EP3645291B1 - Verfahren zum bedrucken einer gekrümmten oberfläche sowie vorrichtung zum bedrucken dreidimensionaler oberflächen - Google Patents

Verfahren zum bedrucken einer gekrümmten oberfläche sowie vorrichtung zum bedrucken dreidimensionaler oberflächen Download PDF

Info

Publication number
EP3645291B1
EP3645291B1 EP18733855.3A EP18733855A EP3645291B1 EP 3645291 B1 EP3645291 B1 EP 3645291B1 EP 18733855 A EP18733855 A EP 18733855A EP 3645291 B1 EP3645291 B1 EP 3645291B1
Authority
EP
European Patent Office
Prior art keywords
printed
printing
curvature
liquid
print head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18733855.3A
Other languages
English (en)
French (fr)
Other versions
EP3645291A1 (de
Inventor
Jörg R. Bauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FPT Robotik GmbH and Co KG
Original Assignee
FPT Robotik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FPT Robotik GmbH and Co KG filed Critical FPT Robotik GmbH and Co KG
Publication of EP3645291A1 publication Critical patent/EP3645291A1/de
Application granted granted Critical
Publication of EP3645291B1 publication Critical patent/EP3645291B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/407Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material
    • B41J3/4073Printing on three-dimensional objects not being in sheet or web form, e.g. spherical or cubic objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J25/00Actions or mechanisms not otherwise provided for
    • B41J25/001Mechanisms for bodily moving print heads or carriages parallel to the paper surface
    • B41J25/006Mechanisms for bodily moving print heads or carriages parallel to the paper surface for oscillating, e.g. page-width print heads provided with counter-balancing means or shock absorbers

