EP3647701A1 - Apparatus for extracting argon by cryogenic decomposition of air - Google Patents

Apparatus for extracting argon by cryogenic decomposition of air Download PDF

Info

Publication number
EP3647701A1
EP3647701A1 EP19020090.7A EP19020090A EP3647701A1 EP 3647701 A1 EP3647701 A1 EP 3647701A1 EP 19020090 A EP19020090 A EP 19020090A EP 3647701 A1 EP3647701 A1 EP 3647701A1
Authority
EP
European Patent Office
Prior art keywords
argon
column
pressure
air
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19020090.7A
Other languages
German (de)
French (fr)
Inventor
Kirchner Lars
Dimitri GOLUBEV
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP3647701A1 publication Critical patent/EP3647701A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04727Producing pure argon, e.g. recovered from a crude argon column using an auxiliary pure argon column for nitrogen rejection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/58Processes or apparatus involving steps for recycling of process streams the recycled stream being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Definitions

  • the present invention relates to a plant for the production of argon by low-temperature separation of air according to the preamble of the claim.
  • Air separation plants have rectification column systems which can be designed as two-column systems, in particular as classic Linde double-column systems, but also as three- or multi-column systems.
  • rectification columns for the production of nitrogen and / or oxygen in the liquid and / or gaseous state that is to say the rectification columns for the nitrogen-oxygen separation
  • rectification columns for the production of further air components, in particular argon can be provided.
  • the rectification columns of the rectification column systems mentioned are operated at different pressure levels.
  • Known double column systems have a so-called high pressure column (also referred to as a pressure column, medium pressure column or lower column) and a so-called low pressure column (also referred to as an upper column).
  • the high-pressure column is typically operated at a pressure level of 4 to 7 bar, in particular approximately 5.3 bar.
  • the low pressure column is operated at a pressure level of typically 1 to 2 bar, in particular approximately 1.4 bar. In certain cases, higher pressure levels can also be used in the low pressure column.
  • the pressures specified here and below are absolute pressures at the top of the columns specified.
  • an oxygen-enriched and a nitrogen-enriched portion of the high-pressure column is used depleted liquid is formed and withdrawn from the high pressure column.
  • This liquid which in particular also contains argon, is at least partly fed into the low-pressure column and further separated there. It can be at least partially evaporated before it is fed into the low-pressure column, where it is possible for evaporated and unevaporated portions to be fed into the low-pressure column at different positions.
  • the present invention is based in particular on a system in which a high and a low pressure column are used.
  • the low-pressure column can be formed in one part or in several parts.
  • a first and a second section of the low pressure column can be operated at a common pressure level.
  • a two-part low-pressure column thus differs from also known arrangements in which, in addition to the high and low-pressure columns, a further column for separating nitrogen and oxygen is provided, which, however, is operated at a pressure level which lies between the pressure levels at which the high-pressure column and the low pressure column are operated.
  • Air separation plants with raw and pure argon columns can be used to obtain argon.
  • An example is illustrated by Häring (see above) in Figure 2.3A and described from page 26 in the section "Rectification in the Low-pressure, Crude and Pure Argon Column” and from page 29 in the section "Cryogenic Production of Pure Argon".
  • argon accumulates at a certain height in the low-pressure column in corresponding plants.
  • argon-enriched gas with an argon concentration of typically 5 to 15 mole percent can be withdrawn from the low-pressure column and transferred to the crude argon column.
  • a corresponding gas typically contains approximately 0.05 to approximately 500 ppm nitrogen and otherwise essentially oxygen. It is expressly emphasized that the values given for the gas drawn off from the low pressure column are only typical example values.
  • the crude argon column essentially serves to separate the oxygen from the gas drawn off from the low-pressure column.
  • the separated oxygen in the crude argon column or a corresponding oxygen-rich fluid can be liquid in the low pressure column can be returned.
  • the oxygen or the oxygen-rich fluid is typically fed several theoretical or practical trays below the feed point for the liquid drawn off from the high-pressure column, oxygen-enriched and nitrogen-depleted and possibly at least partially evaporated into the low-pressure column.
  • a gaseous fraction remaining in the crude argon column, which essentially contains argon and nitrogen, is further separated in the pure argon column to obtain pure argon.
  • the crude and the pure argon column have top condensers, which can be cooled in particular with a portion of the liquid which has been drawn off from the high-pressure column and enriched with oxygen and nitrogen and which partially evaporates during this cooling.
  • Other fluids can also be used for cooling.
  • a pure argon column can also be dispensed with in corresponding systems, it being typically ensured here that the nitrogen content at the argon transition is below 1 ppm.
  • this is not a mandatory requirement.
  • argon of the same quality as from a conventional pure argon column is typically withdrawn from the raw argon column or a comparable column somewhat further below the fluid conventionally transferred into the pure argon column, the bottoms in the section between the raw argon condenser, i.e. the top condenser of the raw argon column, and a corresponding deduction serve in particular as barrier bottoms for nitrogen.
  • the present invention can be used with such an arrangement without a pure argon column.
  • An argon recovery column can be a conventional pure argon column or a corresponding raw argon column modified for pure argon recovery.
  • argon the term "argon”, as will also be explained below, is also used for argon-rich fluids and not only for pure argon) takes place in the explained processes in liquid form.
  • Corresponding argon is typically transferred to a storage tank. Despite thermal insulation, a portion of the argon always evaporates and is lost in conventional systems.
  • the object of the present invention is to provide measures which make it possible to reduce corresponding evaporation losses.
  • the present invention proposes a plant for the production of argon by low-temperature separation of air according to the preamble of the claim.
  • Preferred embodiments are the subject of the dependent claims and the following description.
  • Liquids and gases can, in the language used here, be rich or poor in one or more components, “rich” for a content of at least 50%, 75%, 90%, 95%, 99%, 99.5%, 99, 9% or 99.99% and “poor” for a maximum of 50%, 25%, 10%, 5%, 1%, 0.1% or 0.01% on a mole, weight or volume basis .
  • the term “predominantly” can correspond to the definition of "rich”.
  • Liquids and gases can also be enriched or depleted in one or more components, these terms refer to a content in a starting liquid or gas from which the liquid or gas was obtained.
  • the liquid or gas is "enriched” if it contains at least 1.1 times, 1.5 times, 2 times, 5 times, 10 times 100 times or 1,000 times the content, and " depleted "if this or this contains at most 0.9 times, 0.5 times, 0.1 times, 0.01 times or 0.001 times the content of a corresponding component, based on the starting liquid or gas. If, for example, we are talking about "oxygen”, “nitrogen” or “argon”, this includes also understood a liquid or a gas that is rich in oxygen or nitrogen, but does not necessarily have to consist exclusively of it.
  • pressure level and "temperature level” to characterize pressures and temperatures, which is intended to express that corresponding pressures and temperatures in a corresponding system do not have to be used in the form of exact pressure or temperature values to realize the inventive concept.
  • pressures and temperatures are typically in certain ranges, for example ⁇ 1%, 5%, 10%, 20% or even 50% around an average.
  • Corresponding pressure levels and temperature levels can lie in disjoint areas or in areas that overlap one another.
  • pressure levels include, for example, unavoidable or expected pressure drops.
  • the pressure levels given here in bar are absolute pressures.
  • the present invention is based on the finding that a return of vaporized argon from a storage container for liquid argon, which is fed from an argon recovery column of an air separation plant, for example a crude argon column or a pure argon column, to the argon recovery column, using cryogenic-rich liquid, is particularly advantageous. to reduce the evaporation losses mentioned at the beginning.
  • a plant for the extraction of argon by low-temperature separation of air the plant having a distillation column system with an argon recovery column from which an argon-rich liquid can be taken off, and the plant having a storage tank, in which the argon-rich liquid that can be removed from the argon recovery column can be transferred. It is provided according to the invention that an argon-rich gas formed by partial evaporation of the argon-rich liquid can be removed from the storage tank and fed back into the argon recovery column. Through the feedback according to the invention with subsequent condensation in the argon recovery column, argon losses can be minimized or completely avoided.
  • the argon recovery column can be a raw or a pure argon column, a raw argon column used together with a pure argon column, or a correspondingly modified raw argon column in a system without a pure argon column.
  • the regeneration typically takes place at the same level at which a fluid transferred from the raw argon column is also fed into the pure argon column.
