EP3655649B1 - Piston pump, in particular high-pressure fule injection pump for a combustion engine - Google Patents
Piston pump, in particular high-pressure fule injection pump for a combustion engine Download PDFInfo
- Publication number
- EP3655649B1 EP3655649B1 EP18731758.1A EP18731758A EP3655649B1 EP 3655649 B1 EP3655649 B1 EP 3655649B1 EP 18731758 A EP18731758 A EP 18731758A EP 3655649 B1 EP3655649 B1 EP 3655649B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- seal
- pump
- piston
- pressure
- fastening ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 7
- 238000002347 injection Methods 0.000 title description 2
- 239000007924 injection Substances 0.000 title description 2
- 238000007789 sealing Methods 0.000 claims description 29
- 239000000446 fuel Substances 0.000 claims description 17
- 230000002093 peripheral effect Effects 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 7
- 229910001220 stainless steel Inorganic materials 0.000 claims description 5
- 239000010935 stainless steel Substances 0.000 claims description 5
- 229910000831 Steel Inorganic materials 0.000 claims 1
- 239000010959 steel Substances 0.000 claims 1
- 238000005086 pumping Methods 0.000 description 16
- 230000003068 static effect Effects 0.000 description 11
- 230000004913 activation Effects 0.000 description 6
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B19/00—Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
- F04B19/04—Pumps for special use
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M59/00—Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
- F02M59/44—Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
- F02M59/442—Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston means preventing fuel leakage around pump plunger, e.g. fluid barriers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B1/00—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
- F04B1/04—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
- F04B1/0404—Details or component parts
- F04B1/0408—Pistons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B1/00—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
- F04B1/04—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
- F04B1/0404—Details or component parts
- F04B1/0421—Cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B1/00—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
- F04B1/04—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
- F04B1/0404—Details or component parts
- F04B1/0439—Supporting or guiding means for the pistons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B1/00—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
- F04B1/04—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
- F04B1/0404—Details or component parts
- F04B1/0448—Sealing means, e.g. for shafts or housings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B53/00—Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
- F04B53/02—Packing the free space between cylinders and pistons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2210/00—Working fluid
- F05B2210/10—Kind or type
- F05B2210/11—Kind or type liquid, i.e. incompressible
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/57—Seals
Definitions
- the invention relates to a piston pump, in particular a high-pressure fuel pump for an internal combustion engine, according to the preamble of claim 1.
- Piston pumps are known from the prior art, which are used, for example, in internal combustion engines with gasoline direct injection. Such piston pumps have a gap seal between the pump cylinder and the pump piston. Pump cylinders and pump pistons are typically made of stainless steel. Such a gap seal requires high accuracy in the manufacture and assembly of the pump cylinder and pump piston, resulting in high costs. The gap that is always present, the size of which cannot be reduced at will, for example due to the thermal expansion coefficients of the materials used, leads to a suboptimal degree of delivery, especially at low speeds.
- More piston pumps are in the DE 195 19 833 A1 , the DE 10 2015 202 632 A1 and the DE 10 2014 225 925 A1 disclosed
- the object of the invention is to create a piston pump which has a sufficient degree of delivery even at low speeds, is small in size and can be produced inexpensively.
- the piston pump according to the invention has a pump housing, a pump piston and a pumping chamber which is also delimited at least by the pump housing and the pump piston.
- a seal for sealing the pumping chamber and a separate guide element for guiding the pump piston are arranged between the pump piston and the pump housing, the seal being designed as a metal sleeve with a radially outwardly projecting web.
- Such a piston pump can be manufactured comparatively easily, as a result of which the component costs are reduced. This is due to the fact that the gap seal and its pump cylinder, which is expensive to manufacture, are replaced by a seal assembly with a seal and at least one guide.
- the seal By configuring the seal as a metal sleeve with a web, an advantageous sealing of the conveying space is achieved, so that the degree of delivery is improved, particularly at low speeds.
- a comparatively small overall size of the piston pump can be achieved by the new sealing assembly.
- the guiding and sealing functions are realized by separate components, namely by the guiding element and the seal (metal sleeve with web).
- the pump piston may be received in a recess in the housing and reciprocate therein.
- the inner wall of the recess (peripheral wall) can form at least a section of a running surface for the pump piston.
- the recess can be designed as a bore, in particular as a stepped bore.
- the (first) guide element can be ring-shaped (guide ring).
- the guide element can be arranged on the side of the seal facing the pumping chamber.
- the guide element can have a radial gap (guide gap) towards the pump piston, which gap can be so small that the guide element serves as cavitation protection for the seal.
- the guide gap can be sufficient be small so that no steam bubbles can reach the seal. The risk of damage to the seal is thus reduced.
- the seal is designed as a metal sleeve with a web that protrudes radially outwards, so that the seal has a profile that is particularly L-shaped in cross section.
- the seal thus has a sleeve section and a web section.
- the seal is based on a U-ring seal, but has been optimized in terms of design and has a radial web.
- the seal is in particular a high-pressure seal which seals off a high-pressure area (conveying chamber) from a low-pressure area (area on the side of the seal facing away from the conveying chamber).
- the seal can be centered in the radial direction in the piston pump (recess) by the web. In this way, the seal can be installed in a fixed position in the pump housing.
- the wall thickness of the metal sleeve depends on the system pressure and is designed accordingly. The wall thickness can be, for example, 0.05mm - 1.0mm (millimeters).
- a further guide element can be provided, which is arranged in a seal carrier of the piston pump. This achieves a comparatively large bearing distance from the (first) guide element. The guidance of the pump piston is thus optimized.
- the further guide element can be ring-shaped (guide ring).
- a fastening ring for the seal can advantageously be arranged between the pump housing and the pump piston.
- the fastening ring is arranged in particular on the side of the seal facing away from the pumping chamber.
- the mounting ring forms a seat for the seal. This secures the seal against axial displacement, in particular away from the pumping chamber.
- the fastening ring can be fastened to the recess accommodating the pump piston, for example screwed in, glued in or pressed in.
- the fastening ring and the seal can be designed in such a way that a static sealing point is formed when the seal rests on the fastening ring.
- the seal has an axial play, for example from 0.01mm - 1mm (millimeter). It can therefore be a "floating seal" that is not fixed either axially or radially. The seal can thus be optimally positioned axially to the pump piston.
- the guide element and the fastening ring can be combined to form one component, that is to say in particular can be formed in one piece.
- the combined component can then assume the function of guiding and fastening.
- the number of elements to be manufactured and assembled can be reduced as a result. This favors a cost-effective design of the piston pump.
- the combined component and seal may axially overlap each other. A section of the combined component can thus be arranged radially between the pump piston and the pump housing.
- the web of the seal has a radial play of, for example, 0.01 mm-1 mm at its radially outer edge relative to the peripheral wall of the recess accommodating the pump piston.
- the ridge has an outside diameter that is slightly smaller than the inside diameter of the recess (bore) that accommodates the pump piston at the location where the ridge is located.
- the seal can move radially relative to the pump housing. This play or the radial mobility means that the radial position of the seal can be adjusted precisely to the position of the pump piston. This can result in a uniform and symmetrical gap to the pump piston ("floating seal").
- each suction phase of the pump piston pump piston moves away from the pumping chamber
- delivery phase pump piston moves towards the delivery chamber, compresses and delivers fuel
- delivery pressure builds up above the seal (facing the delivery chamber) and radially outside the seal.
- the delivery pressure acts on the face of the seal and on the web of the seal and causes the seal to experience a force in the axial direction (axial direction of the pump piston), which pushes the seal onto the fastening ring presses.
- the seal cannot move in the radial direction, or only to an insignificant extent, due to the axial force.
- This axial force creates a contact pressure that presses the seal onto the fastening ring.
- a static sealing point is created between these two surfaces (seal and fastening ring). This prevents fuel from escaping from the pumping chamber and thus reduces the degree of delivery.
- a spring element which presses the seal against the fastening ring, can preferably be arranged between the pump piston and the pump housing. This ensures that the seal is always in contact with the static sealing point between the seal and the fastening ring.
- the spring can be a compression spring.
- the compression spring can be designed as a helical spring or as a corrugated spring.
- the seal can have at least one spring element which is connected to the seal and which presses the seal against the fastening ring. This can also be used to ensure that the seal is in contact with the static sealing point.
- the spring element or elements can be formed in one piece with the seal. This reduces the number of components to be manufactured and assembled.
- the spring element or elements can extend from the sleeve section or from the web section of the seal.