Definitions

  • the invention relates to a method for printing a curved surface by means of a digital printing process, in which defined amounts of liquid are sprayed off from several individually controllable outlet openings arranged on a flat exit surface of a print head and impinging on the curved surface as liquid droplets.
  • the invention also relates to a device for printing three-dimensional surfaces. From the DE 10 2007 021 767 A1 a method for printing a component with two mutually inclined surface areas by means of a digital printing method is known. The mutually inclined surface areas merge into one another via a curved transition area. In a first step, the first surface area and at least part of the transition area are printed with a linear relative movement between a print head and the component.
  • the second surface area and at least part of the transition area are printed with a linear relative movement between the print head and the component.
  • a peculiarity of the method is that the total amount of pressure fluid reaching each surface unit of the transition area can be controlled in such a way that it corresponds to the amount reaching the flat surface areas; Because of the undefined printing conditions, however, the transition area can hardly be printed with fine patterns or lines which, for example, run obliquely over the curved transition area from one surface area to the other surface area.
  • Another printing process is from the DE 10 2011 086 015 A1 known.
  • the invention is based on the object of creating a method for printing a surface with which three-dimensionally curved surfaces can also be printed in a precisely predetermined manner by means of a digital printing process.
  • the invention is also based on the object of specifying a device for carrying out the method.
  • the part of the task of the invention relating to the method is achieved with a method according to claim 1.
  • the method according to the invention it is achieved that the amounts of liquid sprayed out of the outlet openings have sufficient time to form liquid droplets and that the liquid droplets reach the surface to be printed before they change their straight trajectory. In this way, a well-defined printing of the surface is achieved.
  • the specified arrangement of the exit surface relative to a convex or concave surface an advantageous use of the existing exit openings is achieved.
  • the amount of liquid dispensed is adapted to the inclination of the surface to be printed relative to the exit surface.
  • liquid droplets impinge on the surface to be printed in such a way that they do not move tangentially to the surface in a disadvantageous manner, which would lead to a deterioration in the print quality.
  • Claim 6 characterizes a method according to the invention, in which the surface to be printed is printed with a plurality of webs lying next to one another, which directly adjoin one another without a visible transition and without overlapping.
  • Claim 7 characterizes a method according to the invention in which the surface to be printed is printed with a plurality of strips lying next to one another, which are arranged next to one another with mutual overlap without a visible transition.
  • Claims 8 to 10 characterize implementation forms of the method with which printing on even large, uneven surfaces is possible with excellent print quality.
  • Claim 11 characterizes the basic structure of a device for carrying out the method according to the invention.
  • Claim 12 characterizes an advantageous embodiment of the drive devices for the brackets contained in the device.
  • Claim 13 characterizes an advantageous further development of the device according to the invention.
  • the ink-jet method is preferably used as the printing method, in which predetermined amounts of liquid are sprayed digitally controlled by a computer system from outlet openings or nozzles arranged in an outlet surface of a print head. These amounts of liquid emerge from the outlet opening in the form of a column of liquid. In the course of its flight, the column of liquid changes into an essentially spherical droplet that reaches the surface to be printed.
  • the exit openings are generally arranged in a planar exit surface of the printhead.
  • a number of outlet openings can be provided; it can too a plurality of rows arranged one behind the other in the direction of a relative movement between the print head and the surface to be printed may be present during a printing process, the outlet openings of which are preferably mutually offset.
  • Several individual printheads can be combined to form a larger printhead.
  • the printing width of a print head (maximum distance between outlet openings in a direction perpendicular to a relative movement between the print head and a surface to be printed) is generally between 10 mm and 100 mm.
  • the spraying of the liquid from the outlet openings is controlled by means of piezo elements. Depending on the geometry of the outlet opening and the associated piezo element, the liquid droplets have different volumes. Common volumes are between 3 pl and 160 pl. With a droplet size between 3 pl and 10 pl, high-quality decorative prints can be produced in a quality level between 600 and 1200 dpi.
  • droplet volumes greater than 80 pl are used.
  • Printing fluids for white paintwork, metallic paintwork or with electrical conductivity contain particles, so that it is advantageous to use correspondingly larger outlet openings.
  • Very thin layers for example, have a thickness of 1 ⁇ m, the thickness of lacquer layers is, for example, 8-20 ⁇ m.
  • the layers have a constant thickness at least in some areas and that, if the layers are applied next to one another in several strips, the strips merge seamlessly, ie without streaks.
  • the print openings or print nozzles are inclined in the direction of the relative movement, in particular are inclined in such a way that the droplets strike the surface approximately perpendicularly.
  • Fig. 1 shows a surface 10 of a component, for example an interior decorative part of a motor vehicle, which is to be printed by means of a digital printing process.
  • a print head 12 with a flat exit surface 14 is arranged above the surface 10.
  • a plurality of outlet openings 16 or nozzles is arranged in a manner known per se, which in Fig. 1 are shown schematically in such a way as they are visible in a view from below of the exit surface 14.
  • a peculiarity of a digital printing process is that predetermined amounts of liquid, controlled by piezo elements, for example, can be sprayed from the outlet openings 16, which can be individually controlled electronically in a manner known per se. These amounts of liquid emerge from the outlet openings 16 in the form of columns of liquid with a diameter approximately equal to that of the outlet openings and, as they fly, are transformed into droplets, which in general also start rotating about their axis. So that the printing of the surface takes place in a well-defined manner, the individual columns of liquid require a minimum flight distance B within which they can be converted into droplets. On the other hand, the flight path must not be too long so that the liquid droplets do not degenerate. The maximum permissible flight distance is marked with C.
  • the minimum required flight distance B is, for example, 0.5 mm.
  • a central region of the exit surface 14 is advantageously parallel to one that is placed tangentially on the surface 10 below the exit surface 14 Plane arranged at a distance B from the plane.
  • the curvature of the surface 10 determines the maximum width X according to the relationship given above, in which the surface 10 can be printed with perfect droplets corresponding to the trajectory criteria B and C during a relative movement between the surface 10 and the print head 12 perpendicular to the plane of the drawing .
  • the outlet openings 16 are arranged in a larger width A overall. The outlet openings that are outside the permissible printing width X are not activated.
  • a schematically illustrated distance sensor 18 is provided for a reliable determination of the distance between the exit surface 14 and the surface 10 to be printed. If printing takes place through multiple relative movements between print head 12 and surface 10 in several superimposed tracks, the thickness of the already applied printing layer can be taken into account by increasing the distance between exit surface 14 and surface 10 accordingly.
  • outlet openings 16 are controlled in such a way that, during the relative movement between the print head 12 and the surface 10, areas of the surface 10 are first printed by print openings arranged in a front row and then in the same operation from outlet openings arranged in a rear row again printing fluid is applied to one already printed surface area is applied, it is advantageous to tilt the exit surface 14 somewhat relative to the direction of the relative movement, so that the distance B of a subsequent row of exit openings 16 from the then already printed surface 10 is increased by the thickness of the already applied layer.
  • Fig. 2 shows one of the Fig. 1 Similar view, but with a concavely curved surface 10.
  • the width X of the area that can be printed with perfect droplet quality is given by the fact that the flight distance B is minimal at the edges of the area X and the flight distance C is maximal in the middle of the area.
  • Fig. 6 Based on Fig. 6 explains how convex and concave surfaces can be printed in such a way that printed tracks arranged next to one another are formed in a so-called multi-pass process, which merge seamlessly, ie without visible transitions.
  • the right half of the Fig. 6 shows a convexly curved surface area 10 with an axis of curvature M1.
  • a first printing step A1 a first web B1 is printed, a relative movement taking place between the print head 12 and the surface 10 in the direction of the axis of curvature M1.
  • the effective printing width of the exit surface 14 leads to a corresponding width X of the web B1.
  • the control of the relative rotation between printhead 12 and surface 10 between the two printing steps is so precise that according to FIG Fig.
  • the left half of the Fig. 6 shows the relationships in the case of a concave surface 10 with an axis of curvature M2.
  • Fig. 7 shows how, as an alternative to the representation of the Fig. 6 two webs B1 and B2 with mutual overlap can be applied to the surface 10 of a component 26 next to one another.
  • the relative rotational position between the print head 12 and the surface 10 to be printed is first established for the first printing step A1 during a first printing step A1, in which a first web B1 is applied.
  • the relative rotational position between the print head 12 and the surface 10, which is to be assumed in a second printing step A2 is determined in advance in the electronic data processing system.