  • the regeneration can in particular also take place via a feed line for raw argon from the raw argon column, as a result of which a separate feed can be dispensed with.
  • the feedback can also take place at a lower position.
  • the energy recovery can take place, for example, at the head, but also at a lower position.
  • the argon-rich liquid which is a liquid argon product in the plant according to the invention, can in particular be taken from a sump area of a corresponding argon recovery column, in particular a pure argon column, and has corresponding argon contents.
  • the argon-rich gas can be withdrawn and fed back into the argon recovery column, in particular on the basis of a pressure control. In this case, a pressure in the storage tank is recorded in particular.
  • the present invention can be used in air separation plants with so-called internal compression (IV, internal compression, IC), as is explained, for example, by Haring (see above), Section 2.2.5.2, "Internal Compression", but also in any other air separation plants .
  • IV internal compression
  • IC internal compression
  • Haring see above
  • Section 2.2.5.2 "Internal Compression”
  • the invention can also be used in many other processes, for example also in systems with "nitrogen” or "air” circuits for the production of liquid products etc.
  • So-called main compressors / post-compressors (Main Air Compressor / Booster Air Compressor, MAC-BAC) processes or so-called high air pressure (HAP) processes can be used for air separation.
  • the main compressor / post-compressor process is the rather More conventional processes, high air pressure processes have been used more and more recently as alternatives.
  • the main compressor / post-compressor process is characterized in that only a part of the total amount of feed air supplied to the rectification column system is compressed to a pressure level that is significant, i.e. is at least 3, 4, 5, 6, 7, 8, 9 or 10 bar, above the pressure level of the high pressure column. Another part of the quantity of feed air is merely compressed to the pressure level of the high-pressure column or a pressure level that does not differ by more than 1 to 2 bar from the pressure level of the high-pressure column, and is fed into the high-pressure column at this lower pressure level.
  • An example of a main compressor / post-compressor process is shown by Häring (see above) in Figure 2.3A.
  • the total amount of feed air supplied to the rectification column system is compressed to a pressure level which is substantially, ie at least 3, 4, 5, 6, 7, 8, 9 or 10 bar above the pressure level of the high-pressure column.
  • the pressure difference can be up to 14, 16, 18 or 20 bar, for example.
  • High air pressure processes are for example from the EP 2 980 514 A1 and the EP 2 963 367 A1 known.
  • the present invention can be used in all of the previously explained method variants. It is only essential for use in the context of the present invention that an argon recovery column is provided from which an argon-rich liquid can be removed.
  • Figure 1 illustrates an air separation plant according to an embodiment of the present invention in a schematic view.
  • Figure 1 is an air separation plant according to an embodiment of the present invention schematically illustrated and generally designated 100.
  • Air separation plants of the type shown are often described elsewhere, for example in H.-W. Häring (ed.), Industrial Gases Processing, Wiley-VCH, 2006, in particular Section 2.2.5, "Cryogenic Rectification
  • An air separation plant for the use of the present invention can be designed in many different ways.
  • Air separation plant shown as an example can be set up to carry out a high air pressure process.
  • ambient air A can be drawn in by means of a main air compressor 1 via a filter 2 and compressed to a pressure level that is at least 3 bar above a highest pressure level that is used in a distillation column system 10 of the air separation plant 100.
  • the compressed feed air stream a is fed to a pre-cooling device 3 operated, for example, with cooling water.
  • the pre-cooled feed air stream a is then cleaned in a cleaning system 4, which typically comprises a pair of adsorber containers used in alternating operation.
  • the pre-cooled feed air stream a is freed from water and carbon dioxide.
  • the feed air stream a Downstream of the cleaning system 3, the feed air stream a is divided into two sub-streams b and c, which are later divided into two sub-streams d and e or f and g, respectively.
  • the partial stream c is further compressed in a booster 5, which is coupled to an expansion turbine 6 and which is followed by an aftercooler, which is not specifically designated.
  • the partial stream d is passed through a main heat exchanger 7 of the air separation plant 100 without further compression and liquefied in the process.
  • the partial stream e is also passed through the main heat exchanger 7 without further compression, but only up to an intermediate point, and in a expansion turbine 8, which is coupled to a booster 9, expanded and partially liquefied.
  • the partial stream f is partly led in the form of a partial stream h to an intermediate point through the main heat exchanger 7, then further compressed in the booster 9, fed back to the skin heat exchanger 7 at an intermediate point, and until cold End passed through the main heat exchanger 7.
  • the partial stream h is liquefied.
  • Another part of the partial flow f is passed in the form of a partial flow i to the cold end through the main heat exchanger 7 and liquefied in the process.
  • the partial stream g is led to an intermediate point through the main heat exchanger 7, expanded in the expansion turbine 6 and partially liquefied.
  • the liquefied partial streams d, h and i are each expanded via expansion valves, combined, and fed into a high-pressure column 11 of the distillation column system 10.
  • the partially liquefied partial streams e and g are also combined and fed into the high-pressure column 11.
  • an oxygen-enriched liquid bottom fraction and a nitrogen-enriched gaseous top fraction are formed in the high pressure column 11.
  • the oxygen-enriched liquid bottom fraction is drawn off from the high-pressure column 11 in the form of a stream h, passed through a subcooling countercurrent 13, partly used as heating medium in a bottom evaporator 14 of a pure argon column 15, and in each case in defined proportions in a top condenser 16 of the pure argon column 15, a top condenser 17 a crude argon column 18 and a low pressure column 12 of the distillation column system 10 are fed.
  • Fluid evaporating in the evaporation spaces of the top condensers 16, 17 of the crude argon column 15 and the pure argon column 18 is likewise transferred to the low-pressure column 12.
  • the gaseous nitrogen-rich top product in the form of a stream i is withdrawn from the top of the high-pressure column 11. A part of this is heated in the main heat exchanger 7 without liquefaction in the form of a material flow k and, for example, discharged from the air separation plant 100 as sealing gas B for the compressors involved. Another portion is liquefied in the form of a stream I of a main condenser 19, which creates a heat-exchanging connection between the high-pressure column 11 and the low-pressure column 12.
  • the liquefied overhead product of the high-pressure column 11 is fed in portions in the form of a material flow m as a return to the high-pressure column 11, in the form of a material flow n after cooling in the supercooling counterflow 13, expanded into the low-pressure column 12, and in the form of a material flow o subjected to internal compression, in the main heat exchanger 5 heated and provided as an internal compression product C.
  • a stream of matter p of approximately the same composition is taken from the high-pressure column 11 in liquid form, which is expanded into the low-pressure column 12 after cooling in the supercooling counterflow 13.
  • An oxygen-rich liquid bottom fraction and a nitrogen-rich gaseous top fraction are formed in the low-pressure column 12.
  • the former is partially internally compressed in the form of a material flow q, heated in the main heat exchanger 5 and provided as an internal compression product D.
  • Another portion can be partially supercooled in the form of a material flow r and discharged as a liquid product E.
  • a liquid nitrogen-rich stream s can be drawn off from a liquid retention device at the head of the low-pressure column 12 and can be carried out as a liquid nitrogen product F from the air separation plant 100.
  • a gaseous nitrogen-rich stream t drawn off from the top of the low-pressure column 12 is passed through the supercooling counterflow 13 and the main heat exchanger 5 and is provided as nitrogen product G at the pressure of the low-pressure column 12.
  • a current u is also withdrawn from an upper region and, after heating in the supercooling countercurrent 13 and the main heat exchanger 5, is used as regeneration gas in the cleaning device 4 or is discarded to the environment H by blowing off.
  • fluid enriched in argon in the form of a material stream w can be removed from the low-pressure column 12 and fed into the crude argon column 18 near the sump.
  • Bottom liquid from the crude argon column 18 can be returned to the low-pressure column 12 in the form of a material flow x by means of a pump (not specifically designated).
  • Uncondensed overhead gas is transferred from the crude argon column 12 into the pure argon column 15 in the form of a stream y.
  • a liquid return to the pure argon column 15 is formed in the top condenser 16 of the pure argon column 15.
  • a non-liquefied overhead gas can be released to the environment H in the form of a stream z.
  • An argon product or argon-rich liquid is removed from the bottom of the pure argon column 15 in the form of a stream 101 and, controlled by a valve 21, transferred to a storage tank 20.
  • a portion of this evaporated in the storage tank 20 is in the in Figure 1 Illustrated embodiment of the invention in the form of a stream 102 taken pressure-controlled via a valve 22 and returned to the pure argon column 15.
  • a storage tank used in the context of the present invention can in particular be a so-called flat-bottom tank, which can in particular be provided with pearlite insulation.
  • a corresponding storage tank can be operated at an overpressure of approx. 50 to approx. 500 mbar.