- the spring element or elements can be designed as spring arms.
- the seal can be a pressure activated seal. This means that the small gap between the guide element and the pump piston is sufficient to generate an initial pressure in the pumping chamber and thus also on the radially outer edge of the ring (back of the seal). The back pressure on the seal deforms it and thus reduces the gap to the pump piston on the inner edge of the ring (sleeve section). Due to the smaller sealing gap, greater pressure can be built up in the pumping chamber and thus also on the back of the seal, so that the seal is deformed more due to the higher pressure and the gap to the pump piston is further reduced. This is a self-reinforcing effect, which continues until the system pressure is reached.
- the seal geometry can be designed in such a way that when the system pressure is reached, either a very small gap is created, e.g. from 0.001 mm to 0.1 mm, or the seal rests directly on the pump piston and the sealing surfaces (of the seal and the pump piston) touch. Whether there is still a gap at system pressure or whether the seal is in direct contact with the piston depends on the specific requirements (degree of delivery, wear over service life, etc.). Due to the pressure activation, very high system pressures can be run, since the higher the system pressure, the more the seal deforms and the sealing gap becomes smaller and smaller.
- the seal Due to the principle, the seal is low-wear, since a tribological contact only occurs in the pumping phase (during the pressure activation of the seal). This corresponds to half the running time of the piston pump. In the suction phase (during which no pressure activation takes place), the seal is flushed, in particular, by fuel. In this way, new fuel is constantly introduced into the sealing gap, which acts as a lubricant. Pressure activation of the seal makes it possible to compensate for wear. When the sealing surface of the seal wears, the pressure activation causes the seal to deform regularly to the gap designed in the basic design or to contact the pump piston.
- an O-ring can be arranged between the outer lateral surface of the seal and the pump housing.
- the O-ring has a radial sealing effect.
- the O-ring supplements the static sealing point and improves the sealing effect.
- the O-ring sits in particular on the ridge of the seal, specifically on the side of the ridge facing the pumping chamber.
- the seal can advantageously be arranged in such a way that the web rests on the fastening ring.
- a static sealing point can thus form between the web of the seal and the contact surface of the fastening ring, on which the web rests.
- the mounting ring may have an axially projecting collar on which the web rests, and the sleeve portion of the seal and the collar may overlap axially.
- the static sealing point is thus formed between the web of the seal and the collar of the fastening ring.
- the seal is then not pressure-activated because there is no high system pressure behind the seal (at the radially outer ring edge of the seal). Since there is no pressure activation, the seal material and/or the geometry can be designed in such a way that there is little or no deformation (expansion) of the seal when the system pressure is applied.
- the seal can be oversized (compression), undersized (play) or a transition fit to the piston.
- a design of the seal with radial play towards the pump piston is advantageous, in particular with a play of 0.001-0.1 mm.
- the guidance of the piston and the fastening of the seal can be largely identical to the previously described pressure-activated variant.
- the advantage of the non-pressure-activated sealing concept is that if the seal is designed with undersize (play) to the piston, there is no solid body contact between the seal and the piston at any operating point, since the system pressure, which is present in the dynamic sealing point, always closes the seal forces an expansion. As a result, there is no wear and tear on the seal or on the piston over the service life.
- At least one spring element that is separate or arranged on the seal can also be provided in the non-pressure-activated seal in order to ensure that the seal rests against the static sealing point.
- This structure also has the advantage that excess pressure cannot occur in the high-pressure system, since the seal expands even more in the event of excess pressure, thus allowing a pressure drop. With an advantageous design of this effect, it may be possible that a pressure limiting valve installed internally in the piston pump or externally in the fuel system can be omitted.
- the seal can be made of stainless steel. This achieves good corrosion resistance.
- the seal is preferably made of stainless steel with an identical or comparable coefficient of linear expansion as the pump piston and the housing. As a result, the seal is independent of the thermal expansion of the pump piston and the pump housing.
- a fuel system of an internal combustion engine carries in figure 1 overall reference numeral 10. It includes a fuel tank 12, from which an electric pre-supply pump 14 delivers the fuel to a piston pump 16 designed as a high-pressure fuel pump. This conveys the fuel further to a high-pressure fuel rail 18 to which a plurality of fuel injectors 20 are connected, which inject the fuel into combustion chambers of the internal combustion engine (not shown).
- the piston pump 16 comprises an inlet valve 22, an outlet valve 24, and a pump housing 26.
- a pump piston 28 is accommodated in this housing such that it can be moved back and forth.
- the pump piston 28 is set in motion by a drive 30, the drive 30 in the figure 1 is shown only schematically.
- the drive 30 can be a camshaft or an eccentric shaft, for example.
- the inlet valve 22 is designed as a quantity control valve, through which the quantity of fuel delivered by the piston pump 16 can be adjusted.
- the construction of the piston pump 16 is shown in more detail figure 2 , whereby only the essential components are mentioned below.
- the pump piston 28 is designed as a stepped piston with an in figure 2 lower plunger section 32, a guide section 34 adjoining this and an upper end section, not shown in detail.
- the guide section 34 has a larger diameter than the plunger section 32 and the end section.
- the end section and the guide section 34 of the pump piston 28 delimit, together with the pump housing 26, a pumping chamber 38, which is not shown in detail be formed rotationally symmetrical part.
- the pump piston 28 is accommodated in the pump housing 26 in a recess 40 present there, which is designed as a stepped bore 42 .
- the bore 42 has several stages (three stages 42', 42", 42"'; see figure 2 and 3 ).
- a seal 44 is arranged between the guide section 34 of the pump piston 28 and an inner peripheral wall of the bore 42 (step 42"). It seals directly between the pump piston 28 and the pump housing 26, and thus seals the pumping chamber located above the seal 44 (high-pressure area ) compared to the in figure 2 below the seal 44 arranged area (low pressure area), in which, inter alia, the plunger portion 32 of the pump piston 28 is located.
- the seal 44 is designed as a metal sleeve with a web 45 projecting radially outwards.
- the gasket 44 has an L-shaped cross section including a sleeve portion 43 and the portion formed by the ridge 45 (ridge portion).
- a guide element 46 separate from the seal 44 is arranged between the guide section 34 of the pump piston 28 and the inner peripheral wall of the bore 42 (step 42 ′).
- the guide element 46 is axially in particular directly adjacent to the seal 44 and in figure 2 arranged above the seal 44 (facing the pumping chamber).
- the guide element 46 is ring-shaped (guide ring) and can be attached to the step 42'.
- the piston pump 16 has a further guide element 48 which is arranged in a seal carrier 50 of the piston pump 16 (see FIG figure 2 ).
- the guide element 46 and the further guide element 48 are used to guide the pump piston 28 .
- the further guide element 48 is ring-shaped (guide ring) and can be fastened to the seal carrier 50 .
- the piston pump 16 has a fastening ring 52 for the seal 44 between the guide section 34 of the pump piston 28 and the inner peripheral wall of the bore 42 (step 42 ′′′).
- the seal 44 rests on the fastening ring 52 in such a way that the web 45 rests on the fastening ring 52 .
- a static sealing point 53 is formed by the contact surfaces of seal 44 and fastening ring 52 (see Fig figure 3 ).
- the seal 44, the guide element 46, the further guide element 48 and the fastening ring 52 form a sealing assembly.
- the seal 44 can be formed from stainless steel.
- the web 45 projecting radially from the seal 44 has radial play 54 on its radially outer edge relative to the inner peripheral wall of the recess 40 (step 42") receiving the pump piston 28 (see FIG figure 3 ).
- the seal 44 can be aligned in the radial direction with respect to the pump piston 28 .
- a spring element 56 is arranged between the pump piston 28 and the pump housing 26 and presses the seal 44 against the fastening ring 52 .
- the spring element 56 is a helical spring 58 designed as a compression spring. This can rest, for example, on the guide element 46 at one end and on the web 45 of the seal 44 at the other end.
- the pressure 61 prevailing in the pumping chamber 38 reaches the seal 44 via the radial gap 60 (guide gap), which as described above can serve as cavitation protection for the seal 44. There this pressure acts with a force F (arrow 62) on the first end face 64 of the seal 44 (see figure 4 ). This forces the seal 44 against the mounting ring 52 . In addition, the pressure 61 also acts on the outer lateral surface 66 of the seal 44, so that the seal 44 experiences a deformation 70 due to the force F (arrow 68) acting there. A dynamic sealing point is thus formed between the pump piston 28, in particular between the guide section 34, and the seal 44 (radially inner annular edge 72).