  • the position of the print head 12 in the second printing step A2 as being further removed from the surface 10 than in the first printing step.
  • Fig. 7 there is an overlap region 30 between the two previously defined webs B1 and B2, within which the right edge of web B1 overlaps the left edge of web B2.
  • the droplets applied in the second printing step A2 are not shown blackened for the sake of clarity. So that no difference is visible between the print or color intensities of the adjacent webs B1, B2, the area-related droplet density in the overlap region 30 decreases from left to right when the first web B1 is applied.
  • the droplet density of the second printed web B2 increases accordingly from left to right in the overlap area 30, so that overall the same droplet density will exist in the overlap area 30 as in the areas of the webs B1, B2 adjacent to the overlap area 30. It goes without saying that instead of the areal density, the volume of the droplets also changes.
  • a layered structure of the webs B1, B2 is shown, which can be achieved by arranging the layers (4 layers in the example shown) with a single linear relative movement between the print head and the surface Exit opening rows are applied or each layer is applied by its own linear relative movement between the print head and the surface.
  • each of the layers arranged one above the other is constructed differently in the overlap region 30.
  • the areas of the left web B1 forming the overlap area 30 decrease from bottom to top, while the areas of the right web B2 forming the overlap area 30 increase from bottom to top.
  • the print head can be provided with sensing devices that sense the color intensity or print density of the layer or web that has already been applied before a new layer or web is applied, so that if there is a discrepancy between a target value and an actual value, the area density and / or size of the droplets can be adjusted after.
  • FIG. 9 shows the relative arrangement of a print head 12 relative to a curved surface 10 to be printed with successive printing steps A1 to A7.
  • the print head 12 has an exit surface with sectors S1 to S4 which are arranged next to one another in the plane of the drawing and extend perpendicular to the plane of the drawing with a predetermined length and each have exit openings.
  • the print head 12 is received in a holder, not shown, with which it can be moved horizontally and vertically in the plane of the drawing.
  • a component 26 provided with the surface 10 to be printed can be tilted by means of a holder 34 about an axis running perpendicular to the plane of the drawing and can be moved perpendicular to the plane of the drawing.
  • a first web B1 is printed only with the activation of outlet openings of the first sector S1.
  • the print head (12) is moved perpendicular to the longitudinal extension of the first web (B1) (perpendicular to the plane of the drawing in the transverse direction (horizontal in the plane of the drawing)) in such a way that the second sector S2 is above the first web B1.
  • the first web B1 is additionally printed from outlet openings of the second sector S2 and a second web B2 arranged next to the first is printed from outlet openings of the first sector S1.
  • outlet openings of the individual sectors are, as in the Figure 9 indicated, electronically controlled in such a way that they do not print the respective web with full droplet density, but complete printing of the webs is only achieved in the last printing step, after all webs from all sectors have been printed.
  • the relative movements between print head 12 and component 26 can be adapted to the conditions given by the curvature of surface 10.
  • the printing step A4 in which all sectors S1 to S4 are activated, after a respective Movement of the print head 12 perpendicular to the longitudinal extension of the tracks by the width of a sector and, if necessary, tilting of the component 26 can be repeated.
  • a surface to be printed after it has been completely covered by the print head through a meandering relative movement between it and the print head, with a printing step taking place during the parallel, straight passages of the meander-shaped path, can be printed homogeneously and with a precisely predetermined surface density.
  • homogeneous conductor tracks or homogeneous conductive layers, such as. B. OLED layers can be printed without any change in cross-section or resistance.
  • the described methods can also be printed on surfaces that have two flat areas of different inclination, which merge into one another in a line-like curved area.
  • Fig. 10 shows a perspective representation of several print heads 12a, 12b, 12c, 12d, which are received by a common holder (not shown) and combined to form a block, which are arranged one behind the other in the longitudinal direction of the webs B1 to B4. Otherwise the arrangement corresponds to Fig. 9 , the system being in the state after the printing step A4.
  • different liquids different colors, electrically conductive, non-conductive, transparent, etc.
  • a device or system for printing three-dimensional surfaces is in Fig. 11 shown schematically:
  • a holder 34 for receiving a component 26 with a surface 10 to be printed is movably attached to a frame 32.
  • the holder 34 and with it the surface 10 to be printed is linearly movable in the three dimensions of the space by means of known drive devices, such as those used for CNC precision machine tools (not shown) and can be rotated about three mutually perpendicular axes.
  • a print head 12 (e.g. of the XAAR type 1003 or DIMATIX) composed of several print modules in the example shown, with a flat exit surface 14 in which individually controllable exit openings or nozzles are arranged, is together with a liquid supply 36 on a holder 38 appropriate. Similar to the holder 34, the holder 38 and with it the exit surface 14 of the print head 12 can be moved linearly in the three dimensions of the space by means of known drive devices (not shown) and can be rotated about three mutually perpendicular axes.
  • the liquid supply 36 can contain different liquid supplies, e.g. B. normal printing inks, special colors, functional fluids with electrically conductive particles, lacquers, primers, fluids for applying electrically insulating layers, etc.
  • a sensor device 40 is also attached to the holder 38, with which a distance between the exit surface 14 and the surface 10 to be printed can be determined and / or with which an optical property of the surface to be printed or already printed can be detected.
  • geometrical data of the surface 10 to be printed for example CAD data and decor data
  • Programs contained in the control device convert the geometric data of the surface 10 and the decor data into control data for controlling the movements of the holders 34, 38, the supply of liquids to the print head 12 and the selection and control of the outlet openings.
  • Values determined by the sensor device 40 can be used to quickly determine target positions, to determine actual positions and printing states on the surface 10.
  • the holder 38 for the print head 12 is advantageously movable or drivable in the Z direction (distance between the print head and the surface 10 to be printed) and in the Y direction (lateral offset of the print paths).
  • the holder 34 for the component 26 to be printed can advantageously be driven linearly in the X direction (longitudinal direction of a printing web B1, B2) and rotatably driven about the X axis and the Y axis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Ink Jet (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Bedrucken einer gekrümmten Oberfläche mittels eines digitalen Druckverfahrens, bei dem aus mehreren an einer ebenen Austrittsfläche eines Druckkopfes angeordneten, einzeln ansteuerbaren Austrittsöffnungen definierte Flüssigkeitsmengen abgespritzt werden, die als Flüssigkeitströpfchen auf die gekrümmte Oberfläche auftreffen. Die Erfindung betrifft weiter eine Vorrichtung zum Bedrucken dreidimensionaler Oberflächen. Aus der DE 10 2007 021 767 A1 ist ein Verfahren zum Bedrucken eines Bauteils mit zwei zueinander geneigten Oberflächenbereichen mittels eines digitalen Druckverfahrens bekannt. Die zueinander geneigten Oberflächenbereiche gehen über einen gekrümmten Übergangsbereich ineinander über. In einem ersten Durchschritt wird der erste Oberflächenbereich und zumindest ein Teil des Übergangsbereiches unter linearer Relativbewegung zwischen einem Druckkopf und dem Bauteil bedruckt. In einem zweiten Druckschritt nach Schwenken des Bauteils um einen dem Neigungswinkel zwischen den Oberflächenbereichen entsprechenden Winkel wird der zweite Oberflächenbereich und zumindest ein Teil des Übergangsbereiches unter linearer Relativbewegung zwischen dem Druckkopf und dem Bauteil bedruckt. Eine Eigenart des Verfahrens liegt darin, dass die Menge der insgesamt auf jede Flächeneinheit des Übergangsbereiches gelangenden Druckflüssigkeit zwar so gesteuert werden kann, dass sie der auf die ebenen Oberflächenbereichen gelangenden Menge entspricht; wegen der undefinierten Druckbedingungen kann der Übergangsbereich jedoch kaum mit feinen Mustern oder Linien bedruckt werden, die beispielsweise von einem Oberflächenbereich zum anderen Oberflächenbereich schräg über den gekrümmten Übergangsbereich verlaufen.
  • Ein weiteres Druckverfahren ist aus der DE 10 2011 086 015 A1 bekannt. Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Bedrucken einer Oberfläche zu schaffen, mit dem auch dreidimensional gewölbte Oberflächen in genau vorbestimmten Weise mittels eines digitalen Druckverfahren bedruckt werden können. Der Erfindung liegt weiter die Aufgabe zugrunde, eine Vorrichtung zur Durchführung des Verfahrens anzugeben.
  • Der das Verfahren betreffende Teil der Erfindungsaufgabe wird mit einem Verfahren gemäß dem Anspruch 1 gelöst. Mit dem erfindungsgemäßen Verfahren wird erreicht, dass die aus den Austrittsöffnungen abgespritzten Flüssigkeitsmengen ausreichend Zeit zur Bildung von Flüssigkeitströpfchen haben und dass die Flüssigkeitströpfchen auf die zu bedruckende Oberfläche gelangen, bevor sie ihre geradlinige Flugbahn ändern. Damit wird ein wohldefiniertes Bedrucken der Oberfläche erreicht. Mit der angegebenen Anordnung der Austrittsfläche relativ zu einer konvexen oder konkaven Oberfläche wird eine vorteilhafte Nutzung der vorhandenen Austrittsöffnungen erzielt.
  • Mit den Merkmalen des Anspruchs 2 wird eine optimale Breite einer Druckbahn erzielt.
  • Mit den Merkmalen des Anspruchs 3 wird die abgegebene Flüssigkeitsmenge an die Neigung der zu bedruckenden Oberfläche relativ zu Austrittsfläche angepasst.
