20221014BHEP

Ipc: B01F 25/432 20220101ALI20221014BHEP

Ipc: B01F 25/4314 20220101ALI20221014BHEP

Ipc: B01F 23/47 20220101AFI20221014BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1549152

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230315

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018011640

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230622

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230522

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230622

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230523

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230731

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018011640

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230724

Year of fee payment: 6

Ref country code: DE

Payment date: 20230720

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20231123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230222

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230726

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230726

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731