- An O-ring 74 can optionally be arranged between the outer lateral surface 66 of the seal 44 and the pump housing 26 (stage 42").
- the O-ring 74 can rest on the web 45.
- the O-ring 74 has a radial sealing effect and supports the static sealing point 53.
- the second face of the seal 44 bears the reference number 65.
- FIG 5 shows an alternative embodiment of the piston pump 16 figure 2 .
- This configuration largely corresponds to the piston pump 16 described above, with identical or functionally identical elements being provided with identical reference symbols.
- the fastening ring 52 has according to figure 5 an axially projecting collar 76 (in the axial direction of the pump piston 28) which extends into the recess 40 protrudes.
- the seal 44 is arranged in such a way that the web 45 rests on the collar 76 .
- the sleeve portion 43 of the seal 44 and the collar 76 overlap each other axially.
- the collar 76 is arranged radially between the sleeve section 43 and the inner peripheral wall of the recess 40 (step 42").
- the seal 44 is formed on the sleeve section 43 and on the web section 45 with a greater wall thickness.
- the static sealing point 53 is formed between the web 45 and the collar 76.
- the spring element 56 is designed as a compression spring in the form of a corrugated spring 78.
- the radially inner annular edge 72 of the seal 44 has a clearance 80 relative to the pump piston 28 , in particular to the guide section 34 of the pump piston 28 .
- FIG 6 shows a further alternative embodiment of the piston pump 16 figure 2 .
- This configuration corresponds largely to the above Figures 1 to 4 described piston pump 16, wherein identical or functionally identical elements are provided with identical reference numerals.
- the first guide element 46 and the fastening ring 52 are combined to form a component 95 (one-piece configuration).
- the component 95 takes over the management and fastening function.
- the united member 95 and the packing 44 axially overlap each other (axial direction of the pump piston 28).
- an overlapping portion 93 of the unified component 95 is disposed radially between the pump piston 28 (guide portion 34) and the pump housing 26 (peripheral wall 42' of bore 42).
- the guide can take place on a lower section 97 of the component 95 .
- the component 95 can be fastened in the bore 42 in the lower section 97 or in the overlapping section 93 of the component 95, for example by means of interference fit, caulking or a projection 99 projecting radially outwards from component 95.
- the Figures 7 to 10 show possible configurations of the seal 44, in which the seal 44 itself has at least one spring element 56 (one-piece configuration). A separate spring element can be dispensed with. This simplifies the manufacture and assembly of the piston pump 16 .
- Such a seal 44 with spring element 56 formed thereon can be used in both a piston pump 16 according to FIG figure 2 as well as in a piston pump 16 according to figure 5 or figure 6 be used.
- figure 7 shows a seal 44 which has three spring elements 56 which are designed as small spring arms 86 .
- the spring arms 86 extend starting from the web section 45 of the seal 44.
- the spring arms 86 each extend from an edge section 88 protruding radially beyond the outer edge of the web section 45.
- the spring arms 86 have an arcuate shape in plan view and protrude from the web section 45 axially from the web portion 45 (towards the end face 64 of the seal 44).
- the seal 44 according to figure 8 also has three small spring arms 86 which extend axially from the web section 45 of the seal 44 away from the web section 45 .
- the spring arms 86 extend from the radially outer edge of the web section 45.
- the spring arms 86 each have an arm section 90 parallel to the sleeve section 43 of the seal 44 and an angled arm section 92.
- the seal 44 according to figure 9 also has three spring arms 86 which extend from the sleeve portion 43 of the seal 44 away.
- the small spring arms 86 protrude from the first end face 64 of the seal 44 and are angled toward the sleeve section 43 .
- the design of the seal 44 according to figure 10 largely corresponds to the in figure 7 shown seal 44. Deviating from this extend in the seal 44 according to figure 9 the small spring arms 86 from the web section 45 to the side of the web section 45 facing away from the sleeve section 43 Spring arms 86 beyond the second end face 65 of the seal 44 .
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Fuel-Injection Apparatus (AREA)
- Details Of Reciprocating Pumps (AREA)
Description
Die Erfindung betrifft eine Kolbenpumpe, insbesondere eine Kraftstoff-Hochdruckpumpe für eine Brennkraftmaschine, nach dem Oberbegriff des Anspruchs 1.The invention relates to a piston pump, in particular a high-pressure fuel pump for an internal combustion engine, according to the preamble of claim 1.
Aus dem Stand der Technik sind Kolbenpumpen bekannt, die bspw. bei Brennkraftmaschinen mit Benzindirekteinspritzung zum Einsatz kommen. Derartige Kolbenpumpen verfügen über eine Spaltdichtung zwischen Pumpenzylinder und Pumpenkolben. Pumpenzylinder und Pumpenkolben sind typischerweise aus Edelstahl hergestellt. Eine solche Spaltdichtung erfordert hohe Genauigkeiten bei Fertigung und Montage von Pumpenzylinder und Pumpenkolben, wodurch hohe Kosten entstehen. Der stets vorhandene Spalt, dessen Größe sich bspw. auf Grund von Wärmeausdehnungskoeffizienten verwendeter Materialien nicht beliebig reduzieren lässt, führt insbesondere bei niedrigen Drehzahlen zu einem suboptimalen Liefergrad.Piston pumps are known from the prior art, which are used, for example, in internal combustion engines with gasoline direct injection. Such piston pumps have a gap seal between the pump cylinder and the pump piston. Pump cylinders and pump pistons are typically made of stainless steel. Such a gap seal requires high accuracy in the manufacture and assembly of the pump cylinder and pump piston, resulting in high costs. The gap that is always present, the size of which cannot be reduced at will, for example due to the thermal expansion coefficients of the materials used, leads to a suboptimal degree of delivery, especially at low speeds.
Weitere Kolbenpupen sind in der
Die Erfindung hat die Aufgabe, eine Kolbenpumpe zu schaffen, die auch bei geringen Drehzahlen einen hinreichenden Liefergrad aufweist, eine geringe Baugröße aufweist und preiswert herstellbar ist.The object of the invention is to create a piston pump which has a sufficient degree of delivery even at low speeds, is small in size and can be produced inexpensively.
Diese Aufgabe wird durch eine Kolbenpumpe mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben. Für die Erfindung wesentliche Merkmale finden sich darüber hinaus in der nachfolgenden Beschreibung und in den Zeichnungen.This object is achieved by a piston pump having the features of claim 1. Advantageous developments of the invention are in the dependent claims specified. Features essential to the invention can also be found in the following description and in the drawings.
Die erfindungsgemäße Kolbenpumpe hat ein Pumpengehäuse, einen Pumpenkolben und einen zumindest auch vom Pumpengehäuse und dem Pumpenkolben begrenzten Förderraum. Erfindungsgemäß wird vorgeschlagen, dass zwischen dem Pumpenkolben und dem Pumpengehäuse eine Dichtung zur Abdichtung des Förderraums und ein separates Führungselement zur Führung des Pumpenkolbens angeordnet sind, wobei die Dichtung als Metallhülse mit einem nach radial außen abragenden Steg ausgebildet ist.The piston pump according to the invention has a pump housing, a pump piston and a pumping chamber which is also delimited at least by the pump housing and the pump piston. According to the invention, it is proposed that a seal for sealing the pumping chamber and a separate guide element for guiding the pump piston are arranged between the pump piston and the pump housing, the seal being designed as a metal sleeve with a radially outwardly projecting web.
Eine solche Kolbenpumpe kann vergleichsweise einfach hergestellt werden, wodurch sich die Bauteilkosten reduzieren. Dies hängt damit zusammen, dass die Spaltabdichtung und deren aufwendig zu fertigender Pumpenzylinder durch eine Dichtungsbaugruppe mit einer Dichtung und mindestens einer Führung ersetzt wird. Durch die Ausgestaltung der Dichtung als Metallhülse mit Steg wird eine vorteilhafte Abdichtung des Förderraums erreicht, so dass der Liefergrad insbesondere bei geringen Drehzahlen verbessert ist. Durch die neue Dichtungsbaugruppe kann eine vergleichsweise geringe Gesamtbaugröße der Kolbenpumpe erreicht werden. Die Führungs- und Dichtungsfunktion werden durch getrennte Bauteile realisiert, nämlich durch das Führungselement und die Dichtung (Metallhülse mit Steg).Such a piston pump can be manufactured comparatively easily, as a result of which the component costs are reduced. This is due to the fact that the gap seal and its pump cylinder, which is expensive to manufacture, are replaced by a seal assembly with a seal and at least one guide. By configuring the seal as a metal sleeve with a web, an advantageous sealing of the conveying space is achieved, so that the degree of delivery is improved, particularly at low speeds. A comparatively small overall size of the piston pump can be achieved by the new sealing assembly. The guiding and sealing functions are realized by separate components, namely by the guiding element and the seal (metal sleeve with web).