Abstract

Die Erfindung betrifft eine Anlage (100) zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft, wobei die Anlage (100) ein Destillationss±ulensystem (10) mit einer Argongewinnungss±ule (15) aufweist, aus der eine argonreiche Flæsigkeit (101) entnehmbar ist, und wobei die Anlage (100) einen Speichertank (20) aufweist, in welchen die aus der Argongewinnungss±ule (15) entnehmbare argonreiche Flæssigkeit(101) æberfæhrbar ist. Dem Speichertank (20) ist ein durch eine teilweise Verdampfung der argonreichen Flæsigkeit (101) gebildetes argonreiches Gas (101) entnehmbar und in die Argongewinnungss±ule (15) ræckspeisbar ist Die Argongewinnungss±ule ist insbesondere eine Rohargons±ule (18) oder eine Reinargons±ule (15) und das durch die teilweise Verdampfung der argonreichen Flæsigkeit (101) gebildete argonreiche Gas (101) ist in die Rohargons±ule (18) und/oder in die Reinargons±ule (15) ræckspeisbar ist.The invention relates to a plant (100) for the extraction of argon by low-temperature separation of air, the plant (100) having a distillation column system (10) with an argon recovery column (15) from which an argon-rich liquid (101) can be taken , and wherein the system (100) has a storage tank (20) in which the argon-rich liquid (101) that can be removed from the argon extraction column (15) can be transferred. An argon-rich gas (101) formed by partial evaporation of the argon-rich liquid (101) can be taken from the storage tank (20) and can be fed back into the argon recovery column (15). The argon recovery column is in particular a raw argon column (18) or a Pure argon column (15) and the argon-rich gas (101) formed by the partial evaporation of the argon-rich liquid (101) can be fed back into the raw argon column (18) and / or into the pure argon column (15).

Description

Die vorliegende Erfindung betrifft eine Anlage zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft gemäß dem Oberbegriff des Patentanspruchs.The present invention relates to a plant for the production of argon by low-temperature separation of air according to the preamble of the claim.

Stand der TechnikState of the art

Die Herstellung von Luftprodukten in flüssigem oder gasförmigem Zustand durch Tieftemperaturzerlegung von Luft in Luftzerlegungsanlagen ist bekannt und beispielsweise bei H.-W. Häring (Hrsg.), Industrial Gases Processing, Wiley-VCH, 2006, insbesondere Abschnitt 2.2.5, "Cryogenic Rectification ", beschrieben.The production of air products in a liquid or gaseous state by low-temperature separation of air in air separation plants is known and, for example, at H.-W. Häring (ed.), Industrial Gases Processing, Wiley-VCH, 2006, in particular Section 2.2.5, "Cryogenic Rectification ", described.

Luftzerlegungsanlagen weisen Rektifikationssäulensysteme auf, die als Zweisäulensysteme, insbesondere als klassische Linde-Doppelsäulensysteme, aber auch als Drei- oder Mehrsäulensysteme ausgebildet sein können. Neben den Rektifikationssäulen zur Gewinnung von Stickstoff und/oder Sauerstoff in flüssigem und/oder gasförmigem Zustand, also den Rektifikationssäulen zur Stickstoff-Sauerstoff-Trennung, können Rektifikationssäulen zur Gewinnung weiterer Luftkomponenten, insbesondere von Argon, vorgesehen sein.Air separation plants have rectification column systems which can be designed as two-column systems, in particular as classic Linde double-column systems, but also as three- or multi-column systems. In addition to the rectification columns for the production of nitrogen and / or oxygen in the liquid and / or gaseous state, that is to say the rectification columns for the nitrogen-oxygen separation, rectification columns for the production of further air components, in particular argon, can be provided.

Die Rektifikationssäulen der genannten Rektifikationssäulensysteme werden auf unterschiedlichen Druckniveaus betrieben. Bekannte Doppelsäulensysteme weisen eine sogenannte Hochdrucksäule (auch als Drucksäule, Mitteldrucksäule oder untere Säule bezeichnet) und eine sogenannte Niederdrucksäule (auch als obere Säule bezeichnet) auf. Die Hochdrucksäule wird typischerweise auf einem Druckniveau von 4 bis 7 bar, insbesondere ca. 5,3 bar, betrieben. Die Niederdrucksäule wird auf einem Druckniveau von typischerweise 1 bis 2 bar, insbesondere ca. 1,4 bar, betrieben. In bestimmten Fällen können in der Niederdrucksäule auch höhere Druckniveaus eingesetzt werden. Bei den hier und nachfolgend angegebenen Drücken handelt es sich um Absolutdrücke am Kopf der jeweils angegebenen Säulen.The rectification columns of the rectification column systems mentioned are operated at different pressure levels. Known double column systems have a so-called high pressure column (also referred to as a pressure column, medium pressure column or lower column) and a so-called low pressure column (also referred to as an upper column). The high-pressure column is typically operated at a pressure level of 4 to 7 bar, in particular approximately 5.3 bar. The low pressure column is operated at a pressure level of typically 1 to 2 bar, in particular approximately 1.4 bar. In certain cases, higher pressure levels can also be used in the low pressure column. The pressures specified here and below are absolute pressures at the top of the columns specified.

In bekannten Anlagen zur Tieftemperaturzerlegung von Luft wird in einem unteren Bereich der Hochdrucksäule eine an Sauerstoff angereicherte und an Stickstoff abgereicherte Flüssigkeit gebildet und aus der Hochdrucksäule abgezogen. Diese Flüssigkeit, die insbesondere auch Argon enthält, wird zumindest zum Teil in die Niederdrucksäule eingespeist und dort weiter aufgetrennt. Sie kann vor der Einspeisung in die Niederdrucksäule zumindest teilweise verdampft werden, wobei ggf. verdampfte und unverdampfte Anteile an unterschiedlichen Positionen in die Niederdrucksäule eingespeist werden können.In known systems for the low-temperature separation of air, an oxygen-enriched and a nitrogen-enriched portion of the high-pressure column is used depleted liquid is formed and withdrawn from the high pressure column. This liquid, which in particular also contains argon, is at least partly fed into the low-pressure column and further separated there. It can be at least partially evaporated before it is fed into the low-pressure column, where it is possible for evaporated and unevaporated portions to be fed into the low-pressure column at different positions.

Die vorliegende Erfindung geht insbesondere von einer Anlage aus, in der eine Hoch- und eine Niederdrucksäule verwendet werden. Die Niederdrucksäule kann im Rahmen der vorliegenden Erfindung einteilig oder mehrteilig ausgebildet sein. In diesem Fall können ein erster und ein zweiter Abschnitt der Niederdrucksäule auf einem gemeinsamen Druckniveau betrieben werden. Eine zweiteilige Niederdrucksäule unterscheidet sich damit von ebenfalls bekannten Anordnungen, bei denen neben der Hoch- und der Niederdrucksäule eine weitere Säule zur Trennung von Stickstoff und Sauerstoff bereitgestellt ist, welche jedoch auf einem Druckniveau betrieben wird, das zwischen den Druckniveaus liegt, auf denen die Hochdrucksäule und die Niederdrucksäule betrieben werden.The present invention is based in particular on a system in which a high and a low pressure column are used. In the context of the present invention, the low-pressure column can be formed in one part or in several parts. In this case, a first and a second section of the low pressure column can be operated at a common pressure level. A two-part low-pressure column thus differs from also known arrangements in which, in addition to the high and low-pressure columns, a further column for separating nitrogen and oxygen is provided, which, however, is operated at a pressure level which lies between the pressure levels at which the high-pressure column and the low pressure column are operated.

Zur Argongewinnung können Luftzerlegungsanlagen mit Roh- und Reinargonsäulen eingesetzt werden. Ein Beispiel ist bei Häring (s.o.) in Figur 2.3A veranschaulicht und ab Seite 26 im Abschnitt "Rectification in the Low-pressure, Crude and Pure Argon Column" sowie ab Seite 29 im Abschnitt "Cryogenic Production of Pure Argon" beschrieben. Wie dort erläutert, reichert sich Argon in entsprechenden Anlagen in einer bestimmten Höhe in der Niederdrucksäule an. An dieser oder an einer anderen günstigen Stelle, ggf. auch unterhalb des Argonmaximums, kann aus der Niederdrucksäule an Argon angereichertes Gas mit einer Argonkonzentration von typischerweise 5 bis 15 Molprozent abgezogen und in die Rohargonsäule überführt werden. Ein entsprechendes Gas enthält typischerweise ca. 0,05 bis ca. 500 ppm Stickstoff und ansonsten im Wesentlichen Sauerstoff. Es sei ausdrücklich betont, dass die angegebenen Werte für das aus der Niederdrucksäule abgezogene Gas lediglich typische Beispielwerte darstellen.Air separation plants with raw and pure argon columns can be used to obtain argon. An example is illustrated by Häring (see above) in Figure 2.3A and described from page 26 in the section "Rectification in the Low-pressure, Crude and Pure Argon Column" and from page 29 in the section "Cryogenic Production of Pure Argon". As explained there, argon accumulates at a certain height in the low-pressure column in corresponding plants. At this or at another convenient point, possibly also below the argon maximum, argon-enriched gas with an argon concentration of typically 5 to 15 mole percent can be withdrawn from the low-pressure column and transferred to the crude argon column. A corresponding gas typically contains approximately 0.05 to approximately 500 ppm nitrogen and otherwise essentially oxygen. It is expressly emphasized that the values given for the gas drawn off from the low pressure column are only typical example values.

