EP3642549B1 - Cleaning method for surfaces in the internal volume of aircraft components though which a medium flows - Google Patents

Cleaning method for surfaces in the internal volume of aircraft components though which a medium flows Download PDF

Info

Publication number
EP3642549B1
EP3642549B1 EP18733550.0A EP18733550A EP3642549B1 EP 3642549 B1 EP3642549 B1 EP 3642549B1 EP 18733550 A EP18733550 A EP 18733550A EP 3642549 B1 EP3642549 B1 EP 3642549B1
Authority
EP
European Patent Office
Prior art keywords
cleaning
steam
internal volume
aircraft component
medium flows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18733550.0A
Other languages
German (de)
French (fr)
Other versions
EP3642549A1 (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lufthansa Technik AG
Original Assignee
Lufthansa Technik AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lufthansa Technik AG filed Critical Lufthansa Technik AG
Publication of EP3642549A1 publication Critical patent/EP3642549A1/en
Application granted granted Critical
Publication of EP3642549B1 publication Critical patent/EP3642549B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • B08B9/032Cleaning the internal surfaces; Removal of blockages by the mechanical action of a moving fluid, e.g. by flushing
    • B08B9/0321Cleaning the internal surfaces; Removal of blockages by the mechanical action of a moving fluid, e.g. by flushing using pressurised, pulsating or purging fluid
    • B08B9/0325Control mechanisms therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G9/00Cleaning by flushing or washing, e.g. with chemical solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • B08B9/032Cleaning the internal surfaces; Removal of blockages by the mechanical action of a moving fluid, e.g. by flushing
    • B08B9/0321Cleaning the internal surfaces; Removal of blockages by the mechanical action of a moving fluid, e.g. by flushing using pressurised, pulsating or purging fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • B08B9/032Cleaning the internal surfaces; Removal of blockages by the mechanical action of a moving fluid, e.g. by flushing
    • B08B9/0321Cleaning the internal surfaces; Removal of blockages by the mechanical action of a moving fluid, e.g. by flushing using pressurised, pulsating or purging fluid
    • B08B9/0327Cleaning the internal surfaces; Removal of blockages by the mechanical action of a moving fluid, e.g. by flushing using pressurised, pulsating or purging fluid the fluid being in the form of a mist
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G13/00Appliances or processes not covered by groups F28G1/00 - F28G11/00; Combinations of appliances or processes covered by groups F28G1/00 - F28G11/00
    • F28G13/005Appliances or processes not covered by groups F28G1/00 - F28G11/00; Combinations of appliances or processes covered by groups F28G1/00 - F28G11/00 cleaning by increasing the temperature of heat exchange surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B2230/00Other cleaning aspects applicable to all B08B range
    • B08B2230/01Cleaning with steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/22Cleaning ducts or apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G15/00Details
    • F28G2015/006Arrangements for processing a cleaning fluid after use, e.g. filtering and recycling