Der Pumpenkolben kann in einer Ausnehmung im Gehäuse aufgenommen sein und darin hin- und herlaufen. Die Innenwand der Ausnehmung (Umfangswand) kann zumindest einen Abschnitt einer Lauffläche für den Pumpenkolben bilden. Die Ausnehmung kann als Bohrung, insbesondere als gestufte Bohrung, ausgebildet sein.The pump piston may be received in a recess in the housing and reciprocate therein. The inner wall of the recess (peripheral wall) can form at least a section of a running surface for the pump piston. The recess can be designed as a bore, in particular as a stepped bore.
Im Konkreten kann das (erste) Führungselement ringförmig ausgebildet sein (Führungsring). Das Führungselement kann an der dem Förderraum zugewandten Seite der Dichtung angeordnet sein. Dabei kann das Führungselement zum Pumpenkolben hin einen radialen Spalt (Führungsspalt) aufweisen, der derart klein sein kann, dass das Führungselement als Kavitationsschutz für die Dichtung dient. Der Führungsspalt kann ausreichend klein ausgeführt sein, so dass keine Dampfblasen bis zur Dichtung gelangen können. Die Gefahr von Beschädigungen an der Dichtung ist somit reduziert.Specifically, the (first) guide element can be ring-shaped (guide ring). The guide element can be arranged on the side of the seal facing the pumping chamber. The guide element can have a radial gap (guide gap) towards the pump piston, which gap can be so small that the guide element serves as cavitation protection for the seal. The guide gap can be sufficient be small so that no steam bubbles can reach the seal. The risk of damage to the seal is thus reduced.
Die Dichtung ist als Metallhülse mit einem radial nach außen abragenden Steg ausgebildet, so dass die Dichtung ein im Querschnitt insbesondere L-förmiges Profil aufweist. Die Dichtung weist somit einen Hülsenabschnitt und einen Stegabschnitt auf. Die Dichtung basiert auf einer Nutring-Dichtung, ist jedoch im Design optimiert und weist einen radialen Steg auf. Bei der Dichtung handelt es sich insbesondere um eine Hochdruckdichtung, die einen Hochdruckbereich (Förderraum) gegenüber einem Niederdruckbereich (Bereich an der vom Förderraum abgewandten Seite der Dichtung) abdichtet.The seal is designed as a metal sleeve with a web that protrudes radially outwards, so that the seal has a profile that is particularly L-shaped in cross section. The seal thus has a sleeve section and a web section. The seal is based on a U-ring seal, but has been optimized in terms of design and has a radial web. The seal is in particular a high-pressure seal which seals off a high-pressure area (conveying chamber) from a low-pressure area (area on the side of the seal facing away from the conveying chamber).
Durch den Steg kann die Dichtung in radialer Richtung in der Kolbenpumpe (Ausnehmung) zentriert werden. Die Dichtung kann auf diese Weise an einer festen Position im Pumpengehäuse verbaut werden. Die Wandstärke der Metallhülse ist abhängig vom Systemdruck und wird entsprechend ausgelegt. Die Wandstärke kann bspw. 0,05mm - 1,0mm (Millimeter) betragen.The seal can be centered in the radial direction in the piston pump (recess) by the web. In this way, the seal can be installed in a fixed position in the pump housing. The wall thickness of the metal sleeve depends on the system pressure and is designed accordingly. The wall thickness can be, for example, 0.05mm - 1.0mm (millimeters).
Im Rahmen einer bevorzugten Ausgestaltung kann ein weiteres Führungselement vorgesehen sein, welches in einem Dichtungsträger der Kolbenpumpe angeordnet ist. Hiermit ist ein vergleichsweise großer Lagerabstand zum (ersten) Führungselement realisiert. Die Führung des Pumpenkolbens ist somit optimiert. Das weitere Führungselement kann ringförmig ausgebildet sein (Führungsring).As part of a preferred embodiment, a further guide element can be provided, which is arranged in a seal carrier of the piston pump. This achieves a comparatively large bearing distance from the (first) guide element. The guidance of the pump piston is thus optimized. The further guide element can be ring-shaped (guide ring).
In vorteilhafter Weise kann zwischen dem Pumpengehäuse und dem Pumpenkolben ein Befestigungsring für die Dichtung angeordnet sein. Der Befestigungsring ist insbesondere an der vom Förderraum abgewandten Seite der Dichtung angeordnet. Der Befestigungsring bildet einen Sitz für die Dichtung. Hiermit ist die Dichtung gegen axiale Verschiebung gesichert, insbesondere vom Förderraum weg. Der Befestigungsring kann an der den Pumpenkolben aufnehmenden Ausnehmung befestigt sein, bspw. eingeschraubt, verklebt oder eingepresst sein. Insbesondere können der Befestigungsring und die Dichtung derart ausgebildet sein, dass sich bei Anlage der Dichtung an dem Befestigungsring eine statische Dichtstelle ausbildet. Um ein Positionieren in radialer Richtung zwischen Kolben und Dichtung zu ermöglichen, ist es von Vorteil, wenn die Dichtung ein axiales Spiel aufweist, beispielsweise von 0,01mm - 1 mm (Millimeter). Es kann sich somit um eine "schwimmende Dichtung" handeln, die weder axial noch radial fixiert ist. Die Dichtung kann sich somit optimal axial zum Pumpenkolben positionieren.A fastening ring for the seal can advantageously be arranged between the pump housing and the pump piston. The fastening ring is arranged in particular on the side of the seal facing away from the pumping chamber. The mounting ring forms a seat for the seal. This secures the seal against axial displacement, in particular away from the pumping chamber. The fastening ring can be fastened to the recess accommodating the pump piston, for example screwed in, glued in or pressed in. In particular, the fastening ring and the seal can be designed in such a way that a static sealing point is formed when the seal rests on the fastening ring. To position in To allow radial direction between piston and seal, it is advantageous if the seal has an axial play, for example from 0.01mm - 1mm (millimeter). It can therefore be a "floating seal" that is not fixed either axially or radially. The seal can thus be optimally positioned axially to the pump piston.
Im Rahmen einer bevorzugten Ausgestaltung können das Führungselement und der Befestigungsring zu einem Bauteil vereinigt ausgebildet sein, also insbesondere einstückig ausgebildet sein. Das vereinigte Bauteil kann dann die Funktion der Führung und der Befestigung übernehmen. Die Anzahl der zu fertigenden und zu montierenden Elemente kann dadurch reduziert werden. Dies begünstigt eine kostengünstige Ausführung der Kolbenpumpe. Das vereinigte Bauteil und die Dichtung können einander axial überlappen. So kann ein Abschnitt des vereinigten Bauteils radial zwischen dem Pumpenkolben und dem Pumpengehäuse angeordnet sein.Within the scope of a preferred embodiment, the guide element and the fastening ring can be combined to form one component, that is to say in particular can be formed in one piece. The combined component can then assume the function of guiding and fastening. The number of elements to be manufactured and assembled can be reduced as a result. This favors a cost-effective design of the piston pump. The combined component and seal may axially overlap each other. A section of the combined component can thus be arranged radially between the pump piston and the pump housing.
Erfindungsgemäß weist der Steg der Dichtung an seinem radial äußeren Rand zur Umfangswand der den Pumpenkolben aufnehmenden Ausnehmung ein radiales Spiel auf, bspw. von 0,01 mm - 1 mm. Mit anderen Worten weist der Steg einen Außendurchmesser auf, der geringfügig kleiner ist als der Innendurchmesser der den Pumpenkolben aufnehmenden Ausnehmung (Bohrung) an der Stelle, an der sich der Steg befindet. Oder, noch allgemeiner ausgedrückt: Die Dichtung ist relativ zum Pumpengehäuse radial beweglich. Dieses Spiel bzw. die radiale Beweglichkeit bewirkt, dass sich die radiale Position der Dichtung genau auf die Position des Pumpenkolbens einstellen kann. Somit kann sich ein gleichmäßiger und symmetrischer Spalt zum Pumpenkolben ergeben ("schwimmende Dichtung").According to the invention, the web of the seal has a radial play of, for example, 0.01 mm-1 mm at its radially outer edge relative to the peripheral wall of the recess accommodating the pump piston. In other words, the ridge has an outside diameter that is slightly smaller than the inside diameter of the recess (bore) that accommodates the pump piston at the location where the ridge is located. Or, to put it more generally: the seal can move radially relative to the pump housing. This play or the radial mobility means that the radial position of the seal can be adjusted precisely to the position of the pump piston. This can result in a uniform and symmetrical gap to the pump piston ("floating seal").