Die Rohargonsäule dient im Wesentlichen dazu, den Sauerstoff aus dem aus der Niederdrucksäule abgezogenen Gas abzutrennen. Der in der Rohargonsäule abgetrennte Sauerstoff bzw. ein entsprechendes sauerstoffreiches Fluid kann flüssig in die Niederdrucksäule zurückgeführt werden. Der Sauerstoff bzw. das sauerstoffreiche Fluid wird dabei typischerweise mehrere theoretische oder praktische Böden unterhalb der Einspeisestelle für die aus der Hochdrucksäule abgezogene, an Sauerstoff angereicherte und an Stickstoff abgereicherte und ggf. zumindest teilweise verdampfte Flüssigkeit in die Niederdrucksäule zurückgespeist. Eine bei der Trennung in der Rohargonsäule verbleibende gasförmige Fraktion, die im Wesentlichen Argon und Stickstoff enthält, wird in der Reinargonsäule unter Erhalt von Reinargon weiter aufgetrennt. Die Roh- und die Reinargonsäule weisen Kopfkondensatoren auf, die insbesondere mit einem Teil der aus der Hochdrucksäule abgezogenen, an Sauerstoff angereicherten und an Stickstoff abgereicherten Flüssigkeit gekühlt werden können, welche bei dieser Kühlung teilweise verdampft. Auch andere Fluide können zur Kühlung eingesetzt werden.The crude argon column essentially serves to separate the oxygen from the gas drawn off from the low-pressure column. The separated oxygen in the crude argon column or a corresponding oxygen-rich fluid can be liquid in the low pressure column can be returned. The oxygen or the oxygen-rich fluid is typically fed several theoretical or practical trays below the feed point for the liquid drawn off from the high-pressure column, oxygen-enriched and nitrogen-depleted and possibly at least partially evaporated into the low-pressure column. A gaseous fraction remaining in the crude argon column, which essentially contains argon and nitrogen, is further separated in the pure argon column to obtain pure argon. The crude and the pure argon column have top condensers, which can be cooled in particular with a portion of the liquid which has been drawn off from the high-pressure column and enriched with oxygen and nitrogen and which partially evaporates during this cooling. Other fluids can also be used for cooling.

Grundsätzlich kann in entsprechenden Anlagen auch auf eine Reinargonsäule verzichtet werden, wobei hier typischerweise sichergestellt wird, dass der Stickstoffgehalt am Argonübergang unter 1 ppm liegt. Dies ist jedoch keine zwingende Voraussetzung. Argon gleicher Qualität wie aus einer herkömmlichen Reinargonsäule wird in diesem Fall aus der Rohargonsäule bzw. einer vergleichbaren Säule typischerweise etwas weiter unterhalb als das herkömmlicherweise in die Reinargonsäule überführte Fluid abgezogen, wobei die Böden im Abschnitt zwischen dem Rohargonkondensator, also dem Kopfkondensator der Rohargonsäule, und einem entsprechenden Abzug insbesondere als Sperrböden für Stickstoff dienen. Die vorliegende Erfindung kann mit einer derartigen Anordnung ohne Reinargonsäule zum Einsatz kommen. Da die Rohargonsäule bzw. eine vergleichbare Säule in einer derartigen Anordnung bereits zur Reinargongewinnung und nicht zur Rohargongewinnung dient, wird nachfolgend auch allgemeiner von "Argongewinnungssäulen" gesprochen. Bei einer Argongewinnungssäule kann es sich um eine herkömmliche Reinargonsäule oder um eine entsprechende zur Reinargongewinnung modifizierte Rohargonsäule handeln.In principle, a pure argon column can also be dispensed with in corresponding systems, it being typically ensured here that the nitrogen content at the argon transition is below 1 ppm. However, this is not a mandatory requirement. In this case, argon of the same quality as from a conventional pure argon column is typically withdrawn from the raw argon column or a comparable column somewhat further below the fluid conventionally transferred into the pure argon column, the bottoms in the section between the raw argon condenser, i.e. the top condenser of the raw argon column, and a corresponding deduction serve in particular as barrier bottoms for nitrogen. The present invention can be used with such an arrangement without a pure argon column. Since the crude argon column or a comparable column in such an arrangement is already used for the production of pure argon and not for the production of crude argon, the term “argon production columns” is also referred to more generally below. An argon recovery column can be a conventional pure argon column or a corresponding raw argon column modified for pure argon recovery.

Die Gewinnung von Argon (der Begriff "Argon" wird, wie auch nachfolgend noch erläutert, auch für argonreiche Fluide und nicht nur für Reinargon verwendet) erfolgt in den erläuterten Verfahren in flüssiger Form. Entsprechendes Argon wird typischerweise in einen Speichertank überführt. Trotz thermischer Isolation dampft dabei stets ein Anteil des Argons ab und geht in herkömmlichen Anlagen verloren.The extraction of argon (the term "argon", as will also be explained below, is also used for argon-rich fluids and not only for pure argon) takes place in the explained processes in liquid form. Corresponding argon is typically transferred to a storage tank. Despite thermal insulation, a portion of the argon always evaporates and is lost in conventional systems.

Die vorliegende Erfindung stellt sich die Aufgabe, Maßnahmen anzugeben, die es ermöglichen, entsprechende Abdampfverluste zu verringern.The object of the present invention is to provide measures which make it possible to reduce corresponding evaporation losses.

Offenbarung der ErfindungDisclosure of the invention

Vor diesem Hintergrund schlägt die vorliegende Erfindung eine Anlage zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft gemäß dem Oberbegriff des Patentanspruchs vor. Bevorzugte Ausgestaltungen sind jeweils Gegenstand der Unteransprüche sowie der nachfolgenden Beschreibung.Against this background, the present invention proposes a plant for the production of argon by low-temperature separation of air according to the preamble of the claim. Preferred embodiments are the subject of the dependent claims and the following description.

Vor der Erläuterung der Merkmale und Vorteile der vorliegenden Erfindung werden einige Grundlagen der vorliegenden Erfindung näher erläutert und nachfolgend verwendete Begriffe definiert.Before the features and advantages of the present invention are explained, some basics of the present invention are explained in more detail and terms used below are defined.

Die in einer Luftzerlegungsanlage eingesetzten Vorrichtungen sind in der zitierten Fachliteratur, beispielsweise bei Häring (s.o.) in Abschnitt 2.2.5.6, "Apparatus", beschrieben. Sofern die nachfolgenden Definitionen nicht hiervon abweichen, wird daher zum Sprachgebrauch, der im Rahmen der vorliegenden Anmeldung verwendet wird, ausdrücklich auf die zitierte Fachliteratur verwiesen.The devices used in an air separation plant are described in the technical literature cited, for example from Häring (see above) in Section 2.2.5.6, "Apparatus". If the following definitions do not deviate from this, express reference is made to the cited technical literature for the language used in the context of the present application.

Flüssigkeiten und Gase können im hier verwendeten Sprachgebrauch reich oder arm an einer oder an mehreren Komponenten sein, wobei "reich" für einen Gehalt von wenigstens 50%, 75%, 90%, 95%, 99%, 99,5%, 99,9% oder 99,99% und "arm" für einen Gehalt von höchstens 50%, 25%, 10%, 5%, 1%, 0,1% oder 0,01% auf Mol-, Gewichts- oder Volumenbasis stehen kann. Der Begriff "überwiegend" kann der Definition von "reich" entsprechen. Flüssigkeiten und Gase können ferner angereichert oder abgereichert an einer oder mehreren Komponenten sein, wobei sich diese Begriffe auf einen Gehalt in einer Ausgangsflüssigkeit oder einem Ausgangsgas beziehen, aus der oder dem die Flüssigkeit oder das Gas gewonnen wurde. Die Flüssigkeit oder das Gas ist "angereichert", wenn diese oder dieses zumindest den 1,1-fachen, 1,5-fachen, 2-fachen, 5-fachen, 10-fachen 100-fachen oder 1.000-fachen Gehalt, und "abgereichert", wenn diese oder dieses höchstens den 0,9-fachen, 0,5-fachen, 0,1-fachen, 0,01-fachen oder 0,001-fachen Gehalt einer entsprechenden Komponente, bezogen auf die Ausgangsflüssigkeit oder das Ausgangsgas enthält. Ist hier beispielsweise von "Sauerstoff", "Stickstoff" oder "Argon" die Rede, sei hierunter auch eine Flüssigkeit oder ein Gas verstanden, die bzw. das reich an Sauerstoff oder Stickstoff ist, jedoch nicht notwendigerweise ausschließlich hieraus bestehen muss.Liquids and gases can, in the language used here, be rich or poor in one or more components, "rich" for a content of at least 50%, 75%, 90%, 95%, 99%, 99.5%, 99, 9% or 99.99% and "poor" for a maximum of 50%, 25%, 10%, 5%, 1%, 0.1% or 0.01% on a mole, weight or volume basis . The term "predominantly" can correspond to the definition of "rich". Liquids and gases can also be enriched or depleted in one or more components, these terms refer to a content in a starting liquid or gas from which the liquid or gas was obtained. The liquid or gas is "enriched" if it contains at least 1.1 times, 1.5 times, 2 times, 5 times, 10 times 100 times or 1,000 times the content, and " depleted "if this or this contains at most 0.9 times, 0.5 times, 0.1 times, 0.01 times or 0.001 times the content of a corresponding component, based on the starting liquid or gas. If, for example, we are talking about "oxygen", "nitrogen" or "argon", this includes also understood a liquid or a gas that is rich in oxygen or nitrogen, but does not necessarily have to consist exclusively of it.