Definitions

  • the present invention relates to a method for cleaning surfaces in the interior volume of an aircraft component through which air flows.
  • Known rinsing methods are usually used to clean dirt from hard-to-reach surfaces, such as those present in aircraft components through which air flows, in particular in heat exchangers. Soiling with a low chemical potential, consisting of predominantly non-polar substances, can mainly only be removed mechanically. In many operational applications, aircraft components through which air flows are coated with carbon-containing lubricants, fuels or other carbon-containing substances. Likewise, under certain conditions, substances from the environment such as dust, sand, combustion products, oils, fuels or lubricants can be deposited. In the case of carbon-containing compounds, coking and partial oxidation, which occurs in certain temperature ranges, are particularly problematic.
  • a method for cleaning surfaces in the interior volume of an aircraft component through which air flows comprises at least the following steps: connecting the interior volume to be cleaned to a steam generator, generating a cleaning steam with a predetermined steam pressure and temperature by the steam generator, applying the to be cleaned Surfaces in the interior volume of the aircraft component through which flow occurs with the cleaning vapor, maintaining the vapor pressure and the temperature within the interior volume for the duration of a predetermined condensation time, generating a pressure drop in the interior volume of the aircraft component through which flow occurs in order to evaporate the part of the cleaning vapor condensed during the condensation time and transporting the cleaning vapor away from the internal volume the through-flow aircraft component with the cleaning vapor, maintaining the vapor pressure and the temperature within the interior volume for the duration of a predetermined condensation time, generating a pressure drop in the interior volume of the through-flow aircraft component for evaporating the part of the cleaning vapor condensed during the condensation time and transporting the cleaning vapor away from the interior volume of the through-flow
  • Cleaning steam or its condensate serves as the cleaning medium.
  • the cleaning steam When the cleaning steam is applied to the surfaces, it condenses on the surfaces and in particular on the soiling with suitably selected parameters such as steam pressure, temperature, steam content or condensation time.
  • the steam condensate can penetrate into cracks, cavities and porosity of the dirt and be deposited.
  • the stored condensate is then evaporated again by generating a rapid drop in pressure in the interior volume of the aircraft component through which the air flows.
  • the phase change of the cleaning medium from liquid back to a gaseous state is associated with a rapid increase in volume of the cleaning medium.
  • the method according to the invention is gentle on the surfaces to be cleaned, since no material is removed from the base material and health effects can be reduced by avoiding or minimizing the use of chemical cleaning agents.
  • the interior volume of the aircraft component through which flow occurs is flushed with water after the cleaning vapor has been transported away.
  • the effect of the cleaning process can be increased and its successful completion can be achieved.
  • One or more rinsing cycles of the interior volume with water following the cleaning steps removes further contamination, which was removed from the surfaces by evaporation but remained in the interior volume of the aircraft component through which flow occurred while the cleaning vapor was being removed.
  • the cleaning steps are repeated with a predetermined cycle time. Efficient cleaning can be achieved by repeating the cleaning steps, with the degree of soiling decreasing with each subsequent cleaning cycle. Particularly stubborn dirt can be removed layer by layer, since the steam condensate does not have to penetrate the entire dirt during a cleaning application, but detaches the top layers of dirt with each cleaning cycle. The times of the individual cleaning cycles can thus be reduced.
  • water vapor can be controlled precisely over a known and reproducible pressure and temperature range and is particularly well suited for cleaning surfaces in the interior volume of heat exchangers, also because of its health and ecological safety, especially in heat exchangers through which air flows for air conditioning purposes.
  • cleaning steam should preferably be used with temperatures of at least 388 Kelvin, at most 646 Kelvin and ideally in the range of 433 Kelvin. It is further preferred that the vapor pressure of the cleaning vapor is at least 0.17 MPa, at most 22 MPa and particularly preferably 0.61 MPa.
  • the saturated steam thus provided enables sufficient condensation during cleaning. Allowing the condensate to act on the dirt in the range of a few minutes can increase the cleaning effect. Depending on the type of contamination, this cycle time can be just a few seconds or up to an hour.
  • the pressure gradient should preferably be at least 0.01 MPa/s and particularly preferably 0.1 MPa/s.
  • the method is carried out with a steam generator that can be regulated with regard to steam pressure and/or steam temperature.
  • the cleaning effect depends essentially on the condensing ability of the cleaning steam.
  • dry steam i.e. superheated steam
  • the ability to condense is severely limited and the soiling can even burn in further.
  • a temperature and a vapor pressure can always be assigned to a so-called saturated steam
  • a suitable condensing capacity can be set via these parameters.
  • the method can be adjusted to different pressure and temperature resistances of the surfaces to be cleaned.
  • a further method step is provided, in which the cleaning steam transported away is reused by being condensed and cleaned and fed to the steam generator for renewed generation of cleaning steam in a subsequent cycle.
  • Carrying out the cleaning method according to the invention with recycling and recycling of the cleaning medium lowers the costs of the cleaning process, since a new, unused cleaning medium does not have to be provided for each cycle and reduces the amount of used cleaning medium to be disposed of per cleaning process.
  • an additional method step is provided in which the cleaning steam transported away runs through an aircraft component through which it has flowed for energy recovery before it is fed back to the steam generator. Part of the thermal energy of the heated waste steam can thus be used to generate steam again in a subsequent cleaning cycle.
  • the pressure drop in the interior volume of the aircraft component to be cleaned is realized by opening an outlet device.
  • Vapor pressure is maintained during the condensation period by a nearly closed outlet device that separates the internal volume from a lower pressure region. Slight opening of the outlet device while maintaining the pressure allows excess condensate to be discharged and prevents the undesirable accumulation of large amounts of water under pressure. A larger accumulation of water would reduce the achievable pressure gradient.
  • the outlet device comprises a switching valve.
  • the outlet device and the switching valve must have an adapted flow cross section in order to generate a sufficiently large pressure gradient.
  • the degree of contamination of the cleaning vapor transported away is measured.
  • the cleaning effect of the rinsing cycle can be concluded and process parameters such as Condensation time and vapor pressure can be adjusted.
  • the pressure loss is measured during a cleaning process of a standardized comparison component (comparative value) and the cleaning cycle is repeated automatically until the measured pressure loss of the aircraft component to be cleaned essentially corresponds to the comparison value.
  • a comparison component can ideally consist of a new or cleaned component that is structurally identical to the aircraft component to be cleaned. By integrating the comparison component into the cleaning setup, ideally in a parallel setup, both aircraft components are exposed to the same cleaning conditions. The analysis of the pressure loss during the cleaning thus offers a control of the cleaning result without having to carry out tests in advance to establish standard parameters of the different aircraft components. The exact achievement of the comparison value does not have to be achieved as the end point of the process.
  • the comparison value can also be formed by a previously defined tolerance range, which allows us to expect a degree of cleaning that is sufficient for the functionality of the aircraft component through which the air flows.
  • a time-limited end signal is also advantageous, so that the automated repetition of the cleaning cycles is aborted if the comparison value is not reached within a previously defined maximum time. This prevents time-consuming cleaning of heavily soiled components that can no longer be cleaned, which ultimately have to be replaced.
  • FIG. 1 and 2 show schematically and by way of example the structure and the process flow of a cleaning method according to the invention.
  • the aircraft component 2 through which flow is to be cleaned is a heat exchanger 2 .
  • the cleaning method according to the invention can be used on a large number of aircraft components 2 through which air flows, with surfaces to be cleaned in their interior volume.
  • the surfaces to be cleaned are integrated into the cleaning structure 1 .
  • the heat exchanger 2 is a suitable adaptation 3 to the Cleaning structure 1 connected.
  • a steam generator 4 is provided in the cleaning structure 1 .
  • a liquid cleaning medium which as a rule consists largely of water, is prepared for the requirements of the surfaces to be cleaned in step 6 preceding the cleaning.
  • the upstream processing 6 can consist, for example, in a demineralization of the liquid cleaning medium.
  • the course of the cleaning process according to the invention is explained below using water as the cleaning medium;
  • other suitable cleaning media in particular chemical cleaning agents or aqueous solutions of chemical cleaning agents, are also expressly to be included in the disclosure content of this application.
  • the treated water is fed to the steam generator 4, which causes the water to form steam.
  • a cleaning steam 7 can be generated under overpressure by supplying heat and a pump.
  • the generation of the cleaning vapor 7 is preferably controllable.
  • cleaning steam 7 with temperatures of at least 388 Kelvin, a steam pressure of at least 0.17 MPa and a steam content of at least 10% should be used.
  • the temperature should be around 433 Kelvin, the vapor pressure around 0.8 MPa and the vapor fraction around 80%.
  • Such saturated steam is advantageous in order to ensure sufficient condensation during cleaning.
  • dry steam i.e. superheated steam
  • steam pressure and temperature are always clearly assigned, which means that control can be adjusted by regulating pressure and temperature.
  • the cleaning steam 7 generated in the steam generator 4 is then applied to the surfaces to be cleaned in the inner volume of the heat exchanger 2 .
  • the loading of the inner volume of the heat exchanger 2 with the generated cleaning steam 7 and the heating of the heat exchanger 2 to a suitable temperature is followed by a sufficiently long condensation time, in which the cleaning steam 7 can act on the surfaces to be cleaned and on the surfaces a cleaning steam condensate 8 can form. In this case, the condensation also takes place on the dirt 9 .
  • a strong pressure drop 10 is generated. This can be realized, for example, by opening a switching valve 11 in an outlet device.
  • the pressure gradient essentially determines the cleaning effect, since the rapid evaporation and thus the speed of the volume expansion of the deposited condensate 8 during the phase change from liquid to solid is determined by the pressure gradient.
  • the pressure gradient should be at least a rate of about 0.01 MPa/s, ideally about 0.1 MPa/s.
  • the cleaning steam 7 is then transported away together with the loosened dirt 9 through the opened outlet device.
  • the cleaning steps are repeated with a predetermined cycle time. Depending on the type of dirt 9, this can last between about 20 seconds and up to an hour is ideally a few minutes.
  • the waste steam 13, ie the emitted cleaning steam is condensed and analyzed. This allows the cleaning effect and the successful completion of the cleaning process to be determined.
  • further rinsing processes 14 for example with water, can be provided in order to transport away loosened contamination 9 , which was loosened by the cleaning steam 7 but still remained in the inner volume of the heat exchanger 2 .
  • the pressure loss across the heat exchanger 2 can also be measured in an analysis step 15 as a further indicator of the degree of cleaning.
  • the heat exchanger 2 is dried with steam 33, openly cooled 34 and dried 35 and is then available as a cleaned heat exchanger 2'.
  • Energy recovery is provided as an optional step 16 for the cleaning process, which can be implemented by using a heat exchanger which is arranged between the outlet device and the water inlet 18 of the heat exchanger 2 and which makes the heat obtained from the exhaust steam 13 available for the steam generation 4 .
  • the polluted waste steam 13, or the polluted waste water 13, can then be disposed of 36.
  • the waste steam 13 can also be reused by a steam cleaning cycle being followed by water recovery 19, for example by separating 20 the contaminants 9 from the waste water 13, filtration of the water and providing the water treated in this way at the inlet 18 of the steam generator 4 is realized.
  • the mode of action of the detachment of the surface contamination 9 is in the Figures 3a to 3d shown schematically.
  • the cleaning method according to the invention makes use of the natural nature of the dirt 9 on the surfaces to be cleaned.
  • the dirt 9 accumulates on the base material 21 of the surfaces to be cleaned and is generally porous and has cavities 22 and cracks 23 .
  • the surfaces and the dirt 9 are subjected to overpressure and the cleaning steam 7 ( Figure 3b ).
  • the cleaning steam 7 begins to condense on all surfaces and thus also on the dirt 9.
  • the cleaning steam condensate 8 covers the surfaces and, due to the porosity of the dirt 9, begins to penetrate cracks 23 and cavities 22 and deposit there ( 3c ).
  • a pressure drop 10 is generated, which causes sudden evaporation and thus an increase in volume of the cleaning steam condensate 8 embedded in the dirt 9 .
  • the pressure forces generated in this way and acting locally in the contamination 9 then lead to the contamination 9 flaking off and detaching 24 . 3d ).
  • the cleaning according to the invention can be used not only for porous or solid soiling, but also for example liquid or viscous films can be removed.
  • the previously referred to figure 3 The mechanism of action described may be different in the case of porous or solid soiling other than that shown.
  • a heat exchanger 2 via a first adaptation 3 connected to a pressure and temperature controllable steam generator 4. This is supplied at its water inlet 18 via a demineralization device 6 with process water and treated water from a water circuit 28 .
  • An outlet of the heat exchanger 2 to be cleaned is connected to a switching valve 11 via a second adapter 3'.
  • Pressure is built up in the heat exchanger 2 by means of the steam generator 4 .
  • condensate 8 initially collects on the surfaces which have a lower temperature than the cleaning steam 7 that is generated. After a predetermined vapor pressure and/or temperature level has been reached, this state is maintained for a defined condensation time.
  • the condensation time can vary as required and is within the normal range of around half a minute to around an hour.
  • the condensate 8 is stored in the dirt 9 depending on the structure and composition of the dirt 9 and the duration of the condensation time in which the vapor pressure in the internal volume of the heat exchanger 2 is maintained.
  • the switching valve 11 provided in the outlet device is fully opened, so that a strong pressure drop 10 occurs in the internal volume of the heat exchanger 2 . Due to the sharp drop in pressure 10, the accumulations of steam condensate 8 evaporate with a large increase in volume. So that a sufficiently large pressure drop rate is established, the outlet device, the switching valve 11 and downstream pipelines are provided with a sufficiently large flow cross section.
  • DN12 flow pipe cross sections have proven to be sufficient for an internal volume of a heat exchanger 2 to be cleaned that is subjected to steam pressure and is to be cleaned. For larger pressurized volumes, correspondingly larger flow tube cross sections must be selected.
  • the pressure loss across the heat exchanger 2 can be analyzed 15 become.
  • the steam-condensate mixture 7, 8 exits via the outlet device.
  • the outlet device is fluidly connected to a condenser 30 .
  • the steam-condensate mixture 7, 8 is transported away 26 and fed to the condenser 30, in which a complete condensation of the exhaust steam 13 transported away is to take place. At this point, it is advantageous to take samples of the condensed mixture and examine them for contamination and their composition 31 in order to be able to draw conclusions about the cleaning effect.
  • the process parameters of the following cleaning cycles can be effectively adjusted.
  • the waste water 13 from a cleaning cycle is collected in a separating tank 20, whereby the dirt 9 can be separated depending on the type, so that the cleaned water is fed to the steam generator 4 via a water circuit 28 and a water treatment 32 with filtration and thus returns to the process .
  • Heat exchangers 2 In principle, the mechanical stresses caused by the pressure fluctuations and flow forces in the inner volume of the heat exchanger 2 to be cleaned must be taken into account. Heat exchangers 2 often have sensitive constructions with small material wall thicknesses that can be damaged. However, due to the significantly lower density of steam compared to liquids, the flow-mechanical loads in a steam cleaning process are lower than in a rinsing process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning In General (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Reinigung von Oberflächen im Innenvolumen einer durchströmten Flugzeugkomponente.The present invention relates to a method for cleaning surfaces in the interior volume of an aircraft component through which air flows.

Für die Reinigung von Verschmutzungen an schwer zugänglichen Oberflächen, wie sie beispielsweise in durchströmten Flugzeugkomponenten, insbesondere in Wärmetauschern vorhanden sind, werden üblicherweise bekannte Spülverfahren angewendet. Verschmutzungen mit geringem chemischem Potenzial, bestehend aus überwiegend unpolaren Stoffen, können hauptsächlich nur mechanisch entfernt werden. Durchströmte Flugzeugkomponenten werden in vielen Anwendungen im Betrieb mit kohlenstoffhaltigen Schmiermitteln, Kraftstoffen oder anderen kohlenstoffhaltigen Stoffen belegt. Ebenso können sich unter bestimmten Bedingungen Stoffe aus der Umwelt wie beispielsweise Staub, Sand, Verbrennungsprodukte, Öle, Kraft- oder Schmierstoffe ablagern. Im Falle kohlenstoffhaltiger Verbindungen sind insbesondere die Verkokung und die teilweise Oxidation, die in bestimmten Temperaturbereichen auftritt, problematisch. Bei durchströmten Flugzeugkomponenten wie Wärmetauschern, die in ihrem Innenvolumen konstruktionsbedingt meist ausgeprägte Hinterschneidungen und große, verwinkelte Oberflächen aufweisen, ist das Entfernen dieser Verschmutzungen mittels konventioneller Verfahren mangels Zugänglichkeit häufig nicht möglich. Die Oberflächen im Innenvolumen sind demnach in weiten Teilen nur für Spülverfahren oder durchströmende Reinigungsverfahren zugänglich. Für eine Reinigung im Spülverfahren müssen jedoch stark reaktive Säuren, oder andere kräftige chemische Reinigungsmittel verwendet werden.Known rinsing methods are usually used to clean dirt from hard-to-reach surfaces, such as those present in aircraft components through which air flows, in particular in heat exchangers. Soiling with a low chemical potential, consisting of predominantly non-polar substances, can mainly only be removed mechanically. In many operational applications, aircraft components through which air flows are coated with carbon-containing lubricants, fuels or other carbon-containing substances. Likewise, under certain conditions, substances from the environment such as dust, sand, combustion products, oils, fuels or lubricants can be deposited. In the case of carbon-containing compounds, coking and partial oxidation, which occurs in certain temperature ranges, are particularly problematic. In the case of aircraft components through which air flows, such as heat exchangers, which usually have pronounced undercuts and large, crooked surfaces in their interior volume due to their design, it is often not possible to remove this contamination using conventional methods due to a lack of accessibility. The surfaces in the inner volume are therefore largely only accessible for rinsing processes or through-flow cleaning processes. However, for cleaning in the rinsing process, strong reactive acids, or other strong chemical cleaning agents are used.