  • Mit den Merkmalen des Anspruchs 4 wird erreicht, dass die Flüssigkeitströpfchen derart auf die zu bedruckende Oberfläche auftreffen, dass sie sich nicht in nachteiliger Weise tangential zur Oberfläche bewegen, was zu einer Verschlechterung der Druckqualität führen würde.
  • Mit den Merkmalen des Anspruchs 5 wird erreicht, dass bei dreidimensional gekrümmten Oberflächen eine möglichst breite Druckbahn möglich ist.
  • Der Anspruch 6 kennzeichnet ein erfindungsgemäßes Verfahren, bei dem die zu bedruckende Oberfläche mit mehreren, nebeneinander liegenden Bahnen bedruckt wird, die ohne sichtbaren Übergang und ohne Überlappung unmittelbar aneinander angrenzen.
  • Der Anspruch 7 kennzeichnet ein erfindungsgemäßes Verfahren, bei dem die zu bedruckende Oberfläche mit mehreren, nebeneinander liegenden Bahnen bedruckt wird, die mit gegenseitiger Überlappung ohne sichtbaren Übergang nebeneinander angeordnet sind.
  • Die Ansprüche 8 bis 10 kennzeichnen Durchführungsformen des Verfahrens, mit denen eine Bedruckung auch großer unebener Oberflächen mit ausgezeichneter Druckqualität möglich ist.
  • Der Anspruch 11 kennzeichnet den grundsätzlichen Aufbau einer Vorrichtung zum Durchführen des erfindungsgemäßen Verfahrens.
  • Der Anspruch 12 kennzeichnet eine vorteilhafte Ausführungsform der Antriebseinrichtungen für die in der Vorrichtung enthaltenen Halterungen.
  • Der Anspruch 13 kennzeichnet eine vorteilhafte Weiterbildung der erfindungsgemäßen Vorrichtung.
  • Bevor die Erfindung anhand schematischer Zeichnungen beispielsweise und mit weiteren Einzelheiten erläutert wird, seien einige allgemeine Anmerkungen zu digitalen Druckverfahren vorangestellt:
    Als Druckverfahren wird vorzugsweise das Ink-jet Verfahren eingesetzt, bei dem digital über ein Rechnersystem gesteuert aus in einer Austrittsfläche eines Druckkopfes angeordneten Austrittsöffnungen bzw. Düsen vorbestimmte Flüssigkeitsmengen abgespritzt werden. Diese Flüssigkeitsmengen treten in Form einer Flüssigkeitssäule aus der Austrittsöffnung aus. Die Flüssigkeitssäule wandelt sich im Verlauf ihres Fluges in ein im Wesentlichen kugelförmiges Tröpfchen um, das auf die zu bedruckende Oberfläche gelangt.
  • Die Austrittsöffnungen sind im Allgemeinen in einer ebenen Austrittsfläche des Druckkopfes angeordnet. Es kann eine Reihe von Austrittsöffnungen vorgesehen sein; es können auch mehrere, in Richtung einer Relativbewegung zwischen Druckkopf und zu bedruckender Oberfläche während eines Druckvorgangs hintereinander angeordnete Reihen vorhanden sein, deren Austrittsöffnungen vorzugsweise gegenseitig versetzt sind. Es können mehrere einzelne Druckköpfe modular zu einem größeren Druckkopf zusammengesetzt werden.
  • Die Druckbreite eines Druckkopfes (maximale Entfernung zwischen Austrittsöffnungen in einer Richtung senkrecht zu einer Relativbewegung zwischen dem Druckkopf und einer zu bedruckenden Oberfläche) liegt im allgemeinen zwischen 10 mm und 100 mm. Das Abspritzen der Flüssigkeit aus den Austrittsöffnungen wird mittels Piezoelementen gesteuert. Je nach Geometrie der Austrittsöffnung und des zugehörigen Piezoelements haben die Flüssigkeitströpfchen unterschiedliche Volumina. Gebräuchliche Volumina liegen zwischen 3 pl und 160 pl. Mit einer Tröpfchengröße zwischen 3 pl und 10 pl können hochwertige Dekordrucke in einer Qualitätsstufe zwischen 600 und 1200 dpi hergestellt werden.
  • Für eine Lackierung wird beispielsweise mit Tröpfchenvolumina größer 80 pl gearbeitet.
  • Druckflüssigkeiten für Weißlackierungen, Metalliclackierungen oder mit elektrischer Leitfähigkeit enthalten Partikel, so dass dann vorteilhaft entsprechend größere Austrittsöffnungen verwendet werden.
  • Sehr dünne Schichten haben beispielsweise eine Dicke von 1 µm, die Dicke von Lackschichten beträgt beispielsweise 8-20 µm.
  • Auf eine zu bedruckende Oberfläche können vorzugsweise in aufeinander folgenden Druckschritten unterschiedlichste Schichten einzeln, übereinander oder nebeneinander aufgebracht werden, beispielsweise
    • eine Dekorschicht,
    • eine Funktionsschicht mit leitfähigen Bereichen,
    • uni Farb- oder Lackschichten, transparent oder deckend,
    • Haftvermittlungsschichten usw.
  • Für eine einwandfreie Qualität der aufgebrachten Schichten ist wichtig, dass die Schichten zumindest bereichsweise eine konstante Dicke aufweisen und dass, wenn die Schichten in mehreren Bahnen nebeneinander aufgebracht werden, die Bahnen übergangslos, d.h. streifenfrei, ineinander übergehen.
  • Vorteilhaft ist, beim Drucken eines Dekors die aufgespritzten Tröpfchen durch Trocknung, beispielsweise mittels UV-Licht, sofort zu fixieren, damit die Positionsbezogenheit der Tröpfchen, die die Qualität eines guten Dekors ausmacht, erhalten bleibt.
  • Beim Aufbringen von Lacken oder Funktionsflächen dagegen ist es vorteilhaft, wenn ein Trocknungsprozess erst aktiviert wird, wenn sich die Flüssigkeitströpfchen zu einer homogenen Schicht verbunden haben.
  • Weiter ist es insbesondere bei großen Druckgeschwindigkeiten, d.h. großer Geschwindigkeit der Relativbewegung zwischen Druckkopf und zu bedruckender Oberfläche, vorteilhaft, wenn die Drucköffnungen bzw. Druckdüsen in Richtung der Relativbewegung geneigt sind, insbesondere derart geneigt sind, dass die Tröpfchen etwa senkrecht auf die Oberfläche auftreffen.
  • Im Folgenden wird die Erfindung anhand schematischer Zeichnungen beispielsweise und mit weiteren Einzelheiten erläutert.
  • Es stellen dar
  • Fig. 1:
    einen Druckkopf mit darunter angeordneter, konvex gekrümmter, zu bedruckender Oberfläche,
    Fig. 2:
    einen Druckkopf mit darunter angeordnete konkav gekrümmter, zu bedruckender Oberfläche,
    Fig. 3:
    Skizzen zur Erläuterung der Bedruckung einer Kugel,
    Fig. 4:
    eine Skizze zur Erläuterung der Bedruckung einer zylindrisch gewölbten Oberfläche,
    Fig. 5:
    eine Skizze zur Erläuterung der Bedruckung einer dreidimensional gewölbten Oberfläche,
    Fig. 6:
    Ansichten zur Erläuterung der Bedruckung konkav oder konvex gewölbter Oberflächen mit überlappungsfrei aneinander angrenzenden Bahnen,
    Fig. 7 und 8:
    Ansichten zur Erläuterung der Bedruckung konkav oder konvex gewölbter Oberflächen mit überlappend nebeneinander angeordneten Bahnen,
    Fig. 9:
    Ansichten zur Erläuterung einer weiteren Durchführungsform des erfindungsgemäßen Verfahrens,
    Fig. 10:
    eine perspektivische Ansicht mehrerer Druckköpfe und ihrer Anordnung relativ zur zu bedruckenden Oberfläche und
    Fig. 11:
    eine Prinzipansicht einer Vorrichtung zur Durchführung eines erfindungsgemäßen Verfahrens.
  • Fig. 1 zeigt eine Oberfläche 10 eines Bauteils, beispielsweise eines Innenraumdekorteils eines Kraftfahrzeugs, die mittels eines digitalen Druckverfahrens bedruckt werden soll. Dazu ist über der Oberfläche 10 ein Druckkopf 12 mit einer ebenen Austrittsfläche 14 angeordnet. In der Austrittsfläche 14 ist in an sich bekannter Weise eine Vielzahl von Austrittsöffnungen 16 bzw. Düsen angeordnet, die in Fig. 1 schematisch derart dargestellt sind, wie sie in einer Sicht von unten auf die Austrittsfläche 14 sichtbar sind.
  • Eine Eigenart eines digitalen Druckverfahrens, beispielsweise eines Ink-Jet Druckverfahrens liegt darin, dass aus den Austrittsöffnungen 16, die in an sich bekannter Weise elektronisch einzeln ansteuerbar sind, vorbestimmte Flüssigkeitsmengen, beispielsweise von Piezoelementen gesteuert, abspritzbar sind. Diese Flüssigkeitsmengen treten aus den Austrittsöffnungen 16 in Form von Flüssigkeitssäulen mit einem Durchmesser etwa gleich dem der Austrittsöffnungen aus und formen sich bei ihrem Flug in Tröpfchen um, die im allgemeinen zusätzlich in um ihre Achse kreisende Bewegung geraten. Damit das Bedrucken der Oberfläche in wohl in definierter Weise erfolgt, benötigen die einzelnen Flüssigkeitsäulen eine Mindestflugstrecke B, innerhalb der sie sich in Tröpfchen umwandeln können. Anderseits darf die Flugstrecke nicht zu lang sein, damit die Flüssigkeitströpfchen nicht degenerieren. Die maximal zulässige Flugstrecke ist mit C bezeichnet.
  • Für Flüssigkeitströpfchen mit einem Volumen von 30 pl beträgt die minimal erforderliche Flugstrecke B beispielsweise 0,5 mm. Die maximal zulässige Flugstrecke C beträgt 2 mm. Wenn der Krümmungsradius der Oberfläche 10 den Wert r (mm) hat und die Strecke (C - B) mit t (mm) bezeichnet wird, so ergibt sich aufgrund der geometrischen Beziehungen für die zulässige Breite X (mm), wenn t klein im Vergleich zu r, näherungsweise folgender Wert: X = 2 × t × r 0,5
    Figure imgb0001
  • Wie aus Fig. 1 ersichtlich, wird vorteilhafterweise ein mittlerer Bereich der Austrittsfläche 14 parallel zu einer unterhalb der Austrittsfläche 14 tangential an die Oberfläche 10 gelegten Ebene im Abstand B von der Ebene angeordnet. Durch die Krümmung der Oberfläche 10 ist dann gemäß der vorstehend angegebenen Beziehung die maximale Breite X bestimmt, in der die Oberfläche 10 bei einer Relativbewegung zwischen der Oberfläche 10 und dem Drucckopf 12 senkrecht zur Zeichenebene mit den Flugbahnkriterien B und C entsprechenden einwandfreien Tröpfchen bedruckt werden kann. Wie ersichtlich, sind die Austrittsöffnungen 16 insgesamt in einer größeren Breite A angeordnet. Die Austrittsöffnungen, die außerhalb der zulässigen Druckbreite X liegen, werden nicht angesteuert.
  • Für eine sichere Bestimmung des Abstandes zwischen der Austrittsfläche 14 und der zu bedruckenden Oberfläche 10 ist ein schematisch dargestellter Abstandssensor 18 vorgesehen. Wenn ein Bedrucken durch mehrfache Relativbewegung zwischen Druckkopf 12 und Oberfläche 10 in mehreren übereinander liegenden Bahnen erfolgt, kann die Dicke der bereits aufgebrachten Druckschicht durch entsprechende Vergrößerung des Abstandes zwischen Austrittsfläche 14 und Oberfläche 10 berücksichtigt werden.
  • Wenn die Austrittsöffnungen 16 derart angesteuert werden, dass bei der Relativbewegung zwischen dem Druckkopf 12 und der Oberfläche 10 Bereiche der Oberfläche 10 zunächst von in einer vorderen Reihe angeordneten Drucköffnungen bedruckt werden und anschließend im selben Arbeitsgang von in einer hinteren Reihe angeordneten Austrittsöffnungen erneut Druckflüssigkeit auf einen bereits bedruckten Oberflächenbereich aufgebracht wird, ist es vorteilhaft, die Austrittsfläche 14 relativ zur Richtung der Relativbewegung etwas zu verkippen, so dass der Abstand B einer nachfolgenden Reihe von Austrittsöffnungen 16 von der dann bereits bedruckten Oberfläche 10 um die Dicke der bereits aufgebrachten Schicht vergrößert ist.
  • Weitere Aspekte, die bei der Bestimmung der zu aktivierenden Austrittsöffnungen und der Volumina der abzuspritzenden Flüssigkeitströpfchen berücksichtigt werden können, sind folgende:
    Wie aus Fig. 1 ersichtlich nimmt das Verhältnis zwischen der Größe eines Bereiches der zu bedruckenden Oberfläche 10 und der Größe des ihm zugeordneten Bereiches der Austrittsfläche 14 entsprechend dem Kehrwert des Kosinus des Winkels zwischen dem zu bedruckenden Oberflächenbereich und der Austrittsfläche 14 zu. Für eine gleichmäßige Flächendichte der Bedruckung ist es daher vorteilhaft, wenn die Volumina der von den entsprechenden Bereichen der Austrittsfläche abgespritzten Flüssigkeit ebenfalls entsprechend dem Kehrwert des Kosinus zunehmen.