Die vorliegende Anmeldung verwendet zur Charakterisierung von Drücken und Temperaturen die Begriffe "Druckniveau" und "Temperaturniveau", wodurch zum Ausdruck gebracht werden soll, dass entsprechende Drücke und Temperaturen in einer entsprechenden Anlage nicht in Form exakter Druck- bzw. Temperaturwerte verwendet werden müssen, um das erfinderische Konzept zu verwirklichen. Jedoch bewegen sich derartige Drücke und Temperaturen typischerweise in bestimmten Bereichen, die beispielsweise ± 1%, 5%, 10%, 20% oder sogar 50% um einen Mittelwert liegen. Entsprechende Druckniveaus und Temperaturniveaus können dabei in disjunkten Bereichen liegen oder in Bereichen, die einander überlappen. Insbesondere schließen beispielsweise Druckniveaus unvermeidliche oder zu erwartende Druckverluste ein. Entsprechendes gilt für Temperaturniveaus. Bei den hier in bar angegebenen Druckniveaus handelt es sich um Absolutdrücke.The present application uses the terms "pressure level" and "temperature level" to characterize pressures and temperatures, which is intended to express that corresponding pressures and temperatures in a corresponding system do not have to be used in the form of exact pressure or temperature values to realize the inventive concept. However, such pressures and temperatures are typically in certain ranges, for example ± 1%, 5%, 10%, 20% or even 50% around an average. Corresponding pressure levels and temperature levels can lie in disjoint areas or in areas that overlap one another. In particular, pressure levels include, for example, unavoidable or expected pressure drops. The same applies to temperature levels. The pressure levels given here in bar are absolute pressures.

Vorteile der ErfindungAdvantages of the invention

Die vorliegende Erfindung beruht auf der Erkenntnis, dass eine Rückspeisung von verdampftem Argon aus einem Speicherbehälter für flüssiges Argon, der aus einer Argongewinnungssäule einer Luftzerlegungsanlage, beispielsweise einer Rohargonsäule oder einer Reinargonsäule, mit argonreicher, tiefkalter Flüssigkeit gespeist wird, in die Argongewinnungssäule besonders vorteilhaft ist, um die eingangs erwähnten Verdampfungsverluste zu reduzieren.The present invention is based on the finding that a return of vaporized argon from a storage container for liquid argon, which is fed from an argon recovery column of an air separation plant, for example a crude argon column or a pure argon column, to the argon recovery column, using cryogenic-rich liquid, is particularly advantageous. to reduce the evaporation losses mentioned at the beginning.

Dies wird im Rahmen der vorliegenden Erfindung dadurch erreicht, dass eine Anlage zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft bereitgestellt wird, wobei die Anlage ein Destillationssäulensystem mit einer Argongewinnungssäule aufweist, aus der eine argonreiche Flüssigkeit entnehmbar ist, und wobei die Anlage einen Speichertank aufweist, in welchen die aus der Argongewinnungssäule entnehmbare argonreiche Flüssigkeit überführbar ist. Erfindungsgemäß ist vorgesehen, dass dem Speichertank ein durch eine teilweise Verdampfung der argonreichen Flüssigkeit gebildetes argonreiches Gas entnehmbar und in die Argongewinnungssäule rückspeisbar ist. Durch die erfindungsgemäße Rückspeisung mit anschließender Kondensation in der Argongewinnungssäule können Argonverluste minimiert bzw. vollständig vermieden werden.This is achieved within the scope of the present invention by providing a plant for the extraction of argon by low-temperature separation of air, the plant having a distillation column system with an argon recovery column from which an argon-rich liquid can be taken off, and the plant having a storage tank, in which the argon-rich liquid that can be removed from the argon recovery column can be transferred. It is provided according to the invention that an argon-rich gas formed by partial evaporation of the argon-rich liquid can be removed from the storage tank and fed back into the argon recovery column. Through the feedback according to the invention with subsequent condensation in the argon recovery column, argon losses can be minimized or completely avoided.

Die Argongewinnungssäule kann eine Roh- oder eine Reinargonsäule sein, eine gemeinsam mit einer Reinargonsäule verwendete Rohargonsäule, oder eine entsprechend modifizierte Rohargonsäule in einer Anlage ohne Reinargonsäule. Im Fall einer Reinargonsäule erfolgt die Rückspeisung typischerweise in derselben Höhe, in der auch ein aus der Rohargonsäule überführtes Fluid in die Reinargonsäule eingespeist wird. Die Rückspeisung kann im Fall einer Reinargonsäule insbesondere auch über eine Einspeiseleitung für Rohargon aus der Rohargonsäule erfolgen, wodurch auf eine separate Einspeisung verzichtet werden kann. Die Rückspeisung kann aber auch an einer tieferen Position erfolgen. Die Rückspeisung kann, für den Fall, dass sie in die Rohargonsäule erfolgt, beispielsweise am Kopf erfolgen, aber auch an einer tieferen Position. Die argonreiche Flüssigkeit, die ein flüssiges Argonprodukt in der erfindungsgemäßen Anlage darstellt, ist insbesondere einem Sumpfbereich einer entsprechenden Argongewinnungssäule, insbesondere einer Reinargonsäule, entnehmbar, und weist entsprechende Argongehalte auf.The argon recovery column can be a raw or a pure argon column, a raw argon column used together with a pure argon column, or a correspondingly modified raw argon column in a system without a pure argon column. In the case of a pure argon column, the regeneration typically takes place at the same level at which a fluid transferred from the raw argon column is also fed into the pure argon column. In the case of a pure argon column, the regeneration can in particular also take place via a feed line for raw argon from the raw argon column, as a result of which a separate feed can be dispensed with. The feedback can also take place at a lower position. In the event that it takes place in the crude argon column, the energy recovery can take place, for example, at the head, but also at a lower position. The argon-rich liquid, which is a liquid argon product in the plant according to the invention, can in particular be taken from a sump area of a corresponding argon recovery column, in particular a pure argon column, and has corresponding argon contents.

Die Entnahme des argonreichen Gases und dessen Rückspeisung in die Argongewinnungssäule kann insbesondere auf Grundlage einer Druckregelung erfolgen. Bei dieser wird insbesondere ein Druck in dem Speichertank erfasst.The argon-rich gas can be withdrawn and fed back into the argon recovery column, in particular on the basis of a pressure control. In this case, a pressure in the storage tank is recorded in particular.

Die vorliegende Erfindung kann bei Luftzerlegungsanlagen mit sogenannter Innenverdichtung (IV, Internal Compression, IC) zum Einsatz kommen, wie sie beispielsweise bei Häring (s.o.), Abschnitt 2.2.5.2, "Internal Compression", erläutert ist, .aber auch bei beliebigen anderen Luftzerlegungsanlagen. Wie auch nachfolgend angegeben, ist für die vorliegende Erfindung erforderlich, dass eine Gewinnung von Argon in flüssiger Form und dessen Zwischenspeicherung erfolgt. Die Erfindung ist auch in vielen anderen Verfahren einsetzbar, beispielsweise auch bei Anlagen mit "Stickstoff'- oder "Luft"-Kreisläufen zur Herstellung von Flüssigprodukten etc.The present invention can be used in air separation plants with so-called internal compression (IV, internal compression, IC), as is explained, for example, by Haring (see above), Section 2.2.5.2, "Internal Compression", but also in any other air separation plants . As also indicated below, it is necessary for the present invention that argon is obtained in liquid form and that it is temporarily stored. The invention can also be used in many other processes, for example also in systems with "nitrogen" or "air" circuits for the production of liquid products etc.

Zur Luftzerlegung können sogenannte Hauptverdichter/Nachverdichter-(Main Air Compressor/Booster Air Compressor-, MAC-BAC-)Verfahren oder sogenannte Hochluftdruck-(High Air Pressure-, HAP-)Verfahren eingesetzt werden. Bei den Hauptverdichter/Nachverdichter-Verfahren handelt es sich um die eher konventionelleren Verfahren, Hochluftdruck-Verfahren kommen zunehmend in jüngerer Zeit als Alternativen zum Einsatz.So-called main compressors / post-compressors (Main Air Compressor / Booster Air Compressor, MAC-BAC) processes or so-called high air pressure (HAP) processes can be used for air separation. The main compressor / post-compressor process is the rather More conventional processes, high air pressure processes have been used more and more recently as alternatives.