In jeder Ansaugphase des Pumpenkolbens (Pumpenkolben bewegt sich vom Förderraum weg) besteht die Möglichkeit einer Neuausrichtung der Dichtung. In der Förderphase (Pumpenkolben bewegt sich zum Förderraum hin, verdichtet und fördert Kraftstoff) baut sich oberhalb der Dichtung (dem Förderraum zugewandt) sowie radial außerhalb der Dichtung ein Förderdruck auf. Der Förderdruck wirkt auf die Stirnseite der Dichtung sowie auf den Steg der Dichtung und bewirkt, dass die Dichtung in axialer Richtung (Axialrichtung des Pumpenkolbens) eine Kraft erfährt, welche die Dichtung auf den Befestigungsring drückt. Während dieser Phase kann sich die Dichtung auf Grund der Axialkraft nicht oder nur unwesentlich in radialer Richtung bewegen. Durch diese Axialkraft entsteht eine Anpresskraft, der die Dichtung auf den Befestigungsring drückt. Zwischen diesen beiden Flächen (Dichtung und Befestigungsring) entsteht eine statische Dichtstelle. Hierdurch wird verhindert, dass Kraftstoff aus dem Förderraum austritt und somit den Liefergrad verringert.In each suction phase of the pump piston (pump piston moves away from the pumping chamber) there is the possibility of a realignment of the seal. In the delivery phase (pump piston moves towards the delivery chamber, compresses and delivers fuel), delivery pressure builds up above the seal (facing the delivery chamber) and radially outside the seal. The delivery pressure acts on the face of the seal and on the web of the seal and causes the seal to experience a force in the axial direction (axial direction of the pump piston), which pushes the seal onto the fastening ring presses. During this phase, the seal cannot move in the radial direction, or only to an insignificant extent, due to the axial force. This axial force creates a contact pressure that presses the seal onto the fastening ring. A static sealing point is created between these two surfaces (seal and fastening ring). This prevents fuel from escaping from the pumping chamber and thus reduces the degree of delivery.
Vorzugsweise zwischen dem Pumpenkolben und dem Pumpengehäuse kann ein Federelement angeordnet sein, welches die Dichtung gegen den Befestigungsring drückt. Dadurch ist sichergestellt, dass die Dichtung immer an der statischen Dichtstelle zwischen Dichtung und Befestigungsring anliegt. Bei der Feder kann es sich um eine Druckfeder handeln. Die Druckfeder kann als Schraubenfeder oder als Wellfeder ausgebildet sein.A spring element, which presses the seal against the fastening ring, can preferably be arranged between the pump piston and the pump housing. This ensures that the seal is always in contact with the static sealing point between the seal and the fastening ring. The spring can be a compression spring. The compression spring can be designed as a helical spring or as a corrugated spring.
Alternativ hierzu kann die Dichtung mindestens ein Federelement aufweisen, welches mit der Dichtung verbunden ist und welches die Dichtung gegen den Befestigungsring drückt. Auch hiermit kann sichergestellt werden, dass die Dichtung an der statischen Dichtstelle anliegt. Im Konkreten können das oder die Federelemente einstückig mit der Dichtung ausgebildet sein. Dies reduziert die Anzahl der zu fertigendenden und zu montierenden Komponenten. Das oder die Federelemente können sich ausgehend vom Hülsenabschnitt oder ausgehend vom Stegabschnitt der Dichtung erstrecken. Das oder die Federelemente können als Federärmchen ausgebildet sein.As an alternative to this, the seal can have at least one spring element which is connected to the seal and which presses the seal against the fastening ring. This can also be used to ensure that the seal is in contact with the static sealing point. In concrete terms, the spring element or elements can be formed in one piece with the seal. This reduces the number of components to be manufactured and assembled. The spring element or elements can extend from the sleeve section or from the web section of the seal. The spring element or elements can be designed as spring arms.
Bei der Dichtung kann es sich um eine druckaktivierte Dichtung handeln. Dies bedeutet, dass der geringe Spalt zwischen Führungselement und Pumpenkolben ausreichend ist, um einen initialen Druck im Förderraum und somit auch am radial äußeren Ringrand (Rückseite der Dichtung) zu erzeugen. Durch den rückseitigen Druck auf die Dichtung verformt sich diese und verringert dadurch am innenliegenden Ringrand (Hülsenabschnitt) den Spalt zum Pumpenkolben. Durch den kleiner gewordenen Dichtspalt kann im Förderraum und somit auch auf der Rückseite der Dichtung ein größerer Druck aufgebaut werden, so dass sich die Dichtung durch den größeren Druck stärker verformrt und den Spalt zum Pumpenkolben weiter verringert. Dies ist ein selbstverstärkender Effekt, welcher sich bis zum Erreichen des Systemdrucks fortsetzt.The seal can be a pressure activated seal. This means that the small gap between the guide element and the pump piston is sufficient to generate an initial pressure in the pumping chamber and thus also on the radially outer edge of the ring (back of the seal). The back pressure on the seal deforms it and thus reduces the gap to the pump piston on the inner edge of the ring (sleeve section). Due to the smaller sealing gap, greater pressure can be built up in the pumping chamber and thus also on the back of the seal, so that the seal is deformed more due to the higher pressure and the gap to the pump piston is further reduced. This is a self-reinforcing effect, which continues until the system pressure is reached.
Die Dichtungsgeometrie kann so ausgelegt werden, dass sich bei Erreichen des Systemdrucks entweder ein sehr geringer Spalt einstellt, bspw. von 0,001 mm bis 0,1mm, oder sich die Dichtung direkt an den Pumpenkolben anlegt und sich die Dichtflächen (der Dichtung und des Pumpenkolbens) berühren. Ob bei Systemdruck noch ein Spalt vorhanden bleibt oder die Dichtung direkten Kontakt mit dem Kolben hat, hängt von den konkreten Anforderungen ab (Liefergrad, Verschleiß über Lebensdauer, etc.). Durch die Druckaktivierung können sehr hohe Systemdrücke gefahren werden, da je höher der Systemdruck ist, sich die Dichtung immer stärker verformt und somit der Dichtspalt immer geringer wird.The seal geometry can be designed in such a way that when the system pressure is reached, either a very small gap is created, e.g. from 0.001 mm to 0.1 mm, or the seal rests directly on the pump piston and the sealing surfaces (of the seal and the pump piston) touch. Whether there is still a gap at system pressure or whether the seal is in direct contact with the piston depends on the specific requirements (degree of delivery, wear over service life, etc.). Due to the pressure activation, very high system pressures can be run, since the higher the system pressure, the more the seal deforms and the sealing gap becomes smaller and smaller.
Prinzipbedingt ist die Dichtung verschleißarm, da ein tribologischer Kontakt nur in der Förderphase (während der Druckaktivierung der Dichtung) entsteht. Dies entspricht der Hälfte der Laufzeit der Kolbenpumpe. In der Saugphase (während der keine Druckaktivierung stattfindet) wird die Dichtung insbesondere durch Kraftstoff gespült. Somit wird stets neuer Kraftstoff in den Dichtspalt gebracht, welcher als Schmiermittel wirkt. Durch die Druckaktivierung der Dichtung ist es möglich, Verschließ zu kompensieren. Bei Verschleiß der Dichtfläche der Dichtung verformt sich die Dichtung durch die Druckaktivierung regelmäßig auf den in der Grundauslegung ausgelegten Spalt oder legt sich an den Pumpenkolben an.Due to the principle, the seal is low-wear, since a tribological contact only occurs in the pumping phase (during the pressure activation of the seal). This corresponds to half the running time of the piston pump. In the suction phase (during which no pressure activation takes place), the seal is flushed, in particular, by fuel. In this way, new fuel is constantly introduced into the sealing gap, which acts as a lubricant. Pressure activation of the seal makes it possible to compensate for wear. When the sealing surface of the seal wears, the pressure activation causes the seal to deform regularly to the gap designed in the basic design or to contact the pump piston.