  • Wenn in die Flüssigkeitströpfchen schräg auf die zu bedruckende Oberfläche auftreffen, kann eine "Verwaschung" auftreten. Es ist daher vorteilhaft, Oberflächenbereiche, die zur Austrittsfläche um mehr als 6 Grad (Dekor) bzw. 12 Grad (Lack) geneigt sind, in einem jeweiligen Druckschritt nicht zu bedrucken.
  • Fig. 2 zeigt eine der Fig. 1 ähnliche Ansicht, jedoch mit einer konkav gewölbten Oberfläche 10. Wie ersichtlich, ist die Breite X des mit einwandfreier Tröpfchenqualität bedruckbaren Bereiches dadurch gegeben, dass an den Rändern des Bereiches X die Flugstrecke B minimal und in der Mitte des Bereiches die Flugstrecke C maximal ist.
  • Anhand der Fig. 3 werden weitere Aspekte der Erfindung erläutert.
  • In einem Computer 20 sind die Oberflächendaten eines zu bedruckenden Gegenstandes, im dargestellten Beispiel einer Kugel 22, gespeichert. Anhand der Krümmung der zu bedruckenden Oberfläche 10 der Kugel 22, also dem Radius der Kugel, Daten des Druckkopfes 12, wie Durchmesser der Austrittsöffnungen, Volumina der abgespritzten Flüssigkeitsmengen, Konsistenz der Druckflüssigkeit usw. werden die minimale und die maximale Flugstrecke eines Tröpfchen, wie anhand Fig. 1 erläutert, berechnet. Anhand des Kugeldurchmessers wird anschließend die maximale Druckbreite X1 berechnet, mit der die Oberfläche der Kugel bedruckt werden kann. Die Kugeloberfläche wird in einzelne Segmente 24 unterteilt, die jeweils in einer Äquatorebene der Kugel die maximal zulässige Druckbreite X1 haben. Das Bedrucken der Kugel erfolgt dann beispielsweise so, dass der Druckkopf 12 in dem vorbestimmten Abstand B (Fig. 1) über dem Nordpol der Kugel angeordnet wird und die Kugel um eine in der Zeichnungsebene verlaufende waagerechte Achse (nicht eingezeichnet) um 360° gedreht wird. Dabei werden zwei sich diametral gegenüberliegende Segmente 24 bedruckt. Die Ansteuerung der einzelnen Austrittsöffnungen 16 des Druckkopfes 12 ist dabei derart, dass ausgehend von den Polen der Kugel die Breite des bedruckten Segments bis zu der Maximalbreite X1 zunimmt und dann wieder abnimmt. Nach Bedrucken der beiden sich diametral gegenüberliegenden Segmente wird die Kugel oder der Druckkopf 12 um eine senkrechte Achse um einen der maximalen Breite X1 eines Segments entsprechenden Winkel verdreht, so dass anschließend zwei weitere, sich gegenüberliegende Segmente bedruckt werden können usw. Zu bedruckende Oberflächen haben nur selten kugelförmige oder teilkugelförmige Gestalt. Häufiger sind Oberflächen, die zumindest bereichsweise zylindrisch gekrümmt sind oder die in aufeinander senkrecht stehenden Richtungen mit unterschiedlichen Radien gekrümmt sind. Bei zylindrisch gekrümmten Oberflächen sind folgende Bedruckungsarten vorteilhaft:
    • Wenn in Richtung der Zylinderachse Z (Fig. 4) gesehen eine gemäß Fig. 1 ermittelte zulässige Druckbreite X den gesamten zu bedruckenden Bereich überdeckt, ist es vorteilhaft die zylindrisch gekrümmten Oberfläche in einem Schritt zu bedrucken, bei dem eine Relativbewegung zwischen der Oberfläche und dem Druckkopf in Richtung der Zylinderachse Z erfolgt. Ist die zulässige Breite schmaler als die Breite der zu bedruckenden Oberfläche, so können in aufeinander folgenden Druckschritten nebeneinander liegende Bahnen gedruckt werden. Alternativ kann es vorteilhaft sein, die Bahnen B1, B2, ...BN derart zu legen, dass sie in Umfangsrichtung der zylindrischen Krümmung gerichtet sind, wie in Fig. 4 dargestellt. Es kann dann die volle Breite des Druckkopfes 12 genutzt werden, da die zu bedruckende Oberfläche senkrecht zur Richtung der Relativbewegung zwischen Druckkopf und Oberfläche nicht gekrümmt ist.
    • Wenn eine Oberfläche mit zwei senkrecht aufeinander stehenden Krümmungsachsen und unterschiedlichen Krümmungsradien bedruckt werden soll (Fig. 5), und dies nicht in einer einzigen Bahn erfolgen kann, ist es für eine optimale Nutzung der Breite des Druckkopfes 12 vorteilhaft, wenn die Längsrichtung der Bahnen B1, B2 in Umfangsrichtung der Krümmung mit dem kleineren Krümmungsradius gerichtet ist und die Bahnen B1, B2 in Umfangsrichtung der Krümmung mit dem größeren Krümmungsradius benachbart sind. Die Oberfläche 10 der Fig. 5 weist quer zu ihrer Längserstreckung (von links nach rechts in der Figur) eine geringere Wölbung auf als quer zu ihrer Längserstreckung. Es versteht sich, dass die Breiten X1, X2 der Druckbahnen B1, B2 bei sich in Querrichtung der Oberfläche ändernder Wölbung aufgrund der anhand Fig. 1 erläuterten Randbedingungen unterschiedlich sein können. Der Abstand zwischen Druckkopf 12 und der Oberfläche 10 wird während der Relativbewegung zwischen der Oberfläche 10 und dem Druckkopf 12 während des Druckens derart gesteuert, dass die Bedingungen der Fig. 1 ständig erfüllt sind. Die Breite X1, X2 jeder Bahn ist längs deren gesamter Länge vorteilhaft konstant und ist dadurch durch die maximale Wölbung der Oberfläche quer zur Längsrichtung längs der gesamten Länge der Bahn gegeben.
  • Anhand der Fig. 6 wird erläutert, wie konvexe und konkave Oberflächen derart bedruckt werden können, dass nebeneinander angeordnete bedruckte Bahnen in einem sog. Multi-Pass Verfahren ausgebildet werden, die übergangslos, d.h. ohne sichtbare Übergänge, ineinander übergehen.
  • Die rechte Hälfte der Fig. 6 zeigt einen konvex gekrümmten Oberflächenbereich 10 mit einer Krümmungsachse M1. In einem ersten Druckschritt A1 wird eine erste Bahn B1 gedruckt, wobei eine Relativbewegung zwischen dem Druckkopf 12 und der Oberfläche 10 in Richtung der Krümmungsachse M1 erfolgt. Die dabei wirksame Druckbreite der Austrittsfläche 14 führt zu einer entsprechenden Breite X der Bahn B1. Nach Ausbilden der Bahn B1 erfolgt eine Relativdrehung zwischen dem Druckkopf12 und der Oberfläche 10 um einen Winkel derart, dass die von dem Druckkopf 12 bei einem anschließenden Druckschritt A2 aufgebrachte Bahn B2 ohne Überlappung nahtlos an die Bahn B1 anschließt. Die Steuerung der Relativdrehung zwischen Druckkopf 12 und Oberfläche 10 zwischen den beiden Druckschritten ist so genau, dass die gemäß Fig. 6 am linken Rand der Bahn B2 auf die Oberfläche 10 gelangenden Tröpfchen exakt an die am gem. Fig. 6 rechten Rand der Bahn B1 aufgebrachten Tröpfchen anschließen so als wären sie Bestandteil einer gemeinsamen breiten Druckbahn. Auf diese Weise gehen die beiden Bahnen B1, B2 nahtlos ineinander über und es entsteht eine ohne sichtbare Naht aus den beiden Bahnen B1 und B2 zusammengesetzte bedruckte Fläche.
  • Die linke Hälfte der Fig. 6 zeigt die Verhältnisse bei einer konkaven Oberfläche 10 mit einer Krümmungsachse M2. Wie ersichtlich ist auch hier nach einem Aufbringen einer ersten Bahn Bleine Relativdrehung zwischen Druckkopf 12 und Oberfläche 10 derart möglich, dass die zweite Bahn B2 ohne Überlappung mit der ersten Bahn B1 unmittelbar an diese anschließend, also ohne sichtbaren Übergang, neben der ersten Bahn aufgebracht werden kann.
  • Das anhand der Fig. 6 erläuterte Verfahren, bei dem benachbarte Bahnen überlappungsfrei ohne sichtbaren Übergang aneinander grenzen, wird vorteilhaft angewendet, wenn die Drehstellung zwischen dem Druckkopf 12 und der zu bedruckenden Oberfläche 10 zwischen dem Aufbringen zweier benachbarter Druckbahnen nur wenig, beispielsweise um einem Winkel kleiner als 6 Grad, vorteilhaft 2-3 Grad (Dekor) bzw. kleiner als 12 Grad (Lack, Leiterbahnen, Funktionsflächen usw.) verändert wird. Der Auftreffwinkel der den einen Rand einer bedruckten Bahn ausbildenden Tröpfchen auf die bedruckte Oberfläche unterscheidet sich dann von dem Auftreffwinkel der den angrenzenden Rand der benachbarten Bahn bildenden Tröpfchen nur um den kleinen Verdrehwinkel, so dass der Druck der aneinander grenzenden Ränder unter weitgehend gleichen Bedingungen erfolgt und keine Veränderung sichtbar ist.
  • Das Verfahren, nach Drucken einer Bahn eine benachbarte Bahn nach geringer Verschwenkung zwischen Druckkopf und Oberfläche zu drucken, kann zwar bei stark gekrümmten Oberflächen zu schmaleren Bahnen und damit zu einer Zunahme der Bahnen führen; für die Druckqualität ist dies jedoch vorteilhaft.
  • Fig. 7 zeigt, wie alternativ zur Darstellung der Fig. 6 nebeneinander zwei Bahnen B1 und B2 mit gegenseitiger Überlappung auf die Oberfläche 10 eines Bauteils 26 aufgebracht werden können. Dazu wird in einem elektronischen Datenverarbeitungssystem zunächst für den ersten Druckschritt A1 die relative Drehstellung zwischen Druckkopf 12 und der zu bedruckenden Oberfläche 10 während eines ersten Druckschritts A1 festgelegt, in dem eine erste Bahn B1 aufgebracht wird. Weiter wird vorab in dem elektronischen Datenverarbeitungssystem die relative Drehstellung zwischen dem Druckkopf 12 und der Oberfläche 10 festgelegt, die in einem zweiten Druckschritt A2 eingenommen werden soll. Der Übersichtlichkeit halber ist in Fig.7 die Position des Druckkopfes 12 beim zweiten Druckschritt A2 als weiter entfernt von der Oberfläche 10 als im ersten Druckschritt dargestellt. Tatsächlich ist der Abstand zwischen dem Druckkopf 12 und der Oberfläche 10 während des ersten und des zweiten Druckschrittes vorteilhafterweise gleich. Wie aus Fig.7 ersichtlich, besteht zwischen den beiden vorher festgelegten Bahnen B1 und B2 ein Überlappungsbereich 30, innerhalb dessen der rechte Rand der Bahn B1 den linken Rand der Bahn B2 überlappt. Die im zweiten Druckschritt A2 aufgebrachten Tröpfchen sind lediglich der Übersichtlichkeit halber nicht geschwärzt dargestellt. Damit kein Unterschied zwischen den Druck- bzw. Farbintensitäten der benachbarten Bahnen B1, B2 sichtbar ist, nimmt die flächenbezogene Tröpfchendichte im Überlappungsbereich 30 beim Aufbringen der ersten Bahn B1 von links nach rechts ab. Die Tröpfchendichte der zweiten Druckbahn B2 nimmt im Überlappungsbereich 30 entsprechend von links nach rechts zu, so dass insgesamt im Überlappungsbereich 30 die gleiche Tröpfchendichte besteht wird wie in den dem Überlappungsbereich 30 benachbarten Bereichen der Bahnen B1, B2. Es versteht sich, dass anstelle der Flächendichte auch das Volumen der Tröpfchen verändert.
  • In Fig. 8 ist ein schichtweiser Aufbau der Bahnen B1, B2 dargestellt, der erreicht werden kann, indem die Schichten (im dargestellten Beispiel 4 Schichten) bei einmaliger linearer Relativbewegung zwischen Druckkopf und Oberfläche nacheinander durch hintereinander angeordnete Austrittsöffnungsreihen aufgebracht werden oder jede Schicht durch eine eigene lineare Relativbewegung zwischen Druckkopf und Oberfläche aufgebracht wird. Wie ersichtlich, ist jede der übereinander angeordneten Schichten im Überlappungsbereich 30 anders aufgebaut. Die den Überlappungsbereich 30 bildenden Bereiche der linken Bahn B1 nehmen von unten nach oben ab, während die den Überlappungsbereich 30 bildenden Bereiche der rechten Bahn B2 von unten nach oben zunehmen.