Ist eine Reinigung durch die Unzugänglichkeit oder durch die mechanische oder chemische Beständigkeit der Verschmutzungen nicht möglich, müssen die zu reinigenden Flugzeugkomponenten sogar ersetzt werden. Weiterhin sind bei den bekannten Reinigungsverfahren teils lange Prozesszeiten zu erwarten. Als problematisch ist auch der Einsatz von stark reaktiven Reinigungsmitteln im Hinblick auf Arbeitssicherheit, Umweltbelastung oder möglicher Rückstände auf den Oberflächen anzusehen. Insbesondere betrifft dies Wärmetauscher, die im Betrieb mit Luft für Klimatisierungszwecke durchströmt werden.If cleaning is not possible due to the inaccessibility or the mechanical or chemical resistance of the dirt, the aircraft components to be cleaned must even be replaced. Furthermore, with the known cleaning methods, long process times are to be expected in some cases. The use of highly reactive cleaning agents is also problematic with regard to occupational safety, environmental pollution or possible residues on the surfaces. In particular, this relates to heat exchangers through which air flows for air conditioning purposes during operation.

Aus der DE 10 2009 009 938 A1 ist eine Vorrichtung zur Reinigung von Trinkwasserleitungen oder Abwasserleitungen in Fahrzeugen bekannt, mit der die zu reinigende Leitung in Intervallen mit Gasblöcken beaufschlagt werden kann, welche sich in einzelnen Impulsen intermittierend als Folge von Flüssigkeits- und Gasströmen leitungsausfüllend durch die Leitung bewegen.From the DE 10 2009 009 938 A1 a device for cleaning drinking water pipes or sewage pipes in vehicles is known, with which the pipe to be cleaned can be charged at intervals with gas blocks, which move in individual pulses intermittently as a result of liquid and gas flows through the pipe, filling the pipe.

Aufgabe der Erfindung ist es demnach, ein Reinigungsverfahren bereitzustellen, durch das eine effektive und schonende Entfernung von mechanisch und chemisch beständigen Verschmutzungen an schwer zugänglichen Oberflächen im Innenvolumen einer durchströmten Flugzeugkomponente ermöglicht wird.It is therefore the object of the invention to provide a cleaning process that enables effective and gentle removal of mechanically and chemically resistant dirt on surfaces that are difficult to access in the interior volume of an aircraft component through which air flows.

Die Erfindung löst diese Aufgabe mit einem Reinigungsverfahren gemäß dem unabhängigen Anspruch 1. Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im unabhängigen Anspruch angegebenen Verfahrens möglich.The invention solves this problem with a cleaning method according to independent claim 1. Advantageous further developments and improvements of the method specified in the independent claim are possible through the measures listed in the dependent claims.

Gemäß dem Grundgedanken der Erfindung wird ein Verfahren zur Reinigung von Oberflächen im Innenvolumen einer durchströmten Flugzeugkomponente vorgeschlagen, das mindestens folgende Schritte umfasst: Verbinden des zu reinigenden Innenvolumens mit einem Dampferzeuger, Erzeugen eines Reinigungsdampfes mit vorbestimmtem Dampfdruck und Temperatur durch den Dampferzeuger, Beaufschlagen der zu reinigenden Oberflächen im Innenvolumen der durchströmten Flugzeugkomponente mit dem Reinigungsdampf, Aufrechterhalten des Dampfdruckes und der Temperatur innerhalb des Innenvolumens für die Dauer einer vorbestimmten Kondensationszeit, Erzeugen eines Druckabfalls im Innenvolumen der durchströmten Flugzeugkomponente zur Verdampfung des während der Kondensationszeit kondensierten Teils des Reinigungsdampfes und Abtransport des Reinigungsdampfes aus dem Innenvolumen der durchströmten Flugzeugkomponente mit dem Reinigungsdampf, Aufrechterhalten des Dampfdruckes und der Temperatur innerhalb des Innenvolumens für die Dauer einer vorbestimmten Kondensationszeit, Erzeugen eines Druckabfalls im Innenvolumen der durchströmten Flugzeugkomponente zur Verdampfung des während der Kondensationszeit kondensierten Teils des Reinigungsdampfes und Abtransport des Reinigungsdampfes aus dem Innenvolumen der durchströmten Flugzeugkomponente durch eine Auslassvorrichtung. Durch dieses Verfahren lassen sich schwer zugängliche Oberflächen von Verschmutzungen reinigen. Als Reinigungsmedium dient hierzu Reinigungsdampf, bzw. dessen Kondensat. Durch die Beaufschlagung der Oberflächen mit dem Reinigungsdampf kondensiert dieser bei geeignet gewählten Parametern wie Dampfdruck, Temperatur, Dampfanteil oder Kondensationszeit an den Oberflächen und insbesondere an den Verschmutzungen. Das Dampfkondensat kann dabei in Risse, Kavitäten und Porösität der Verschmutzungen eindringen und sich ablagern. Durch die Erzeugung eines schnellen Druckabfalls im Innenvolumen der durchströmten Flugzeugkomponente wird das eingelagerte Kondensat anschließend wieder verdampft. Die Phasenumwandlung des Reinigungsmediums von flüssig zurück in einen gasförmigen Zustand ist dabei mit einer rapiden Volumenzunahme des Reinigungsmediums verbunden. Das Verdampfen des in und an den Verschmutzungen abgelagerten Kondensats erzeugt in den Verschmutzungen lokal große Druckkräfte, welche zum Abplatzen und Ablösen der Verschmutzung führen. Diese gelösten Verschmutzungen können anschließend zusammen mit dem Reinigungsdampf durch eine Auslassvorrichtung aus dem Innenvolumen der durchströmten Flugzeugkomponente abtransportiert werden. Im Vergleich zu mechanischen Verfahren ist das erfindungsgemäße Verfahren schonend für die zu reinigenden Oberflächen, da kein Materialabtrag am Grundmaterial auftritt, zudem können die ökologischen und gesundheitlichen Auswirkungen durch Verzicht, bzw. Minimierung chemischer Reinigungsmittel verringert werden.According to the basic idea of the invention, a method for cleaning surfaces in the interior volume of an aircraft component through which air flows is proposed, which comprises at least the following steps: connecting the interior volume to be cleaned to a steam generator, generating a cleaning steam with a predetermined steam pressure and temperature by the steam generator, applying the to be cleaned Surfaces in the interior volume of the aircraft component through which flow occurs with the cleaning vapor, maintaining the vapor pressure and the temperature within the interior volume for the duration of a predetermined condensation time, generating a pressure drop in the interior volume of the aircraft component through which flow occurs in order to evaporate the part of the cleaning vapor condensed during the condensation time and transporting the cleaning vapor away from the internal volume the through-flow aircraft component with the cleaning vapor, maintaining the vapor pressure and the temperature within the interior volume for the duration of a predetermined condensation time, generating a pressure drop in the interior volume of the through-flow aircraft component for evaporating the part of the cleaning vapor condensed during the condensation time and transporting the cleaning vapor away from the interior volume of the through-flow Aircraft component through an outlet device. This process allows dirt to be removed from hard-to-reach surfaces. Cleaning steam or its condensate serves as the cleaning medium. When the cleaning steam is applied to the surfaces, it condenses on the surfaces and in particular on the soiling with suitably selected parameters such as steam pressure, temperature, steam content or condensation time. The steam condensate can penetrate into cracks, cavities and porosity of the dirt and be deposited. The stored condensate is then evaporated again by generating a rapid drop in pressure in the interior volume of the aircraft component through which the air flows. The phase change of the cleaning medium from liquid back to a gaseous state is associated with a rapid increase in volume of the cleaning medium. The evaporation of the condensate deposited in and on the contamination generates locally high compressive forces in the contamination, which lead to the contamination flaking off and detaching. These loosened contaminants can then be transported away together with the cleaning vapor through an outlet device from the interior volume of the aircraft component through which flow has taken place. Compared to mechanical methods, the method according to the invention is gentle on the surfaces to be cleaned, since no material is removed from the base material and health effects can be reduced by avoiding or minimizing the use of chemical cleaning agents.

Besonders bevorzugt ist, dass das Innenvolumen der durchströmten Flugzeugkomponente nach dem Abtransport des Reinigungsdampfes mit Wasser durchspült wird. Hierdurch kann die Wirkung des Reinigungsvorgangs erhöht sowie dessen erfolgreicher Abschluss erreicht werden. Durch einen oder mehrere sich an die Reinigungsschritte anschließende Spülgänge des Innenvolumens mit Wasser werden weitere Verschmutzungen abtransportiert, die zwar durch das Verdampfen von den Oberflächen gelöst wurden, jedoch während des Abtransports des Reinigungsdampfes noch in dem Innenvolumen der durchströmten Flugzeugkomponente verblieben sind.It is particularly preferred that the interior volume of the aircraft component through which flow occurs is flushed with water after the cleaning vapor has been transported away. As a result, the effect of the cleaning process can be increased and its successful completion can be achieved. One or more rinsing cycles of the interior volume with water following the cleaning steps removes further contamination, which was removed from the surfaces by evaporation but remained in the interior volume of the aircraft component through which flow occurred while the cleaning vapor was being removed.