Hauptverdichter/Nachverdichter-Verfahren zeichnen sich dadurch aus, dass nur ein Teil der dem Rektifikationssäulensystem insgesamt zugeführten Einsatzluftmenge auf ein Druckniveau verdichtet wird, das wesentlich, d.h. um mindestens 3, 4, 5, 6, 7, 8, 9 oder 10 bar, oberhalb des Druckniveaus der Hochdrucksäule liegt. Ein weiterer Teil der Einsatzluftmenge wird lediglich auf das Druckniveau der Hochdrucksäule oder ein Druckniveau, das sich um nicht mehr als 1 bis 2 bar von dem Druckniveau der Hochdrucksäule unterscheidet, verdichtet, und auf diesem niedrigeren Druckniveau in die Hochdrucksäule eingespeist. Ein Beispiel für ein Hauptverdichter/Nachverdichter-Verfahren ist bei Häring (s.o.) in Figur 2.3A gezeigt.The main compressor / post-compressor process is characterized in that only a part of the total amount of feed air supplied to the rectification column system is compressed to a pressure level that is significant, i.e. is at least 3, 4, 5, 6, 7, 8, 9 or 10 bar, above the pressure level of the high pressure column. Another part of the quantity of feed air is merely compressed to the pressure level of the high-pressure column or a pressure level that does not differ by more than 1 to 2 bar from the pressure level of the high-pressure column, and is fed into the high-pressure column at this lower pressure level. An example of a main compressor / post-compressor process is shown by Häring (see above) in Figure 2.3A.

Bei einem Hochluftdruck-Verfahren wird hingegen die gesamte dem Rektifikationssäulensystem insgesamt zugeführte Einsatzluftmenge auf ein Druckniveau verdichtet, das wesentlich, d.h. um mindestens 3, 4, 5, 6, 7, 8, 9 oder 10 bar oberhalb des Druckniveaus der Hochdrucksäule liegt. Der Druckunterschied kann beispielsweise bis zu 14, 16, 18 oder 20 bar betragen. Hochluftdruck-Verfahren sind beispielsweise aus der EP 2 980 514 A1 und der EP 2 963 367 A1 bekannt.In the case of a high-air pressure process, on the other hand, the total amount of feed air supplied to the rectification column system is compressed to a pressure level which is substantially, ie at least 3, 4, 5, 6, 7, 8, 9 or 10 bar above the pressure level of the high-pressure column. The pressure difference can be up to 14, 16, 18 or 20 bar, for example. High air pressure processes are for example from the EP 2 980 514 A1 and the EP 2 963 367 A1 known.

Die vorliegende Erfindung kann bei sämtlichen der zuvor erläuterten Verfahrensvarianten zum Einsatz kommen. Wesentlich für den Einsatz im Rahmen der vorliegenden Erfindung ist lediglich, dass eine Argongewinnungssäule bereitgestellt ist, aus der eine argonreiche Flüssigkeit entnehmbar ist.The present invention can be used in all of the previously explained method variants. It is only essential for use in the context of the present invention that an argon recovery column is provided from which an argon-rich liquid can be removed.

Die Erfindung wird nachfolgend unter Bezugnahme auf die beigefügten Zeichnungen näher erläutert, in denen eine Anlage gemäß einer Ausgestaltung der vorliegenden Erfindung in schematischer Darstellung veranschaulicht ist.The invention is explained in more detail below with reference to the accompanying drawings, in which a system according to an embodiment of the present invention is illustrated in a schematic representation.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Figur 1 veranschaulicht eine Luftzerlegungsanlage gemäß einer Ausgestaltung der vorliegenden Erfindung in schematischer Ansicht. Figure 1 illustrates an air separation plant according to an embodiment of the present invention in a schematic view.

Ausführliche Beschreibung der ZeichnungDetailed description of the drawing

In Figur 1 ist eine Luftzerlegungsanlage gemäß einer Ausgestaltung der vorliegenden Erfindung schematisch veranschaulicht und insgesamt mit 100 bezeichnet.In Figure 1 is an air separation plant according to an embodiment of the present invention schematically illustrated and generally designated 100.

Luftzerlegungsanlagen der gezeigten Art sind vielfach an anderer Stelle beschrieben, beispielsweise bei H.-W. Häring (Hrsg.), Industrial Gases Processing, Wiley-VCH, 2006, insbesondere Abschnitt 2.2.5, "Cryogenic Rectification ". Für detaillierte Erläuterungen zu Aufbau und Funktionsweise der Luftzerlegungsanlage 100 sei daher ergänzend auf die Fachliteratur verwiesen. Eine Luftzerlegungsanlage zum Einsatz der vorliegenden Erfindung kann auf unterschiedlichste Weise ausgebildet sein.Air separation plants of the type shown are often described elsewhere, for example in H.-W. Häring (ed.), Industrial Gases Processing, Wiley-VCH, 2006, in particular Section 2.2.5, "Cryogenic Rectification For detailed explanations of the structure and mode of operation of the air separation plant 100, reference is therefore made to the specialist literature. An air separation plant for the use of the present invention can be designed in many different ways.

In Figur 1 sind flüssige Stoffströme mit schwarzen (ausgefüllten), gasförmige Stoffströme mit weißen (nicht ausgefüllten) und zweiphasige Stoffströme mit schwarzweiß geteilten (teilweise ausgefüllten) Flusspfeilen veranschaulicht.In Figure 1 liquid material flows with black (filled in), gaseous material flows with white (unfilled) and two-phase material flows with black and white divided (partially filled) flow arrows are illustrated.

Die in Figur 1 beispielhaft gezeigte Luftzerlegungsanlage kann zur Durchführung eines Hochluftdruck-Verfahren eingerichtet sein. Hierzu kann Umgebungsluft A mittels eines Hauptluftverdichters 1 über ein Filter 2 angesaugt und auf ein Druckniveau verdichtet werden, das wenigstens 3 bar oberhalb eines höchsten Druckniveaus liegt, das in einem Destillationssäulensystem 10 der Luftzerlegungsanlage 100 verwendet wird.In the Figure 1 Air separation plant shown as an example can be set up to carry out a high air pressure process. For this purpose, ambient air A can be drawn in by means of a main air compressor 1 via a filter 2 and compressed to a pressure level that is at least 3 bar above a highest pressure level that is used in a distillation column system 10 of the air separation plant 100.

Der verdichtete Einsatzluftstrom a wird einer beispielsweise mit Kühlwasser betriebenen Vorkühleinrichtung 3 zugeführt. Der vorgekühlte Einsatzluftstrom a wird dann in einem Reinigungssystem 4 aufgereinigt, das typischerweise ein Paar von im Wechselbetrieb eingesetzten Adsorberbehältern umfasst. Der vorgekühlte Einsatzluftstrom a wird hier von Wasser und Kohlendioxid befreit.The compressed feed air stream a is fed to a pre-cooling device 3 operated, for example, with cooling water. The pre-cooled feed air stream a is then cleaned in a cleaning system 4, which typically comprises a pair of adsorber containers used in alternating operation. The pre-cooled feed air stream a is freed from water and carbon dioxide.

Stromab des Reinigungssystems 3 wird der Einsatzluftstrom a in zwei Teilströme b und c aufgeteilt, die später jeweils erneut in zwei Teilströme d und e bzw. f und g aufgeteilt werden. Vor der weiteren Aufteilung in die Teilströme f und g wird der Teilstrom c in einem Booster 5, der mit einer Entspannungsturbine 6 gekoppelt ist, und dem ein nicht gesondert bezeichneter Nachkühler nachgeschaltet ist, weiter verdichtet.Downstream of the cleaning system 3, the feed air stream a is divided into two sub-streams b and c, which are later divided into two sub-streams d and e or f and g, respectively. Before the further division into the partial streams f and g, the partial stream c is further compressed in a booster 5, which is coupled to an expansion turbine 6 and which is followed by an aftercooler, which is not specifically designated.

Der Teilstrom d wird ohne weitere Verdichtung bis zum kalten Ende durch einen Hauptwärmetauscher 7 der Luftzerlegungsanlage 100 geführt und dabei verflüssigt. Auch der Teilstrom e wird ohne weitere Verdichtung durch den Hauptwärmetauscher 7 geführt, jedoch nur bis zu einer Zwischenstelle, und in einer Entspannungsturbine 8, die mit einem Booster 9 gekoppelt ist, entspannt und dabei teilverflüssigt.The partial stream d is passed through a main heat exchanger 7 of the air separation plant 100 without further compression and liquefied in the process. The partial stream e is also passed through the main heat exchanger 7 without further compression, but only up to an intermediate point, and in a expansion turbine 8, which is coupled to a booster 9, expanded and partially liquefied.