Im Rahmen einer bevorzugten Ausgestaltung kann zwischen der äußeren Mantelfläche der Dichtung und dem Pumpengehäuse ein O-Ring angeordnet sein. Der O-Ring hat radial dichtende Wirkung. Durch den O-Ring wird die statische Dichtstelle ergänzt und die Dichtungswirkung verbessert. Der O-Ring sitzt insbesondere auf dem Steg der Dichtung, und zwar an der dem Förderraum zugewandten Seite des Stegs.In the context of a preferred embodiment, an O-ring can be arranged between the outer lateral surface of the seal and the pump housing. The O-ring has a radial sealing effect. The O-ring supplements the static sealing point and improves the sealing effect. The O-ring sits in particular on the ridge of the seal, specifically on the side of the ridge facing the pumping chamber.
In vorteilhafter Weise kann die Dichtung derart angeordnet sein, dass der Steg auf dem Befestigungsring aufliegt. Somit kann sich zwischen dem Steg der Dichtung und der Auflagefläche des Befestigungsrings, an der der Steg aufliegt, eine statische Dichtstelle ausbilden. Dadurch kann mit einer einfachen Bauweise eine druckaktivierte Dichtung insbesondere wie oben beschreiben realisiert werden.The seal can advantageously be arranged in such a way that the web rests on the fastening ring. A static sealing point can thus form between the web of the seal and the contact surface of the fastening ring, on which the web rests. As a result, a pressure-activated seal, in particular as described above, can be implemented with a simple design.
Alternativ hierzu kann der Befestigungsring einen axial abragenden Bund aufweisen, auf dem der Steg aufliegt, und der Hülsenabschnitt der Dichtung und der Bund können einander axial überlappen. Somit bildet sich die statische Dichtstelle zwischen dem Steg der Dichtung und dem Bund des Befestigungsrings aus. Die Dichtung ist dann nicht druckaktiviert, da hinter der Dichtung (am radial äußeren Ringrand der Dichtung) kein hoher Systemdruck anliegt. Da keine Druckaktivierung erfolgt, können der Dichtungswerkstoff und/oder die Geometrie so ausgelegt sein, dass bei Anliegen des Systemdrucks keine oder nur eine geringe Verformung (Ausdehnung) der Dichtung stattfindet.Alternatively, the mounting ring may have an axially projecting collar on which the web rests, and the sleeve portion of the seal and the collar may overlap axially. The static sealing point is thus formed between the web of the seal and the collar of the fastening ring. The seal is then not pressure-activated because there is no high system pressure behind the seal (at the radially outer ring edge of the seal). Since there is no pressure activation, the seal material and/or the geometry can be designed in such a way that there is little or no deformation (expansion) of the seal when the system pressure is applied.
Dies kann durch eine ausreichend stark dimensionierte Wandstärke (Hülsenabschnitt) der Dichtung erreicht werden, wobei die Wandstärke bspw. 0,25mm - 2mm betragen kann. Die Dichtung kann zum Kolben ein Übermaß (Pressung), ein Untermaß (Spiel) oder eine Übergangspassung aufweisen. Für geringe Reibung und geringen Verschleiß ist eine Ausgestaltung der Dichtung mit radialem Spiel zum Pumpenkolben hin von Vorteil, insbesondere mit einem Spiel von 0,001 - 0,1mm. Die Führung des Kolbens und die Befestigung der Dichtung können weitgehend identisch mit der zuvor beschriebenen druckaktivierten Variante ausgebildet sein. Der Vorteil des nicht druckaktivierten Dichtkonzepts liegt darin, dass wenn die Dichtung mit Untermaß (Spiel) zum Kolben ausgelegt ist, es zwischen Dichtung und Kolben in keinem Betriebspunkt zu Festkörperkontakt kommt, da der Systemdruck, welcher in der dynamischen Dichtstelle anliegt, die Dichtung stets zu einer Aufweitung zwingt. Dadurch entsteht über Lebensdauer kein Verschleiß an der Dichtung oder am Kolben.This can be achieved by a sufficiently large wall thickness (sleeve section) of the seal, with the wall thickness being 0.25 mm - 2 mm, for example. The seal can be oversized (compression), undersized (play) or a transition fit to the piston. For low friction and low wear, a design of the seal with radial play towards the pump piston is advantageous, in particular with a play of 0.001-0.1 mm. The guidance of the piston and the fastening of the seal can be largely identical to the previously described pressure-activated variant. The advantage of the non-pressure-activated sealing concept is that if the seal is designed with undersize (play) to the piston, there is no solid body contact between the seal and the piston at any operating point, since the system pressure, which is present in the dynamic sealing point, always closes the seal forces an expansion. As a result, there is no wear and tear on the seal or on the piston over the service life.
Auch bei der nicht druckaktivierten Dichtung kann mindestens ein separates oder an der Dichtung angeordnetes Federelement vorgesehen sein, um sicherzustellen, dass die Dichtung an der statischen Dichtstelle anliegt. Dieser Aufbau hat zudem den Vorteil, dass es im Hochdrucksystem nicht zu Überdrücken kommen kann, da sich die Dichtung im Falle eines Überdrucks noch stärker aufweitet und somit einen Druckabfall zulässt. Bei vorteilhafter Auslegung dieses Effekts kann es möglich sein, dass ein intern in der Kolbenpumpe oder ein extern im Kraftstoffsystem verbautes Druckbegrenzungsventil entfallen kann.At least one spring element that is separate or arranged on the seal can also be provided in the non-pressure-activated seal in order to ensure that the seal rests against the static sealing point. This structure also has the advantage that excess pressure cannot occur in the high-pressure system, since the seal expands even more in the event of excess pressure, thus allowing a pressure drop. With an advantageous design of this effect, it may be possible that a pressure limiting valve installed internally in the piston pump or externally in the fuel system can be omitted.
Im Rahmen einer bevorzugten Ausgestaltung kann die Dichtung aus Edelstahl ausgebildet sein. Damit ist eine gute Korrosionsbeständigkeit erreicht. Vorzugsweise ist die Dichtung aus einem Edelstahl mit identischem oder vergleichbarem Längenausdehnungskoeffizienten wie der Pumpenkolben und das Gehäuse hergestellt. Dadurch ist die Dichtung unabhängig von den Wärmeausdehnungen des Pumpenkolbens und des Pumpengehäuses.In a preferred embodiment, the seal can be made of stainless steel. This achieves good corrosion resistance. The seal is preferably made of stainless steel with an identical or comparable coefficient of linear expansion as the pump piston and the housing. As a result, the seal is independent of the thermal expansion of the pump piston and the pump housing.
Die Erfindung wird im Folgenden anhand der Figuren näher erläutert, wobei gleiche oder funktional gleiche Elemente ggf. lediglich einmal mit Bezugszeichen versehen sind. Es zeigen:
- Figur 1
- eine schematische Darstellung eines Kraftstoffsystems mit einer Kraftstoff-Hochdruckpumpe in Form einer Kolbenpumpe;
- Figur 2
- einen teilweisen Längsschnitt durch die Kolbenpumpe von
Figur 1 ; - Figur 3
- eine vergrößerte Ansicht eines Pumpenkolbens, einer Dichtung, eines Führungselements, eines Befestigungsrings und eines Federelements der Kolbenpumpe aus
Figur 1 ; - Figur 4
- die Dichtung aus
Figur 3 in einer vergrößerten Schnittansicht; - Figur 5
- einen teilweisen Längsschnitt durch eine alternative Ausgestaltung der Kolbenpumpe aus
Figur 1 ; - Figur 6
- einen teilweisen Längsschnitt durch eine weitere alternative Ausgestaltung der Kolbenpumpe aus
Figur 1 ; - Figur 7
- in mehreren, teilweise geschnittenen Ansichten die Dichtung der Kolbenpumpe aus
Figur 1 mit verbundenen Federelementen; - Figur 8
- in mehreren, teilweise geschnittenen Ansichten die Dichtung der Kolbenpumpe aus
Figur 1 mit verbundenen Federelementen in alternativer Ausgestaltung; - Figur 9
- in mehreren, teilweise geschnittenen Ansichten die Dichtung der Kolbenpumpe aus
Figur 1 mit verbundenen Federelementen in alternativer Ausgestaltung; und Figur 10- in mehreren, teilweise geschnittenen Ansichten die Dichtung der Kolbenpumpe aus
Figur 1 mit verbundenen Federelementen in alternativer Ausgestaltung.