Weiter ist es bevorzugt, dass die Reinigungsschritte mit einer vorbestimmten Zykluszeit wiederholt werden. Durch das Wiederholen der Reinigungsschritte lässt sich eine effiziente Reinigung erreichen, wobei der Verschmutzungsgrad bei jedem folgenden Reinigungszyklus sinkt. Besonders hartnäckige Verschmutzungen lassen sich dabei schichtweise abtragen, da das Dampfkondensat nicht bei einer Reinigungsanwendung die gesamte Verschmutzung durchdringen muss, sondern bei jedem Reinigungszyklus die jeweils obersten Schichten der Verschmutzung ablöst. Die Zeiten der einzelnen Reinigungsdurchgänge können somit reduziert werden.Furthermore, it is preferred that the cleaning steps are repeated with a predetermined cycle time. Efficient cleaning can be achieved by repeating the cleaning steps, with the degree of soiling decreasing with each subsequent cleaning cycle. Particularly stubborn dirt can be removed layer by layer, since the steam condensate does not have to penetrate the entire dirt during a cleaning application, but detaches the top layers of dirt with each cleaning cycle. The times of the individual cleaning cycles can thus be reduced.

Weiter ist es bevorzugt, als Reinigungsdampf Wasserdampf zu verwenden. Da die Verschmutzungsentfernung im Wesentlichen über mechanische Kräfte verwirklicht wird, die durch die rasche Volumenzunahme während des Verdampfens entstehen, ist es in der Regel nicht nötig, besondere chemische Reinigungsmittel vorzusehen wie etwa stark reaktive Säuren. Wasserdampf lässt sich über einen bekannten und reproduzierbaren Druck- und Temperaturbereich präzise kontrollieren und ist für die Reinigung von Oberflächen im Innenvolumen von Wärmetauschern auch wegen seiner gesundheitlichen und ökologischen Unbedenklichkeit besonders gut geeignet, insbesondere bei Wärmetauschern, die zu Klimatisierungszwecken von Luft durchströmt werden. Je nach Art der Verschmutzungen und dem Anwendungsbereich der durchströmten Flugzeugkomponente kann es vorteilhaft sein, dem Reinigungsdampf chemische Reinigungsmittel beizugeben, um die Reinigungswirkung zu verbessern.It is also preferred to use water vapor as the cleaning vapor. Since the removal of dirt is essentially achieved via mechanical forces that arise from the rapid increase in volume during evaporation, it is usually not necessary to provide special chemical cleaning agents such as strongly reactive acids. water vapor can be controlled precisely over a known and reproducible pressure and temperature range and is particularly well suited for cleaning surfaces in the interior volume of heat exchangers, also because of its health and ecological safety, especially in heat exchangers through which air flows for air conditioning purposes. Depending on the type of dirt and the area of application of the aircraft component through which the air flows, it can be advantageous to add chemical cleaning agents to the cleaning steam in order to improve the cleaning effect.

Um eine gute Reinigungswirkung zu erzielen hat sich gezeigt, dass ein Reinigungsdampf bevorzugt mit Temperaturen von mindestens 388 Kelvin, höchstens 646 Kelvin und idealerweise im Bereich von 433 Kelvin zu verwenden ist. Weiter ist es bevorzugt, dass der Dampfdruck des Reinigungsdampfes mindestens 0,17 MPa, höchstens 22 MPa und besonders bevorzugt 0,61 MPa beträgt. Ein Reinigungsdampf mit einem Dampfanteil von 80 %, mindestens aber 10 %, ist für eine optimale Reinigungswirkung vorteilhaft. Ein dadurch bereitgestellter Sattdampf ermöglicht während der Reinigung eine ausreichende Kondensation. Eine Einwirkzeit des Kondensats in die Verschmutzungen im Bereich weniger Minuten kann dabei die Reinigungswirkung erhöhen. Diese Zykluszeit kann je nach Art der Verschmutzung aber auch nur wenige Sekunden oder bis zu einer Stunde betragen. Um nach Erzeugung eines Druckabfalls eine ausreichend schnelle Verdampfung des Kondensats zu gewährleisten, sollte der Druckgradient bevorzugt mindestens 0,01 MPa/s und besonders bevorzugt 0,1 MPa/s betragen.In order to achieve a good cleaning effect, it has been shown that cleaning steam should preferably be used with temperatures of at least 388 Kelvin, at most 646 Kelvin and ideally in the range of 433 Kelvin. It is further preferred that the vapor pressure of the cleaning vapor is at least 0.17 MPa, at most 22 MPa and particularly preferably 0.61 MPa. A cleaning steam with a steam content of 80%, but at least 10%, is advantageous for an optimal cleaning effect. The saturated steam thus provided enables sufficient condensation during cleaning. Allowing the condensate to act on the dirt in the range of a few minutes can increase the cleaning effect. Depending on the type of contamination, this cycle time can be just a few seconds or up to an hour. In order to ensure sufficiently rapid evaporation of the condensate after a pressure drop has been generated, the pressure gradient should preferably be at least 0.01 MPa/s and particularly preferably 0.1 MPa/s.

In einer besonders vorteilhaften Ausführungsform wird das Verfahren mit einem Dampferzeuger durchgeführt, der regelbar bezüglich Dampfdruck und/oder Dampftemperatur ist. Die Reinigungswirkung hängt wesentlich von der Kondensationsfähigkeit des Reinigungsdampfes ab. Im Falle von Trockendampf, also überhitztem Dampf, ist die Kondensationsfähigkeit stark eingeschränkt und es ist sogar ein weiteres Einbrennen der Verschmutzung möglich. Da einem so genannten Sattdampf stets eine Temperatur und ein Dampfdruck zugeordnet werden kann, lässt sich über diese Parameter eine geeignete Kondensationsfähigkeit einstellen. Insbesondere ist das Verfahren damit auf verschiedene Druck- und Temperaturfestigkeiten der zu reinigenden Oberflächen einstellbar.In a particularly advantageous embodiment, the method is carried out with a steam generator that can be regulated with regard to steam pressure and/or steam temperature. The cleaning effect depends essentially on the condensing ability of the cleaning steam. In the case of dry steam, i.e. superheated steam, the ability to condense is severely limited and the soiling can even burn in further. Since a temperature and a vapor pressure can always be assigned to a so-called saturated steam, a suitable condensing capacity can be set via these parameters. In particular, the method can be adjusted to different pressure and temperature resistances of the surfaces to be cleaned.

In einer besonders bevorzugten Ausführungsform ist ein weiterer Verfahrensschritt vorgesehen, bei dem der abtransportierte Reinigungsdampf wiederverwertet wird, indem er kondensiert und gereinigt wird und dem Dampferzeuger zur erneuten Erzeugung eines Reinigungsdampfes in einem folgenden Zyklus zugeführt wird. Die Durchführung des erfindungsgemäßen Reinigungsverfahrens mit einer Rückführung und Wiederverwertung des Reinigungsmediums senkt die Kosten des Reinigungsvorgangs, da nicht für jeden Zyklus ein neues ungebrauchtes Reinigungsmedium bereitgestellt werden muss und verringert die zu entsorgende Menge an verbrauchtem Reinigungsmedium pro Reinigungsvorgang.In a particularly preferred embodiment, a further method step is provided, in which the cleaning steam transported away is reused by being condensed and cleaned and fed to the steam generator for renewed generation of cleaning steam in a subsequent cycle. Carrying out the cleaning method according to the invention with recycling and recycling of the cleaning medium lowers the costs of the cleaning process, since a new, unused cleaning medium does not have to be provided for each cycle and reduces the amount of used cleaning medium to be disposed of per cleaning process.

In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens, ist ein zusätzlicher Verfahrensschritt vorgesehen, bei dem der abtransportierte Reinigungsdampf eine durchströmte Flugzeugkomponente zur Energierückgewinnung durchläuft, bevor er dem Dampferzeuger erneut zugeführt wird. Ein Teil der thermischen Energie des erhitzten Abdampfes lässt sich damit zur erneuten Dampferzeugung in einem folgenden Reinigungszyklus verwenden.In a further preferred embodiment of the method according to the invention, an additional method step is provided in which the cleaning steam transported away runs through an aircraft component through which it has flowed for energy recovery before it is fed back to the steam generator. Part of the thermal energy of the heated waste steam can thus be used to generate steam again in a subsequent cleaning cycle.