Der Teilstrom f wird nach der weiteren Verdichtung in dem Booster 5 zum Teil in Form eines Teilstroms h bis zu einer Zwischenstelle durch den Hauptwärmetauscher 7 geführt, anschließend in dem Booster 9 weiter verdichtet, dem Hautwärmetauscher 7 an einer Zwischenstelle wieder zugeführt, und bis zum kalten Ende durch den Hauptwärmetauscher 7 geführt. Der Teilstrom h wird dabei verflüssigt. Ein weiterer Teil des Teilstroms f wird in Form eines Teilstroms i bis zum kalten Ende durch den Hauptwärmetauscher 7 geführt und dabei verflüssigt.After further compression in the booster 5, the partial stream f is partly led in the form of a partial stream h to an intermediate point through the main heat exchanger 7, then further compressed in the booster 9, fed back to the skin heat exchanger 7 at an intermediate point, and until cold End passed through the main heat exchanger 7. The partial stream h is liquefied. Another part of the partial flow f is passed in the form of a partial flow i to the cold end through the main heat exchanger 7 and liquefied in the process.

Der Teilstrom g wird bis zu einer Zwischenstelle durch den Hauptwärmetauscher 7 geführt, in der Entspannungsturbine 6 entspannt und dabei teilverflüssigt.The partial stream g is led to an intermediate point through the main heat exchanger 7, expanded in the expansion turbine 6 and partially liquefied.

Die verflüssigten Teilströme d, h und i werden jeweils über Entspannungsventile entspannt, vereinigt, und in eine Hochdrucksäule 11 des Destillationssäulensystems 10 eingespeist. Die teilverflüssigten Teilströme e und g werden ebenfalls vereinigt und in die Hochdrucksäule 11 eingespeist.The liquefied partial streams d, h and i are each expanded via expansion valves, combined, and fed into a high-pressure column 11 of the distillation column system 10. The partially liquefied partial streams e and g are also combined and fed into the high-pressure column 11.

In der Hochdrucksäule 11 werden eine sauerstoffangereicherte flüssige Sumpffraktion und eine stickstoffangereicherte gasförmige Kopffraktion gebildet. Die sauerstoffangereicherte flüssige Sumpffraktion wird in Form eines Stoffstroms h aus der Hochdrucksäule 11 abgezogen, durch einen Unterkühlungsgegenströmer 13 geführt, teilweise als Heizmedium in einem Sumpfverdampfer 14 einer Reinargonsäule 15 verwendet, und jeweils in definierten Anteilen in einen Kopfkondensator 16 der Reinargonsäule 15, einen Kopfkondensator 17 einer Rohargonsäule 18 sowie eine Niederdrucksäule 12 des Destillationssäulensystems 10 eingespeist. In den Verdampfungsräumen der Kopfkondensatoren 16, 17 der Rohargonsäule 15 und der Reinargonsäule 18 verdampfendes Fluid wird ebenfalls in die Niederdrucksäule 12 überführt. Entsprechendes gilt für Flüssigkeit, die zu Spülzwecken (zur Vermeidung der Anreicherung unerwünschter Komponenten) aus den Kopfkondensatoren 16, 17 der Rohargonsäule 15 und der Reinargonsäule 18 abgezogen wird.In the high pressure column 11, an oxygen-enriched liquid bottom fraction and a nitrogen-enriched gaseous top fraction are formed. The oxygen-enriched liquid bottom fraction is drawn off from the high-pressure column 11 in the form of a stream h, passed through a subcooling countercurrent 13, partly used as heating medium in a bottom evaporator 14 of a pure argon column 15, and in each case in defined proportions in a top condenser 16 of the pure argon column 15, a top condenser 17 a crude argon column 18 and a low pressure column 12 of the distillation column system 10 are fed. Fluid evaporating in the evaporation spaces of the top condensers 16, 17 of the crude argon column 15 and the pure argon column 18 is likewise transferred to the low-pressure column 12. The same applies to liquid which is drawn off from the top condensers 16, 17 of the crude argon column 15 and the pure argon column 18 for rinsing purposes (to avoid the accumulation of undesired components).

Vom Kopf der Hochdrucksäule 11 wird das gasförmige stickstoffreiche Kopfprodukt in Form eines Stoffstroms i abgezogen. Ein Teil hiervon wird unverflüssigt in Form eines Stoffstroms k in dem Hauptwärmetauscher 7 erwärmt und beispielsweise als Dichtgas B für die beteiligten Verdichter aus der Luftzerlegungsanlage 100 ausgeleitet. Ein weiterer Anteil wird in Form eines Stoffstroms I einem Hauptkondensator 19, der eine wärmetauschende Verbindung zwischen der Hochdrucksäule 11 und der Niederdrucksäule 12 herstellt, verflüssigt.The gaseous nitrogen-rich top product in the form of a stream i is withdrawn from the top of the high-pressure column 11. A part of this is heated in the main heat exchanger 7 without liquefaction in the form of a material flow k and, for example, discharged from the air separation plant 100 as sealing gas B for the compressors involved. Another portion is liquefied in the form of a stream I of a main condenser 19, which creates a heat-exchanging connection between the high-pressure column 11 and the low-pressure column 12.

Das verflüssigte Kopfprodukt der Hochdrucksäule 11 wird in Anteilen in Form eines Stoffstroms m als Rücklauf auf die Hochdrucksäule 11 aufgegeben, in Form eines Stoffstroms n nach Abkühlung in dem Unterkühlungsgegenströmer 13 in die Niederdrucksäule 12 entspannt, und in Form eines Stoffstroms o einer Innenverdichtung unterworfen, in dem Hauptwärmetauscher 5 erwärmt und als Innenverdichtungsprodukt C bereitgestellt.The liquefied overhead product of the high-pressure column 11 is fed in portions in the form of a material flow m as a return to the high-pressure column 11, in the form of a material flow n after cooling in the supercooling counterflow 13, expanded into the low-pressure column 12, and in the form of a material flow o subjected to internal compression, in the main heat exchanger 5 heated and provided as an internal compression product C.

Direkt unterhalb der Einspeisestelle der verflüssigten Teilströme d, h und i in die Hochdrucksäule 11 wird aus der Hochdrucksäule 11 ein Stoffstrom p in etwa gleicher Zusammensetzung flüssig entnommen, der nach einer Abkühlung in dem Unterkühlungsgegenströmer 13 in die Niederdrucksäule 12 entspannt wird.Directly below the feed point of the liquefied partial streams d, h and i into the high-pressure column 11, a stream of matter p of approximately the same composition is taken from the high-pressure column 11 in liquid form, which is expanded into the low-pressure column 12 after cooling in the supercooling counterflow 13.

In der Niederdrucksäule 12 werden eine sauerstoffreiche flüssige Sumpffraktion sowie eine stickstoffreiche gasförmige Kopffraktion gebildet. Erstere wird teilweise in Form eines Stoffstroms q innenverdichtet, in dem Hauptwärmetauscher 5 erwärmt, und als Innenverdichtungsprodukt D bereitgestellt. Ein weiterer Anteil kann in Form eines Stoffstroms r teilweise unterkühlt und als Flüssigprodukt E ausgeleitet werden.An oxygen-rich liquid bottom fraction and a nitrogen-rich gaseous top fraction are formed in the low-pressure column 12. The former is partially internally compressed in the form of a material flow q, heated in the main heat exchanger 5 and provided as an internal compression product D. Another portion can be partially supercooled in the form of a material flow r and discharged as a liquid product E.

Aus einer Flüssigkeitsrückhalteeinrichtung am Kopf der Niederdrucksäule 12 kann ein flüssiger stickstoffreicher Strom s abgezogen und als Flüssigstickstoffprodukt F aus der Luftzerlegungsanlage 100 ausgeführt werden. Ein vom Kopf der Niederdrucksäule 12 abgezogener gasförmiger stickstoffreicher Strom t wird durch den Unterkühlungsgegenströmer 13 und den Hauptwärmetauscher 5 geführt und als Stickstoffprodukt G auf dem Druck der Niederdrucksäule 12 bereitgestellt.A liquid nitrogen-rich stream s can be drawn off from a liquid retention device at the head of the low-pressure column 12 and can be carried out as a liquid nitrogen product F from the air separation plant 100. A gaseous nitrogen-rich stream t drawn off from the top of the low-pressure column 12 is passed through the supercooling counterflow 13 and the main heat exchanger 5 and is provided as nitrogen product G at the pressure of the low-pressure column 12.

Aus der Niederdrucksäule 12 wird ferner ein Strom u aus einem oberen Bereich abgezogen und nach Erwärmung in dem Unterkühlungsgegenströmer 13 und dem Hauptwärmetauscher 5 als Regeneriergas in der Reinigungseinrichtung 4 genutzt bzw. durch Abblasen an die Umgebung H verworfen. Entsprechendes gilt, bis auf die Erwärmung in dem Unterkühlungsgegenströmer 13, auch für einen Stoffstrom v aus der Niederdrucksäule 12.From the low-pressure column 12, a current u is also withdrawn from an upper region and, after heating in the supercooling countercurrent 13 and the main heat exchanger 5, is used as regeneration gas in the cleaning device 4 or is discarded to the environment H by blowing off. The same applies, apart from the heating in the subcooling counterflow 13, also for a material flow v from the low pressure column 12.