  • Zur zusätzlichen Qualitätskontrolle kann der Druckkopf mit Sensiervorrichtungen versehen sein, die die Farbintensität bzw. Druckdichte der bereits aufgebrachten Schicht bzw. Bahn vor dem Aufbringen einer neuen Schicht bzw. Bahn sensiert, so dass bei einer Abweichung zwischen einem Sollwert und einem Istwert die Flächendichte und/oder Größe der Tröpfchen nach justiert werden kann.
  • Das anhand der Fig. 7 und 8 geschilderte Verfahren des Aufbringens benachbarter Bahnen mit gegenseitiger Überlappung, insbesondere das Verfahren gem. Fig. 8, ist beispielsweise dann besonders vorteilhaft, wenn die Bahnen von elektrischen Leitern gekreuzt werden, die dadurch hergestellt werden, dass elektrisch leitende Flüssigkeitströpfchen aufgespritzt werden. Die elektrischen Leiter führen dann ohne jede Störung (Querschnittsänderung) übergangslos von einer Bahn in eine benachbarte Bahn.
  • Anhand der Fig. 9 wird im Folgenden ein Verfahren erläutert, mit dem insbesondere gewölbte Oberflächen 10 großflächig in ausgezeichneter Qualität bedruckt werden können. Die Figur zeigt die relative Anordnung eines Druckkopfes 12 relativ zu einer gewölbten, zu bedruckenden Oberfläche 10 bei nacheinander erfolgenden Druckschritten A1 bis A7. Der Druckkopf 12 weist eine Austrittsfläche mit in der Zeichnungsebene nebeneinander angeordneten Sektoren S1 bis S4 auf, die sich senkrecht zur Zeichnungsebene mit vorbestimmter Länge erstrecken und jeweils Austrittsöffnungen aufweisen. Der Druckkopf 12 ist in einer nicht dargestellten Halterung aufgenommen, mit der er in der Zeichnungsebene horizontal und vertikal bewegbar ist. Ein mit der zu bedruckenden Oberfläche 10 versehenes Bauteil 26 ist mittels einer Halterung 34 um eine senkrecht zur Zeichnungsebene verlaufende Achse kippbar und senkrecht zur Zeichnungsebene bewegbar.
  • In einem ersten Druckschritt A1 wird unter Relativbewegung zwischen der Oberfläche 10 und dem Druckkopf 12 senkrecht zur Zeichnungsebene eine erste Bahn B1 nur unter Aktivierung von Austrittsöffnungen des ersten Sektors S1 bedruckt. Nach dem ersten Druckschritt A1 wird der Druckkopf (12) senkrecht zur Längserstreckung der ersten Bahn (B1) (senkrecht zur Zeichnungsebene in Querrichtung (horizontal in der Zeichnungsebene)) derart bewegt, dass sich der zweite Sektor S2 über der ersten Bahn B1 befindet. Anschließend wird in einem zweiten Druckschritt A2 die erste Bahn B1 zusätzlich aus Austrittsöffnungen des zweiten Sektor S2 bedruckt wird und eine zweite, neben der ersten angeordnete Bahn B2 aus Austrittsöffnungen des ersten Sektors S1 bedruckt wird.
  • Die Vorgänge werden wiederholt, bis im Druckschritt A4 eine vierte Bahn B4 mit Austrittsöffnungen des ersten Sektor S1 bedruckt wird und die benachbarten, bereits bedruckten Bahnen B1 bis B3 aus Austrittsöffnungen der Sektoren S4 bis S2 bedruckt werden.
  • In weiteren Druckschritten A5 bis A7 werden dann keine weiteren Bahnen bedruckt, sondern nach jeweils einer seitlichen Bewegung des Druckkopfes 12 um die Breite eines Sektors die Zahl der aktivierten Sektoren beginnend mit dem Sektor S1 jeweils um einen Sektor abnimmt, so dass nach dem letzten Druckschritt A7 alle Bahnen B1 bis B4 von allen Sektoren S1 bis S4 bedruckt wurden.
  • Die Austrittsöffnungen der einzelnen Sektoren werden, wie in der Figur 9 angedeutet, elektronisch derart angesteuert, dass sie die jeweilige Bahn nicht mit voller Tröpfchendichte bedrucken, sondern eine vollständige Bedruckung der Bahnen erst im letzten Druckschritt erreicht wird, nach dem alle Bahnen aus allen Sektoren bedruckt wurden.
  • Vorteilhaft erfolgt zwischen zwei Druckschritten nicht nur eine lineare horizontale Relativbewegung zwischen Druckkopf 12 und Bauteil 26, sondern auch eine Verkippung der Oberfläche 10 relativ zur Austrittsfläche 14 derart, dass ein Abstand zwischen der Oberfläche 10 und der Austrittsfläche 14 etwa konstant bleibt.
  • Die relativen Bewegungen zwischen Druckkopf 12 und Bauteil 26 können an die durch die Wölbung der Oberfläche 10 gegebenen Bedingungen angepasst werden.
  • Wenn mehr als die in der Fig. 9 dargestellten vier Bahnen B1 bis B4 bedruckt werden sollen, kann der Druckschritt A4, in dem alle Sektoren S1 bis S4 aktiviert sind, nach einer jeweiligen Bewegung des Druckkopfes 12 senkrecht zur Längserstreckung der Bahnen um die Breite eines Sektors und ggfs. Verkippung des Bauteils 26 wiederholt werden.
  • Insgesamt wird mit dem Verfahren gem. Fig. 9 erreicht, dass eine zu bedruckende Fläche, nachdem sie durch mäanderförmige Relativbewegung zwischen ihr und dem Druckkopf, wobei während der zueinander parallelen geradlinigen Passagen des mäanderförmigen Weges jeweils ein Druckschritt erfolgt, vollständig vom Druckkopf überstrichen wurde, homogen und mit genau vorherbestimmter Flächendichte bedruckbar ist. Auf diese Weise können auch homogene Leiterbahnen oder homogene leitfähige Schichten, wie z. B. OLED-Schichten, ohne jegliche Querschnitts- oder Widerstandsänderung gedruckt werden.
  • Mit dem anhand Fig. 9 geschilderten Verfahren können auch Oberflächen bedruckt werden, die zwei ebene Bereiche unterschiedlicher Neigung haben, die in einem linienartigen Krümmungsbereich ineinander übergehen.
  • Fig. 10 zeigt in perspektivischer Darstellung mehrere zu einem von einer gemeinsamen Halterung (nicht dargestellt) aufgenommene und zu einem Block zusammengefasste Druckköpfe 12a, 12b, 12c, 12d, die in Längsrichtung der Bahnen B1 bis B4 hintereinander angeordnet sind. Ansonsten entspricht die Anordnung der Fig. 9, wobei das System im Zustand nach dem Druckschritt A4 ist. Mit der Anordnung der Fig. 10 können aus den einzelnen Druckköpfen beispielsweise simultan verschiedene Flüssigkeiten (verschiedenfarbig, elektrisch leitend, nicht leitend, transparent usw.) abgespritzt werden, sodass die Oberfläche 10 innerhalb kurzer Zeit mit komplexen Mustern und/oder Schichten konstanter Dicke bedruckt werden kann. Die geradlinigen Strecken der mäanderförmigen Relativbewegung zwischen den Druckköpfen und der zu bedruckenden Oberflächen sind länger als die bedruckten Bahnen, sodass, ähnlich wie gem. Fig. 9 die Sektoren, am Anfang einer Bahn zunächst nicht alle Druckköpfe aktiviert sind bzw. die Druckköpfe der Reihe nach aktiviert werden und am Ende einer Bahn nicht mehr alle Druckköpfe aktiviert sind bzw. der Reihe nach deaktiviert werden.
  • Wie aus dem Vorstehenden ersichtlich, ist vorteilhaft, wenn eine Vorrichtung, die ein von Einschränkungen weitgehend freies Bedrucken dreidimensionaler Oberflächen mittels eines digital gesteuerten Druckverfahrens ermöglicht, eine Relativbewegung zwischen der Austrittsfläche14 des Druckkopfes 12 und der zu bedruckenden Oberfläche 10 bzw. eines diese Oberfläche aufweisenden Bauteils sowohl linear in den drei senkrecht aufeinander stehenden Richtungen des Raumes als auch rotatorisch mit drei senkrecht aufeinander stehenden Drehachsen zulässt. Es ist weitgehend unerheblich, ob eine elektronisch gesteuerte Halterung des Bauteils und/oder eine elektronisch gesteuerte Halterung des Druckkopfes diese Bewegbarkeiten ermöglicht.
  • Eine Vorrichtung bzw. Anlage zum Bedrucken dreidimensionaler Oberflächen ist in Fig. 11 schematisch dargestellt:
    An einem Gestell 32 ist eine Halterung 34 zur Aufnahme eines Bauteils 26 mit einer zu bedruckenden Oberfläche 10 beweglich angebracht. Die Halterung 34 und mit ihr die zu bedruckende Oberfläche 10 ist mittels an sich bekannter Antriebseinrichtungen, wie sie beispielsweise für CNC Präzisionswerkzeugmaschinen eingesetzt werden (nicht dargestellt), in den drei Dimensionen des Raumes linear beweglich und ist um drei senkrecht aufeinander stehende Achsen drehbar.
  • Ein im dargestellten Beispiel aus mehreren Druckmodulen zusammengesetzter Druckkopf 12 (z. B. der Bauart XAAR Typ 1003 oder DIMATIX) mit einer ebenen Austrittsfläche 14, in der einzeln ansteuerbare Austrittsöffnungen bzw. Düsen angeordnet sind, ist zusammen mit einer Flüssigkeitsversorgung 36 an einer Halterung 38 angebracht. Ähnlich wie die Halterung 34 ist die Halterung 38 und mit ihr die Austrittsfläche 14 des Druckkopfes 12 mittels an sich bekannter Antriebseinrichtungen (nicht dargestellt) in den drei Dimensionen des Raumes linear beweglich und ist um drei senkrecht aufeinander stehende Achsen drehbar.
  • Die Flüssigkeitsversorgung 36 kann unterschiedliche Flüssigkeitsvorräte enthalten, z. B. normale Druckfarben, Sonderfarben, Funktionsflüssigkeiten mit elektrisch leitenden Teilchen, Lacke, Primer, Flüssigkeiten zum Aufbringen elektrisch isolierender Schichten usw.
  • An der Halterung 38 ist weiter eine Sensoreinrichtung 40 angebracht, mit der ein Abstand zwischen der Austrittsfläche 14 und der zu bedruckenden Oberfläche 10 ermittelbar ist und/oder mit der eine optische Eigenschaft der zu bedruckenden oder bereits bedruckten Oberfläche erfassbar ist.
  • In einer elektronischen Steuereinrichtung 42 an sich bekannter Bauart sind geometrische Daten der zu bedruckenden Oberfläche 10, beispielsweise CAD Daten und Dekordaten ablegbar, die die auf die Oberfläche 10 aufzubringenden Bedruckungen mit den dafür erforderlichen Flüssigkeitsdaten enthalten. In der Steuereinrichtung enthaltene Programme setzen die geometrischen Daten der Oberfläche 10 und die Dekordaten in Steuerdaten zur Steuerung der Bewegungen der Halterungen 34, 38, der Zufuhr von Flüssigkeiten zum Druckkopf 12 sowie der Auswahl und der Ansteuerung der Austrittsöffnungen um. Zur raschen Festlegung von Sollpositionen, zur Ermittlung von Istpositionen und Bedruckungszuständen der Oberfläche 10 können von der Sensoreinrichtung 40 ermittelte Werte dienen.
  • Vorteilhaft ist beispielsweise die Halterung 38 für den Druckkopf 12 in Z-Richtung (Abstand zwischen Druckkopf und zu bedruckender Oberfläche 10) und in Y-Richtung (seitlicher Versatz der Druckbahnen) beweglich bzw. antreibbar. Die Halterung 34 für das zu bedruckende Bauteil 26 ist vorteilhaft linear in X-Richtung (Längsrichtung einer Druckbahn B1, B2) antreibbar sowie um die X-Achse und die Y-Achse drehbar antreibbar. Es wird explizit festgehalten, dass alle Bereichsangaben oder Angaben von Gruppen von Einheiten jeden möglichen Zwischenwert oder Untergruppe von Einheiten zum Zweck der ursprünglichen Offenbarung ebenso wie zum Zweck des Einschränkens der beanspruchten Erfindung offenbaren, insbesondere auch als Grenze einer Bereichsangabe.
  • Bezugszeichenliste
  • 10
    Oberfläche
    12
    Druckkopf
    14
    Austrittsfläche
    16
    Austrittsöffnungen
    18
    Abstandssensor
    20
    Computer
    22
    Kugel
    24
    Segment
    26
    Bauteil
    30
    Überlappungsbereich
    32
    Gestell
    34
    Halterung
    36
    Flüssigkeitsversorgung
    38
    Halterung
    40
    Sensiereinrichtung
    42
    elektronische Steuerung
    A
    Breite des Druckkopfes
    A1, A2
    Druckschritte
    B1, B2
    Bahnen
    B
    Mindestflugstrecke
    C
    maximal zulässige Flugstrecke
    M1
    Krümmungsachse
    X
    zulässige Druckbreite
    Z
    Zylinderachse