Gemäß einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Reinigungsverfahrens, wird der Druckabfall im Innenvolumen der zu reinigenden Flugzeugkomponente durch das Öffnen einer Auslassvorrichtung realisiert. Der Dampfdruck wird während der Kondensationszeit aufrechterhalten durch eine nahezu geschlossene Auslassvorrichtung, die das Innenvolumen von einem Bereich mit geringerem Druck abtrennt. Eine geringfügige Öffnung der Auslassvorrichtung bei gleichzeitiger Aufrechterhaltung des Druckes erlaubt das Abführen von überschüssigem Kondensat und verhindert die unerwünschte Entstehung größerer Wasseransammlungen unter Druck. Eine größere Wasseransammlung würde den erreichbaren Druckgradienten mindern. Durch das Öffnen der Auslassvorrichtung wird der Druck im Innenvolumen schlagartig reduziert, wodurch eine schnelle Verdampfung des Kondensats erreicht wird und der Reinigungsdampf abtransportiert wird. Besonders bevorzugt ist dabei, dass die Auslassvorrichtung ein Schaltventil umfasst. Die Auslassvorrichtung und das Schaltventil müssen dafür einen angepassten Strömungsquerschnitt aufweisen, um einen ausreichend großen Druckgradienten zu erzeugen. Idealerweise ist während des Verfahrens keine Luft im System vorhanden, damit die Wärmeübertragung und Reinigungswirkung optimiert wird. Die kann erreicht werden, indem zu Beginn der Bedruckung die Auslassvorrichtung zunächst etwas geöffnet bleibt, um das Verdrängen und Ausblasen der Luft durch den Dampf zu erlauben. Alternativ kann die Lauft vor Beginn der Bedruckung abgesaugt werden (Vakuum) .According to a particularly preferred embodiment of the cleaning method according to the invention, the pressure drop in the interior volume of the aircraft component to be cleaned is realized by opening an outlet device. Vapor pressure is maintained during the condensation period by a nearly closed outlet device that separates the internal volume from a lower pressure region. Slight opening of the outlet device while maintaining the pressure allows excess condensate to be discharged and prevents the undesirable accumulation of large amounts of water under pressure. A larger accumulation of water would reduce the achievable pressure gradient. When the outlet device is opened, the pressure in the interior volume is suddenly reduced, which means that the condensate evaporates quickly and the cleaning vapor is transported away. It is particularly preferred that the outlet device comprises a switching valve. For this purpose, the outlet device and the switching valve must have an adapted flow cross section in order to generate a sufficiently large pressure gradient. Ideally, there is no air in the system during the process to optimize heat transfer and cleaning efficiency. This can be achieved by initially leaving the outlet device slightly open at the beginning of the printing in order to allow the air to be displaced and blown out by the steam. Alternatively, the barrel can be sucked off (vacuum) before printing begins.

Weiter ist bevorzugt, dass der Verschmutzungsgrad des abtransportierten Reinigungsdampfes gemessen wird. Durch die Analyse des Verschmutzungsgrads und der Art der Verschmutzungen kann auf die Reinigungswirkung des Spüldurchgangs geschlossen werden und für folgende Zyklen können Verfahrensparameter wie Kondensationszeit und Dampfdruck angepasst werden. Weiter ist bevorzugt den Reinigungszyklus so oft zu wiederholen, bis der gemessene Verschmutzungsgrad einen vorbestimmten Schwellwert erreicht, so dass die Reinigung abgeschlossen werden kann.It is also preferred that the degree of contamination of the cleaning vapor transported away is measured. By analyzing the degree of contamination and the type of contamination, the cleaning effect of the rinsing cycle can be concluded and process parameters such as Condensation time and vapor pressure can be adjusted. Furthermore, it is preferred to repeat the cleaning cycle until the measured degree of contamination reaches a predetermined threshold value, so that the cleaning can be completed.

In einer weiteren Ausführungsform wird der Druckverlust während eines Reinigungsvorgangs einer genormten Vergleichskomponente (Vergleichswert) gemessen und der Reinigungszyklus automatisiert wiederholt, bis der gemessene Druckverlust der zu reinigenden Flugzeugkomponente im Wesentlichen dem Vergleichswert entspricht. Eine Vergleichskomponente kann dabei idealerweise aus einer neuen oder gereinigten Komponente, die baugleich mit der zu reinigenden Flugzeugkomponente ist, bestehen. Durch Integration der Vergleichskomponente in den Reinigungsaufbau, idealerweise in einem parallelen Aufbau, werden beide Flugzeugkomponenten den gleichen Reinigungsbedingungen ausgesetzt. Die Analyse des Druckverlusts während der Reinigung bietet so eine Kontrolle des Reinigungsergebnisses ohne im Vorhinein Tests durchführen zu müssen, um Standardparameter der unterschiedlichen Flugzeugkomponenten festzulegen. Das exakte Erreichen des Vergleichswertes muss dabei nicht als Verfahrensendpunkt erreicht werden. Der Vergleichswert kann auch durch einen vorher festgelegten Toleranzbereich gebildet sein, der einen für die Funktionalität der durchströmten Flugzeugkomponente ausreichenden Reinigungsgrad erwarten lässt. Vorteilhaft ist zusätzlich ein zeitlich begrenztes Endsignal, so dass die automatisierte Wiederholung der Reinigungszyklen abgebrochen wird, falls der Vergleichswert nicht innerhalb einer vorher definierten Maximalzeit erreicht wird. Dies verhindert zeitaufwändige Reinigungen bei stark verschmutzten, nicht mehr reinigbaren Komponenten, die im Endergebnis ausgetauscht werden müssen.In a further embodiment, the pressure loss is measured during a cleaning process of a standardized comparison component (comparative value) and the cleaning cycle is repeated automatically until the measured pressure loss of the aircraft component to be cleaned essentially corresponds to the comparison value. A comparison component can ideally consist of a new or cleaned component that is structurally identical to the aircraft component to be cleaned. By integrating the comparison component into the cleaning setup, ideally in a parallel setup, both aircraft components are exposed to the same cleaning conditions. The analysis of the pressure loss during the cleaning thus offers a control of the cleaning result without having to carry out tests in advance to establish standard parameters of the different aircraft components. The exact achievement of the comparison value does not have to be achieved as the end point of the process. The comparison value can also be formed by a previously defined tolerance range, which allows us to expect a degree of cleaning that is sufficient for the functionality of the aircraft component through which the air flows. A time-limited end signal is also advantageous, so that the automated repetition of the cleaning cycles is aborted if the comparison value is not reached within a previously defined maximum time. This prevents time-consuming cleaning of heavily soiled components that can no longer be cleaned, which ultimately have to be replaced.

Die Erfindung wird im Folgenden anhand bevorzugter Ausführungsformen unter Bezugnahme auf die beigefügten Figuren erläutert. Dabei zeigt:

Fig. 1
eine schematische Darstellung des Aufbaus für ein erfindungsgemäßes Verfahren zur Reinigung von Oberflächen im Innenvolumen einer durchströmten Flugzeugkomponente;
Fig. 2
eine schematische Darstellung des Prozessablaufs eines erfindungsgemäßen Verfahrens zur Reinigung von Oberflächen im Innenvolumen einer durchströmten Flugzeugkomponente;
Fig. 3a-3d
eine schematische Darstellung des Wirkprinzips des erfindungsgemäßen Reinigungsverfahrens; und
Fig. 4
eine schematische Darstellung einer weiteren Ausführungsform eines erfindungsgemäßen Reinigungsverfahrens.
The invention is explained below on the basis of preferred embodiments with reference to the accompanying figures. It shows:
1
a schematic representation of the structure for a method according to the invention for cleaning surfaces in the interior volume of an aircraft component through which air flows;
2
a schematic representation of the process sequence of a method according to the invention for cleaning surfaces in the interior volume of an aircraft component through which air flows;
Figures 3a-3d
a schematic representation of the active principle of the cleaning method according to the invention; and
4
a schematic representation of a further embodiment of a cleaning method according to the invention.

Fig. 1 und Fig. 2 zeigen schematisch und beispielhaft den Aufbau und den Prozessablauf eines erfindungsgemäßen Reinigungsverfahrens. Dabei wird im Folgenden davon ausgegangen, dass es sich bei der zu reinigenden durchströmten Flugzeugkomponente 2 um einen Wärmetauscher 2 handelt. Dies soll nicht als Einschränkung zu verstehen sein, vielmehr ist das erfindungsgemä-ße Reinigungsverfahren auf eine Vielzahl durchströmter Flugzeugkomponenten 2 anwendbar mit zu reinigenden Oberflächen in deren Innenvolumen. Zunächst werden die zu reinigenden Oberflächen in den Reinigungsaufbau 1 integriert. Bei zu reinigenden Oberflächen im Innenvolumen eines Wärmetauschers 2, wird der Wärmetauscher 2 über eine geeignete Adaptierung 3 an den Reinigungsaufbau 1 angeschlossen. Dabei ist im Reinigungsaufbau 1 ein Dampferzeuger 4 vorgesehen. Es notwendig, dass durch die Adaptierung 3 eine druckfeste Verbindung zwischen dem Dampferzeuger 4 und dem zu reinigenden Innenvolumen des Wärmetauschers 2 gebildet ist. Ein flüssiges Reinigungsmedium, das im Regelfall zum Großteil aus Wasser besteht, wird in einem der Reinigung vorgelagerten Schritt 6 für die Anforderungen der zu reinigenden Oberflächen aufbereitet. Die vorgelagerte Aufbereitung 6 kann beispielsweise in einer Demineralisierung des flüssigen Reinigungsmediums bestehen. Im Folgenden ist der Ablauf des erfindungsgemäßen Reinigungsverfahrens anhand von Wasser als Reinigungsmedium erläutert; dem Offenbarungsgehalt dieser Anmeldung sind jedoch ausdrücklich auch andere geeignete Reinigungsmedien hinzuzurechnen, insbesondere chemische Reinigungsmittel oder wässrige Lösungen von chemischen Reinigungsmitteln. 1 and 2 show schematically and by way of example the structure and the process flow of a cleaning method according to the invention. In the following, it is assumed that the aircraft component 2 through which flow is to be cleaned is a heat exchanger 2 . This should not be understood as a limitation, rather the cleaning method according to the invention can be used on a large number of aircraft components 2 through which air flows, with surfaces to be cleaned in their interior volume. First, the surfaces to be cleaned are integrated into the cleaning structure 1 . When surfaces to be cleaned in the interior volume of a heat exchanger 2, the heat exchanger 2 is a suitable adaptation 3 to the Cleaning structure 1 connected. A steam generator 4 is provided in the cleaning structure 1 . It is necessary for the adaptation 3 to form a pressure-tight connection between the steam generator 4 and the internal volume of the heat exchanger 2 to be cleaned. A liquid cleaning medium, which as a rule consists largely of water, is prepared for the requirements of the surfaces to be cleaned in step 6 preceding the cleaning. The upstream processing 6 can consist, for example, in a demineralization of the liquid cleaning medium. The course of the cleaning process according to the invention is explained below using water as the cleaning medium; However, other suitable cleaning media, in particular chemical cleaning agents or aqueous solutions of chemical cleaning agents, are also expressly to be included in the disclosure content of this application.