Am sogenannten Argonübergang oder auch darunter kann, wie eingangs erläutert, aus der Niederdrucksäule 12 an Argon angereichertes Fluid in Form eines Stoffstroms w entnommen und sumpfnah in die Rohargonsäule 18 eingespeist werden. Sumpfflüssigkeit aus der Rohargonsäule 18 kann mittels einer nicht gesondert bezeichneten Pumpe in Form eines Stoffstroms x in die Niederdrucksäule 12 zurückgeführt werden. Unkondensiertes Kopfgas wird aus der Rohargonsäule 12 in Form eines Stoffstroms y in die Reinargonsäule 15 überführt.At the so-called argon transition or also below, as explained at the beginning, fluid enriched in argon in the form of a material stream w can be removed from the low-pressure column 12 and fed into the crude argon column 18 near the sump. Bottom liquid from the crude argon column 18 can be returned to the low-pressure column 12 in the form of a material flow x by means of a pump (not specifically designated). Uncondensed overhead gas is transferred from the crude argon column 12 into the pure argon column 15 in the form of a stream y.

In dem Kopfkondensator der 16 der Reinargonsäule 15 wird ein flüssiger Rücklauf auf die Reinargonsäule 15 gebildet. Ein nicht verflüssigtes Kopfgas kann in Form eines Stoffstroms z an die Umgebung H abgegeben werden.A liquid return to the pure argon column 15 is formed in the top condenser 16 of the pure argon column 15. A non-liquefied overhead gas can be released to the environment H in the form of a stream z.

Ein Argonprodukt bzw. argonreiche Flüssigkeit wird der Reinargonsäule 15 sumpfseitig in Form eines Stoffstroms 101 entnommen und, über ein Ventil 21 geregelt, in einen Speichertank 20 überführt. Ein in dem Speichertank 20 verdampfter Anteil hiervon wird in der in Figur 1 veranschaulichten Ausgestaltung der Erfindung in Form eines Stoffstroms 102 über ein Ventil 22 druckgeregelt entnommen und in die Reinargonsäule 15 zurückgeleitet.An argon product or argon-rich liquid is removed from the bottom of the pure argon column 15 in the form of a stream 101 and, controlled by a valve 21, transferred to a storage tank 20. A portion of this evaporated in the storage tank 20 is in the in Figure 1 Illustrated embodiment of the invention in the form of a stream 102 taken pressure-controlled via a valve 22 and returned to the pure argon column 15.

Bei einem im Rahmen der vorliegenden Erfindung eingesetzten Speichertank kann es sich insbesondere um einen sogenannten Flachbodentank handeln, der insbesondere mit einer Perlitisolierung versehen sein kann. Ein entsprechender Speichertank kann auf einem Überdruck von ca. 50 bis ca. 500 mbar betrieben werden.A storage tank used in the context of the present invention can in particular be a so-called flat-bottom tank, which can in particular be provided with pearlite insulation. A corresponding storage tank can be operated at an overpressure of approx. 50 to approx. 500 mbar.

Claims (1)

Anlage (100) zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft, wobei die Anlage (100) ein Destillationssäulensystem (10) mit einer Argongewinnungssäule (15) aufweist, aus der eine argonreiche Flüssigkeit (101) entnehmbar ist, und wobei die Anlage (100) einen Speichertank (20) aufweist, in welchen die aus der Argongewinnungssäule (15) entnehmbare argonreiche Flüssigkeit (101) überführbar ist, dadurch gekennzeichnet, dass dem Speichertank (20) ein durch eine teilweise Verdampfung der argonreichen Flüssigkeit (101) gebildetes argonreiches Gas (101) entnehmbar und in die Argongewinnungssäule (15) rückspeisbar ist, wobei die Argongewinnungssäule insbesondere eine Rohargonsäule (18) oder eine Reinargonsäule (15) ist und wobei das durch die teilweise Verdampfung der argonreichen Flüssigkeit (101) gebildete argonreiche Gas (101) insbesondere in die Rohargonsäule (18) und/oder in die Reinargonsäule (15) rückspeisbar ist.Plant (100) for the production of argon by low-temperature separation of air, the plant (100) having a distillation column system (10) with an argon recovery column (15) from which an argon-rich liquid (101) can be taken off, and the plant (100) has a storage tank (20) in which the argon-rich liquid (101) which can be removed from the argon recovery column (15) can be transferred, characterized in that the storage tank (20) is provided with an argon-rich gas (101) formed by partial evaporation of the argon-rich liquid (101) ) can be removed and fed back into the argon recovery column (15), the argon recovery column being in particular a crude argon column (18) or a pure argon column (15) and the argon-rich gas (101) formed by the partial evaporation of the argon-rich liquid (101), in particular into the Raw argon column (18) and / or in the pure argon column (15) can be fed back.
EP19020090.7A 2018-10-31 2019-02-26 Apparatus for extracting argon by cryogenic decomposition of air Withdrawn EP3647701A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE202018005045.8U DE202018005045U1 (en) 2018-10-31 2018-10-31 Plant for the production of argon by cryogenic separation of air

Publications (1)

Publication Number Publication Date
EP3647701A1 true EP3647701A1 (en) 2020-05-06

Family

ID=64951614

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19020090.7A Withdrawn EP3647701A1 (en) 2018-10-31 2019-02-26 Apparatus for extracting argon by cryogenic decomposition of air

Country Status (2)

Country Link
EP (1) EP3647701A1 (en)
DE (1) DE202018005045U1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0722074A2 (en) * 1995-01-11 1996-07-17 The BOC Group plc Air separation
DE19636306A1 (en) * 1996-09-06 1998-02-05 Linde Ag Method and device for the production of argon by low-temperature separation of air
JP3333880B2 (en) * 1993-03-18 2002-10-15 新日本製鐵株式会社 Argon tank evaporation loss recovery device
EP2963367A1 (en) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for cryogenic air separation with variable power consumption
EP2980514A1 (en) 2014-07-31 2016-02-03 Linde Aktiengesellschaft Method for the low-temperature decomposition of air and air separation plant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3333880B2 (en) * 1993-03-18 2002-10-15 新日本製鐵株式会社 Argon tank evaporation loss recovery device
EP0722074A2 (en) * 1995-01-11 1996-07-17 The BOC Group plc Air separation
DE19636306A1 (en) * 1996-09-06 1998-02-05 Linde Ag Method and device for the production of argon by low-temperature separation of air
EP2963367A1 (en) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for cryogenic air separation with variable power consumption
EP2980514A1 (en) 2014-07-31 2016-02-03 Linde Aktiengesellschaft Method for the low-temperature decomposition of air and air separation plant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Industrial Gases Processing", 2006, WILEY-VCH, article "C ryogenic Rectification"

Also Published As

Publication number Publication date
DE202018005045U1 (en) 2018-12-17

Similar Documents

Publication Publication Date Title
EP2965029B1 (en) Air separation plant, method for obtaining a product containing argon, and method for creating an air separation plant
WO2016005030A1 (en) Method and device for the low-temperature separation of air at variable energy consumption
EP1482266B1 (en) Process and device for the recovery of Krypton and/or Xenon by cryogenic separation of air
EP1376037B1 (en) Air separation process and apparatus with a mixing column and krypton and xenon recovery
WO2009095188A2 (en) Method and device for low-temperature air separation
EP3410050B1 (en) Method for producing one or more air products and air separation system
EP2026024A1 (en) Process and device for producing argon by cryogenic separation of air
WO2020169257A1 (en) Method and system for low-temperature air separation
WO2020083528A1 (en) Method and unit for low-temperature air separation
DE102007035619A1 (en) Process and apparatus for recovering argon by cryogenic separation of air
EP1757884A2 (en) Process for the recovery of Krypton and/or Xenon by cryogenic separation of air
DE10103968A1 (en) Three-pillar system for the low-temperature separation of air
EP4065910A1 (en) Process and plant for low-temperature fractionation of air
WO2021078405A1 (en) Method and system for low-temperature air separation
EP3980705A1 (en) Method and system for low-temperature air separation
EP2914913B1 (en) Process for the low-temperature separation of air in an air separation plant and air separation plant
EP2600090B1 (en) Method and device for generating pressurised oxygen by cryogenic decomposition of air
DE102016015446A1 (en) Process for the cryogenic separation of air and air separation plant
EP1300640A1 (en) Process and device for producing ultra-high purity Nitrogen by cryogenic separation of air
EP3647701A1 (en) Apparatus for extracting argon by cryogenic decomposition of air
DE102017010001A1 (en) Process and installation for the cryogenic separation of air
WO2020187449A1 (en) Method and system for low-temperature air separation
WO2011110301A2 (en) Method and device for cryogenic separation of air
DE102018009780A1 (en) Process and plant for the low-temperature separation of air
DE202018006161U1 (en) Plant for the cryogenic separation of air

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE GMBH

18D Application deemed to be withdrawn

Effective date: 20201107