Claims (13)

  1. Verfahren zum Bedrucken einer gekrümmten Oberfläche (10) mittels eines digitalen Druckverfahrens, bei dem aus mehreren an einer ebenen Austrittsfläche (14) eines Druckkopfes (12) angeordneten, einzeln ansteuerbaren Austrittsöffnungen (16) definierte Flüssigkeitsmengen abgespritzt werden, die als Flüssigkeitströpfchen auf die gekrümmte Oberfläche (10) auftreffen,
    bei welchem Verfahren
    - die gekrümmte Oberfläche (10) und die Austrittsfläche (14) derart zueinander ausgerichtet werden, dass ein Bereich der gekrümmten Oberfläche (10) parallel zur Austrittsfläche (14) gerichtet ist, wobei dieser Bereich bei konvexer Krümmung der Oberfläche (10) einen minimalen Abstand B von der Austrittsfläche (14) hat und bei konkaver Krümmung der Oberfläche(10) einen maximalen Abstand C von der Austrittsfläche (14) hat,
    - wobei während des Druckens nur Austrittsöffnungen (16) zur Abgabe einer Flüssigkeitsmenge angesteuert werden, deren Abstand von der Auftreffstelle des von ihnen abgegebenen Flüssigkeitströpfchens auf die gekrümmte Oberfläche (10) zwischen dem minimalen Abstand B und dem maximalen Abstand C liegt, wobei der minimale Abstand B durch die Flugstrecke gegeben ist, die die aus der Austrittsöffnung (16) ausgetretene Flüssigkeitsmenge zur Bildung eines Flüssigkeitströpfchens benötigt, und der maximale Abstand C den minimalen Abstand um eine vorbestimmte Strecke t übersteigt, längs der ein Flüssigkeitströpchen nicht degeneriert und seine Bahn geradlinig verläuft,
    - wodurch bei einer Relativbewegung zwischen der Austrittsfläche (14) und der Oberfläche (10) senkrecht zur Krümmung der Oberfläche (10) die Oberfläche mit einer Bahn bedruckbar ist, deren Breite X bei konvexer Krümmung der Oberfläche (10) der Entfernung zwischen den in Richtung der Krümmung der Oberfläche (10) beabstandeten Austrittsöffnungen (10) mit maximalem Abstand C und bei konkaver Krümmung der Oberfläche (10) der Entfernung zwischen den in Richtung der Krümmung der Oberfläche (10) beabstandeten Austrittsöffnungen (10) mit minimalem Abstand B entspricht.
  2. Verfahren nach Anspruch 1, wobei die Breite X der Bahn etwa gleich 2 x (t x r)0,5 beträgt, wenn t klein ist im Vergleich zu r und r der Krümmungsradius der Oberfläche (10) und t gleich C minus B ist.
  3. Verfahren nach Anspruch 1 oder 2, wobei die Flüssigkeitsmenge, die mittels der Flüssigkeitströpfchen auf eine Flächeneinheit der Oberfläche aufgebracht wird, mit zunehmendem Winkel zwischen einer jeweiligen Flächeneinheit und der Austrittsfläche (14) derart zunimmt, dass die auf die Oberflächeneinheit aufgebrachte Flüssigkeitsmenge unabhängig vom Winkel konstant ist.
  4. Verfahren nach einem der Ansprüche 1 bis 3, wobei nur Austrittsöffnungen (16) aktiviert werden, deren Flüssigkeitströpfchen mit einem Auftreffwinkel größer als 78 Grad bei Lackierung und größer als 84 Grad bei Dekordruck auf die Oberfläche (10) treffen.
  5. Verfahren nach einem der Ansprüche 1 bis 4, wobei beim Bedrucken einer Oberfläche (10) mit zwei senkrecht aufeinander stehenden Krümmungsachsen und unterschiedlichen Krümmungsradien während eines ersten Druckvorgangs eine Relativbewegung zwischen dem Druckkopf (12) und der zu bedruckenden Oberfläche (10) in Umfangsrichtung der Krümmung mit dem kleineren Krümmungsradius erfolgt, anschließend bei nicht aktivierten Austrittsöffnungen (16) eine Relativbewegung zwischen Druckkopf (12) und zu bedruckender Oberfläche (10) in Umfangsrichtung der Krümmung mit dem größeren Krümmungsradius erfolgt und nachfolgend während eines weiteren Druckvorgangs eine Relativbewegung zwischen Druckkopf (12) und zu bedruckender Oberfläche (10) in Umfangsrichtung der Krümmung mit dem kleineren Krümmungsradius erfolgt, so dass während der Druckvorgänge ausgebildete Bahnen (B1, B2) in Umfangsrichtung der Krümmung mit dem größeren Krümmungsradius benachbart sind.
  6. Verfahren nach einem der Ansprüche 1 bis 5, wobei bei konvexer oder konkaver Krümmung der zu bedruckenden Oberfläche (10) und deren Bedruckung in Form benachbarter Bahnen (B1, B2) die in Richtung der Krümmungsachse gesehenen Positionierungen der Austrittsfläche (14) zu der Oberfläche (10) während zweier aufeinander folgender Relativbewegungen zwischen der Oberfläche (10) und der Austrittsfläche (14) zum Ausbilden der jeweiligen Bahnen (B1, B2) derart sind, dass nebeneinander liegende Bahnen, innerhalb derer die Flüssigkeit auf die Oberfläche (10) gelangen kann, unmittelbar aneinander anstoßen.
  7. Verfahren nach einem der Ansprüche 1 bis 6, wobei bei konkaver oder konvexer Krümmung der zu bedruckenden Oberfläche (10) die in Richtung der Krümmungsachse gesehenen Positionierungen der Austrittsfläche (14) relativ zu der Oberfläche (10) während zweier aufeinander folgender Relativbewegungen zwischen der Oberfläche (10) und der Austrittsfläche (14) zum Ausbilden einer jeweiligen Bahn (B1, B2) derart sind, dass nebeneinander liegende Bahnen, innerhalb derer die Flüssigkeit auf die Oberfläche (10) gelangen kann, einander überlappen und die Austrittsöffnungen (16) der Austrittsfläche (14), aus denen der Überlappungsbereich (30) erzeugt wird, derart angesteuert werden, dass die auf eine Flächeneinheit der Oberfläche (10) gelangenden Flüssigkeitsmengen im Überlappungsbereich (30) und den überlappungsfreien Bereichen der Bahnen (B1, B2) gleich sind.
  8. Verfahren nach einem der Ansprüche 1 bis 5, wobei
    die Oberfläche 10) gewölbt ist und mit mehreren, senkrecht zu ihrer Längserstreckung unmittelbar benachbarten Bahnen (B1, ......., Bn) bedruckt wird,
    die Austrittsfläche (14) mehrere senkrecht zur Längserstreckung der Bahnen (B1, ......, Bn) unmittelbar benachbarte Sektoren (S1, ......., Sm) mit Austrittsöffnungen aufweist,
    in einem ersten Druckschritt (A1) eine erste Bahn (B1) nur mit dem ersten Sektor (S1) bedruckt wird,
    nach dem ersten Druckschritt der Druckkopf (12) senkrecht zur Längserstreckung der ersten Bahn derart bewegt wird, dass sich der zweite Sektor (S2) über der ersten Bahn (B1) befindet, anschließend in einem zweiten Druckschritt (A2) die erste Bahn (B1) zusätzlich mit dem zweiten Sektor (S2) bedruckt wird und eine zweite, neben der ersten angeordnete Bahn (B2) mit dem ersten Sektor (S1)bedruckt wird,
    die Vorgänge wiederholt werden, bis eine m-te Bahn (Bm) mit dem ersten Sektor (S1) bedruckt wird und die benachbarten, bereits bedruckten Bahnen (Bm-1, ..... B1) mit Sektoren (S2, ....., Sm) bedruckt werden,
    und in weiteren Druckschritten nach einer Bewegung des Druckkopfes (12) senkrecht zur Längserstreckung der Bahnen um jeweils die Breite eines Sektors mit jedem Druckschritt die Zahl der aktivierten Sektoren beginnend mit dem Sektoren S1 bis zu Sm abnimmt,
    so dass nach dem letzten Druckschritt alle Bahnen von allen Sektoren (S1 ...... Sm) bedruckt sind.
  9. Verfahren nach Anspruch 8, wobei der Druckschritt, in dem alle Sektoren (S1 ...... Sm) aktiviert sind, nach einer jeweiligen Bewegung des Druckkopfes (12) senkrecht zur Längserstreckung der Bahnen um die Breite eines Sektors, wiederholt wird.
  10. Verfahren nach Anspruch 8 oder 9, wobei bei einer Bewegung des Druckkopfes (12) senkrecht zur Längserstreckung der Bahnen um jeweils die Breite eines Sektors jeweils eine Verkippung der Oberfläche (10) relativ zur Austrittsfläche (14) derart erfolgt, dass ein Abstand zwischen der Oberfläche (10) und der Austrittsfläche (14) etwa konstant bleibt.
  11. Vorrichtung zum Bedrucken dreidimensionaler Oberflächen mit einem Gestell (32),
    einer Halterung (34) zur Aufnahme eines Bauteils (26) mit einer zu bedruckenden Oberfläche (10),
    einer weiteren Halterung (38) zur Aufnahme wenigstens eines Druckkopfes (12) mit einer Austrittsfläche (14), die Austrittsöffnungen (16) zum Abspritzen vorbestimmter Flüssigkeitsmengen aufweist,
    einer Antricbscinrichtung, mittels der eine Rclativbcwcgung zwischen der Austrittsfläche (14) und der zu bedruckenden Oberfläche (10) antreibbar ist,
    einer Flüssigkeitsversorgung (36) zur selektiven Versorgung der Austrittsöffnungen (16) mit Druckflüssigkeit,
    einer elektronischen Steuereinrichtung (42) mit geometrische Daten der zu bedruckenden Oberfläche (10) und Dekordaten, die die auf die Oberfläche (10) aufzubringenden Bedruckungen mit den dafür erforderlichen Flüssigkeitsdaten enthalten, und mit Programmen, die die geometrischen Daten der Oberfläche (10) und die Dekordaten in Steuerdaten zur Steuerung der Antriebseinrichtung, zur Steuerung der Zufuhr von Flüssigkeiten zum Druckkopf (12) und zur Auswahl und Ansteuerung der Austrittsöffnungen (16) umsetzt, wobei die Vorrichtung entsprechend einem nach einem der Ansprüche 1 bis 10 arbeitet.
  12. Vorrichtung nach Anspruch 11, wobei die Halterung (38) für den Druckkopf (12) in Z-Richtung (Abstand zwischen Druckkopf 12 und zu bedruckender Oberfläche 10) und in Y-Richtung (Breitenrichtung einer Bahn B1, B2) beweglich ist und die Halterung (34) für das zu bedruckende Bauteil (26) in X-Richtung (Längsrichtung einer Bahn B1, B2) beweglich und um die X-Achse (Längsrichtung einer Bahn B1, B2) und die Y-Achse drehbar ist.
  13. Vorrichtung nach Anspruch 11 oder 12, mit einer Sensoreinrichtung (40) zum Ermitteln eines Abstands zwischen der Austrittsfläche (14) und der zu bedruckenden Oberfläche (10) und/oder zum Ermitteln einer optischen Eigenschaft der zu bedruckenden oder bereits bedruckten Oberfläche erfassbar ist.
EP18733855.3A 2017-06-26 2018-06-22 Verfahren zum bedrucken einer gekrümmten oberfläche sowie vorrichtung zum bedrucken dreidimensionaler oberflächen Active EP3645291B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102017114159 2017-06-26
DE102017114280.0A DE102017114280B4 (de) 2017-06-26 2017-06-27 Verfahren zum Bedrucken einer gekrümmten Oberfläche sowie Vorrichtung zum Bedrucken dreidimensionaler Oberflächen
PCT/EP2018/066835 WO2019002153A1 (de) 2017-06-26 2018-06-22 Verfahren zum bedrucken einer gekrümmten oberfläche sowie vorrichtung zum bedrucken dreidimensionaler oberflächen