Das aufbereitete Wasser wird dem Dampferzeuger 4 zugeführt, der eine Dampfbildung des Wassers bewirkt. So kann beispielsweise durch Wärmezufuhr und eine Pumpe ein Reinigungsdampf 7 unter Überdruck erzeugt werden. Die Erzeugung des Reinigungsdampfes 7 ist dabei bevorzugt regelbar. Um eine gute Reinigungswirkung zu erzielen, hat sich gezeigt, dass ein Reinigungsdampf 7 mit Temperaturen von mindestens 388 Kelvin, einem Dampfdruck von mindestens 0,17 MPa und einem Dampfanteil von mindestens 10 % verwendet werden sollte. Idealerweise sollte die Temperatur etwa 433 Kelvin, der Dampfdruck etwa 0,8 MPa und der Dampfanteil etwa 80 % betragen. Ein derartiger Sattdampf ist vorteilhaft, um während der Reinigung eine ausreichende Kondensation zu gewährleisten.The treated water is fed to the steam generator 4, which causes the water to form steam. For example, a cleaning steam 7 can be generated under overpressure by supplying heat and a pump. The generation of the cleaning vapor 7 is preferably controllable. In order to achieve a good cleaning effect, it has been shown that cleaning steam 7 with temperatures of at least 388 Kelvin, a steam pressure of at least 0.17 MPa and a steam content of at least 10% should be used. Ideally, the temperature should be around 433 Kelvin, the vapor pressure around 0.8 MPa and the vapor fraction around 80%. Such saturated steam is advantageous in order to ensure sufficient condensation during cleaning.

Prinzipiell kann auch Trockendampf, also überhitzter Dampf, eingesetzt werden, wobei zu beachten ist, dass die Reinigungsleistung wesentlich geringer ist und die Verschmutzungen 9 einbrennen und sich weiter verfestigen können. Im Bereich des Sattdampfes sind Dampfdruck und Temperatur immer eindeutig zugeordnet, womit sich eine Steuerung über die Regelung von Druck und Temperatur anpassen lässt.In principle, dry steam, i.e. superheated steam, can also be used, whereby it should be noted that the cleaning performance is much lower and the soiling 9 can burn in and solidify further. In the area of saturated steam, steam pressure and temperature are always clearly assigned, which means that control can be adjusted by regulating pressure and temperature.

Mit dem im Dampferzeuger 4 erzeugten Reinigungsdampf 7 werden folgend die zu reinigenden Oberflächen im Innenvolumen des Wärmetauschers 2 beaufschlagt. Dem Beaufschlagen des Innenvolumens des Wärmetauschers 2 mit dem erzeugten Reinigungsdampf 7 und einem Aufwärmen des Wärmetauschers 2 auf eine geeignete Temperatur, schließt sich eine ausreichend lange Kondensationszeit an, in der der Reinigungsdampf 7 auf die zu reinigenden Oberflächen einwirken kann und an den Oberflächen ein Reinigungsdampfkondensat 8 bilden kann. Dabei findet die Kondensation auch an den Verschmutzungen 9 statt.The cleaning steam 7 generated in the steam generator 4 is then applied to the surfaces to be cleaned in the inner volume of the heat exchanger 2 . The loading of the inner volume of the heat exchanger 2 with the generated cleaning steam 7 and the heating of the heat exchanger 2 to a suitable temperature is followed by a sufficiently long condensation time, in which the cleaning steam 7 can act on the surfaces to be cleaned and on the surfaces a cleaning steam condensate 8 can form. In this case, the condensation also takes place on the dirt 9 .

Im nächsten Schritt wird ein starker Druckabfall 10 erzeugt. Dies kann beispielsweise durch das Öffnen eines Schaltventils 11 in einer Auslassvorrichtung realisiert sein. Der Druckgradient bestimmt die Reinigungswirkung wesentlich, da durch den Druckgradienten das schnelle Verdampfen und somit das Tempo der Volumenexpansion des abgelagerten Kondensats 8 während der Phasenumwandlung von flüssig zu fest bestimmt wird. Dabei sollte der Druckgradient wenigstens eine Rate von etwa 0,01 MPa/s, idealerweise etwa 0,1 MPa/s betragen. Durch die geöffnete Auslassvorrichtung wird der Reinigungsdampf 7 anschließend zusammen mit den gelösten Verschmutzungen 9 abtransportiert.In the next step, a strong pressure drop 10 is generated. This can be realized, for example, by opening a switching valve 11 in an outlet device. The pressure gradient essentially determines the cleaning effect, since the rapid evaporation and thus the speed of the volume expansion of the deposited condensate 8 during the phase change from liquid to solid is determined by the pressure gradient. The pressure gradient should be at least a rate of about 0.01 MPa/s, ideally about 0.1 MPa/s. The cleaning steam 7 is then transported away together with the loosened dirt 9 through the opened outlet device.

Die Reinigungsschritte werden mit einer vorbestimmten Zykluszeit wiederholt. Diese kann je nach Art der Verschmutzungen 9 zwischen etwa 20 Sekunden und bis zu einer Stunde dauern und liegt idealerweise bei wenigen Minuten. Um den Reinigungsvorgang zu überwachen, wird der Abdampf 13, also der ausgestoßene Reinigungsdampf, kondensiert und analysiert. Hierdurch kann die Reinigungswirkung und der erfolgreiche Abschluss des Reinigungsvorgangs festgestellt werden. Im Anschluss an die Reinigungsschritte können weitere Spülvorgänge 14, beispielsweise mit Wasser vorgesehen sein um gelöste Verschmutzungen 9 abzutransportieren, die zwar durch den Reinigungsdampf 7 gelöst wurden, aber noch im Innenvolumen des Wärmetauschers 2 verblieben sind. Während des Spülvorgangs 14 mit Wasser kann in einem Analyseschritt 15 zudem der Druckverlust über den Wärmetauscher 2, als weiterer Indikator für den Grad der Reinigung, gemessen werden. Nach dem letzten Spülvorgang 14 wird der Wärmetauscher 2 mit Dampf getrocknet 33, offen abgekühlt 34 und nachgetrocknet 35 und steht dann als gereinigter Wärmetauscher 2` zur Verfügung.The cleaning steps are repeated with a predetermined cycle time. Depending on the type of dirt 9, this can last between about 20 seconds and up to an hour is ideally a few minutes. In order to monitor the cleaning process, the waste steam 13, ie the emitted cleaning steam, is condensed and analyzed. This allows the cleaning effect and the successful completion of the cleaning process to be determined. Subsequent to the cleaning steps, further rinsing processes 14 , for example with water, can be provided in order to transport away loosened contamination 9 , which was loosened by the cleaning steam 7 but still remained in the inner volume of the heat exchanger 2 . During the rinsing process 14 with water, the pressure loss across the heat exchanger 2 can also be measured in an analysis step 15 as a further indicator of the degree of cleaning. After the last rinsing process 14, the heat exchanger 2 is dried with steam 33, openly cooled 34 and dried 35 and is then available as a cleaned heat exchanger 2'.

Für das Reinigungsverfahren ist als optionaler Schritt 16 eine Energierückgewinnung vorgesehen, welche sich durch den Einsatz eines Wärmetauschers realisieren lässt, der zwischen der Auslassvorrichtung und dem Wasserzulauf 18 des Wärmetauschers 2 angeordnet ist und die vom Abdampf 13 gewonnene Wärme für die Dampferzeugung 4 zur Verfügung stellt. Der verschmutzte Abdampf 13, beziehungsweise das verschmutzte Abwasser 13, kann anschließend entsorgt werden 36. Darüber hinaus kann auch der Abdampf 13 weiterverwertet werden, indem einem Dampfreinigungszyklus eine Wasserrückgewinnung 19 nachgeschaltet ist, die beispielsweise durch Abscheidung 20 der Verschmutzungen 9 aus dem Abwasser 13, Filtration des Wassers und Bereitstellung des derart aufbereiteten Wassers am Zulauf 18 des Dampferzeugers 4 realisiert ist.Energy recovery is provided as an optional step 16 for the cleaning process, which can be implemented by using a heat exchanger which is arranged between the outlet device and the water inlet 18 of the heat exchanger 2 and which makes the heat obtained from the exhaust steam 13 available for the steam generation 4 . The polluted waste steam 13, or the polluted waste water 13, can then be disposed of 36. In addition, the waste steam 13 can also be reused by a steam cleaning cycle being followed by water recovery 19, for example by separating 20 the contaminants 9 from the waste water 13, filtration of the water and providing the water treated in this way at the inlet 18 of the steam generator 4 is realized.