- figure 1
- a schematic representation of a fuel system with a high-pressure fuel pump in the form of a piston pump;
- figure 2
- a partial longitudinal section through the piston pump from
figure 1 ; - figure 3
- an enlarged view of a pump piston, a seal, a guide element, a fastening ring and a spring element of the piston pump
figure 1 ; - figure 4
- the seal off
figure 3 in an enlarged sectional view; - figure 5
- a partial longitudinal section through an alternative embodiment of the piston pump
figure 1 ; - figure 6
- a partial longitudinal section through a further alternative embodiment of the piston pump
figure 1 ; - figure 7
- the seal of the piston pump in several, partially sectioned views
figure 1 with connected spring elements; - figure 8
- the seal of the piston pump in several, partially sectioned views
figure 1 with connected spring elements in an alternative configuration; - figure 9
- the seal of the piston pump in several, partially sectioned views
figure 1 with connected spring elements in an alternative configuration; and - figure 10
- the seal of the piston pump in several, partially sectioned views
figure 1 with connected spring elements in an alternative configuration.
Ein Kraftstoffsystem einer Brennkraftmaschine trägt in
Die Kolbenpumpe 16 umfasst ein Einlassventil 22, ein Auslassventil 24, und ein Pumpengehäuse 26. In diesem ist ein Pumpenkolben 28 hin- und her bewegbar aufgenommen. Der Pumpenkolben 28 wird durch einen Antrieb 30 in Bewegung versetzt, wobei der Antrieb 30 in der
Der Aufbau der Kolbenpumpe 16 ergibt sich näher aus
Der Endabschnitt sowie der Führungsabschnitt 34 des Pumpenkolbens 28 begrenzen zusammen mit dem Pumpengehäuse 26 einen nicht näher dargestellten Förderraum 38. Das Pumpengehäuse 26 kann als ein insgesamt rotationssymmetrisches Teil ausgebildet sein. Der Pumpenkolben 28 ist im Pumpengehäuse 26 in einer dort vorhandenen Ausnehmung 40 aufgenommen, die als gestufte Bohrung 42 ausgebildet ist. Die Bohrung 42 weist mehrere Stufen auf (drei Stufen 42', 42", 42"'; siehe
Zwischen dem Führungsabschnitt 34 des Pumpenkolbens 28 und einer inneren Umfangswand der Bohrung 42 (Stufe 42") ist eine Dichtung 44 angeordnet. Sie dichtet unmittelbar zwischen dem Pumpenkolben 28 und dem Pumpengehäuse 26, und dichtet somit den sich oberhalb der Dichtung 44 befindlichen Förderraum (Hochdruckbereich) gegenüber dem in
Zwischen dem Führungsabschnitt 34 des Pumpenkolbens 28 und der inneren Umfangswand der Bohrung 42 (Stufe 42') ist ein von der Dichtung 44 separates Führungselement 46 angeordnet. Das Führungselement 46 ist zur Dichtung 44 axial inbesondere unmittelbar benachbart und in
Die Kolbenpumpe 16 weist ein weiteres Führungselement 48 auf, welches in einem Dichtungsträger 50 der Kolbenpumpe 16 angeordnet ist (siehe
Die Kolbenpumpe 16 weist zwischen dem Führungsabschnitt 34 des Pumpenkolbens 28 und der inneren Umfangswand der Bohrung 42 (Stufe 42‴) einen Befestigungsring 52 für die Dichtung 44 auf. Die Dichtung 44 liegt auf dem Befestigungsring 52 auf, und zwar derart, dass der Steg 45 auf dem Befestigungsring 52 aufliegt. Durch die aufliegenden Kontaktflächen von Dichtung 44 und Befestigungsring 52 wird eine statische Dichtstelle 53 ausgebildet (siehe
Der von der Dichtung 44 radial abragende Steg 45 weist an seinem radial äußeren Rand zur inneren Umfangswand der den Pumpenkolben 28 aufnehmenden Ausnehmung 40 (Stufe 42") ein radiales Spiel 54 auf (siehe
Über den radialen Spalt 60 (Führungsspalt), der wie oben beschrieben als Kavitationsschutz für die Dichtung 44 dienen kann, gelangt der im Förderraum 38 herrschende Druck 61 zur Dichtung 44. Dort wirkt dieser Druck mit einer Kraft F (Pfeil 62) auf die erste Stirnseite 64 der Dichtung 44 (siehe
Der Befestigungsring 52 weist gemäß
Der radial innenliegenden Ringrand 72 der Dichtung 44 weist zum Pumpenkolben 28, insbesondere zum Führungsabschnitt 34 des Pumpenkolben 28, ein Spiel 80 auf. Somit kommt es zwischen der Dichtung 44 und dem Pumpenkolben 28 in keinem Betriebszustand der Kolbenpumpe 16 zu Kontakt, da der vom Förderraum 38 zur dynamischen Dichtstelle 82 gelangende Druck dahingehend auf die Dichtung 44 wirkt, dass diese eine Verformung 84 erfährt und aufgeweitet wird. Dadurch entsteht über die Lebensdauer kein Verschleiß an der Dichtung 44 oder dem Pumpenkolben 28.The radially inner
Bei der vorliegenden Ausgestaltung sind das erste Führungselement 46 und der Befestigungsring 52 zu einem Bauteil 95 vereinigt (einstückige Ausgestaltung). Das Bauteil 95 übernimmt die Führungs- und Befestigungsfunktion. Das vereinigte Bauteil 95 und die Dichtung 44 überlappen einander axial (Axialrichtung des Pumpenkolbens 28). So ist ein überlappender Abschnitt 93 des vereinigten Bauteils 95 radial zwischen dem Pumpenkolben 28 (Führungsabschnitt 34) und dem Pumpengehäuse 26 (Umfangswandung 42' der Bohrung 42) angeordnet.In the present configuration, the
Die Führung kann an einem unteren Abschnitt 97 des Bauteils 95 erfolgen. Die Befestigung des Bauteils 95 in der Bohrung 42 kann im unteren Abschnitt 97 oder im überlappenden Abschnitt 93 des Bauteils 95 erfolgen, bspw. mittels Pressverband, Verstemmung oder eines vom Bauteil 95 nach radial außen abragenden Vorsprungs 99.The guide can take place on a
Die
Die Dichtung 44 gemäß
Die Dichtung 44 gemäß
Die Ausgestaltung der Dichtung 44 gemäß
Claims (9)
- Piston pump (16), in particular high-pressure fuel pump for an internal combustion engine, having a pump housing (26), a pump piston (28) and a delivery chamber (38) delimited at least also by the pump piston (28) and the pump housing (26), wherein a seal (44) for sealing off the delivery chamber (38) and a separate guide element (46) for guiding the pump piston (28) are arranged between the pump piston (28) and the pump housing (26), characterized in that the seal (44) is in the form of a metal sleeve with a radially outwardly projecting flange (45), wherein the flange (45) has a clearance (54) at its radially outer edge with respect to the peripheral wall of the recess (40) accommodating the pump piston (28).
- Piston pump (16) according to Claim 1, characterized in that a fastening ring (52) for the seal (44) is arranged preferably between the pump piston (28) and the pump housing (26).
- Piston pump (16) according to Claim 2, characterized in that the guide element (46) and the fastening ring (52) have been combined to form one component ().
- Piston pump (16) according to one of the preceding claims, characterized by a further guide element (48) which is arranged in a seal carrier (50) of the piston pump (16).
- Piston pump (16) according to one of the preceding claims, characterized in that a spring element (56) is arranged preferably between the pump piston (28) and the pump housing (26), said spring element (56) pressing the seal (44) against the fastening ring (52) .
- Piston pump (16) according to one of Claims 1 to 4, characterized in that the seal (44) has at least one spring element (56) which is connected to the seal (44) and which presses the seal (44) against the fastening ring (52).
- Piston pump (16) according to one of the preceding claims, characterized in that an O-ring (74) is arranged between the outer lateral surface (66) of the seal (44) and the pump housing (26), and/or in that the steel (44) is made from stainless steel.
- Piston pump (16) according to one of the preceding claims, characterized in that the seal (44) is arranged in such a way that the flange (45) rests on the fastening ring (52).