Publications (2)

Publication Number Publication Date
EP3645291A1 EP3645291A1 (de) 2020-05-06
EP3645291B1 true EP3645291B1 (de) 2021-04-28

Family

ID=64567934

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18733855.3A Active EP3645291B1 (de) 2017-06-26 2018-06-22 Verfahren zum bedrucken einer gekrümmten oberfläche sowie vorrichtung zum bedrucken dreidimensionaler oberflächen

Country Status (6)

Country Link
US (1) US10953667B2 (de)
EP (1) EP3645291B1 (de)
CN (1) CN111032362B (de)
DE (1) DE102017114280B4 (de)
ES (1) ES2879364T3 (de)
WO (1) WO2019002153A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11383521B2 (en) * 2019-03-04 2022-07-12 Ricoh Company, Ltd. Apparatus configured to discharge liquid
DE102019111955A1 (de) * 2019-05-08 2020-11-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Vorrichtung zur Applikation elektronischer Bauelemente auf Fahrzeugbauteile
US20220379337A1 (en) * 2019-08-30 2022-12-01 Kyocera Corporation Coating device, coating film, and coating method
WO2021134532A1 (zh) * 2019-12-31 2021-07-08 李庆远 倾斜打印头
EP3925786B1 (de) 2020-06-18 2024-01-10 Heraeus Electronics GmbH & Co. KG Verfahren zum additiven drucken zum drucken eines funktionalen druckmusters auf einer oberfläche eines dreidimensionalen objekts, zugehöriges computerprogramm und computerlesbares medium
CN111864102A (zh) * 2020-07-07 2020-10-30 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法
FR3115716B1 (fr) * 2020-11-05 2023-12-22 Exel Ind Procede et installation d’application d’un produit de revetement sur une surface
CN112721447B (zh) * 2020-12-29 2022-02-08 东莞市图创智能制造有限公司 圆柱状介质表面打印方法、装置、设备及存储介质
CN115464981A (zh) * 2021-06-11 2022-12-13 东莞市图创智能制造有限公司 应用于面板的往复扫描式uv打印设备
DE102021121195A1 (de) * 2021-08-16 2023-02-16 Webasto SE Glasscheibe einer Fahrzeugverglasung mit einer Bedruckung

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1306638C (en) 1987-04-28 1992-08-25 Nigel Siddons-Corby Printing apparatus
US6360656B2 (en) 2000-02-28 2002-03-26 Minolta Co., Ltd. Apparatus for and method of printing on three-dimensional object
DE10031030B4 (de) 2000-06-26 2005-08-04 Bauer, Jörg R. Verfahren und Vorrichtung zum Herstellen flächiger Bauteile mit vorbestimmtem Oberflächenaussehen und flächiges Bauteil, insbesondere Frontplatte eines Küchenelements
KR100990448B1 (ko) * 2002-04-03 2010-10-29 메이소나이트 코오포레이션 물품에 상을 만드는 방법
DE102007017503B3 (de) 2007-04-13 2008-11-06 Bauer, Jörg R. Verfahren zum Herstellen eines Bauteils mit einer bedruckten Echtholzoberfläche sowie nach dem Verfahren hergestelltes Bauteil
DE102007021765B4 (de) 2007-05-09 2010-06-17 Bauer, Jörg R. Vorrichtung zum gleichzeitigen Bedrucken einer Mehrzahl von gleichen Bauteilen mittels eines digitalen Druckverfahrens
DE102007021767A1 (de) * 2007-05-09 2008-11-13 Bauer, Jörg R. Verfahren und Vorrichtung zum Bedrucken eines Bauteils mit zwei zueinander geneigten Oberflächenbereichen mittels eines digitalen Druckverfahrens
CN103909743B (zh) 2007-12-31 2017-01-11 埃克阿泰克有限责任公司 用于打印三维物品的装置和方法
DE102010004496B4 (de) 2010-01-12 2020-06-18 Hermann Müller Verfahren zum Betrieb einer Vorrichtung zum Beschichten und/oder Bedrucken eines Werkstückes
DE102011086015A1 (de) 2011-11-09 2013-05-16 Krones Aktiengesellschaft Verfahren und Vorrichtung für den Tintenstrahldruck auf gekrümmte Objektoberflächen
DE102014221103A1 (de) 2013-11-19 2014-12-18 Heidelberger Druckmaschinen Ag Verfahren zum Erzeugen eines Aufdrucks auf einem Objekt mit einer gekrümmten Oberfläche
DE102014012395A1 (de) 2014-08-21 2016-02-25 Heidelberger Druckmaschinen Ag Verfahren und Vorrichtung zum Bedrucken einer gekrümmten Oberfläche eines Objekts mit einem Tintenstrahlkopf
WO2016155887A1 (de) 2015-04-02 2016-10-06 Bauer Jörg R Touchpad und system zum erfassen eines gegenstandes auf einer erfassungsfläche sowie erzeugen und ausgeben gegenstandsspezifischer information
CN106585121B (zh) 2015-10-19 2020-02-28 博西华电器(江苏)有限公司 弧面介质的打印设备及打印方法
FR3048368A1 (fr) 2016-03-04 2017-09-08 Exel Ind Applicateur de produit de revetement, robot multiaxes comprenant un tel applicateur et procede d'application d'un produit de revetement
CN106739542A (zh) * 2017-01-22 2017-05-31 广州市申发机电有限公司 一种全自动快速高效旋转曲面数码喷墨印刷机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2019002153A1 (de) 2019-01-03
CN111032362A (zh) 2020-04-17
DE102017114280B4 (de) 2024-04-11
US10953667B2 (en) 2021-03-23
EP3645291A1 (de) 2020-05-06
CN111032362B (zh) 2021-12-24
ES2879364T3 (es) 2021-11-22
DE102017114280A1 (de) 2018-12-27
US20200215834A1 (en) 2020-07-09

Similar Documents

Publication Publication Date Title
EP3645291B1 (de) Verfahren zum bedrucken einer gekrümmten oberfläche sowie vorrichtung zum bedrucken dreidimensionaler oberflächen
EP3532206B1 (de) Beschichtungsverfahren und entsprechende beschichtungseinrichtung
EP3294529B1 (de) Vorrichtung und verfahren zum aufbringen von fliessfähigem material auf eine um eine drehachse drehbare unterlage
EP2705905B1 (de) Verfahren und Vorrichtung zum Bebildern und/oder Lackieren der Oberfläche von Gegenständen
DE102007021765B4 (de) Vorrichtung zum gleichzeitigen Bedrucken einer Mehrzahl von gleichen Bauteilen mittels eines digitalen Druckverfahrens
EP1990206B1 (de) Verfahren und Vorrichtung zum Bedrucken eines Bauteils mit zwei zueinander geneigten Oberflächenbereichen mittels eines digitalen Druckverfahrens
DE102009004878A1 (de) Verfahren zum Beschichten, insbesondere Lackieren, einer Oberfläche sowie digitales Beschichtungssystem
EP3781406B1 (de) Drop-on-demand - beschichtung von oberflächen
DE102014221103A1 (de) Verfahren zum Erzeugen eines Aufdrucks auf einem Objekt mit einer gekrümmten Oberfläche
DE102012005087A1 (de) Vorrichtung zum Bedrucken von Oberflächen mit mehreren, bewegbaren Druckköpfen
DE102010038332B4 (de) Beschichtungsverfahren zumindest einer Seitenfläche eines tafelförmigen Gutes
DE102017216117B4 (de) System zum drucken auf einem dreidimensionalen (3d) gekrümmten objekt
EP3580617B1 (de) Verfahren und vorrichtung zum herstellen eines dreidimensionalen formgegenstands mittels schichtweisem materialauftrag
DE102016013319A1 (de) Vorrichtung und Verfahren zum Aufbringen von fließfähigem Material auf eine um eine Drehachse drehbare Unterlage
EP3386661A1 (de) Vorrichtung und verfahren zur herstellung eines dreidimensionalen metallischen formkörpers
DE102016013317B4 (de) Verfahren zum Herstellen eines dreidimensionalen Formgegenstands und Vorrichtung zur Durchführung des Verfahrens
EP3875280A1 (de) Verfahren zur digitalen beschichtung dreidimensionaler werkstückoberflächen
DE102019002808A1 (de) Verfahren zum Herstellen mindestens einer Festkörperschicht auf einer um eine Drehachse drehbaren Unterlage
DE102019108101A1 (de) Verfahren zum additiven Herstellen und 3D-Drucker zum additiven Herstellen
EP3656566B1 (de) Verfahren zum bedrucken von länglichen profilleisten und profilleisten
DE102022108850A1 (de) Vorrichtung zum Veredeln von einer Werkstückfläche mit schwenkbarem Druckkopf
AT520096B1 (de) Verfahren zur Herstellung eines Fenster- oder Türprofils
DE102017208132A1 (de) Vorrichtung zur additiven Herstellung dreidimensionaler Bauteile

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201209

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FPT ROBOTIK GMBH & CO. KG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1386659

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2879364

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210828

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210729

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210830

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210622

26N No opposition filed

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210828

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20220620

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20220630

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180622

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230628

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230623

Year of fee payment: 6

Ref country code: GB

Payment date: 20230622

Year of fee payment: 6

Ref country code: ES

Payment date: 20230830

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230622

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630