Die Wirkungsweise des Ablösens der Oberflächenverschmutzungen 9 ist in den Fig. 3a bis 3d schematisch dargestellt. Das erfindungsgemäße Reinigungsverfahren macht sich die natürliche Beschaffenheit der Verschmutzungen 9 der zu reinigenden Oberflächen zu Nutze. Die Verschmutzungen 9 lagern am Basismaterial 21 der zu reinigenden Oberflächen an und sind in der Regel porös und weisen Kavitäten 22 und Risse 23 auf. Während des Reinigungsverfahrens werden die Oberflächen sowie die Verschmutzungen 9 mit dem Überdruck und dem Reinigungsdampf 7 beaufschlagt (Fig. 3b). Während der Kondensationszeit beginnt der Reinigungsdampf 7 an allen Oberflächen und somit auch an den Verschmutzungen 9 zu kondensieren. Das Reinigungsdampfkondensat 8 belegt dabei die Oberflächen und beginnt aufgrund der Porösität der Verschmutzungen 9 in Risse 23 und Kavitäten 22 einzudringen und sich dort abzulagern (Fig. 3c). Im nächsten Schritt wird ein Druckabfall 10 erzeugt, welcher ein plötzliches Verdampfen und somit eine Volumenzunahme des in den Verschmutzungen 9 eingelagerten Reinigungsdampfkondensats 8 bewirkt. Die hierdurch erzeugten, in den Verschmutzungen 9 lokal wirkenden Druckkräfte führen dann zu einem Abplatzen und Ablösen 24 der Verschmutzungen 9. Der vergrößerte Volumenstrom 25 des Reinigungsdampfes 7 unterstützt zusätzlich den Abtransport 26 der gelösten Verschmutzung 9 (Fig. 3d).The mode of action of the detachment of the surface contamination 9 is in the Figures 3a to 3d shown schematically. The cleaning method according to the invention makes use of the natural nature of the dirt 9 on the surfaces to be cleaned. The dirt 9 accumulates on the base material 21 of the surfaces to be cleaned and is generally porous and has cavities 22 and cracks 23 . During the cleaning process, the surfaces and the dirt 9 are subjected to overpressure and the cleaning steam 7 ( Figure 3b ). During the condensation time, the cleaning steam 7 begins to condense on all surfaces and thus also on the dirt 9. The cleaning steam condensate 8 covers the surfaces and, due to the porosity of the dirt 9, begins to penetrate cracks 23 and cavities 22 and deposit there ( 3c ). In the next step, a pressure drop 10 is generated, which causes sudden evaporation and thus an increase in volume of the cleaning steam condensate 8 embedded in the dirt 9 . The pressure forces generated in this way and acting locally in the contamination 9 then lead to the contamination 9 flaking off and detaching 24 . 3d ).

Die erfindungsgemäße Reinigung kann nicht nur bei porösen oder festen Verschmutzungen angewendet werden, sondern es können beispielsweise auch flüssige oder zähviskose Filme abgetragen werden. Der zuvor unter Bezugnahme auf Figur 3 beschriebene Wirkmechanismus kann sich bei anderen als den dargestellten porösen bzw. festen Verschmutzungen anders darstellen.The cleaning according to the invention can be used not only for porous or solid soiling, but also for example liquid or viscous films can be removed. The previously referred to figure 3 The mechanism of action described may be different in the case of porous or solid soiling other than that shown.

In Fig. 4 ist eine konkrete Manifestation des Reinigungsverfahrens erläutert. Dabei ist ein Wärmetauscher 2 über eine erste Adaptierung 3 an einen druck- und oder temperaturregelbaren Dampferzeuger 4 angeschlossen. Dieser wird an seinem Wasserzulauf 18 über eine Demineralisierungsvorrichtung 6 mit Nutzwasser und aufbereitetem Wasser aus einem Wasserkreislauf 28 versorgt. Ein Ausgang des zu reinigenden Wärmetauschers 2 wird über eine zweite Adaptierung 3' an ein Schaltventil 11 angeschlossen. Mittels des Dampferzeugers 4 wird Druck im Wärmetauscher 2 aufgebaut. Dabei sammelt sich zunächst Kondensat 8 an den Oberflächen an, die eine geringere Temperatur als der erzeugte Reinigungsdampf 7 aufweisen. Nach dem Erreichen eines vorbestimmten Dampfdruck- und/oder Temperaturniveaus wird dieser Zustand für die Dauer einer definierten Kondensationszeit gehalten. Die Kondensationszeit kann je nach Bedarf variieren und liegt im Normbereich bei etwa einer halben Minute bis zu etwa einer Stunde. Je nach Struktur und Zusammensetzung der Verschmutzungen 9 sowie der Dauer der Kondensationszeit, in der der Dampfdruck im Innenvolumen des Wärmetauschers 2 aufrechterhalten wird, wird das Kondensat 8 in den Verschmutzungen 9 eingelagert. Nach Ablauf der Kondensationszeit wird das in der Auslassvorrichtung vorgesehene Schaltventil 11 vollständig geöffnet, sodass sich ein starker Druckabfall 10 im Innenvolumen des Wärmetauschers 2 einstellt. Aufgrund des starken Druckabfalls 10 verdampfen die Ansammlungen von Dampfkondensat 8 unter großer Volumenzunahme. Damit sich eine ausreichend große Druckabfallrate einstellt, sind die Auslassvorrichtung, das Schaltventil 11 sowie nachgelagerte Rohrleitungen mit einem ausreichend großen Strömungsquerschnitt versehen. Für ein mit Dampfdruck beaufschlagtes zu reinigendes Innenvolumen eines Wärmetauschers 2 von etwa 3 Litern haben sich beispielsweise DN12 Strömungsrohrquerschnitte als ausreichend erwiesen. Für größere druckbeaufschlagte Volumina sind entsprechend größere Strömungsrohrquerschnitte zu wählen. Der Druckverlust über den Wärmetauscher 2 kann dabei analysiert 15 werden. Über die Auslassvorrichtung tritt das Dampf-Kondensat-Gemisch 7, 8 aus. Die Auslassvorrichtung ist mit einem Kondensator 30 strömungstechnisch verbunden. Das Dampf-Kondensat-Gemisch 7, 8 wird abtransportiert 26 und dem Kondensator 30 zugeführt, in dem eine vollständige Kondensation des abtransportierten Abdampfes 13 erfolgen soll. An dieser Stelle ist es vorteilhaft, Proben des kondensierten Gemisches zu entnehmen und auf Verschmutzungsanteile und deren Zusammensetzung zu untersuchen 31, um auf die Reinigungswirkung schließen zu können. Anhand der in diesem Schritt 31 gewonnenen Erkenntnisse, können die Verfahrensparameter der folgenden Reinigungszyklen effektiv angepasst werden. Das Abwasser 13 aus einem Reinigungsdurchgang wird in einem Abscheidebehälter 20 gesammelt, wobei sich die Verschmutzungen 9 je nach Art separieren lassen, sodass das gereinigte Wasser über einen Wasserkreislauf 28 und eine Wasseraufbereitung 32 mit Filtration dem Dampferzeuger 4 zugeführt wird und somit wieder in den Prozess gelangt.In 4 a concrete manifestation of the cleaning procedure is explained. In this case, a heat exchanger 2 via a first adaptation 3 connected to a pressure and temperature controllable steam generator 4. This is supplied at its water inlet 18 via a demineralization device 6 with process water and treated water from a water circuit 28 . An outlet of the heat exchanger 2 to be cleaned is connected to a switching valve 11 via a second adapter 3'. Pressure is built up in the heat exchanger 2 by means of the steam generator 4 . In the process, condensate 8 initially collects on the surfaces which have a lower temperature than the cleaning steam 7 that is generated. After a predetermined vapor pressure and/or temperature level has been reached, this state is maintained for a defined condensation time. The condensation time can vary as required and is within the normal range of around half a minute to around an hour. The condensate 8 is stored in the dirt 9 depending on the structure and composition of the dirt 9 and the duration of the condensation time in which the vapor pressure in the internal volume of the heat exchanger 2 is maintained. After the condensation time has elapsed, the switching valve 11 provided in the outlet device is fully opened, so that a strong pressure drop 10 occurs in the internal volume of the heat exchanger 2 . Due to the sharp drop in pressure 10, the accumulations of steam condensate 8 evaporate with a large increase in volume. So that a sufficiently large pressure drop rate is established, the outlet device, the switching valve 11 and downstream pipelines are provided with a sufficiently large flow cross section. For example, DN12 flow pipe cross sections have proven to be sufficient for an internal volume of a heat exchanger 2 to be cleaned that is subjected to steam pressure and is to be cleaned. For larger pressurized volumes, correspondingly larger flow tube cross sections must be selected. The pressure loss across the heat exchanger 2 can be analyzed 15 become. The steam-condensate mixture 7, 8 exits via the outlet device. The outlet device is fluidly connected to a condenser 30 . The steam-condensate mixture 7, 8 is transported away 26 and fed to the condenser 30, in which a complete condensation of the exhaust steam 13 transported away is to take place. At this point, it is advantageous to take samples of the condensed mixture and examine them for contamination and their composition 31 in order to be able to draw conclusions about the cleaning effect. Based on the knowledge gained in this step 31, the process parameters of the following cleaning cycles can be effectively adjusted. The waste water 13 from a cleaning cycle is collected in a separating tank 20, whereby the dirt 9 can be separated depending on the type, so that the cleaned water is fed to the steam generator 4 via a water circuit 28 and a water treatment 32 with filtration and thus returns to the process .

Grundsätzlich sind die mechanischen Belastungen durch die Druckschwankungen und Strömungskräfte im Innenvolumen des zu reinigenden Wärmetauschers 2 zu berücksichtigen. Wärmetauscher 2 weisen häufig empfindliche Konstruktionen mit geringen Materialwandstärken auf, die beschädigt werden können. Die strömungsmechanischen Belastungen bei einem Dampfreinigungsverfahren sind aber aufgrund der deutlich geringeren Dichte von Dampf gegenüber Flüssigkeiten geringer als bei einem Spülverfahren. In principle, the mechanical stresses caused by the pressure fluctuations and flow forces in the inner volume of the heat exchanger 2 to be cleaned must be taken into account. Heat exchangers 2 often have sensitive constructions with small material wall thicknesses that can be damaged. However, due to the significantly lower density of steam compared to liquids, the flow-mechanical loads in a steam cleaning process are lower than in a rinsing process.