- Piston pump (16) according to one of Claims 1 to 7, characterized in that the fastening ring (52) has an axially projecting collar (76) on which the flange (45) rests, and in that the sleeve portion (43) of the seal (44) and the collar (76) axially overlap one another.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017212501.2A DE102017212501A1 (en) | 2017-07-20 | 2017-07-20 | Piston pump, in particular high-pressure fuel pump for an internal combustion engine |
PCT/EP2018/065009 WO2019015857A1 (en) | 2017-07-20 | 2018-06-07 | Piston pump, particularly a high-pressure fuel pump for an internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3655649A1 EP3655649A1 (en) | 2020-05-27 |
EP3655649B1 true EP3655649B1 (en) | 2022-08-17 |
Family
ID=62631056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18731758.1A Active EP3655649B1 (en) | 2017-07-20 | 2018-06-07 | Piston pump, in particular high-pressure fule injection pump for a combustion engine |
Country Status (7)
Country | Link |
---|---|
US (1) | US11168677B2 (en) |
EP (1) | EP3655649B1 (en) |
JP (1) | JP6914417B2 (en) |
KR (1) | KR20200033254A (en) |
CN (1) | CN110945238B (en) |
DE (1) | DE102017212501A1 (en) |
WO (1) | WO2019015857A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102020214037A1 (en) * | 2020-04-03 | 2021-10-07 | Robert Bosch Gesellschaft mit beschränkter Haftung | High pressure fuel pump |
DE102021201388A1 (en) * | 2021-02-15 | 2022-08-18 | Robert Bosch Gesellschaft mit beschränkter Haftung | High-pressure fuel pump and method for producing a high-pressure fuel pump |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE336316B (en) | 1969-10-22 | 1971-07-05 | Fagersta Bruks Ab | |
JPS5021123Y2 (en) * | 1971-03-27 | 1975-06-26 | ||
JPS6084775U (en) * | 1983-11-18 | 1985-06-11 | 日本電子株式会社 | High pressure liquid pump |
US5209495A (en) * | 1990-09-04 | 1993-05-11 | Palmour Harold H | Reciprocating rod pump seal assembly |
DE19519833A1 (en) * | 1995-05-31 | 1996-12-05 | Bosch Gmbh Robert | Piston pump |
CN1155923A (en) * | 1995-05-31 | 1997-07-30 | 罗伯特·博施有限公司 | Piston pump |
DE59708191D1 (en) * | 1996-09-19 | 2002-10-17 | Bosch Gmbh Robert | PISTON PUMP |
US5899136A (en) * | 1996-12-18 | 1999-05-04 | Cummins Engine Company, Inc. | Low leakage plunger and barrel assembly for high pressure fluid system |
AU6179198A (en) * | 1998-03-02 | 1999-09-20 | Cummins Engine Company Inc. | Low leakage plunger and barrel assembly for high pressure fluid system |
JP3738753B2 (en) * | 2002-05-28 | 2006-01-25 | 三菱電機株式会社 | High pressure fuel supply device |
JP4625789B2 (en) * | 2006-07-20 | 2011-02-02 | 日立オートモティブシステムズ株式会社 | High pressure fuel pump |
JP5187254B2 (en) * | 2009-03-27 | 2013-04-24 | 株式会社デンソー | High pressure pump |
DE102012217260A1 (en) * | 2012-09-25 | 2014-03-27 | Robert Bosch Gmbh | Pump, in particular high-pressure fuel pump for a fuel injection device of an internal combustion engine |
DE102012218122A1 (en) * | 2012-10-04 | 2014-04-10 | Robert Bosch Gmbh | High-pressure fuel pump i.e. plug-in pump for fuel injection system for injecting fuel into combustion chamber of internal combustion engine, has pump piston guided in guide bore of hollow cylinder in specific stroke |
DE102014207180A1 (en) * | 2014-04-15 | 2015-10-15 | Robert Bosch Gmbh | High pressure pump for a fuel injection system |
CN107110371B (en) * | 2014-11-11 | 2019-03-05 | Nok株式会社 | Sealing device |
DE102014225925A1 (en) * | 2014-12-15 | 2016-06-16 | Elringklinger Ag | Sealing arrangement and method for mounting a seal assembly |
DE102015202632A1 (en) * | 2015-02-13 | 2016-08-18 | Robert Bosch Gmbh | High pressure pump for a fuel injection system |
-
2017
- 2017-07-20 DE DE102017212501.2A patent/DE102017212501A1/en not_active Withdrawn
-
2018
- 2018-06-07 CN CN201880048469.9A patent/CN110945238B/en active Active
- 2018-06-07 US US16/626,833 patent/US11168677B2/en active Active
- 2018-06-07 WO PCT/EP2018/065009 patent/WO2019015857A1/en unknown
- 2018-06-07 EP EP18731758.1A patent/EP3655649B1/en active Active
- 2018-06-07 JP JP2020502441A patent/JP6914417B2/en active Active
- 2018-06-07 KR KR1020207001716A patent/KR20200033254A/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
KR20200033254A (en) | 2020-03-27 |
CN110945238B (en) | 2022-07-12 |
EP3655649A1 (en) | 2020-05-27 |
DE102017212501A1 (en) | 2019-01-24 |
WO2019015857A1 (en) | 2019-01-24 |
JP2020527669A (en) | 2020-09-10 |
US20200224646A1 (en) | 2020-07-16 |
US11168677B2 (en) | 2021-11-09 |
CN110945238A (en) | 2020-03-31 |
JP6914417B2 (en) | 2021-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3655650B1 (en) | Piston pump | |
EP2032850B1 (en) | High pressure pump in particular for a fuel injection device on an internal combustion engine | |
EP2935860B1 (en) | Piston fuel pump for an internal combustion engine | |
DE19523283B4 (en) | Pump, in particular high-pressure pump for a fuel injection device of an internal combustion engine | |
WO1999002858A1 (en) | Radial piston pump for fuel high-pressure supply | |
EP2035700A2 (en) | Piston pump | |
EP3108137B1 (en) | Piston fuel pump for an internal combustion engine | |
WO2019015863A1 (en) | Piston pump, particularly a high-pressure fuel pump for an internal combustion engine | |
DE10322603B4 (en) | Piston pump, in particular high-pressure piston pump for internal combustion engines with direct injection | |
EP3655649B1 (en) | Piston pump, in particular high-pressure fule injection pump for a combustion engine | |
DE102016225922A1 (en) | Piston pump, in particular high-pressure fuel pump for an internal combustion engine | |
EP2143935B1 (en) | Pump unit for fluid delivery | |
WO2014048606A1 (en) | Pump, in particular high-pressure fuel pump for a fuel injection device of an internal combustion engine | |
WO2019015859A1 (en) | Piston pump | |
EP1929154B1 (en) | Piston pump | |
DE102013210019A1 (en) | High pressure pump for a fuel injection system with a suction valve | |
WO2019081239A1 (en) | Piston compressor | |
DE102014218992A1 (en) | High-pressure fuel pump | |
WO2022189542A1 (en) | Piston pump, in particular high-pressure fuel pump for an internal combustion engine | |
DE102022207673A1 (en) | Piston pump, in particular high-pressure fuel pump for a fuel system of an internal combustion engine | |
WO2016008626A1 (en) | Pump, in particular high-pressure fuel pump for a fuel injection device of an internal combustion engine | |
DE102021209531A1 (en) | Piston pump, in particular high-pressure fuel pump for an internal combustion engine | |
WO2016142072A1 (en) | High-pressure fuel pump, in particular for a fuel injection device of an internal combustion engine | |
DE10362375B3 (en) | High-pressure piston pump for internal combustion engines with direct injection | |
DE102021209832A1 (en) | Piston pump, in particular high-pressure fuel pump for an internal combustion engine, and method for producing a piston seal for such a piston pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200220 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F02M 59/44 20060101ALI20220422BHEP Ipc: F04B 1/0408 20200101ALI20220422BHEP Ipc: F04B 1/0421 20200101ALI20220422BHEP Ipc: F04B 1/0439 20200101ALI20220422BHEP Ipc: F04B 1/0448 20200101ALI20220422BHEP Ipc: F04B 1/04 20200101AFI20220422BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220602 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502018010428 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1512360 Country of ref document: AT Kind code of ref document: T Effective date: 20220915 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220817 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221219 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221117 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221217 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502018010428 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
26N | No opposition filed |
Effective date: 20230519 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230619 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20230622 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230607 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230607 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230630 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1512360 Country of ref document: AT Kind code of ref document: T Effective date: 20230607 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240822 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230607 |