Claims (15)

  1. Method for cleaning surfaces in the internal volume of an aircraft component (2) through which a medium flows, said method comprising at least the following steps:
    - connecting the internal volume to be cleaned to a steam generator (4),
    - generating a cleaning steam (7) having a predetermined vapour pressure and temperature, by means of the steam generator (4),
    - applying the cleaning steam (7) to the surfaces to be cleaned in the internal volume of the aircraft component (2) through which a medium flows,
    - maintaining the vapour pressure and the temperature within the internal volume for the duration of a predetermined condensation time,
    - generating a pressure drop (10) in the internal volume of the aircraft component (2) through which a medium flows, in order to vaporise the portion (8) of the cleaning steam (7) that condensed during the condensation time,
    - removing (26) the cleaning steam (7, 13) from the internal volume of the aircraft component (2) through which a medium flows, via a discharge device.
  2. Method according to claim 1, characterised in that the internal volume of the aircraft component (2) through which a medium flows is rinsed with water following removal (26) of the cleaning steam (7).
  3. Method according to either claim 1 or claim 2, characterised in that the steps are repeated in a manner having a predetermined cycle time.
  4. Method according to any of the preceding claims, characterised in that water vapour is used as the cleaning steam (7).
  5. Method according to claim 4, characterised in that the vapour pressure of the cleaning steam (7) is between 0.17 mPa and 22 MPa.
  6. Method according to claim 4, characterised in that the vapour temperature of the cleaning steam (7) is between 388 K and 646 K.
  7. Method according to claim 4, characterised in that the pressure drop (10) in the internal volume of the aircraft component (2) through which a medium flows is at least 0.01 MPa/s, preferably 0.1 MPa/s.
  8. Method according to any of the preceding claims, characterised in that the vapour pressure and/or vapour temperature of the steam generator (4) can be controlled.
  9. Method according to claim 4, characterised in that the removed cleaning steam (13) is recycled, by means of being condensed (30) and cleaned (32), and supplied to the steam generator (4) for generating a cleaning steam (7) again, in a subsequent cycle.
  10. Method according to claim 9, characterised in that the removed cleaning steam (13) passes through a heat exchanger for the purpose of energy recovery (16), before being supplied to the steam generator (4) again.
  11. Method according to any of the preceding claims, characterised in that the pressure drop (10) in the internal volume of the aircraft component (2) through which a medium flows is achieved by opening a discharge device.
  12. Method according to claim 11, wherein the discharge device comprises a switch valve (11).
  13. Method according to any of the preceding claims, characterised in that the degree of contamination of the removed cleaning steam (13) is measured.
  14. Method according to claim 13, characterised in that the cleaning cycle is repeated until the measured degree of contamination reaches a predetermined threshold value.
  15. Method according to any of the preceding claims, characterised in that
    - the pressure loss during a cleaning process of a standardised comparison component (comparative value) is measured, and in that
    - the cleaning cycle is repeated in an automated manner, until the measured pressure loss of the aircraft component (2) to be cleaned substantially corresponds to the comparative value.
EP18733550.0A 2017-06-22 2018-06-18 Cleaning method for surfaces in the internal volume of aircraft components though which a medium flows Active EP3642549B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017210554.2A DE102017210554B4 (en) 2017-06-22 2017-06-22 Cleaning processes for surfaces in the interior volume of airframe components
PCT/EP2018/066071 WO2018234218A1 (en) 2017-06-22 2018-06-18 Cleaning method for surfaces in the internal volume of aircraft components though which a medium flows

Publications (2)

Publication Number Publication Date
EP3642549A1 EP3642549A1 (en) 2020-04-29
EP3642549B1 true EP3642549B1 (en) 2023-08-02

Family

ID=62712972

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18733550.0A Active EP3642549B1 (en) 2017-06-22 2018-06-18 Cleaning method for surfaces in the internal volume of aircraft components though which a medium flows

Country Status (7)

Country Link
US (1) US11311919B2 (en)
EP (1) EP3642549B1 (en)
CN (1) CN110770528B (en)
DE (1) DE102017210554B4 (en)
DK (1) DK3642549T3 (en)
ES (1) ES2959313T3 (en)
WO (1) WO2018234218A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018208611A1 (en) * 2018-05-30 2019-12-05 Airbus Operations Gmbh Method for disinfecting a water system of an aircraft
DE102018208602A1 (en) 2018-05-30 2019-12-05 Airbus Operations Gmbh Method for disinfecting a water system of an aircraft
DE102019121555B4 (en) * 2019-08-09 2022-02-24 Lufthansa Technik Aktiengesellschaft Device for cleaning components with a cleaning fluid
CN111996770B (en) * 2020-08-25 2023-06-13 广州视源电子科技股份有限公司 Clothes care machine and self-cleaning control method thereof
DE102022118068A1 (en) 2022-07-19 2024-01-25 Syntegon Technology Gmbh Method for cleaning wall sections of liquid-carrying areas of a system and a system

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5287606A (en) * 1992-03-10 1994-02-22 Soft Blast, Inc. Apparatus for treating traveling textile material in a pressurized fluid
US5246633A (en) * 1992-08-25 1993-09-21 Teng Chin Lin Device for collecting used steam
DE4410550C1 (en) * 1994-03-26 1996-06-27 Werner Meisner Method and appts. for drying industrial parts in drying chamber
US6019819A (en) * 1998-03-17 2000-02-01 Alpha Engineers, Inc. Apparatus and method for extracting heat from contaminated waste steam
US6290778B1 (en) * 1998-08-12 2001-09-18 Hudson Technologies, Inc. Method and apparatus for sonic cleaning of heat exchangers
CN100486720C (en) * 2002-03-05 2009-05-13 周政明 Multipurpose closed type cleaning and vacuum drying method and its apparatus
CN1227475C (en) * 2002-11-18 2005-11-16 乐金电子(天津)电器有限公司 Sudden heating type steam cleaner
US6936112B2 (en) * 2002-11-26 2005-08-30 Refined Technologies, Inc. Heat exchanger cleaning process
US20040231702A1 (en) * 2003-05-22 2004-11-25 Honeywell International Inc. Flushing for refrigeration system components
JP4507259B2 (en) * 2003-06-27 2010-07-21 ウエラ アクチェンゲゼルシャフト Apparatus with a boiler for the generation of water vapor
EP2225527B1 (en) * 2007-12-18 2012-03-07 A-Heat AlliedHeat Exchange Technology AG Heat exchange system
EP2108464A1 (en) * 2008-04-09 2009-10-14 Dow Global Technologies Inc. Process for cleaning articles
DE102009009938B4 (en) 2009-02-20 2013-10-17 Hammann Gmbh Apparatus and method for cleaning drinking water pipes or sewers in vehicles, in particular aircraft, rail vehicles or water vehicles
AU2009349362A1 (en) * 2009-07-07 2011-12-22 A-Heat Allied Heat Exchange Technology Ag Heat exchange system and method for operating a heat exchange system
US20140096794A1 (en) * 2012-10-04 2014-04-10 The Boeing Company Methods for Cleaning a Contaminated Surface
CN103267444B (en) * 2013-05-21 2015-01-28 侯立国 Airborne heat exchanger self-cleaning system
CN204359200U (en) * 2014-03-27 2015-05-27 西安艾威科技有限公司 A kind of heat exchanger cleaning machine of aircraft
CN206235237U (en) * 2016-11-24 2017-06-09 河钢股份有限公司承德分公司 A kind of self-cleaning heat-exchanger rig

Also Published As

Publication number Publication date
DE102017210554A1 (en) 2018-12-27
DE102017210554B4 (en) 2020-06-04
CN110770528B (en) 2021-11-26
CN110770528A (en) 2020-02-07
ES2959313T3 (en) 2024-02-23
US20200171553A1 (en) 2020-06-04
US11311919B2 (en) 2022-04-26
EP3642549A1 (en) 2020-04-29
DK3642549T3 (en) 2023-10-09
WO2018234218A1 (en) 2018-12-27

Similar Documents

Publication Publication Date Title
EP3642549B1 (en) Cleaning method for surfaces in the internal volume of aircraft components though which a medium flows
DE69929243T2 (en) DEVICE AND METHOD FOR CLEANING AND REMOVING COATINGS FROM OBJECTS
EP3140519B1 (en) Method and system for operating a steam turbine plant with a thermal water treatment
DE2941708A1 (en) METHOD AND DEVICE FOR CLEANING FILM STRIPS
EP2186577A1 (en) Tank cleaning method
DE4410550C1 (en) Method and appts. for drying industrial parts in drying chamber
DE2808139A1 (en) Tempering gravity or pressure die casting mould prior to use - using heating source in vapour state which is passed through mould
EP0508986B1 (en) Process for purifying organically polluted waste water
DE102016205525A1 (en) Apparatus for recovering water, in particular for a water injection device of an internal combustion engine
DE102012019365B4 (en) Method and apparatus for regeneration of soot particulate filters of diesel engines
EP1736229A1 (en) Device and process for condensate separation
DE3344526A1 (en) Processing of oil sludge for combustion and equipment provided for this purpose
DE102019212161A1 (en) REFLOW CONDENSATION SOLDERING SYSTEM
DE102004026908A1 (en) Apparatus for purifying an impurity-laden gas stream comprises a condenser with a dew point zone in which the impurity condenses or freezes and a system for removing the condensed or frozen impurity from the condenser
DE102018221728B4 (en) Condensation device for process steam from a process steam source
DE102015102401B3 (en) Method and treatment station for heating and sterilizing KEGs, in particular reusable KEGs
EP4154279B1 (en) Process for liquid decontamination of radioactively contaminated objects with process-water retreatment
DE102018116983A1 (en) Method and device for operating an internal combustion engine with an exhaust gas recirculation system
EP1038992B1 (en) Process and apparatus for surface treatment of parts with a solvent
WO2004103522A1 (en) Method and device for cleaning melt filtration systems
DE2408554A1 (en) Clothes cleaning process operation - has a heat exchanger between drying and condensation circuits to save energy costs
DE202020004863U1 (en) Device for regenerating at least one exhaust air filter of a surface treatment plant
DE4421061A1 (en) Washing, rinsing and drying industrial components
DE19751146C2 (en) Method and device for cleaning a sample gas preparation device for hot sample gases containing subliming components
EP0347605B1 (en) Process and apparatus for separating solvent from oil

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200115

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230224

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DER ERFINDER HAT AUF SEIN RECHT VERZICHTET, ALS SOLCHER BEKANNT GEMACHT ZU WERDEN.

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018012873

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20231006

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230802

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230802

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231204

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231102

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230802

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230802

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230802

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231202

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230802

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230802

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2959313

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20240223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230802

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230802

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230802

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230802

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230802

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018012873

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230802

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT